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Abst ract. We st udy lat tice gas automata. of fluid dynamics in the
incompressible flow limit . It is shown t hat t he viscosity effect on the
transition layer from the steady uniform velocity in one strea.m to
the steady uniform velocity in another , adja cent strea m produces t he
correct profile. We further study t he intr insic damping or smoothing
action of viscous diffusion and show that the results agree wit h t hose
obta ined from the Navier-Stc kes equation. In both cases, we obtain a.
kinetic viscosity II '" 0.65, consistent with the prediction of Bolt zmann
approximation.

1. Introduction

Cellular automa ta were originally introduced by von Neumann and Ulam (1]
to st udy the behavior and the organization of very complex syste ms. Since,
several attempts have been made among members of the physics community
to find simple ways to describe and study the motion of a collect ion of inter­
act ing par ticles [21 . Notable among them are models of fl uid moti on [3~5].

In these models, ti me is discrete and par ticles collide in a lat tice. On the
theoretical side, it is known that real fluids are described by a set of so-called
Navier-Stokes equations:

auat = -(u. V) u - Vp + vV'u ;

V .u = O. (1.2)

where u is t he velocity, p is the pressure per unit mass density, and v is the
kinetic viscosity. The former is a statement of local momentum conservat ion
while the lat ter is essentially an expression for local mass conservation . As
will be seen later, these conservation laws are to be built into the lat t ice gas
automaton if the model is to describe real fluids correctly.

T he cur rent impetus in these st udies came with the recent advan ces in
parallel computations. It is believed possible that such models, which belong
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to a class of par allel comput ing systems with local rules known as cellula r au­
tomata, may soon compete with the traditi onal computational methods [11].
or part icular interest is t he use of binary arithmet ic in th is model instead of
the high-precision arit hmet ic required by the conventional ap proach; more­
over, complicated boundary conditions are more easily implemented. In t his
model , however, the Navier-Stokes equat ion is recovered only in the limit of
large systems and for incompressi ble flows. More theoret ical analysis remains
to be done in orde r to bound the error of the lattice gas numerical scheme
for finite lat tice size and velocities [1 41. It is the main aim of this paper to
provide part ial answers to this question by presenting numer ica l simulat ions
of the dynamical behavior of the lat tice gas and seeing how well t he results
compare with result s of classical hydrodynamics.

We will study two examples in the unstead y unidirectional flow (see also
[15J: the first is the interesting problem of smoot hing-out of a discontinuity
in velocity at a plane [7]. In t he second, we study a problem that will be of
part icular interest for studying the motion in the bounda ry layer of periodic
wave damp ed by friction . In eit her case, we show that the simulat ions gen­
erate the correct velocity profiles and t he viscosity coefficient so extracted is
in agreement with values obtained via ot her methods (e.g. Boltzmann ap­
proximation) . In forthcoming pap ers [8,9), we will t ry to shed more light in
this d irect ion by st udy ing flow patterns.

The paper is organized as follows. In sect ion 2, we briefly discuss the
model and define t he various rules implemented into the model. Section 3
deals with the smoothing-out of discontinu ity in velocity. The resul ts and
comparison with solut ions of Navier-Stokes equation are presented in the
same sect ion. Sect ion 4 presents the study of the boundary layer due to a
vibrating plane and the results. The last sect ion is reserved for conclusion.

2. T he lattice gas a u t omaton- m odel

Th e lattice gas model we use is th at of Frisch, Hasslacher, and Pomeau [101 .
At each site of the residing tr iangular lat tice, par ticles can move in any of
the six possible direct ions, ct , with i defined modulo six (see figure 1):

c, = ( 4) (2.1)

C2 = (4) (2.2)

C3 = ( ~1 ) (2.3)

C4 =(~ ) (2.4)
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Figure 1: T he six possible directions at each latt ice site. At each site,
no two particles can have t he same velocity.

C5 =(~)

0<=0)·
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(2.5)

(2.6)

Th ere is, however, one st ringent constraint on these velocit ies and thi s
is usually referred to as the "exclusion pr incip le". This pr incip le states that
at any given site, no two particles can have the same velocity. Tak ing thi s
exclusion principle into account , a site may be empty or occupied up to a
ma ximum of six particles. The evolut ion proceeds in two stages: at each
time step , the particles propagate and th en collide. During propagation ,
each part icle moves one lattice constant in a direction determined by its
momentum. Immediately following th is, particles undergo collisions.

