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Abstract. We study lattice gas automata of fluid dynamics in the
incompressible flow limit. It is shown that the viscosity effect on the
transition layer from the steady uniform velocity in one stream to
the steady uniform velocity in another, adjacent stream produces the
correct profile. We further study the intrinsic damping or smoothing
action of viscous diffusion and show that the results agree with those
obtained from the Navier-Stokes equation. In both cases, we obtain a
kinetic viscosity v ~ 0.65, consistent with the prediction of Boltzmann
approximation.

1. Introduction

Cellular automata were originally introduced by von Neumann and Ulam [1]
to study the behavior and the organization of very complex systems. Since,
several attempts have been made among members of the physics community
to find simple ways to describe and study the motion of a collection of inter-
acting particles [2]. Notable among them are models of fluid motion [3-5].
In these models, time is discrete and particles collide in a lattice. On the
theoretical side, it is known that real fluids are described by a set of so-called
Navier-Stokes equations:

%ti = —(u.V)u — Vp + vV?u; (1.1)
V=0 (1.2)

where u is the velocity, p is the pressure per unit mass density, and v is the
kinetic viscosity. The former is a statement of local momentum conservation
while the latter is essentially an expression for local mass conservation. As
will be seen later, these conservation laws are to be built into the lattice gas
automaton if the model is to describe real fluids correctly.

The current impetus in these studies came with the recent advances in
parallel computations. It is believed possible that such models, which belong
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to a class of parallel computing systems with local rules known as cellular au-
tomata, may soon compete with the traditional computational methods [11].
Of particular interest is the use of binary arithmetic in this model instead of
the high-precision arithmetic required by the conventional approach; more-
over, complicated boundary conditions are more easily implemented. In this
model, however, the Navier-Stokes equation is recovered only in the limit of
large systems and for incompressible flows. More theoretical analysis remains
to be done in order to bound the error of the lattice gas numerical scheme
for finite lattice size and velocities [14]. It is the main aim of this paper to
provide partial answers to this question by presenting numerical simulations
of the dynamical behavior of the lattice gas and seeing how well the results
compare with results of classical hydrodynamics.

We will study two examples in the unsteady unidirectional flow (see also
[15]: the first is the interesting problem of smoothing-out of a discontinuity
in velocity at a plane [7]. In the second, we study a problem that will be of
particular interest for studying the motion in the boundary layer of periodic
wave damped by friction. In either case, we show that the simulations gen-
erate the correct velocity profiles and the viscosity coefficient so extracted is
in agreement with values obtained via other methods (e.g. Boltzmann ap-
proximation). In forthcoming papers [8,9], we will try to shed more light in
this direction by studying flow patterns.

The paper is organized as follows. In section 2, we briefly discuss the
model and define the various rules implemented into the model. Section 3
deals with the smoothing-out of discontinuity in velocity. The results and
comparison with solutions of Navier-Stokes equation are presented in the
same section. Section 4 presents the study of the boundary layer due to a
vibrating plane and the results. The last section is reserved for conclusion.

2. The lattice gas automaton—model

The lattice gas model we use is that of Frisch, Hasslacher, and Pomeau [10].
At each site of the residing triangular lattice, particles can move in any of
the six possible directions, ¢;, with ¢ defined modulo six (see figure 1):

e = ( ;g ) @1)
o ) (2.3)

3, ) (24)
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Figure 1: The six possible directions at each lattice site. At each site,
no two particles can have the same velocity.

o= ( 1) -

%=(3). (26)

There is, however, one stringent constraint on these velocities and this
is usually referred to as the “exclusion principle”. This principle states that
at any given site, no two particles can have the same velocity. Taking this
exclusion principle into account, a site may be empty or occupied up to a
maximum of six particles. The evolution proceeds in two stages: at each
time step, the particles propagate and then collide. During propagation,
each particle moves one lattice constant in a direction determined by its
momentum. Immediately following this, particles undergo collisions.

