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Abstract. Th e performance of a mean field theory (MFT) neu ral
network technique for finding approximate solutions to optimi zation
problems is invest igat ed for the case of the minimum cut graph bisec­
tio n problem, which is NP- complete. We address the issues of solut ion
quality, progr amming complexity, convergence tim es and scala bility.
Both standard random gr aphs an d mor e st ruct ured geomet ric graphs
are considered. We find very encouraging result s for all t hese aspects
for bisection of graphs with sizes rang ing from 20 to 2000 vertice s. So­
lution quality app ear s to be compe tit ive with ot her methods, and the
effort required to apply th e MFT method is minimal . Although th e
MFT neural network approach is inherently a parallel method , we find
that t he MFT algorithm executes in less tim e than ot her approaches
even when it is simulated in a serial manner .

1. I nt rod u ction

There has been a resurgence of interest in neural network computat iona l
models in the last two years. The aspects of these models that are drawing the
most attent ion are th eir ability to learn pat tern classifications and to perform
associat ive memory tasks [14]. Th e domin ant subjects of research have been
related to network architectures, storage capacity, and learning algorit hms.
However, there exists another promising app lication area for neural network
models that shou ld be of immediate interest to the engineering community:
the problems of Nl'vcornplete constrained optimiz at ion [7]. These problems
are typified by opt imization over a combina to rial set of configura tions, and
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th eir exact solut ion becomes intractable as the problem size grows. Well­
known exam ples of thi s class of problems are the travel ing salesman problem
(TSP) and graph partitionin g, both of which are representative of design
prob lem s encountered in large sca le layou t such as in VLSI design (e.g. [3,
10])

In this paper we present a mean field theory (MFT) tr eatment of neural
networks [12] as a me thod for ob taining approximate solutions to optimiza­
t ion problems. T his method is inspired by and closely related to th e the
approach taken in th e pioneering work by Hopfield and Tank [71 . Our per­
forman ce st udy is based on the graph bisection problem with engineerin g
applica tion s of circu it layout in mind. The ma jor topics addressed ar e the
quality of solut ions , programming complexity, convergence times, and sca l­
ability. \Ve find very encouraging results for all these aspects and suspect
that th e MFT neural network approach can prov ide a competi ti ve challenge
to heuri stic methods for a wide range of comb inatorial optimization prob­
lems.

In the rem ainder of this sect ion we outl ine the objectives and results of our
study. In sect ion 2, we review the MFT neural networ k met hod and briefl y
discuss impl ementation of the resu lting eq uations. Application of the MFT
method to the graph bisection problem is described in sect ion 3. Section
4 contains an assessment of MFT performance for graph bisection on ou r
test bed of random and geometr ic graphs. Finally, we briefly summarize ou r
result s in sect ion 5.

1.1 Objectives and result s

In reference [7], TSP was mapped onto an analog neural network, and it
was demonstrated that for 10 an d 30 city prob lems the neural network was
abl e to find "good" solutions for a proper select ion of net work parameters.
Constrained optimization problems formulated on neural networks as in [7] is
the focus of thi s work. The computational model and basis for the approach
used in [7] have been elaborated on through a mean field theory stat istical
treatment of discrete state neural networks [1,12]. In thi s paper, we will
present and use an MFT neural network algor ithm very similar to the method
presented by Hopfield and Tank in [7J. T he contribution of the mean field
theory tr eatment is in pro viding a better interpretation of the dynamics of
the neural network.

We have selected the minimum cut graph bisection (GB) problem as a
test bed for an investigation of the MFT algorithm. We prefer th is problem
over TSP for th e following reason . As will be discussed below, neural network
formulations of const rained optimization problems require the introduction
of penalty te rms to account for const ra int violations. For TSP, the penalty
term is complicated and, due to the method of mapping TSP on a neural
network , must be st rict ly sa t isfied in order to yield sens ible solut ions [7].
However , for GB , modest violation s of the constraints will st ill yield sen sible
solutions . The rigid constraint requirement of TSP makes valid solut ions
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more diffi cult to obtain, th us complicat ing a performance invest igation of
the MIT method.

Our invest igat ion object ives and results are the following:

Program m in g complexity. As already mentioned, solut ion of con­
st rained optimizat ion problems requires an accounting for possible con­
st raint violat ions. In the neural network formulation of these problems,
const ra int violat ions ente r in an explicit way. A neural network energy
function for constrained optimizat ion will be of the form:

E = o ["const raint violation"] + .8["cost"J (l.l)

where 0, f3 > 0 and "cost" is an opt imizat ion cost function t hat is in­
dependent of "constraint violation" . Th us by minimizing the energy
funct ion E , we attempt to minimize the "cost" while at the same time
maximizing satisfact ion of the const raints. The successful use of such
an energy function requires approp riate select ion of the parameters Q

and {3. We call t he relat ive ease or difficulty of specifying an appro­
priate energy funct ion and select ing its parameters the programming
complexity .

Vie have found that there is a st raightforward formulat ion of the graph
bisect ion problem in terms of a neural network energy function of t he
form of (1.1). In addit ion, there is a wide range of the pa rameters 0'

and f3 that yield "good" solutions. Relaxing the constraint such that
imbalanced solutions are produced does not seriously affect t he ap­
plicability of the MFT neural network met hod. From an engineering
standpoint, slight ly imbalanced partit ions are perfectly acceptable if
the corresponding cuts ize is "small". Furthermore, it is a simple matter
to apply a greedy heurist ic to t he imbalanced par t ition in order to pro­
duce a balanced solution [8]. Quite surprisingly, the balancing heurist ic
often produces an improvement to the outsize. Th is phenomenon is re­
lated to the mean field theory interp retat ion of the neural network and
is discussed further in sect ion 4.