Our collision rules are determ inistic so that the mode l is chiral. For sym­
metric two-particle head-on collisions with occupied inpu t channels (i, i+3),
the occupied output chan nels are (i + 1, i +4). Figure 2 illustrates all possible
two-particle collisions. It is obv ious that this type of collision obey s conser­
vat ion of momentum and conserves the particle number. However , careful
observation reveals that there is also a spurious conservat ion-conser vation
of the difference in particle numbers in any pair of opposite direct ions (i , i+ 3)
[6]. T his leads to conservat ion of four scalar quant ities and the model would
yield wrong macroscopic results unless this spurious conservation law is re­
moved. A way to ach ieve this is to introduce symmetric three-particle colli­
sions; with each occ upied input channel (i, i + 2, i + 4), the occupied out put
channel is (i + 1, i + 3, i + 5). Figure 3 depicts all possible such collisions.
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1 \....
c.

\ .... c, c,

1c• c, .... c.

Figure 2: All possible two-particle collisions. A counter-clockwise
rotati on of 60° and so the collision rule is chiral .

r rC3 ..... C,

C, C.

~ ~
C, ..... C3

C, Cs

Figure 3: All possible three-particle collisions. A counter-clockw ise
rotation of 60° .
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3. Smoothing-out of a di scontinuit y in velocity

We shall consider two adjacent st reams moving with t he same steady speed,
bu t in oppos ite direct ions at time t = O. If we denote the common speed
of the st reams at t =°by U and tak e the y-axis to lie along the tr ansition
layer , then with axes moving with the mean of the velocitie s of the st reams,
and a ju mp in velocity of 2U across the layer, the bound ary conditions are :

,,(x,O) =

,,(x,O)
+u,
-U,

X> OJ

x < 0.

(3.1)
(3.2)

In this situat ion, u(x, t ) will rep resent the excess velocity at posit ion x at a
subsequent t ime t.

(3.3),,(x ,t) =

3.1 Solution of Navier-Stokes equation

The solut ion of Navier-Stokes equat ion for the prob lem, with the above
boundary condit ions, has been solved and can be found in standard texts
on fl uid dynamics [7]. In te rms of the only dimensionless combination of the
pert inent physical par ameters, the solut ion is:

U 1:0: _x12

- - exp(- -) dx'
(1fvt )~ 0 4vt

x
Uerf( - - l)'

(4vt),

where erf(z) is the error function and is given by:

2 00 (_I)n z2n+1
erf( z) = r:; L 1(2 ) .

V 1r n=O n. n +1
(3.4)

3.2 Lattice-gas aut om at on simulation

In our simulat ion model, we have two st reams of forced flow s in the two halves
of a 240 X 241 lattice. The stream flows are in the positive and negati ve y­
directio ns. To mimic the infinite extent of the flow in the y-d ireet ion, period ic
bound ary conditions are imposed on t he top (AN) and bot tom (BB') of the
lat t ice-cil Cz on AA' are mapped onto the correspon ding sites on BB' ; C4, Cs

on BB' are mapped onto the correspond ing sites on AA'. The two walls (AB
and A'B') are taken to be specularly reflecting (see figure 4).

Th e flow is forced by adding momentum in the positi ve y-direction in
the right half of the latti ce, and by adding momentum in tbe negative y­
direction in the remaining half of the lat t ice. This is achieved as follow s:
after each time ste p we randomly selecl a lattice site and apply, whenever
allowed, one of the microscopic forcing rules described in Figure 5a and figure
5b. Each successful app lication of the forcing rule add s a unit of momentum
to the st ream. The forcing process is repeated until the desired amounts of
momenta have been t ransferred to each stream [13J. Thi s forcing process is



50

A
,C,
\

C,

i
~.

Hwa A. Lim

C.

cs\ Ie.
S'

(3.5)

(3.6)

Figure 4: The latt ice used for simulating flowof two adjacent strea ms.
AA' is mapped onto BB' using periodic bounda ry condit ion; AB and
A'B ' are specularly reflecting.

maintai ned until t ime step 6000, when the velocity profile has reached the
stage corres ponding to initial condit ions as stated in equat ion (3.1,3.2). T hen
th e forcing rule is "turned off" . The net result of this is two adjacent streams
of initial, equal speed U.

3.3 Results of lat t ice-gas a ut omaton simula t ion

In t he coarse-graining process, we divide BB' into fort y st rips and AB into six
rows [15]. The macroscopic mean density, p and macroscopic mean velocity,
u are defined by [161

2 1
p = '3 M L(Ni ) . ,

v.> t,O

2 1
pu = J3M L (Nic;). ,

','
where i = 1, ... , 6, Q sums over the sites enclosed in the region over which
mac roscopic means are taken, M is the total number of sites in th e macro­
scopic region and is 6 x 40 in this example, (Ni)cr is t he number of particles
at site a with velocity Cj. The 75 factor arises because the residing lat t ice is
triangular. With a total of 114153 part icles in the 240 x 241 lattice, equa t ion
(3,5) gives p = 0,37.