Our collision rules are deterministic so that the model is chiral. For sym-
metric two-particle head-on collisions with occupied input channels (z,7+ 3),
the occupied output channels are (i+1,7+4). Figure 2 illustrates all possible
two-particle collisions. It is obvious that this type of collision obeys conser-
vation of momentum and conserves the particle number. However, careful
observation reveals that there is also a spurious conservation—conservation
of the difference in particle numbers in any pair of opposite directions (z,i+3)
[6]. This leads to conservation of four scalar quantities and the model would
yield wrong macroscopic results unless this spurious conservation law is re-
moved. A way to achieve this is to introduce symmetric three-particle colli-
sions; with each occupied input channel (7,7 + 2,7 + 4), the occupied output
channel is (¢ + 1,7 + 3,7 + 5). Figure 3 depicts all possible such collisions.
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Figure 2: All possible two-particle collisions. A counter-clockwise
rotation of 60° and so the collision rule is chiral.
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Figure 3: All possible three-particle collisions. A counter-clockwise

rotation of 60°.
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3. Smoothing-out of a discontinuity in velocity

We shall consider two adjacent streams moving with the same steady speed,
but in opposite directions at time ¢ = 0. If we denote the common speed
of the streams at ¢ = 0 by U and take the y-axis to lie along the transition
layer, then with axes moving with the mean of the velocities of the streams,
and a jump in velocity of 2U across the layer, the boundary conditions are:

u(z,0) = +U, z >0 (3.1)
u(z,0) = -U, z <. (3.2)

In this situation, u(z,t) will represent the excess velocity at position z at a
subsequent time .

3.1 Solution of Navier-Stokes equation

The solution of Navier-Stokes equation for the problem, with the above
boundary conditions, has been solved and can be found in standard texts
on fluid dynamics [7]. In terms of the only dimensionless combination of the
pertinent physical parameters, the solution is:

U = -z
u(z,t) = (rwj-[ exp(7) dz (3.3)
= Uerf
“ ((4 t)l)
where erf(z) is the error function and is given by:
( lﬂ. 2n+1
f(z) = —-— ;
erf( w2 et 1) (3.4)

3.2 Lattice-gas automaton simulation

In our simulation model, we have two streams of forced flows in the two halves
of a 240 x 241 lattice. The stream flows are in the positive and negative y-
directions. To mimic the infinite extent of the flow in the y-direction, periodic
boundary conditions are imposed on the top (AA’) and bottom (BB’) of the
lattice—e¢;, c; on AA’ are mapped onto the corresponding sites on BB'; ¢4, ¢5
on BB’ are mapped onto the corresponding sites on AA’. The two walls (AB
and A'B’) are taken to be specularly reflecting (see figure 4).

The flow is forced by adding momentum in the positive y-direction in
the right half of the lattice, and by adding momentum in the negative y-
direction in the remaining half of the lattice. This is achieved as follows:
after each time step we randomly select a lattice site and apply, whenever
allowed, one of the microscopic forcing rules described in Figure 5a and figure
5b. Each successful application of the forcing rule adds a unit of momentum
to the stream. The forcing process is repeated until the desired amounts of
momenta have been transferred to each stream [13]. This forcing process is
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Figure 4: The lattice used for simulating flow of two adjacent streams.
AA’ is mapped onto BB’ using periodic boundary condition; AB and
A'B’ are specularly reflecting.

maintained until time step 6000, when the velocity profile has reached the
stage corresponding to initial conditions as stated in equation (3.1,3.2). Then
the forcing rule is “turned off”. The net result of this is two adjacent streams
of initial, equal speed U.

3.3 Results of lattice-gas automaton simulation

In the coarse-graining process, we divide BB’ into forty strips and AB into six
rows [15]. The macroscopic mean density, p and macroscopic mean velocity,
u are defined by [16]

21

r= AM i'Ea(Ni)av (3.5)
2 1

pu = 7§'H§(Nici)a: (3.6)

where i = 1,...,6, a sums over the sites enclosed in the region over which
macroscopic means are taken, M is the total number of sites in the macro-
scopic region and is 6 x 40 in this example, (N;), is the number of particles
at site a with velocity ¢;. The 725 factor arises because the residing lattice is
triangular. With a total of 114153 particles in the 240 x 241 lattice, equation
(3.5) gives p = 0.37.