P erformance . For t he two classes of random graphs in our test bcd,
we invest igate how well the MFT algorithm finds "good" solut ions as
compared to two ot her heuristic methods- simulat ed annea ling [10)
and local optimization [S}. The results are very encouraging, and for
GB, the MFT meth od appears to compare well with the standard
Kernighan-Lin f9] heur ist ic. A related issue is that of execution t ime for
serial implementations of these methods. T he MFT algorithm is quite
competit ive, especially when compared to the long execution times of
simulated annealing.

Scali ng. 'We have invest igated the effects of problem size on the re­
sults mentioned above. Our results indicate that the select ion of the
parameters 0' and .8 is not st rict ly dependent on problem size. In fact,



62 Carsten Pet erson and James R , Anderson

th e precision requirements go down with increasing pr oblem size; for
large problems, th ere is a lar ger range of values for a and f3 that yield
good solutions. We also find th at the convergence time T(N) [or the
MF T algorit hm, is ap proximately linear in the problem size:

T(N) ex N. (1.2)

2. Neural networks and mean field theory

2.1 The neura l n etwork model

Many NP-complete problems can be cast into the Hopfield discrete state
neura l network model [51defined by the energy function:

..... 1 N N N

£(S ) = - 2L:L:TijSiSj + L:I;Si (2.1)
1= 1 ;=1 1= 1

where § = (5;"", SN) repre sents the state of the network. Here, the S;
represent N bina ry neurons which are either firing or non-firing, i.e. Sj = ± l.
T ij repr esen t s t he st reng th of a syn aptic connection bet ween neurons Sj and
Sj with 1';; = 0, and I, represent s the firing threshold of neuron Si. Local
minima of E( S) are reached when the net work is iterated from an initial st ate
by upda ting each neur on asynchronously in accordance with the updating
rul e:

s, = sgo (t TijS j - I i) .
j= l

(2.2)

Symmet ry of Tij ensures that £(5) will decrease monotonically wit h the
updat ing rule (2.2). T he synapt ic weights Tij determine the minima of £ (5)
(fixed points) and the dynamics of the system. In pattern complet ion ap­
plications, pattern s are stored through appropriate select ion of Iij- Wh en
confronted with a distorted pattern, the syst em evolves to the closest local
minimum which rep resents a st ored pat tern. In optimiza tion problems, the
Tj j encode the cost funct ion and th e const raints to be satisfied, and the goa l
is to find t he global minimum . Confl ict s between the constraints an d cost
functions lead to an energy land scap e that is r ich in structure with many
local minima (see figure 1).

A method of sea rching for th e globa l minimum of the energy functio n is
simula ted annealing [10], which is a st at istical generaliza tion of hill-climbin g
optimization method s. Simu lated annea ling draws upon an analogy with
stat ist ica l mechani cs to prescribe a method for making up hill moves so that
there is a greater prob abihty of producing solutions with a low energy than
of set tl ing in local minimum with a higher energy. T he method consists of
generating new configurat ions via neighborhood search met hod s in a non­
deterministic manner prescribed by the Boltzman n dist ribution
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F igure 1: Representation of a typical energy lan dsca pe for an op ti ­
mizati on problem.

J( E) _ e- E / T (2.3)

where E is the energy function associated wit h the opt imizat ion prob lem,
and T is a par ameter associated with the temperature of the syste m. By
generati ng configurat ions according to (2.3) at successively lower a.nn ea/ing
temperatures T , t he algorithm is more likely to avoid gett ing stuck in local
minima , and "good" solut ions are often found.

Unfortunately, while simulated annealing is a powerful method in theory
as well as in practice, it has a number of drawb acks. Performance is very
often direct ly related to the choice of neighbor hood search meth od s used to
generate new configurations. In addi tion , computer simulat ion of annealing
requires generation of a large number of configurations and a very slow low­
ering of th e temperature parameter T in order to achieve good results (8) .
However, we can analyze the average stat ist ics of a simulated annealing pro­
cess through a mean field theory approximation [1 ,4,12]. T his a nalysis yields
the equati ons of the mean fi eld theory neural network method.

2.2 T he mean field equations

The stat ist ical mechan ics of the neu ral network of (2.1) in a simulated an­
nealing environment is specified by the Boltzmann probab ility distribution
(e.g. [11))

_ e- E(SJ/T

P (S) = Z

where the partit ion function is given by

(2.4)
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(2.5)Z = L e- E1S)/T

5

Here the summation runs over all possible neuron configurations 5 = (5 1 1 " "

SN). In an ea rlier paper [12] we demonstrated that the discrete sum in (2.5 )
can be replaced by multiple nested integrals over the continuous variables
U; = (U" . .. ,UN) and V; = (Vi, . . . ,VN):

Z = C j~1: dV;L: su,e-E' (V,O,T)

where C is a complex constant, nJf denotes multi ple integrals, and

N

E'(V ,0,T) = E(V)IT +L [U;V; - log(cosh U;)].
i= l

(2.6)

(2.7)

Th e int egral s in (2.6) can be analyzed using a saddle point expansion
of E'(V,O,T). As described in Appendix A, th is involves a mea n field ap­
proximation . The result of this method is that the statist ical mechan ics of
the neural network are determined by the saddle points (i.e . aE' /8Ui = 0,
aE'lav; = 0) defined by:

V; - tanh L', = 0

and

1 aE(V)
T~ +U, = O .

