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Abstract. The performance of a mean field theory (MFT) neural
network technique for finding approximate solutions to optimization
problems is investigated for the case of the minimum cut graph bisec-
tion problem, which is NP-complete. We address the issues of solution
quality, programming complexity, convergence times and scalability.
Both standard random graphs and more structured geometric graphs
are considered. We find very encouraging results for all these aspects
for bisection of graphs with sizes ranging from 20 to 2000 vertices. So-
lution quality appears to be competitive with other methods, and the
effort required to apply the MFT method is minimal. Although the
MFT neural network approach is inherently a parallel method, we find
that the MFT algorithm executes in less time than other approaches
even when it is simulated in a serial manner.

1. Introduction

There has been a resurgence of interest in neural network computational
models in the last two years. The aspects of these models that are drawing the
most attention are their ability to learn pattern classifications and to perform
associative memory tasks [14]. The dominant subjects of research have been
related to network architectures, storage capacity, and learning algorithms.
However, there exists another promising application area for neural network
models that should be of immediate interest to the engineering community:
the problems of NP-complete constrained optimization [7]. These problems
are typified by optimization over a combinatorial set of configurations, and
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their exact solution becomes intractable as the problem size grows. Well-
known examples of this class of problems are the traveling salesman problem
(TSP) and graph partitioning, both of which are representative of design
problems encountered in large scale layout such as in VLSI design (e.g. [3,
10]).

In this paper we present a mean field theory (MFT) treatment of neural
networks [12] as a method for obtaining approximate solutions to optimiza-
tion problems. This method is inspired by and closely related to the the
approach taken in the pioneering work by Hopfield and Tank [7]. Our per-
formance study is based on the graph bisection problem with engineering
applications of circuit layout in mind. The major topics addressed are the
quality of solutions, programming complexity, convergence times, and scal-
ability. We find very encouraging results for all these aspects and suspect
that the MEFT neural network approach can provide a competitive challenge
to heuristic methods for a wide range of combinatorial optimization prob-
lems,

In the remainder of this section we outline the objectives and results of our
study. In section 2, we review the MFT neural network method and briefly
discuss implementation of the resulting equations. Application of the MFT
method to the graph bisection problem is described in section 3. Section
4 contains an assessment of MFT performance for graph bisection on our
test bed of random and geometric graphs. Finally, we briefly summarize our
results in section 5.

1.1 Objectives and results

In reference [7], TSP was mapped onto an analog neural network, and it
was demonstrated that for 10 and 30 city problems the neural network was
able to find “good” solutions for a proper selection of network parameters.
Constrained optimization problems formulated on neural networks as in [7] is
the focus of this work. The computational model and basis for the approach
used in [7] have been elaborated on through a mean field theory statistical
treatment of discrete state neural networks [1,12]. In this paper, we will
present and use an MFT neural network algorithm very similar to the method
presented by Hopfield and Tank in [7]. The contribution of the mean field
theory treatment is in providing a better interpretation of the dynamics of
the neural network.

We have selected the minimum cut graph bisection (GB) problem as a
test bed for an investigation of the MFT algorithm. We prefer this problem
over TSP for the following reason. As will be discussed below, neural network
formulations of constrained optimization problems require the introduction
of penalty terms to account for constraint violations. For TSP, the penalty
term is complicated and, due to the method of mapping TSP on a neural
network, must be strictly satisfied in order to yield sensible solutions [7].
However, for GB, modest violations of the constraints will still yield sensible
solutions. The rigid constraint requirement of TSP makes valid solutions
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more difficult to obtain, thus complicating a performance investigation of
the MFT method.

Our investigation objectives and results are the following:

Programming complexity. As already mentioned, solution of con-
strained optimization problems requires an accounting for possible con-
straint violations. In the neural network formulation of these problems,
constraint violations enter in an explicit way. A neural network energy
function for constrained optimization will be of the form:

E = a[“constraint violation”] + B[*cost”] (1.1)

where a, 3 > 0 and “cost” is an optimization cost function that is in-
dependent of “constraint violation”. Thus by minimizing the energy
function £, we attempt to minimize the “cost” while at the same time
maximizing satisfaction of the constraints. The successful use of such
an energy function requires appropriate selection of the parameters a
and . We call the relative ease or difficulty of specifying an appro-
priate energy function and selecting its parameters the programming
complexity.

We have found that there is a straightforward formulation of the graph
bisection problem in terms of a neural network energy function of the
form of (1.1). In addition, there is a wide range of the parameters o
and /3 that yield “good” solutions. Relaxing the constraint such that
imbalanced solutions are produced does not seriously affect the ap-
plicability of the MFT neural network method. From an engineering
standpoint, slightly imbalanced partitions are perfectly acceptable if
the corresponding cutsize is “small”. Furthermore, it is a simple matter
to apply a greedy heuristic to the imbalanced partition in order to pro-
duce a balanced solution [8]. Quite surprisingly, the balancing heuristic
often produces an improvement to the cutsize. This phenomenon is re-
lated to the mean field theory interpretation of the neural network and
is discussed further in section 4.

Performance. For the two classes of random graphs in our test bed,
we investigate how well the MFT algorithm finds “good” solutions as
compared to two other heuristic methods—simulated annealing [10]
and local optimization [8]. The results are very encouraging, and for
GB, the MFT method appears to compare well with the standard
Kernighan-Lin [9] heuristic. A related issue is that of execution time for
serial implementations of these methods. The MFT algorithm is quite
competitive, especially when compared to the long execution times of
simulated annealing.