We have checked that the mean density of gas does not vary significantly
during the simulation and that the body forcing steps do not introduce ap-
preciable lateral velocities. In fact, the mean density never varies more than
3% from its mean (0.37 4 0.01) and the fluctuations in lateral velocity is less
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Figure 5: The forcing rules: (a) the three pairs of diagrams represent
microscopic forcing rules to impart momentum in positive y-direction;
(b) the corresponding microscopic forcing rules to impart momentum
in the negative y-direction.

than 2% (0.0 & 0.02). We have also carefully kept track of all the particles
and made sure that no particles are lost or injected at each time step. These
facts substantiate the simplification of equation (1.1) and the form of the so-
lution, equation (3.3). A control simulation under the same conditions is run
for 80000 time steps and it is observed that the maximum velocity attained
approaches 0.7. This corresponds to U. In fact, this is also the maximum
velocity at time step 6000. The mean velocity profiles at various times are
shown in figure 6. It is seen that as time progresses, the width of the velocity
profile at a fixed z becomes more and more narrow, in agreement with the
prediction of equation (3.3). Figure 7 compares the simulation data points
with the theoretically predicted form of equation (3.3). These graphs corre-
spond to t = 1000 after the ‘switch-off’, and v = 0.65. They both seem to
approach asymptotically to the value u = 0.7. It is seen that the two graphs
agree very well for small u and the numerical data points deviate from the
theoretical curve for |u(z,t)| > 0.5. This is very reminiscent of what has
been observed in reference 14. In [14], it is noted that a characteristic fea-
ture of lattice gas automata is the appearance of higher-order corrections to
the Navier-Stokes equations. These corrections are artifacts of the discrete
nature of the lattice and they break Galilean invariance as soon as the ratio
of the fluid velocity to the sound velocity (the Mach number) approaches
unity. This may account for the deviations. In what follows, the fluid veloc-
ity considered is kept well below the sound velocity (0.707 in this model) to
minimize these effects. For small argument of the error function, the solution
takes the form (see also equation (3.4)):
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Figure 6: The velocity profiles of smoothing-out of a discontinuity in
velocity at ¢ = 0, t = 2000, and ¢ = 4000 after the switch-off. Note
that as time progresses, the profile narrows in.
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Figure 7: The velocity profile at ¢ = 1000. The solid line is the
theoretical prediction of Navier-Stokes equation. The profile is linear
in the vicinity of the origin.
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2 ., 0.470 x t~2 4 10~
t du
Az
500 0.0208
1000 0.0154
1500 0.0123
2000 0.0107
2500 0.0096
3000 0.0085

Table 1: Smoothing-out of a discontinuity in velocity. The slope for
small arguments of the error function and the corresponding time.

&

TR (3.7)

oz, 1) e %

From the form of equation (3.7) it is very tempting to fit the velocity profile
with respect to the similarity variable 5’:‘ and leave v as the regression co-
efficient. From the way the data are taken however, it is more appropriate
to extract the viscosity from the gradient of the velocity profile close to the
origin at various times. This is tabulated in table 1 and displayed in figure
8. From the linear fit of figure 8, we obtain
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Figure 8: The slopes in the neighborhood of the origin at various
times. The solid line is a linear fit.

2 U
Far - 0.470 (3.8)

v = 0.70.
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This is to be compared with that obtained from Boltzmann approximation
14,17,

1 1 1
v = T‘é—;(—lt—ﬁg e '8" o} RY AT 8 (39)

where p = 0.37.
The two numbers are in good agreement, if we recall Boltzmann approx-
imation always yields v about 10% too high [6].

4. Flow due to an oscillating plane boundary

In this example, we shall consider a boundary moving sinusoidally in its own
plane with velocity u(0,1) = U cos(wt) where w is the angular frequency and
U is the amplitude.

4.1 Solution of Navier-Stokes equation

The governing equation and boundary conditions of this example are [7]:

du(z,t)  u(z,i)

& - o (1)
u(0,t) = U cos(wt), (4.2)
u(oco,t) = 0. (4.3)

The solution of this equation, as can easily be verified by direct differentiation
and substitution, is:

u(x,t) = Uexp [_ (;—V)éa:] cos [wt - (%)%m] (4.4)

The velocity profile has the form of a damped harmonic oscillator with am-
plitude that decays exponentially with distance from the vibrating plane.