Combining (2.1), (2.8), and (2.9), we get

Vi = tanh (fJ;;V; IT )
) = 1

(2.8)

(2 9)

(2.10)

where, for simplicity, we have set I, = 0 in (2.1).
T he equations (2.10) are the MFT equat ions. It can be shown that the

continuou s var iables Vi approximate the mean of the discrete neuron var iables
at a given temperature [1 ,12J:

(2.11)

Thus, the stat ist ica l (i.e. , non -zero temperature) behavior of the neural net ­
work (2.1) in a simulated annealing framework is emu lated by th e sigmoid
updating rule (2.10) (see figure 2). The step funct ion (2.2) is the T -> 0 limit
of (2.10) . This interpretat ion, whi ch is mor e apparent whe n deriving (2.10)
from a Markov chain approach [1,4]' will tu rn ou t to be very important for
interpret ing our performance st udy results.

Finall y, we note that the effective energy given by (2.7) is equivalent to
th e energy function given by Hopfield in [6J for a netwo rk of analog neurons.
It represents th e so called free energy of th e syste m. (See Appendix A.)
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Figure 2: Sigmoid gain functions of (2.10) for different temperatures
T . The step function upd ating rule (2.2) corres ponds to T _ o.

2.3 The mean field theory algorithm

In cont rast to simulated annealing, which is a stochast ic algorithm, the mean
field theory equations (2.10) are deterministic. Also, it is not necessary to
use an annealing schedule with the MFT equations. Whereas simulated
annealing follows an equilibrium path from high to low temperatures, the
MIT equations represent the equilibrium statistics of the neural network at
a tempe rature T. In practice, we have found t hat it is only necessary to make
a proper single choice of the parameter T when using the MFT equations.
Brief invest igations of the use of an anneal ing schedu le to update the T
parameter, as in simulated annealing, failed to indicate an improvement in
the solution quality over solut ions produ ced at an appropriate single value
of T .

A stra ightforward iteration of (2.10) gives

11;(1 + t>t) = tanh ( t T;jV; (t)/ T) . (2. l2)

Th ere also exist dynami cal systems of equati ons that have (2.10) as their
solut ions. One such system is

d1l;( t) ( N )----;u- = - V; (t) + tanh f;T; jVj(t) /T . (2.13)

Systems like (2.13) are similar to the RC equa tions for an elect rical circuit
of interconnected non-linear amplifiers with the capacitances C and time
constants 1/RC set to one, and with interconnection cond uctances Ti j (1,7] .
T hese equat ions can be simulated by making an Euler forward approximation
to the derivat ive d\li(t)/dt , which again yields an iterat ive algorithm. For the
system (2.13) we get
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V; (t + fl.t ) = V; (t) + fl.t [- V; (t ) + tanh ( t T;;V; (t )/ T) ] . (2.14)

'We note that wit h At = I, one recovers the fixed point iteration (2. 12).
Iterat ions of (2.12) or (2.14) can be made either synchron ously or asyn­

chronous ly:

Sy nchronous . At t ime t + fl.t, gene rate V; (t + fl. t ) for every V;, using
t he values Vi{ t) that were generated at the last iterat ion.

A synch r onous . At t ime t+.6.t, generate only one new value \Ii(t+.6.t ),
leaving the other Vj, j =f i, to be computed at future iterations.

In applications of (2.12,2.14), we have found the use of asynchronous i t­
erat ion to be advantageous. We suspect that th is is related to a "st iffness"
in the dynamical system, and note thai the convergence of the synchronous
method is dependent on the nature of th e Tq, A common pathology of
the synchronous method is limit cycles, a behavior common to discrete t ime
non-linear sys te ms. In many sit uat ions in which the asynchronous met hod
converges, the synchronous met hod will a lso converge if the t ime step 6..t
is made small. However, t he price for th is method is increased computa­
t ion t ime . Fina lly, we point out that th e asynchronous met hod provides an
approximat ion to t he Euler backward approximation, which is known to be
bet ter for solut ion of st iff systems than the forward approximation.

In our per formance study, we have exclusively used the fixed point form
of the MFT equations, as in (2.12), with asynchro nous upd at ing.

3. Graph bi section

T he graph bisection (G B) problem has been the subject of much research
becau se its simplicity prov ides an attractive test bed for investigation of
optimization methods and becau se of its similarity to the problems faced
in circuit design. A simple illustration of th is problem is shown in figure
3. We are given a graph G(V, E) containing an even number of ver tices
V = {VI,"" VN} and a set of edges (a, v) E E consisti ng of unordered pair s
of vert ices U ,V E V , wit h (a,a) r:t E. T he goal is to part ition th e vert ices
into two equa l sets, VI and V2 , such that the cutsize [i.e., the number of
edges with an endpoint in each par tition ) is minimized . T hus, we seek to
minimized the cost function

EGB(V" V,) = I{(a,v) E E: a E v. ,v E V,}I (3. 1)

const rained by th e requi rement that IV.I = IV,I = N/2, where IXI denotes
th e number of elements in th e set X .
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Figure 3: A simple grap h bisection problem.

3.1 The neura l network m ethod

Vole want to map the graph bisection problem onto a neu ral network defined
by an energy funct ion of the form (2.1). Consider the following representation
of a graph : for each vertex i, we assign a binary unit Sj = ±l; and for each
pair of vert ices Si ,Sj , i:f i , we assign a value Tij = 1 if they are connected ,
and Tjj = 0 if they are not connected. In terms of figure 3, we let Sj = ±l
rep resent whether vertex i is in the left or right partit ion. Wit h this notation,
the product Tjj SiSj is zero whenever vert ices i and j are not connected at
all, positive whenever connected vert ices i and j are in the sa me par t ition,
and negative when they are in separate parti tions. Wit h this represent ation}
minimization of the first term of (2.1) will maximi ze the connect ions within
it par tition while minimizing the connect ions between partitions. However}
using only th is term will force all verti ces into only one of the part itions.
Hence we have to add a penalty term that measures violatio ns of the equal
sized partit ion constraint . We note th at L S, = 0 when t he partit ions are
balanced. Thus, (2: 5;)' will increase t he energy whenever t he part it ion
is unbalanced.' T he discrete state neural network energy function for GB
app ears as

(3.2)

where o is an imbalan ce parameter. This is identical} minus a constant}
to t he cost funct ion used in the simulated annealing and local optimizat ion
solut ions to GB (see Appendix B).