Scaling. We have investigated the effects of problem size on the re-
sults mentioned above. Our results indicate that the selection of the
parameters o and 3 is not strictly dependent on problem size. In fact,
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the precision requirements go down with increasing problem size; for
large problems, there is a larger range of values for a and 3 that yield
good solutions. We also find that the convergence time 7(N) for the
MFT algorithm, is approximately linear in the problem size:

7(N) < N. (1.2)

2. Neural networks and mean field theory
2.1 The neural network model

Many NP-complete problems can be cast into the Hopfield discrete state
neural network model [5] defined by the energy function:

B(S) *——-ZZT”SS +EIS (2.1)

i=1j3=1 i=1

where § = (Si,...,Swn) represents the state of the network. Ilere, the S;
represent N binary neurons which are either firing or non-firing, i.e. S; = =+1.
T;j represents the strength of a synaptic connection between neurons S; and
S; with T;; = 0, and I; represents the firing threshold of neuron S;. Local
minima of E(S) are reached when the network is iterated from an initial state
by updating each neuron asynchronously in accordance with the updating
rule:

N
S,' = sgn (Z T{ij = L) . (2.2)
i=1

Symmetry of T;; ensures that E(S) will decrease monotonically with the
updating rule (2.2). The synaptic weights T;; determine the minima of E(g)
(fixed points) and the dynamics of the system. In pattern completion ap-
plications, patterns are stored through appropriate selection of T;;. When
confronted with a distorted pattern, the system evolves to the closest local
minimum which represents a stored pattern. In optimization problems, the
T;; encode the cost function and the constraints to be satisfied, and the goal
is to find the global minimum. Conflicts between the constraints and cost
functions lead to an energy landscape that is rich in structure with many
local minima (see figure 1).

A method of searching for the global minimum of the energy function is
simulated annealing [10], which is a statistical generalization of hill-climbing
optimization methods. Simulated annealing draws upon an analogy with
statistical mechanics to prescribe a method for making uphill moves so that
there is a greater probability of producing solutions with a low energy than
of settling in local minimum with a higher energy. The method consists of
generating new configurations via neighborhood search methods in a non-
deterministic manner prescribed by the Boltzmann distribution
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Configurations

Figure 1: Representation of a typical energy landscape for an opti-
mization problem.

f(E) ~ e EIT (2.3)

where E is the energy function associated with the optimization problem,
and T' is a parameter associated with the temperature of the system. By
generating configurations according to (2.3) at successively lower annealing
temperatures 7', the algorithm is more likely to avoid getting stuck in local
minima, and “good” solutions are often found.

Unfortunately, while simulated annealing is a powerful method in theory
as well as in practice, it has a number of drawbacks. Performance is very
often directly related to the choice of neighborhood search methods used to
generate new configurations. In addition, computer simulation of annealing
requires generation of a large number of configurations and a very slow low-
ering of the temperature parameter T in order to achieve good results [S].
However, we can analyze the average statistics of a simulated annealing pro-
cess through a mean field theory approximation [1,4,12]. This analysis yields
the equations of the mean field theory neural network method.

2.2 The mean field equations

The statistical mechanics of the neural network of (2.1) in a simulated an-
nealing environment is specified by the Boltzmann probability distribution

(e.g. [11])
e—EBNT

- (2.4)

P(%) =

where the partition function is given by
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Z =3 e BT, (2.5)

5
Here the summation runs over all possible neuron configurations 5= (S1y-- -,
Sy). In an earlier paper [12] we demonstrated that the discrete sum in (2.5)
can be replaced by multiple nested integrals over the continuous variables

Ui = (Usy...,Un) and Vi = (W, ..., Vi)
N 00 100 7
7 Hj dV]/ dU_? i (V.0,1) (26)
je1 oo —ioo

where C' is a complex constant, [ [ [ denotes multiple integrals, and
N
E'(V,U,T) = E(V)[T + Y_[U:V; — log(cosh [;)] . (2.7)
=1
The integrals in (2.6) can be analyzed using a saddle point expansion
of E'(V,U,T). As described in Appendix A, this involves a mean field ap-
proximation. The result of this method is that the statistical mechanics of
the neural network are determined by the saddle points (i.e. dE'/3U; = 0,
OE'/0V; = 0) defined by:

Vi—tanhU; =0 (2.8)
and
1 DE(V) B .

Combining (2.1), (2.8), and (2.9), we get

N
V; = tanh (Zﬂjvj/f) (2.10)
i=1

where, for simplicity, we have set I; = 0 in (2.1).

The equations (2.10) are the MFT equations. It can be shown that the
continuous variables V; approximate the mean of the discrete neuron variables
at a given temperature [1,12]:

‘/E ~ (S,')T. (2'11J

Thus, the statistical (i.e., non-zero temperature) behavior of the neural net-
work (2.1) in a simulated annealing framework is emulated by the sigmoid
updating rule (2.10) (see figure 2). The step function (2.2) is the ' — 0 limit
of (2.10). This interpretation, which is more apparent when deriving (2.10)
from a Markov chain approach [1,4], will turn out to be very important for
interpreting our performance study results.

Finally, we note that the effective energy given by (2.7) is equivalent to
the energy function given by Hopfield in [6] for a network of analog neurons.
It represents the so called free energy of the system. (See Appendix A.)
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Figure 2: Sigmoid gain functions of (2.10) for different temperatures
T. The step function updating rule (2.2) corresponds to T' — 0.