4.2 Lattice-gas automaton simulation

In this simulation model, the boundary conditions on the walls are as in
section 3.2. The residing lattice is 80 x 1001 and is populated by 125015
particles. The flow is forced using the same technique as that of section 3.2,
except the following differences:

(1) the forcing is performed only in the first strip (z = 1 — 10),

(ii) the momenta are added in the positive or negative y-directions
depending on the sign of coswt,

(iii) the amount of momenta added is not fixed. Rather, at each time
step, it is equal to some constant amplitude multiplied by |coswt|.

The net result of these steps is that we have a left plane vibrating at an
angular frequency of w with amplitude U as shown in figure 9.
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Figure 9: The lattice used for simulating flow due to a vibrating plane.
AA’ and BB’ are mapped onto each other periodically; AB and A’B’
are specularly reflecting. Forcing rules are applied only in the first
strip as described in the text.

4.3 Results of lattice-gas automaton simulation

In the coarse-graining process, we divide AA’ into ten strips and AB into
twenty-five rows [14,15]. Since the fluid motion is set up from rest, the
velocity profile contains transients. The velocity profiles shown in figure 10
are taken from time steps 320, 820, 1320 and 1820, after the transients have
died away. These plots correspond to the velocity profiles at ¢ = gr, t= %T,
t=2randt= f}'r respectively, where 7 = 2000 is the period. It is observed
that the velocity profiles are harmonic functions of the time, with the same
frequency (w = 525) as that of the forcing vibrating plane just as predicted
in equation (4.4)!

To extract the viscosity, we note that the velocity profile first crosses
the u = 0 axis when the argument of the sinusoidal factor in equation (4.4)
vanishes. This happens at (¢ = 0)

(£)eo—wt =

= (4.5)
z? (EV) T. (4.6)

Il

We tabulate in table 2 the positions of first zeroes for various periods and
figure 11 is a plot of =2 versus 7, the period. From the linear fit, we obtain,



56 Hwa A. Lim

0.2J7I_I|lilll||!|lllli‘llli

{=0

t=1/41
t=2/41
t=3/41

e

O .
“,v -
- =

< + 0O O

oy g b e

|l]]!|I1

'0-2_Illlll||IIllIIIIllIIII

2 4 6 8 10
x/6

Figure 10: The velocity profiles set up by a vibrating plate at t = 0,
t=4,t=Fandt= %T. The solid curves are theoretical predictions.
The flow vibrates with the same frequency as that of the forcing plate.
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Figure 11: A plot of the distances squared from the vibrating plate of
first zeroes versus the periods. The solid line is a linear fit.
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Linear regression 72~ 0.529 x 7 —37.0
Linear regression | log(A) = 0.62 x log(7) — 2.78
A t z | 2? T

0.08 | 100 15| 225 | 500

0.12 | 200 22 | 484 | 1000

0.15 | 240 271729 | 1500

0.19 | 320 33 | 1089 | 2000

0.22 | 420 36 | 1296 | 2500

0.24 | 580 39 | 1521 | 3000

0.27 | 660 42 | 1764 | 3500

0.28 | 680 46 | 2116 | 4000

Table 2: Flow due to an oscillating plane. Response amplitudes, time,
position of first zeroes and the vibrating periods.

X =0529. (4.7)
4

or that » = 0.67 which is again in agreement with that of equation (3.9) (p =
0.30,vp ~ 0.70). It is also interesting to note that the response amplitudes

seem to obey a power law of the form A ~ % for a fixed vibrating plate
amplitude.

5. Conclusion

We have shown, by simulating two interesting and important examples from
incompressible fluid dynamics, that the lattice-gas automata are capable of
producing results which are consistent with classical hydrodynamics. Though
these examples provide no rigorous proof that lattice-gas automata can com-
pete with traditional computational methods in efficiency, they do show that
lattice-gas automata, with certain restrictions, may be a viable alternative
for solutions of fluid dynamics. This is especially true when very complicated
boundary conditions are to be implemented.
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