Combining (2.8), (2.9), and (3.2) , we get the MFT equations for t he GB
prob lem:

II; = tanh (f,(T;;-U)V;/T).
) = 1

(3.3)

"There are many terms other than CLSi? that will cause an increase in
the energy if t he solut ion in unbalanced. However, this term produces the
most convenient form of the MFT equations (3.2) when the derivati ve of
E(S) is taken.
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T his equat ion is solved by the asynchronous itera t ive fixed poin t method de­
scribed in sect ion 2.3. In our implementation, t he Vi are selected in sequence
to be up dated . We define a sweep to he a complete cycle of upd ates; i.e.
each variable \Ii is upd ated once during each sweep of the algorithm.

Recall OU f inte rpretat ion of t he cont inuous variables Vi as the expected
value of the discrete neu ron variables at a temperature T (see (2.11)). T he
final value of \Ii approximates th e probabil ity that the neuron variable has a
value S j = 1 in a solut ion prod uced by simulated annealing at a temperature
T. (Note th at th e prob ab ility scale is shifted From [0, IJ to [- I , IJ.)

To produce a solut ion from the value of V, we simply look at the sign of
Vi ;a final value of \Ii > 0 imp lies there is bet ter than a 50% probabi lity t hat
the neuron variable has a value Sj = 1 in a solut ion produced by simulated
annealing. T hus we produce a par ti tion S from V by setting S; = sgn( Vi).
If necessary, the partition is balanced wit h a greedy ba lancing heuri stic (see
Appendix B).

In a similar manner, the initial condit ion Vo should correspond to a ran­
dom choice of S. Thus we set iio = o. However, V = 0 is a solut ion to th e
fixed point equat ion (3.3), so in pract ice we initially set \Ii to a ra ndom value
in the int erval [-10-5, 10- 5 ] .

3 .2 The performance test bed

Vle follow closely the perfor mance st udy of (8]; our test bed for GB contains
two classes of randomly generated grap hs - the standa rd rand om gra ph
and the more st ruct ured geomet ric graph. 'ATe feel that these two classes of
gra phs represent enough variety and similarity to real applications tha t they
should provide a reasona ble test bed for a performance study or th e MFT
algorithm. For each type of graph, we generated a single instance of the
graph for sizes N = 20, 50, 100, 200, 500, 1000, and 2000. All experiment s
in our per formance st udy are based on repeated tr ials on the same inst ance
of each graph.

3.2.1 R andom graphs (GN)

T he standard random grap h GN,p is defined by the parameters N and p. Th e
par ameter N defines the number of vert ices in the graph, and th e param­
eter P, 0 < p < 1, specifies the probability t hat any pair of vert ices (a,v)
const itutes an edge. Thus th e average degree or the graph GN,p is (N - I )p.
For p fixed , and indep endent of N, we are faced with dense graphs as N
grows large. In this case, the optimization problem becomes trivial from an
engineering sta ndpoint ; all bisections have nearly the same cutsize and th e
rat io of the optimum cuts ize to the mean cutsize approaches unity [2].

On th e ot her hand , if we fix the degree of the graph , the ratio of optimum
cuts ize to mean cuts.ize is approximately constant for all N [2]. Thus, fi xed
degree grap hs provide better discr imination of algorithm performance as N
gro ws. Fixed degree also seems to be more reasonab le in terms of real prob-
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Figure 4: A geomet ric graph Usee with 4NtP = 10.
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lems; for exa mple, elect ronic circuits have a limited fanout , such that there is
a fixed maximum numb er of connect ions emanating from a given component .
For our performance study we used random graphs with a fi xed average de­
gree; these graphs are denoted by GN and were randomly generated with an
average degree N p = 10.

3 .2 .2 G eometr ic graphs (UN)

Another class of random grap hs, which may be closer to real ap plications,
is the geometric graph UN,d defined by the parameters Nand d, 0 < d < 1.
Th is ty pe of graph encompasses the not ions of spatial cluste ring and local
connectiv it.y. A geomet ric graph UN,d is generated by randomly distributi ng
the N vert ices on a unit square. Two vert ices are connected only if they can
be enclosed by a square with sides of length d. (This is a slight variation of the
geometric graph described in {8] .) Thus, the average degree of vert ices away
{rom the border of the unit square is 4Nd2 . As wit h the random graphs,
we have used fixed degree geometric grap hs UN randomly generated with
4N J2 = 10. An example of U500 is shown in figure 4. (Noti ce t hat there are
several isolated vert ices). Fixed degree geometric graphs provide even more
discrimination of algorithm performance as the ratio of minimal to random
cutsizes decreases for increasing N (see figure 5).
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3.2.3 P erformance limits

Following [8], we have attempted to identify reasonab le limits on desirab le
performance of the MFT algorithm. In [8] it was shown th at generally, for
these classes of graphs, the simulated ann ealing metho d provides a lower
limit on achievab le cut size for GB solution methods, at the expense of long
exec ut ion times . On the othe r hand , local opt imizat ion provides much faster
exec ut ion t imes , at th e expense of poorer minimizat ion performance. We
will use these two meth ods as upper an d lower limits for evaluat ing the
performance of the MIT method. A brief description of these two algorit hms
can be found in App endix B. We have also evalua ted the average outsize of
ra ndomly chosen bisect ions. The ratio of mean random cuts ize to minimum
cutsize provides a cha racterizat ion of th e grap h typ e. In figure 5 we compare
histograms of th e cutsizcs produ ced by these met hods for increasing graph
size and for both random and geometr ic graphs. T hese distribu tions are
based on 100 tr ials of simulated ann ealing, and 1000 trials each of ran dom
bisect ion and loca l opt imization.