2.3 The mean field theory algorithm

In contrast to simulated annealing, which is a stochastic algorithm, the mean
field theory equations (2.10) are deterministic. Also, it is not necessary to
use an annealing schedule with the MFT equations. Whereas simulated
annealing follows an equilibrium path from high to low temperatures, the
MFT equations represent the equilibrium statistics of the neural network at
a temperature T'. In practice, we have found that it is only necessary to make
a proper single choice of the parameter 7" when using the MFT equations.
Brief investigations of the use of an annealing schedule to update the T
parameter, as in simulated annealing, failed to indicate an improvement in
the solution quality over solutions produced at an appropriate single value
of T
A straightforward iteration of (2.10) gives

Vi(t + At) = tanh (fj T;J'V_,-(t)/T). (2.12)

3=1
There also exist dynamical systems of equations that have (2.10) as their

solutions. One such system is

‘”jf” — _Vj(t) + tanh (fj :n-,-v;(t)/'r) . (2.13)

7=1

Systems like (2.13) are similar to the RC equations for an electrical circuit
of interconnected non-linear amplifiers with the capacitances C' and time
constants 1/RC set to one, and with interconnection conductances T;; [1,7].
These equations can be simulated by making an Euler forward approximation
to the derivative dV;(t)/dt, which again yields an iterative algorithm. For the
system (2.13) we get
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Vi(t + At) = Vi(t) + At | =Vi(t) + tanh (fj T,-,-v;-(t)/T)] . (214)

i=1

We note that with At = 1, one recovers the fixed point iteration (2.12).
Iterations of (2.12) or (2.14) can be made either synchronously or asyn-
chronously:

Synchronous. At time ¢ + At, generate V(f + At) for every V;, using
the values V(1) that were generated at the last iteration.

Asynchronous. At timet+At, generate only one new value V;(t+At),
leaving the other V}, j # 1, to be computed at future iterations.

In applications of (2.12,2.14), we have found the use of asynchronous it-
eration to be advantageous. We suspect that this is related to a “stiffness”
in the dynamical system, and note that the convergence of the synchronous
method is dependent on the nature of the Tj;. A common pathology of
the synchronous method is limit cycles, a behavior common to discrete time
non-linear systems. In many situations in which the asynchronous method
converges, the synchronous method will also converge if the time step At
is made small. However, the price for this method is increased computa-
tion time. Finally, we point out that the asynchronous method provides an
approximation to the Euler backward approximation, which is known to be
better for solution of stiff systems than the forward approximation.

In our performance study, we have exclusively used the fixed point form
of the MFT equations, as in (2.12), with asynchronous updating.

3. Graph bisection

The graph bisection (GB) problem has been the subject of much research
because its simplicity provides an attractive test bed for investigation of
optimization methods and because of its similarity to the problems faced
in circuit design. A simple illustration of this problem is shown in figure
3. We are given a graph G(V,E) containing an even number of vertices
V = {v1,...,vn} and a set of edges (a,v) € E consisting of unordered pairs
of vertices u,v € V, with (a,a) ¢ E. The goal is to partition the vertices
into two equal sets, V; and V,, such that the cutsize (i.e., the number of
edges with an endpoint in each partition) is minimized. Thus, we seek to
minimized the cost function

Egp(V1,V2) = {(e,v) € E:a € v e V3| (3.1)

constrained by the requirement that |V;| = |V5| = N/2, where | X| denotes
the number of elements in the set X.
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Figure 3: A simple graph bisection problem.

3.1 The neural network method

We want to map the graph bisection problem onto a neural network defined
by an energy function of the form (2.1). Consider the following representation
of a graph: for each vertex 7, we assign a binary unit S; = *1; and for each
pair of vertices S;, 5;,7 # j, we assign a value T;; = 1 if they are connected,
and T;; = 0 if they are not connected. In terms of figure 3, we let S; = +1
represent whether vertex 7 is in the left or right partition. With this notation,
the product T;;5;S5; is zero whenever vertices i and j are not connected at
all, positive whenever connected vertices ¢ and j are in the same partition,
and negative when they are in separate partitions. With this representation,
minimization of the first term of (2.1) will maximize the connections within
a partition while minimizing the connections between partitions. However,
using only this term will force all vertices into only one of the partitions.
Hence we have to add a penalty term that measures violations of the equal
sized partition constraint. We note that 33 5; = 0 when the partitions are
balanced. Thus, (3 5;)? will increase the energy whenever the partition
is unbalanced.! The discrete state neural network energy function for GB
appears as

[y

N N
E(5) = —z:z:i':,SSJr ZS (3.2)

2 i=1 j=1 =1

where a is an imbalance parameter. This is identical, minus a constant,
to the cost function used in the simulated annealing and local optimization
solutions to GB (see Appendix B).

Combining (2.8),(2.9), and (3.2), we get the MFT equations for the GB
problem:

=1

V; = tanh (fj('f,—,- - a)V,—/T) . (3.3)

'There are many terms other than (3 .5;)? that will cause an increase in
the energy if the solution in unbalanced. However, this term produces the
most convenient form of the MFT equations (3.2) when the derivative of

E(5) is taken.
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This equation is solved by the asynchronous iterative fixed point method de-
scribed in section 2.3. In our implementation, the V; are selected in sequence
to be updated. We define a sweep to be a complete cycle of updates; i.e.
each variable V; is updated once during each sweep of the algorithm.

Recall our interpretation of the continuous variables V; as the expected
value of the discrete neuron variables at a temperature 1" (see (2.11)). The
final value of V; approximates the probability that the neuron variable has a
value S; = 1 in a solution produced by simulated annealing at a temperature
T. (Note that the probability scale is shifted from [0,1] to [—1,1].)

To produce a solution from the value of V, we simply look at the sign of
V;; a final value of V; > 0 implies there is better than a 50% probability that
the neuron variable has a value S; = 1 in a solution produced by simulated
annealing. Thus we produce a partition § from V by setting S; = sgn(V;).
If necessary, the partition is balanced with a greedy balancing heuristic (see
Appendix B).

In a similar manner, the initial condition f}o should correspond to a ran-
dom choice of S. Thus we set V45 = 0. However, V = 0 is a solution to the
fixed point equation (3.3), so in practice we initially set V; to a random value
in the interval [—107%,107°].

3.2 The performance test bed

We follow closely the performance study of [8]; our test bed for GB contains
two classes of randomly generated graphs — the standard random graph
and the more structured geometric graph. We feel that these two classes of
graphs represent enough variety and similarity to real applications that they
should provide a reasonable test bed for a performance study of the MFT
algorithm. For each type of graph, we generated a single instance of the
graph for sizes N = 20, 50, 100, 200, 500, 1000, and 2000. All experiments
in our performance study are based on repeated trials on the same instance
of each graph.