We bave checked tha t the mea n density of gas does not vary significantly
dur ing the simulat ion and that the body forcing steps do not introduce ap­
preciab le lat eral velocities. In fact , th e mean density never varies more than
3% from its mean (0.37 ± 0.01) an d t he fluct uati ons in lateral velocity is less
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b )
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* ..*
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* ..*C, C,

Figure 5: T he forcing rules: (a) the three pai rs of diagrams represent
microscopic forcing rules to impar t momentum in positive y-direct ion;
(b) the corresponding microscopic forcing rules to impar t mome ntum
in the negative y-direction.

than 2% (0.0 ± 0.02). We have also carefully kept track of all the par t icles
and mad e sure that no particles are lost or injected at each time step. These
fact s substant iate the simplificat ion of equat ion (1.1) and the form of the so­
lution, equat ion (3.3). A control simulat ion under the same condit ions is f u n

for 80000 t ime steps and it is observed that the max imum velocity attained
approaches 0.7. This corresponds to U. In fact , this is also the maxim um
velocity at time step 6000. T he mean velocity pro fi les at various t imes are
shown in figure 6. It is seen that as t ime progresses, the width of the velocity
profile at a fi xed x becomes more and more narrow, in agreement with the
prediction of equation (3.3). Figure 7 compares the simulat ion data points
with the theoretically predicted form of equation (3.3). T hese grap hs corre­
spond to t = 1000 after the 'switch-off" , and v = 0.65. T hey bot h seem to
approach asymptotically to the value u = 0.7. It is seen t ha t the two graphs
agree very well for small u and the numerical data points deviate from the
theoreti cal curve for lu(x ,1)1 ~ 0.5. This is very reminiscent of what has
been observed in reference 14. In [14], it is noted th at a characteristic fea­
ture of lattice gas automata is the app earance of higher-order corrections to
the Navier-Stokes equations. Th ese corrections are artifacts of the discrete
nature of the lat tice and they break Galilean invariance as soon as the ratio
of the fluid velocity to the sound velocity (the Mach number) approaches
unity. Th is may account for t he deviation s. In what follows, the fluid veloc­
ity considered is kept well below the sound velocity (0.707 in t his model) to
minimize these effects. For small argument of the error function, the solution
takes the form (see also equation (3.4)):
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Figure 6: The velocity profiles of smoothing-out of a discontinuity in
velocity at t ;; 0, t = 2000, and t = 4000 after the switch-off. Note
that as time progresses , the profile narrows in.
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Figure 7: T he veloci ty profile at t = 1000. The solid line is the
theoretical prediction of Navier-Stokes equatio n. The profile is linear
in the vicinity of the origin.



Lattice Gas Automata of Fluid Dynamics 53

%': ~ 0.470 x t-~ + 10 4

t 'l"
500 00208
1000 0.0154
1500 0.0123
2000 0.0107
2500 0.0096
3000 0.0085

Ta ble 1; Smoothing-out of a disconti nui ty in velocity. The slope for
small arguments of the error funct ion and the corres ponding time.

2U x
u(x ,t ) '" ;-;- -,.

v " (4vt),
(3.7)

From the form of equation (3 .7) it is very te mpting to fit t he velocity profile
with respect to the similar ity variable 7i and leave 1/ as the regression co­
efficient. From the way the da ta are taken however, it is mo re ap pro priate
to ext rac t t he viscosity from th e gradient of the velocity profile close to the
origin at various t imes . This is tabulated in table 1 and displayed in figure
8. From the linear fit of figure 8, we ob tain

0. 0 50.040.0 3

1 / {l

0 .020 .0 1

0 .0100 -

0 .0 125

"~ 0.0150
-c

0.0 175

-r-r-r-r-: "- 1 ", " -'-1- '- '--1- '1 -1 ' 0 '

0 .0 200

Figure 8: The slopes in the neighb orhood of the origin at various
ti mes. The solid line is a linear fit.

0.470
2 U

.fi (4v)!
II ~ 0.70.

(3.8)
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(3.9)

This is to be compared with that obtained from Boltzmann app roximation
[14,17]'

I I I
VB = 12p(l- p)' -"8 "" 0.77,

where p = 0.37.
T he two numb ers are in good agreement , if we recall Boltzmann approx­

imation always yields v about 10% too high [6].