It is quite clear that t he average random bisect ion has a outsize that is
linearly related to th e graph size N for both ran dom and geomet ric graphs.
For random graphs GN , the ratio of rand om to minimum cut size appears to
be constant for increasing N. On the other hand, the geometric graphs UN
display a decreas ing ra t io of minimum to rand om cuts ize. T hus the geometri c
graph provides an increasing performance requirement as N grows.

4. P er fo rmance of t he MFT algorithm

Our perform ance st udy addresses the issues of parameter select ion of 0' an d
T , convergence t ime of the algorithm (in terms of t he number of sweeps,
N~'Weep ) , and quali ty of the solut ions produced.

4.1 Param eter se lection a nd sensitivity

\Ve have introduced t he not ion of programming complexity in sect ion l.
Here we are concerned with the effort required to apply the MIT meth od
to a specific prob lem. As was shown in sect ion 3.1, mappi ng of the graph
bisect ion problem to a neural network is st raight forward. Thi s will be t rue
for a wide class of combinatoric optimization problems, such as the traveling
salesman problem [7J . The only addit ional effort needed to complete an
applicat ion of the MFT met hod to a specific problem is pro per select ion of
the MFT equati on parameters, for gra ph bisection we have the imbalance
factor 0' and temperatu re T .

In figure 6 we show the performance of the neural network algorithm for
a random graph G I OO over a portion of the (0', T ) parameter plane. T hese
plots represent the average of 10 different experiments (Nexp = 10) of 100
sweeps each (N~'Weep =100) for the same graph GlOO' The three plots shown
rep resent different aspect s of the MFT algorit hm performance.
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Figure 5: Distr ibut ions of cutsizes found for random graph s G20 , G lOo ,

Gsoo, G2000 compared to geometr ic graph s U20 , UIOO, Uwa, U2000 . See
Appendix B for detail s.

In figur es 6(a) and 6(b), we show the cutsize and th e associated imb alan ce
of th e solut ions produced by the MFT algorithm. Several featu res of th ese
figures ar e considered to be significant :

P hase transition. T here is a very sharp transit ion to a region of good
cu tsize when T is lowered from high temperatures. For values of a in
this region, th e transition temperat ure appear s to be independent of Q .

Stabi lity. T he region of good solut ions appear s to be well defined .
Wi thin this region , except for smaller values of T , t he solution quality
appear s to be independent of the particular values 0 and T .

0 , T dependence. The region of good solut ions is a right tri angul ar
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Figure 6: Perform ance of the MIT algorith m on a.random graph G100
versus the parameters 0' and T. T he plots rep resent the average of
10 different experiments (Nez:p = 10) of 100 sweeps (Ns weep = 10) for
the same gra ph C IOO.

shaped region. T he right sides are det ermined by the T phase t ra nsi­
t ion and a crit ical value of 0 , below which the solut ions become highl y
unbalanced. Th e hypotenuse is approximately determined by th e diag­
onal line a = T .

Finally, we comment on two anomalous featu res of figure 6. In figure 6(a),
there appears to be an addit ional region of good solut ions for small values
of a just above the phase t ransit ion in T. Th is is not a stable region, as the
iteration of (3.3) has not converged at N,w" , = 100 (see sect ion 4.2 below).
When the iterat ion is cont inued unti l convergence is reached , the region is
question disappears. Secondly, for values of Q that are below the crit ical
value of o, the solutions produ ced are highly unbalanced (see above). This
region has been been removed from the plots because it obst ructed the view
of t he region of good solut ions.

In figure 6(c) we show the resultin g outsize of the bisect ion produced by
the greedy balan cing heuri st ic. We note that the balanced solut ion is very
similar to the cutsize of the unbalanced solut ion from the MFT algorithm .
Th e qua lity of the ba lanced solut ion appears to he independent of the size
or the imbalance that was removed by th e balancing heuri stic. More will be
sa id on this lat er.
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In figure 7, we compare the results of similar experiments for each of
t he random graphs 0 20 , Gso, G100 an d geometri c grap hs U20 , u-.UHJO ' \¥e
show only the balanced cuts ize produ ced by the balancing heuristi c. Th e
imp ortant feature of figure 7 is that the region of good solut ions appears
to grow with increasing problem size. T he significance of this featu re is
that parameter select ion does not become more sensit ive for larger problem
sizes. In reference [7) it was noted th at to obtain solut ions of T SP on neural
networks, select ion of parameters became more difficult for increased problem
sizes. However, the TSP solut ion requ ired an exact sat isfact ion of const raint
terms, whereas here we have relaxed the const raint requirements. Indeed,
it becomes impossible to find parameters that yield ba lanced solut ions for
larger GB problems. Thus it ap pea rs that relaxat ion of const raints, with
a possible "post" heuristi c, may be necessary in order to empl oy t he MFT
method. More will said on this below.

We have invest igated the growth of the good solut ion region for larger
problem sizes. We have already observed that within the region of good
solut ions, outs ize appears to be independent of the par ticular choice of a.
T hus we can see from figure 7 that fixing a = 1.0 will not restrict us from
finding good solut ions. In figure 8, we have compared the performance of the
l\'IIT algor ithm for random graphs Gt Olh GSOO1G2000 and geomet ric gra phs
U.oo , US00 1U2OOO • Here we have fixed a and only vary the temperature T . VIle
show both th e balanced outs ize, and th e out size an d associat ed imbalance of
th e MFT produced solut ion prior to balancing. T hese plot s confirm t he ea r­
lier observation that th e region of good solut ions defined by th e temp erature
phase transit ion grows with increasing problem size.