3.2.1 Random graphs (Gv)

The standard random graph Gy, is defined by the parameters N and p. The
parameter N defines the number of vertices in the graph, and the param-
eter p, 0 < p < 1, specifies the probability that any pair of vertices (a,v)
constitutes an edge. Thus the average degree of the graph Gy, is (N —1)p.
For p fixed, and independent of N, we are faced with dense graphs as N
grows large. In this case, the optimization problem becomes trivial from an
engineering standpoint; all bisections have nearly the same cutsize and the
ratio of the optimum cutsize to the mean cutsize approaches unity [2].

On the other hand, if we fix the degree of the graph, the ratio of optimum
cutsize to mean cutsize is approximately constant for all N [2]. Thus, fixed
degree graphs provide better discrimination of algorithm performance as N
grows. Fixed degree also seems to be more reasonable in terms of real prob-
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Figure 4: A geometric graph Uspg with 4N d? = 10.

lems; for example, electronic circuits have a limited fanout, such that there is
a fixed maximum number of connections emanating from a given component.
For our performance study we used random graphs with a fixed average de-
gree; these graphs are denoted by Gy and were randomly generated with an
average degree Np = 10.

3.2.2 Geometric graphs (Uy)

Another class of random graphs, which may be closer to real applications,
is the geometric graph Uy 4 defined by the parameters NV and d, 0 < d < 1.
This type of graph encompasses the notions of spatial clustering and local
connectivity. A geometric graph Uy 4 is generated by randomly distributing
the N vertices on a unit square. Two vertices are connected only if they can
be enclosed by a square with sides of length d. (This is a slight variation of the
geometric graph described in [8].) Thus, the average degree of vertices away
from the border of the unit square is 4Nd?. As with the random graphs,
we have used fixed degree geometric graphs Uy randomly generated with
4Nd? = 10. An example of Usg is shown in figure 4. (Notice that there are
several isolated vertices). Fixed degree geometric graphs provide even more
discrimination of algorithm performance as the ratio of minimal to random
cutsizes decreases for increasing N (see figure 5).
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3.2.3 Performance limits

Following [8], we have attempted to identify reasonable limits on desirable
performance of the MFT algorithm. In [8] it was shown that generally, for
these classes of graphs, the simulated annealing method provides a lower
limit on achievable cutsize for GB solution methods, at the expense of long
execution times. On the other hand, local optimization provides much faster
execution times, at the expense of poorer minimization performance. We
will use these two methods as upper and lower limits for evaluating the
performance of the MFT method. A brief description of these two algorithms
can be found in Appendix B. We have also evaluated the average cutsize of
randomly chosen bisections. The ratio of mean random cutsize to minimum
cutsize provides a characterization of the graph type. In figure 5 we compare
histograms of the cutsizes produced by these methods for increasing graph
size and for both random and geometric graphs. These distributions are
based on 100 trials of simulated annealing, and 1000 trials each of random
bisection and local optimization.

It is quite clear that the average random bisection has a cutsize that is
linearly related to the graph size N for both random and geometric graphs.
For random graphs G, the ratio of random to minimum cutsize appears to
be constant for increasing N. On the other hand, the geometric graphs Uy
display a decreasing ratio of minimum to random cutsize. Thus the geometric
graph provides an increasing performance requirement as N grows.

4. Performance of the MFT algorithm

Our performance study addresses the issues of parameter selection of a and
T, convergence time of the algorithm (in terms of the number of sweeps,
Nyweep), and quality of the solutions produced.

4.1 Parameter selection and sensitivity

We have introduced the notion of programming complexity in section 1.
Here we are concerned with the effort required to apply the MFT method
to a specific problem. As was shown in section 3.1, mapping of the graph
bisection problem to a neural network is straightforward. This will be true
for a wide class of combinatoric optimization problems, such as the traveling
salesman problem [7]. The only additional effort needed to complete an
application of the MFT method to a specific problem is proper selection of
the MFT equation parameters; for graph bisection we have the imbalance
factor a and temperature T'.

In figure 6 we show the performance of the neural network algorithm for
a random graph (g over a portion of the (&, T) parameter plane. These
plots represent the average of 10 different experiments (N, = 10) of 100
sweeps each (Ngyeep = 100) for the same graph Gygp. The three plots shown
represent different aspects of the MFT algorithm performance.
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Figure 5: Distributions of cutsizes found for random graphs Ga, G100,
G500, Gaooo compared to geometric graphs Usg, Uroo, Usoo, Uao00- See
Appendix B for details.

In figures 6(a) and 6(b), we show the cutsize and the associated imbalance
of the solutions produced by the MFT algorithm. Several features of these
figures are considered to be significant:

Phase transition. There is a very sharp transition to a region of good
cutsize when T' is lowered from high temperatures. For values of a in
this region, the transition temperature appears to be independent of «.

Stability. The region of good solutions appears to be well defined.
Within this region, except for smaller values of T, the solution quality
appears to be independent of the particular values o and T'.

a,T dependence. The region of good solutions is a right triangular
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Figure 6: Performance of the MFT algorithm on a random graph G0
versus the parameters a and T. The plots represent the average of
10 different experiments (N.zp = 10) of 100 sweeps ( Nsyeep = 10) for
the same graph Gpo.

shaped region. The right sides are determined by the T' phase transi-
tion and a critical value of a, below which the solutions become highly
unbalanced. The hypotenuse is approximately determined by the diag-
onal linea =T

Finally, we comment on two anomalous features of figure 6. In figure 6(a),
there appears to be an additional region of good solutions for small values
of @ just above the phase transition in T. This is not a stable region, as the
iteration of (3.3) has not converged at Njyeep, = 100 (see section 4.2 below).
When the iteration is continued until convergence is reached, the region is
question disappears. Secondly, for values of a that are below the critical
value of a, the solutions produced are highly unbalanced (see above). This
region has been been removed from the plots because it obstructed the view
of the region of good solutions.