4. F low due to an oscillating plane boundary

In this example, we shall consid er a boundary moving sinusoidally in its own
plane with velocity u(O, t) = U cos(wt) where w is the angular frequency and
U is the amplitude.

4 .1 Solution of Navier-Stokes equation

The governing equation and boundary conditions of this examp le are [7]:

au(x, t)
at

u(O, t)
u(00 , I)

a'u(x, t)
v 8x2 I

= U cos(wt),
O.

(4.1)

(4.2)
(4.3)

The solution of this equat ion, as can easily be verified by direct differentiation
and substitution, is:

u(x ,t) = U exp [ - (;ix] cos [wI - (;'}x ]. (4.4)

The velocity profile has the form of a damped harmonic oscillator with am­
plitude th at decays exponentially with distance from the vibrating plane.

4.2 Lattice-gas automaton simulation

In this simulation mode l, the boundary condit ions on the walls are as in
sectio n 3.2. The residing latti ce is 80 x IDOl and is populated by 125015
particles . The flow is forced using the same technique as that of section 3.2 ,
except the following differences:

(i) the forcing is performed only in the first strip (x = 1 --> 10),

(ii) the momenta are added in the positive or negat ive y~di rections

depe nding on the sign of cos wt,

(iii) the amount of momenta added is not fixed. Rather, at each time
step, it is equal to some constant amplitude multip lied by Icos ex].

The net result of these steps is that we have a left plane vibrating at an
angular frequency of w with amplitu de U as shown in figure 9.
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Figure 9: Th e lattice used for simulating flow due to a vibrating plane.
AA' and BB' are mapped onto each ot her periodically; AB and A'B'
ar e specularl y reflecting. Forcing rules are applied only in t he first
st rip as described in the text .

4.3 Results of lattice-gas automaton simulation

In th e coarse-graining process, we divide AA' into ten st rips and AB into
twenty-five rows [14,15). Since the fluid motion is set up from rest , t he
velocit y profile contains t ran sients. The velocity profiles shown in figure 10
are taken from time steps 320, 820, 1320 and 1820, after the t ran sients have
died away. Th ese plot s correspond to the velocity profiles at t = ~r , t = ~ T,

t = ~T and t = ~T respectively, where T = 2000 is the period. It is observed
that th e velocity profiles are harmonic funct ions of the time, with the same
frequency (w = 2~) as t hat of the forcing vibrat ing plane just as predicted
in equat ion (4.4)!

To ext ract the viscosity, we note that the velocity profile first crosses
the u = 0 axis when th e argument of th e sinusoida l factor in equation (4.4)
vanishes. Th is happens at (t = 0)

(.':!... )!x - wt
2v

x
2 =

1r

2'

G+
(4.5)

(4.6 )

We tabulat e in table 2 the posit ions of first zeroes for various per iods and
figure 11 is a plot of x 2 versus r , th e period. From the linear fit, we obtain ,
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Figure 10: T he velocity profiles set up by a vibrating plate at t = O.
t = ~ . t = 1 and t = ~T. The solid curves are theoretical predictions.
T he flow vibrates with t he same frequency as t hat of the forcing plate.
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o 1 000 2 0 0 0 3 0 0 0 400 0

Figu re 11: A plot of the distances squared from the vibr ating plate of
first zeroes versus the periods. The solid line is a linear fit.
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Linea r regression x' ~ 0.529 x T - 37.0
Linear regression 10g(A) - 0.62 x 10g(T) - 2.78
A t x x' T

0.08 100 15 225 500
0.12 200 22 484 1000
0.15 240 27 729 1500
0.19 320 33 1089 2000
0.22 420 36 1296 2500
0.24 580 39 1521 3000
0.27 660 42 1764 3500
0.28 680 46 2116 4000

Table 2: Flow due to an oscillating plane. Response amplitudes, time ,
position of first zeroes and the vibrating periods.

,,-
'4v = 0.529.
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(4.7)

or that /I ;::::::: 0.67 which is again in agreement with that of equation (3.9) (p =
0.30,118 := 0.70). It is also interesting to note that the respon se amplitudes
seem to obey a power law of the form A ......, Ti for a fixed vibrating plate
amplitude.

5. Conclus ion

We have shown, by simulating two interest ing and important examples from
incompressible fluid dynamics, that the lattice-gas automata are capable of
producing resul ts which are consistent with class ical hydrodynamics. Though
these exam ples provide no rigorous proof that latti ce-gas automata can COIll ­

pete with traditional computational methods in efficiency, they do show that
latt ice-gas automata, with certai n restrictions, may be a viable alternati ve
for solut ions of fluid dynam ics. This is especially true when very complicated
boundary conditions are to be implemented.
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