'VVe have already noted that the quality of th e balanced cut size seems to
be independ ent of the size of the imbalance that was removed. Th is feature
is displayed clearly in the plots of figure 8. Compare the balanced cut size
to IMBALANCE; the balan ced cut size is relati vely uniform up to the phase
tr ansition , independent of imbalance. In addit ion, the balan ced cuts ize Lends
to be better or no worse t ha n the unbal anced solut ion produced by the MFT
algorithm. This seems counterint uit ive, especially when compared to the
local optimization and simulat ed ann ealing met hods; in these methods, the
greedy heurist ic almost always increases th e outs ize. \¥e will examine this
issue furth er below.

4.2 Convergence

In th e experiments of th e previous sect ion, we arbit rarily set N $w CCP = 100.
In fact , th e MFT algori thm convergence is dependent on th e parameters a
and T and th e problem size N. Consider figure 9, in which we have plotted
the value of each of the MFT variables Vi as a funct ion of N$wcep for a
single experiment for each of the ra ndom graphs G20 , G IOO' Gseoand geomet ric
graphs U20 , UlOO, Usco with a = 1.0 and T = 2.0. Repeated experiments for
these pa rameter s yield differences in the pattern s of activity (i.e. number
of neurons oscillating), but all have the sa me features displayed in the plots
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Figure 7: Comp arison of MFT met hod perform ance versus a and T
for random graphs G20 , Gso, C lOO and geomet ric graphs U20 , Usa , U100 ­

Nex p = 10 with N5 w eep = 100.

shown. Several im por tant issues that are related to featu res obser ved in
figure 9 are discussed in the following sect ions.

4 .2 .1 Asymptotic va lues fo r Vi

As the problem size increases, not all of the variables go to ±l. T his is a con­
sequence of the fact t hat the MFT variables Vi represent mean values of the
neur on variables Si at temperat ure T (see (2.11)) . Hence the values should
be interpreted probabilist ically. As the problem size grows, the multip licity
of-t'good " solut ions within a small distan ce of each other is increasing. Thi s
feature could be related to an ult ra .metric st ructure of the solut ion space [13]
(see below). T hus, at a te mperature T , all of these closely locat ed similar
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solut ions are equally likely to occur in a simulated annealing environment .
Some of the mean field theory variab les \Ii will reflect thi s fact ; the variables
Sj that change sign in going from one simila r solut ion to another will have
a mean value that is different from ±l. It is t hese S, var iables that lead to
values t hat are near zero for some MFT variables Vi,

In [7]. where a similar algorithm was appl ied to 10 and 30 city TSP. it
was the case that solut ion points were char act erized by Vi = ± l. It is our
guess, at th is point, that such a feature is an ar tifact of the small system
sizes st udied in [7) .
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4.2.2 Justi fica t ion for t he b alanci ng heuristic

In view of the discussion above and t he related discussion in sect ion 4.1, it
appears that relaxa tion of constraint requirements is necessary in applying
the MFT method to optimization problems. An except ion to t his occurs if
t here are only a few isolated minima, in which case the MFT method seems
to do a good job of find ing one of them.

In th e graph bisect ion problem, the variables wit h values close to zero
represent vert ices of the graph t hat can be moved from one part it ion to the
other with lit tle effect on th e cutsize. (T his has been verified through a
detailed analysis of several exper iments for C lOO and Cwo.) Often there is
an improveme nt availab le in moving one of th ese vert ices to t he opposite
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Figure 10: An ult ra-met ric t ree.
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parti t ion. Thus t he balancing heuristi c does not usually affect t he cutsi ze,
and sometimes yields an improvement . The MFT algorit hm is not always
able to impar t the improvements itself due to the averaging effect over all of
the simila r local solut ions in the solut ion space. Th e geomet ric graphs do not
exhibit as much mult iplicity of similar solut ions as t he random graphs. T his
is evidenced in the fewer number of variabl es near zero in the plots of figure
9, and the relatively poorer performance of the balancing heurist ic (refer to
figure 8).

4.2.3 U ltrametr ic structu re of t he states

Frustrated systems like spin-glasses and TSP are known to posses a hierar­
chical st ruct ure in the state space [13]. Such an ultrametric state space is
characterized by "families" of solut ions, in which all the states are close in
some measure, e.g. Hamming distance. T hese different families are hierar­
chically connected, as in figure 10. Th e distance between nodes in a t ree such
as figure 10 is defined by the number of branches that must be traversed in
order to move from one node to the other. Thus, the distance between states
in different families is larger than the distance between states wit hin families.

4.2.4 Osci llat ion s and conve rge nce

Another observation from figure 9 relates to the nature of convergence of the
MIT method. Th e MIT algorithm yields a solut ion by obser ving the sign
of t he variables \1; . Thus, st rict convergence of the solut ion produced can
be taken to mean tha t there are no more zero crossings in the variables Vi ,
While it does app ear from figure 9 that all oscillat ions will eventually die
out, we need not wait for this to occur . Oscillat ions above or below, but not
crossing, the zero axis do not affect the solution produ ced. 'A'e have discussed
abo ve t hat fact. that values near zero represent vertices that have lit t le effect
on cutsize, so we can ignore small oscillation s near zero also. T herefore, a
crite ria for convergence is that all large oscillat ions have died ou t. A simple
approximation is to assume that only a small percentage of the varia bles
will have sma ll oscillat ions near zero. Then we can assume convergence
occurs when only this small percentage of variables are sti ll oscillat ing. To
invest igate convergence t imes, we have fixed the parameters at a = 1.0,
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Figur e 11: Average convergence time of 10 experiments as a functi on
of graph size for random graphs and geomet ric graphs. c = 1.0 and
T;:: 2.0 for random gra phs, while T ;:;; 7.0 for geometric graphs.

with T = 2.0 fo r ran dom graphs and T = 7.0 for geomet ric graphs; t hese
pa rameters represent good solut ions at N s weep = 100 (see figu re 8). As a
crite r ia for converg ence we requ ired that less than 1%of the var iab les a re stil l
crossing the zero-axis. In figure 11 we have plotted the average convergence
Li me of thi s cri teri a for 10 different ex pe riments on each graph size. It is
ap pa rent that for these parameter s, th e convergence t ime is linear in the
problem size.