In figure 6(c) we show the resulting cutsize of the bisection produced by
the greedy balancing heuristic. We note that the balanced solution is very
similar to the cutsize of the unbalanced solution from the MFT algorithm.
The quality of the balanced solution appears to be independent of the size
of the imbalance that was removed by the balancing heuristic. More will be
said on this later.
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In figure 7, we compare the results of similar experiments for each of
the random graphs Gy, Gso, G0 and geometric graphs Usg, Usg, Uge. We
show only the balanced cutsize produced by the balancing heuristic. The
important feature of figure T is that the region of good solutions appears
to grow with increasing problem size. The significance of this feature is
that parameter selection does not become more sensitive for larger problem
sizes. In reference [7] it was noted that to obtain solutions of TSP on neural
networks, selection of parameters became more difficult for increased problem
sizes. However, the TSP solution required an exact satisfaction of constraint
terms, whereas here we have relaxed the constraint requirements. Indeed,
it becomes impossible to find parameters that yield balanced solutions for
larger GB problems. Thus it appears that relaxation of constraints, with
a possible “post” heuristic, may be necessary in order to employ the MFT
method. More will said on this below.

We have investigated the growth of the good solution region for larger
problem sizes. We have already observed that within the region of good
solutions, cutsize appears to be independent of the particular choice of a.
Thus we can see from figure 7 that fixing @ = 1.0 will not restrict us from
finding good solutions. In figure 8, we have compared the performance of the
MFT algorithm for random graphs Gigo, G500, G2000 and geometric graphs
Usoos Usoos Uzgoo- Here we have fixed a and only vary the temperature T'. We
show both the balanced cutsize, and the cutsize and associated imbalance of
the MFT produced solution prior to balancing. These plots confirm the ear-
lier observation that the region of good solutions defined by the temperature
phase transition grows with increasing problem size.

We have already noted that the quality of the balanced cutsize seems to
be independent of the size of the imbalance that was removed. This feature
is displayed clearly in the plots of figure 8. Compare the balanced cutsize
to IMBALANCE; the balanced cutsize is relatively uniform up to the phase
transition, independent of imbalance. In addition, the balanced cutsize tends
to be better or no worse than the unbalanced solution produced by the MFT
algorithm. This seems counterintuitive, especially when compared to the
local optimization and simulated annealing methods; in these methods, the
greedy heuristic almost always increases the cutsize. We will examine this
issue further below.

4.2 Convergence

In the experiments of the previous section, we arbitrarily set Ny, = 100.
In fact, the MFT algorithm convergence is dependent on the parameters o
and T and the problem size N. Consider figure 9, in which we have plotted
the value of each of the MFT variables V; as a function of Ny, for a
single experiment for each of the random graphs Gag, G100, Gsoo and geometric
graphs Usp, Uyoo, Uspo with @ = 1.0 and T = 2.0. Repeated experiments for
these parameters yield differences in the patterns of activity (i.e. number
of neurons oscillating), but all have the same features displayed in the plots
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Figure 7: Comparison of MFT method performance versus a and T'

for random graphs Gg, G50, G100 and geometric graphs Uz, Uso, Uroo-
Negp = 10 with Nyyeep = 100.

shown. Several important issues that are related to features observed in
figure 9 are discussed in the following sections.

4.2.1 Asymptotic values for V;

As the problem size increases, not all of the variables go to +1. This is a con-
sequence of the fact that the MFT variables V; represent mean values of the
neuron variables S; al temperature T (see (2.11)). Hence the values should
be interpreted probabilistically. As the problem size grows, the multiplicity
of ’good” solutions within a small distance of each other is increasing. This
feature could be related to an ultrametric structure of the solution space [13]
(see below). Thus, at a temperature T, all of these closely located similar
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solutions are equally likely to occur in a simulated annealing environment.
Some of the mean field theory variables V; will reflect this fact; the variables
S; that change sign in going from one similar solution to another will have
a mean value that is different from +1. It is these S; variables that lead to
values that are near zero for some MFT variables V.

In [7], where a similar algorithm was applied to 10 and 30 city TSP, it
was the case that solution points were characterized by V; = 1. It is our
guess, at this point, that such a feature is an artifact of the small system

sizes studied in [7].
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Figure 9: The neuron variables V; as a function of Nyy.eep for random
graphs G, G100, Gs00 and geometric graphs Uso, U0, Usoo. @ = 1.0
and T = 2.0.

4.2.2 Justification for the balancing heuristic

In view of the discussion above and the related discussion in section 4.1, it
appears that relaxation of constraint requirements is necessary in applying
the MFT method to optimization problems. An exception to this occurs if
there are only a few isolated minima, in which case the MFT method seems
to do a good job of finding one of them.

In the graph bisection problem, the variables with values close to zero
represent vertices of the graph that can be moved from one partition to the
other with little effect on the cutsize. (This has been verified through a
detailed analysis of several experiments for Gy and Gspp.) Often there is
an improvement available in moving one of these vertices to the opposite
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Figure 10: An ultrametric tree.

partition. Thus the balancing heuristic does not usually affect the cutsize,
and sometimes yields an improvement. The MFT algorithm is not always
able to impart the improvements itself due to the averaging effect over all of
the similar local solutions in the solution space. The geometric graphs do not
exhibit as much multiplicity of similar solutions as the random graphs. This
is evidenced in the fewer number of variables near zero in the plots of figure
9, and the relatively poorer performance of the balancing heuristic (refer to

figure 8).

