Complex Systems: Errata and Changes, Volume 1

All known errata and changes are given below for articles published in Complex Systems, Volume 1, 1987.

Bruce M. Boghosian and C. David Levermore, "A Cellular Automaton for Burgers' Equation", pages 17-29

The two columns of figures on page 27 are transposed; they are labelled correctly.

The words "Below we plot" on page 28 refer to the plots on page 27.

Daniel G. Maeder, "The Free Energy Concept in Cellular Automaton Models of Solid-Solid Phase Transitions", pages 131–143

The caption for figure 2 should be replaced by the following:

Printout of a hypothetical two-dimensional cellular automaton model for a shape memory alloy, at a temperature producing about one-third of martensite in equilibrium with two thirds of austenite. The pattern resembles some enlarged details of figure 1c where the variants A, B, C, D show up as different gray shades. For better contrast, austenitic cells have been represented by colons rather than by a letter. At high temperature, each martensitic plate must shrink into a single permanent "germ" cell of the respective variant. A realistic model should contain very few germs (i.e. crystal defects) per 1000 cells.

Kristian Lindgren, "Correlations and Random Information in Cellular Automata", pages 529-543

Equation (2.11) should be

$$\Delta S_m = S_m - S_{m-1}$$

In section 3, "Algorithmic information theory", the notation $h_{(\alpha_m)}$ should be $h(\alpha_m)$, ΔdH_d should be $\Delta_d H_d$, $\Delta t s_\mu$ should be $\Delta_t s_\mu$. In equation (4.1), \sum_{α_m+2r} should be $\sum_{\alpha_{m+2r}}$.

Equation (4.5) should be

$$R(i_{-r} \dots i_r) = i_r + f(i_{-r} \dots i_{r-1}) \mod 2$$

© 1987 Complex Systems Publications, Inc.

The second part of equation (4.7) should be

$$\sum_{\beta_m} T_R(\alpha_{m+2r}, \beta_m) = 1$$

The second half of equation (4.14) is missing a right parenthesis before $p_m(\cdot)$.

In section 4, $\Delta t \eta(t)$ should be $\Delta_t \eta(t)$.