Another way of viewing convergence is to look at convergence of t he
cuts ize produced as a function of sweeps. In figure 12 we have plot ted the
cuta ize prod uced at each sweep for 10 different experiments on the random
graph G2000 with Q' = 1.0 and T = 2.0. It is clear that th e cuts ize achieves
a near minimal value we ll before the 1000 sweeps predicted by fi gure 11. It
appears th at many of the oscillation s prior to convergence (see figure 9) do
not signifi cant ly affect the quality of the solut ion produce d. Based on figure
12, and ot hers like it for the ot her graphs, we feel comfortable run ning th e
algorithm for only 100 sweeps in our following experiments.

4.2 .5 Behavior in other regions

\ ,Ve should also briefly menti on what happens in other regions of the param­
eter space: Near the phase t ransit ion, all the variables have values close to
zero but st ill represent good solutions. At very high temperatures, all \Ii go
to zero as expected; thus the solut ion represents a rand om cut. For large
values of Q' relat ive to T (i.e. above the Q' = T diagonal), oscillat ions dom­
inate and there are no solut ions to the MFT equat ions. We not e that even
within the region of good solut ions, the convergence time is dependent on
the choice of parameters.
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F igure 12: Cutsize of 10 experiments as a funct ion of N6weep for G2000.
" = 1.0 wit h T = 2.0.

4.3 C om pa r ison with co nventi onal a p proaches

We will now compare the results from the MFT neural network approach
with local optimization (LOPT) and simulated anne aling (SA) results. Two
different neural network results will be shown for comparison in all exam ples;
t he unbalanced MFT solution (MFT) and the solutions produced by the
appl ication of the balancing heuristi c (BALANCE D). In figures (13)- (15),
we compare the relat ive quality of these 4- approaches. T he histograms for
LOP T and SA are based on the same data used in fi gure 5 (see sect ion
3.2.3 and Appendix B). Here we have rescaled the cutsize ax is to provide
bet ter comparison among the methods, and we have placed the MIT and
BALANCED histograms on separate axes in orde r to resolve the overlap
of the histograms. For each grap h size, the MFT algorithm was run 100
times with N6weep = 100. In add ition, we have run the MFT algorithm with
N 6we ep = N/ 2, from the convergence predict ion of figure 11. Th ese results are
displayed below the histograms produ ced for N , weep = 100. For the random
graphs a = 1.0 and T = 2.0, while for the geometric graphs a = 1.0 and
T = 7.0. Running t imes (normalized to MFT with N llweep = 100) for the
t hree methods are compared in tab le 1.

It is clear from fi gures (13)-( 15) that the MFT method provides solut ion
quality between LOPT and SA. From table I , we see that for larger problem
sizes the execut ion t ime of the MFT met hod is the best of the th ree methods;
an order of magnitud e faster than LOPT and nearly two orders bet ter than
SA. Th e overall quality of solut ions of the MFT neural network meth od ap­
pear to be comparable to those of the Kernighan-Lin heurist ic. For example,
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Relati ve Execut ion Times
Graph MIT LOPT SA
G,oo 1 0.3 47.8
Gsoo 1 1.4 55.S
G2000 1 10.0 91.0
U,oo 1 0.3 54.9
U,oo 1 1.3 63.9
U,ooo 1 7.2 92.5

Table 1: Relative time consum pt ions for local optimization (LOPT),
simulated a nnealing (SA) and MFT neural network (MFT) when ex­
ecuted on a serial computer . The data. has been norm alized to the
execu tion time of MFT with N:J weep = 100.
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Figur e 13: Comparison of MFT solutions versus Simulated Annealing
and Local Op timization. For MFT, o = 1.0 with T = 2.0 for C wo
and T = 7.0 for VIDO'

in an extensive study by Johnson, et. a.l . IS}, the Kernighan-Lin heur istic was
found to prod uce solutions th ai were 3-4% larger with executio n ti mes 50 to
60 times faster than simulated annealing for random gra phs of size 124 to
1000 (wit h degree 10). This compares to MFT produced cut sizes that are 2
to 3 percent larger wit h execution t imes 50 to 90 times faster than simulated
annealing for random graphs of size 100 to 2000 as reported here. Similar
comparisons hold for the case of geomet ric graphs.

'>\Fe know tha t for the larger graph sizes, N& weq = 100 is not large enough
to allow convergence of the algorithm. Comparison of the histograms for
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Figure 14: Compa rison of MFT solutions versus Simulated Annealing
and Local Optimization. For MFT , Q = 1.0 with T = 2.0 for Csoo
and T = 7.0 for U5OO•

N&weep = N /2 with those for N&1JJeep = 100 indica te a small improvement in
t he d ist ribut ion of solut ions. Clearly, if N&w eep is less than th e convergence
t ime, there is some tradeoff available between execution t ime and solut ion
quality. But a t worst }convergence t ime appears to scale linearly with prob­
lem size.