4.2.3 Ultrametric structure of the states

Frustrated systems like spin-glasses and TSP are known to posses a hierar-
chical structure in the state space [13]. Such an ultrametric state space is
characterized by “families” of solutions, in which all the states are close in
some measure, e.g. Hamming distance. These different families are hierar-
chically connected, as in figure 10. The distance between nodes in a tree such
as figure 10 is defined by the number of branches that must be traversed in
order to move from one node to the other. Thus, the distance between states
in different families is larger than the distance between states within families.

4.2.4 Oscillations and convergence

Another observation from figure 9 relates to the nature of convergence of the
MFT method. The MFT algorithm yields a solution by observing the sign
of the variables V;. Thus, strict convergence of the solution produced can
be taken to mean that there are no more zero crossings in the variables V.
While it does appear from figure 9 that all oscillations will eventually die
out, we need not wait for this to occur. Oscillations above or below, but not
crossing, the zero axis do not affect the solution produced. We have discussed
above that fact that values near zero represent vertices that have little effect
on cutsize, so we can ignore small oscillations near zero also. Therefore, a
criteria for convergence is that all large oscillations have died out. A simple
approximation is to assume that only a small percentage of the variables
will have small oscillations near zero. Then we can assume convergence
occurs when only this small percentage of variables are still oscillating. To
investigate convergence times, we have fixed the parameters at o = 1.0,
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Figure 11: Average convergence time of 10 experiments as a function
of graph size for random graphs and geometric graphs. e = 1.0 and
T = 2.0 for random graphs, while T' = 7.0 for geometric graphs.

with ' = 2.0 for random graphs and T" = 7.0 for geometric graphs; these
parameters represent good solutions at N,,.., = 100 (see figure 8). As a
criteria for convergence we required that less than 1% of the variables are still
crossing the zero-axis. In figure 11 we have plotted the average convergence
time of this criteria for 10 different experiments on each graph size. It is
apparent that for these parameters, the convergence time is linear in the
problem size.

Another way of viewing convergence is to look at convergence of the
cutsize produced as a function of sweeps. In figure 12 we have plotted the
cutsize produced at each sweep for 10 different experiments on the random
graph Gagep with @ = 1.0 and T = 2.0. It is clear that the cutsize achieves
a near minimal value well before the 1000 sweeps predicted by figure 11. It
appears that many of the oscillations prior to convergence (see figure 9) do
not significantly affect the quality of the solution produced. Based on figure
12, and others like it for the other graphs, we feel comfortable running the
algorithm for only 100 sweeps in our following experiments.

4.2.5 Behavior in other regions

We should also briefly mention what happens in other regions of the param-
eter space: Near the phase transition, all the variables have values close to
zero but still represent good solutions. At very high temperatures, all V; go
to zero as expected; thus the solution represents a random cut. For large
values of « relative to T (i.e. above the @ = T diagonal), oscillations dom-
inate and there are no solutions to the MFT equations. We note that even
within the region of good solutions, the convergence time is dependent on
the choice of parameters.
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Figure 12: Cutsize of 10 experiments as a function of Nyyeep for Gaooo.

a = 1.0 with T = 2.0.

4.3 Comparison with conventional approaches

We will now compare the results from the MFT neural network approach
with local optimization (LOPT) and simulated annealing (SA) results. Two
different neural network results will be shown for comparison in all examples;
the unbalanced MFT solution (MFT) and the solutions produced by the
application of the balancing heuristic (BALANCED). In figures (13)-(15),
we compare the relative quality of these 4 approaches. The histograms for
LOPT and SA are based on the same data used in figure 5 (see section
3.2.3 and Appendix B). Here we have rescaled the cutsize axis to provide
better comparison among the methods, and we have placed the MFT and
BALANCED histograms on separate axes in order to resolve the overlap
of the histograms. For each graph size, the MFT algorithm was run 100
times with Nyyeep = 100. In addition, we have run the MFT algorithm with
N,yeep = N/2, from the convergence prediction of figure 11. These results are
displayed below the histograms produced for Nyyee, = 100. For the random
graphs @ = 1.0 and T" = 2.0, while for the geometric graphs a = 1.0 and
T = 7.0. Running times (normalized to MFT with N,,e., = 100) for the
three methods are compared in table 1.

It is clear from figures (13)-(15) that the MFT method provides solution
quality between LOPT and SA. From table 1, we see that for larger problem
sizes the execution time of the MFT method is the best of the three methods;
an order of magnitude faster than LOPT and nearly two orders better than
SA. The overall quality of solutions of the MF'T neural network method ap-
pear to be comparable to those of the Kernighan-Lin heuristic. For example,
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Relative Execution Times
Graph || MFT [ LOPT | SA
Ghoo 1 0.3 | 47.8
G'soo 1 1.4 | 55.8
G000 1 10.0 { 91.0
Usoo 1 0.3 | 54.9
Usoo 1 1.3 63.9
Uso00 1 721925

Table 1: Relative time consumptions for local optimization (LOPT),
simulated annealing (SA) and MFT neural network (MFT) when ex-
ecuted on a serial computer. The data has been normalized to the
execution time of MFT with Nyyeep, = 100.
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Figure 13: Comparison of MFT solutions versus Simulated Annealing
and Local Optimization. For MFT, @ = 1.0 with 7' = 2.0 for Gygo
and T' = 7.0 for U]go.

in an extensive study by Johnson, et.al. [8], the Kernighan-Lin heuristic was
found to produce solutions that were 3-4% larger with execution times 50 to
G0 times faster than simulated annealing for random graphs of size 124 to
1000 (with degree 10). This compares to MFT produced cutsizes that are 2
to 3 percent larger with execution times 50 to 90 times faster than simulated
annealing for random graphs of size 100 to 2000 as reported here. Similar
comparisons hold for the case of geometric graphs.

We know that for the larger graph sizes, Ny, = 100 is not large enough
to allow convergence of the algorithm. Comparison of the histograms for



Neural Networks and NP-complete Optimization Problems 81

Gs00 Usoo

W SIMULATED ANNEALING B SIMULATED ANNEALING
O LOCAL OPTIMIZATION

O LOCAL OFTIMIZATION

3 & % 0 10 0 10} 770 30

S T NEURAL NETWORK O w7 wEURAL METWORK

.
£ Noweer = 100 Nowips = 100
H »
N2 AVG. IMBALAWNCE 4 18 AVG IMBALMWCE 1078
bt 4 MAX. IMBALANCE: 12.00 AX, INBALANCE. 20 00
[
3
a
%0 o 130 0 0 0 90 0 150 180 kil a0 i loo
] %0
- B BALWCED PARTTION e BALANCED PARTTION
Nesgre = 100 £ Nsetrr = 100
» H »
]
¥
£ J
4
° .
30 30 o 420 e 70 0 0 s 10 e 130 W0 10 MO 27 30
0 0
50 £ ueT NEURAL NETWOMK , 40 B WET MEURAL NETWORX
Nowees = 250 1 Nowre = 250
30 0
10 AVG. IMBALANCE: 3.72 g 0 AVG, WBALANCE 7 44
VAX, IMBALANCE. 1400 f MAX, MBALANCE: 48 00
0
E 04 P,
-0 e 3 e 0 L] » AR 50 AL o 140 a7 300
Wy
B BAANCED PARTTION S B SAANCED PaTION
Neweer = 250 € 5 Nswers = 250
.i. 0
H
gw
€
0 il
L) bl 730 ™0 30 60 0 10 130 180 e 40 70 leo
arsize uTSIZE

Figure 14: Comparison of MFT solutions versus Simulated Annealing
and Local Optimization. For MFT, a = 1.0 with T = 2.0 for Gspo
and T = 7.0 for Usgo.

Niyeep = NJ2 with those for Niyeep = 100 indicate a small improvement in
the distribution of solutions. Clearly, if Nyyeep is less than the convergence
time, there is some tradeofl available between execution time and solution
quality. But at worst, convergence time appears to scale linearly with prob-
lem size.

5. Summary

We have investigated the performance of a mean field theory neural network
algorithm for solving the graph bisection problem for a variety of problem
sizes, N=20 to 2000, and for two different types of graphs, random and
geometric. We observed very encouraging results, and we expect the MI'T
method to perform equally well for even larger problems, especially with
regard to the possibility of parallel implementations. Our results can be
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Figure 15: Comparison of MFT solutions versus Simulated Annealing
and Local Optimization. For MFT, a = 1.0 with T = 2.0 for Gaogo
and T = 7.0 for Usppop.

summarized as follows:

Programming complexity. The MFT neural network formulation of
the graph bisection problem is quite straightforward. Two parameters
enter into our formulation; the temperature 7" and the imbalance factor
a. A wide range of values for these parameter give good solutions.

Quality of the solutions. The neural network algorithm yields solu-
tions that are very good from an engineering point of view. They are
much better than local optimization and slightly worse than the very
time consuming simulated annealing method. They appear to compare
favorably with the acclaimed Kernighan-Lin heuristic [8].

Convergence times. The neural network algorithm converges lin-
early with problem size. Even when executed serially the algorithm is



Neural Networks and NP-complete Optimization Problems 83

competitive. The MFT algorithm would be well suited an analog cir-
cuit implementation [7], where minimization problems could be solved
on a real time basis.

In addition, the following result regarding interpretation of the MI'T
computation has been observed.

Relaxation of constraints. Analysis of MFT variables with final
values near zero indicate a possible ultrametric structure of the solu-
tion space. With such a structure, it is unreasonable to expect to get
solutions that satisfy constraints exactly, due to the mean value inter-
pretation of the MFT neurons. However, it appears to be reasonable
to relax constraint requirements; the solutions produced should be well
conditioned for heuristic fine-tuning in order to satisfy constraints.

Thus the MFT neural network algorithm is an easy-to-use and very com-
petitive optimization engine. The problems and problem sizes probed in this
work most certainly represent realistic situations.
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Appendix A.

In this appendix, we outline the saddle point expansion of the partition
function (2.6). We then consider some aspects of the effective energy function

E(V,U,T) given by (2.7).

Saddle point expansion

We will outline the method used to analyze the partition function (2.6) in
order to find the dominant configuration of the neural network. We have a
partition function of the form

Z=CH[:dee'Nf(v‘T) (A1)
£ )

where we have made a mean field approximation by defining the average
effective energy per neuron

E'(V,T)

f7,1)= =5

(A.2)

We approximate f(V,T) with a truncated Taylor series expansion about a
saddle point (more precisely, a critical point) V = V;:
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= =g = 1 X 25
f(Vo+ 8V, T) = f(Vo, T) + 5 3 6VubVuDyo(Vo,T) (A-3)
pu=1
where
Dol Vo, T) = =L (7, T). (A4)
pu ) av;a‘/) ]
The partition function becomes
Fom CeANj('?D,T)H'/‘C’“ d(ﬁVj)e_N%ZGV"EV“DW' (A.5)
j I

The integral yields terms that are linear in N such that in the limit N — oo,
the first exponent dominates and we have

Z m CeNBT) = 0BT, ; (A.6)

Thus, the partition function is dominated by the value of E’(f/", T) at a saddle

point V = V. We have found that even for small N, the approximation yields
good results experimentally [12].

A look at the effective energy

Replacing U; in E'(V,0,T) with tanh™'(V;) from (2.8), one obtains, after
some algebraic manipulations,

E'(V,T) =
E(V)/T + IXVJ [(1 + V.-)% log(1 4+ V;) + (1 - v;)% log(1-V)|. (A7)

When multiplied by a factor of 7', (A.7) is identical to the energy function
for an analog neural network given by Hopfield in [6]. An important property
of E'(V,T) is that it has a smoother landscape in configuration space than
E(‘?) due to the presence of the extra terms. Hence, the probability of
getting stuck in local minima decreases.

The second term in (A.7) represents the entropy of the system. We begin
with the definitions, in terms of Z, of the free energy of the system (e.g.

(11])

F=-TlogZ (A.8)
and the average internal energy
9(BF)
Ey=—+* A9

where 8 = 1/T. It is straightforward to show that
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(E) = E(V). (A.10)
With the standard definition of the {ree energy F' (e.g. [11])
F=(E)-TS (A.11)

we identify TE’(V, T') with the free energy, and the entropy is thus given by

N 1 1
§=-3 [+ Wglogl+ V) +(1-Wzleg1 ~W)|.  (A12)

f=1

Thus, when solving the MFT equations, we are optimizing the balance be-
tween the energy and the entropy rather than minimizing the internal energy,
which is the case for steepest descent (i.e., using (2.2)).

Appendix B.

In this appendix, we describe the local optimization and simulated annealing
algorithms that are used in this paper for comparison. We follow [8] closely.

Terminology

We redefine the graph bisection cost function given in equation (3.1) to be
s ol . . (64
Egp(Vi,Va) = {(i,4) € E:i € Vi, j € o} + (Il - l)*  (B)

where « is an imbalance factor. Thus the bisection cost function (3.1)
is a special case of (B.1). Partitions into unequal sized sets are encour-
aged /discouraged through selection of the parameter e. In the terminology
of section 3.1, (B.1) can be expressed by

Een($)= ¥ ¥ Ti+3 ES (B2)

Si=~18;=

We now define class of local operations on a given configuration § =
(S1,...,5n). We define a neighborhood of a given configuration S to be
those configurations that can be obtained by the application of a single local
operation. If the current configuration is a bisection, we define a pair swap
to consist of swapping any pair of vertices (2, 7) W1th i € Vi,7 € Vao. There
are N?/4 neighbors defined by a pair swap. For any configuration, we define
a single swap to consist of moving any vertex to the other set. There are N
neighbors defined by a single swap.
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1. Get an initial configuration S (i.e. a random bi-
section).

2. For a randomized list of N neighbors of § do the
following:
2.1 Let & be a neighbor of §.
2.2 If E(§") < E(S), set § = §".
3. If a neighbor was accepted in Step 2, then repeat
Step 2.
4. Return §S.

Figure 16: Local optimization.

Local optimization

Given an initial partition of a graph G(V, E), improvements to the GB cost
function (B.2) can be made by performing local operations that reduce the
cost function. The local optimization algorithm is given in figure 16.

For the nelghborhood produced by single swap, the algorithm proceeds
until a local minimum has been reached, as all N neighbors of § are checked.
However, single swap may result in an unba.la.nced partition, in which case a
greedy heuristic is used to balance the partition. This consists of searching
the larger set for a vertex that can be moved to the smaller set with the least
increase to the cutsize. This operation is repeated until both sets are the
same size.

For the neighborhood produced by pair swap, a repeated search of all
N?/4 neighbors would take too long to complete for large N. So, in Step 2,
the algorithm searches only N randomly selected neighbors in the neighbor-
hood of §. Thus, the algorithm may not find a true local minimum of the
cost function Egp(S), but the solutions produced will be bisections.

We have run local optimization on random and geometric graphs for N =
20, 100, 500, 2000 using both classes of local neighborhoods. For the single
swap method, we used a value of a = 0.05 based on the results reported in [8].
The experiment was repeated 1000 times and a histogram was produced for
each neighborhood method. In each case, the better of the two histograms is
displayed in figure 5. Also shown, under the category Random Bisection, are
histograms of the 1000 random initial bisections used for local optimization.

Simulated annealing

The cost function and local operations for generating new partitions are
identical to those described for local optimization. The main difference is
the addition of a probabilistic acceptance of uphill moves according to the
Boltzmann distribution (see (2.4)). The simulated annealing algorithm is
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1. Get an initial configuration S (i.e. a random bi-
section).

2. Get initial temperature T and initial time Lg.
3. While not yet “frozen”, do the following:
3.1 For 1 <1 < L, do the following:
3.1.1 Pick a random neighbor S of §.
3.1.2 Let A = E(§") — E(S).
3.1.3 If A < 0 (downhill move), set § = 5.
3.1.4 If A > 0 (uphill move), set § = § with
probability e=4/7.
3.2 Update temperature T' and time L.
4. Return §.

Figure 17: Simulated annealing.

1. T0= 10, L0=N.
2. Until variance of cost function < 0.05, update
according to:
T'=T/0.8; L =N (heating up).
3. While percentage of accepted moves > 50%, up-
date according to:
T'=0.95x1T; L=N (cooling).
4. Until number of uphill moves = 0, update accord-
ing to:

T=0.95xT; L=16N (slow cooling).

Figure 18: Annealing schedule.

given in figure 17.

The parameters of this algorithm are the initial temperature T, and the
annealing schedule, which determines the next value of T and the length of
time L spent at each T. Our annealing schedule (see figure 18) is based upon
a requirement that the temperature be high enough such the variance of the
energy is less than T' [15]:

(B - (BE)) /T < 1. (B3)

Simulated annealing was run 100 times for the same combination of
graphs and neighborhood methods as local optimization. For single swap
neighborhoods, @ = 0.05, and the same balancing heuristic was used to
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balance final partitions. The better histograms from the two neighborhood
methods are displayed in figure 5. For random graphs, simulated annealing is
expected to provide the best solutions of methods currently available. How-
ever, for geometric graphs, simulated annealing may not produce as good a
solution as specialized heuristics [8]. However, we do expect that simulated
annealing provides a reasonable lower limit on achievable solution quality for
general solution methods.
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