5. Summary

'We have investigated the pe rformance of a mean field t heory neural network
algorithm for solving the graph bisecti on problem for a variety of problem
sizes} N=20 to 2000, and for two different types of graphs} random and
geometr ic. V\'e observed very encouraging results, and we expect the l\!IFT
meth od to perform equally well for even larger prob lems} especially with
regard to the possib ility of para llel implementa tions. Our results can be
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Figur e 15: Comparison of MFT solutions versus Simulated Annealing
and Local Optimi zation . For MFT, 0' = 1.0 with T = 2.0 for G2000

and T = 7.0 for U2000 .

summarized as follows:

Programming complexity. The MFT neur al network formulat ion of
the graph bisecti on prob lem is qui te st raightforward. Two pa ramete rs
enter into OUf formulat ion; the tem perat ure T and the imb alan ce factor
a . A wide range of values for these par ameter give good solutions.

Quality of the solutions. The neural network a lgorithm yields solu­
tio ns that are very good from an engineer ing poi nt of view. T hey ar e
muc h bet ter than local optimizat ion and slight ly worse than the very
t ime cons uming simu lated anneal ing method. T hey appear to compare
favorabl y with the acclaimed Kerni ghan- Lin heuri stic [8].

Convergence times. T he neural network a lgorit hm converges lin­
early with pro blem size. Even when executed serially t he algori thm is
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competit ive. The MFT algorithm would be well suited an analog cir­
cuit implementat ion [7}, where minimizat ion problems could be solved
on a real time basis.

In addition , the followin g result regard ing interpretat ion of the MFT
computat ion has been observed.

R elaxation of const raint s . Analysis of MFT variables with fi nal
values near zero indicate a possible ultrametric structure of the solu­
t ion space. Wit h such a st ructure, it is unreason able to expect to get
solut ions that sati sfy constraints exact ly, due to the mean value inter­
pretation of the Mrr neurons. However, i t app ears to be reasonable
to relax const raint requirements; the solut ions produced should be well
condit ioned for heuristic fine-t uning in order to satisfy constrai nts.

Thus the MFT neural net work algorithm is an easy-to-use and very com­
pet it ive optimization engine. The problems and prob lem sizes probed in th is
work most certainly represent realistic situa t ions.
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A p pend ix A.

In th is ap pendix, we outline the saddle point expan sion of the parti tion
funct ion (2.6). We then consider some aspects of the effective energy function
E'(V,D, T) given by (2.7).

Sadd le p oint expansion

We will outline the method used to ana lyze the part it ion functi on (2.6) in
order to find the dominant configurat ion of t he neural network. 'We have a
partit ion function of the form

z =c II1:dV;e- N
/ iV.T )

J

(A. l)

where we have made a mean field approximation by defining the average
effect ive energy per neuron

! (V,T) = E'(~' T) (A.2)

VIle ap proximate l eV,T ) with a truncated Taylor series expansion about a
saddle point (more precisely, a critical point) V", Vo:
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where

T he part ition function becomes

Z = Ce- N/(V. ,TjII1: d(H'; )e-N! 2: 5V, 5VoD, o .

,

(A.3)

(A.4)

(A.5)

Th e integral y ields terms that are linear in N such that in the limit N ---+ 00,

the first exponent domi nates and we have

(A.6)

T hus, the parti t ion function is dominat ed by the value of E'(V ,T) at a saddle
point V= Vo. Vie have found that even for small N, the approximation y ields
good results experimentally [12J.

A look at t he e ffect ive ene rgy

Replacing U; in E'(II,D,T) with tanh-1(l'i) from (2.8), one obtains, after
some algebraic manipulati ons,

E'(V,T) =

N [I I]£ (V)IT + 2:= (I + Vi)210g(1+ V;)+ (1 - Vi )2 10g(1 - Vi) .
1= 1

(A.7)

When mult iplied by a facto r of T , (A.7) is identical to the energy funct ion
for an ana log neural network given by Hopfield in [6]. An important property

of E'(V,T) is that it. has a smoother landscape in configuration space than
£(ii) due to the presence of the ext ra terms. Heoce, the probabil ity of
gett ing stuck in local minima decreases.

T he second te rm in (A.7) represent s the ent ropy of the system. We begin
with the definit ions , in terms of Zl of the free ene rgy of the system (e .g.
[II])

F= -Tlog Z

and t.he average inte rn al e nerg y

(E) = 8({3F)
8{3

where {3 = l i T. It is st raightforward to show t hat

(A.B)

(A.9)
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(E) = E(V)

W ith the standard definition of the free energy F (e.g. [11])

F = (E) - TS

85

(A.l0)

(A.ll)

we identi fy TE'(V,T) with the free energy, and the entropy is thu s given by

N [1 1]S = - 2::: (1+ V; )-log(1+ V;) + (1 - V;)-log(1 - V;) .
i=1 2 2

(A .12)

Thus, when solving the MFT equat ions, we are optim izing th e balance be­
tween th e energy and the entropy rather than minimizing the internal ener gy,
which is the case for steepes t descent (i.e., using (2.2)) .

Appendix B.

In t his appendix, we describe the local optimization and simulated annealing
algori thms that are used in this paper for comparison . We follow [8] closely.

Ter m ino logy

vVe redefine the graph bisecti on cost funct ion given in equat ion (3.1) to be

EGR(V" V, ) = IHi,j) E E ; i E V"j E V, }! + ~(lVd - IV,I)' (B.l)

where a is an imbalance factor. Thus the bisect ion cost function (3.1)
is a special case of (B.l) . Partitions into unequal sized sets are encour­
aged/discouraged th rough selection of the parameter Q . In th e te rminology
of sect ion 3.1, (B. l) can be expressed by

N

EGR(S) = 2::: 2::: Tij + ~ (2::: Sil' o
5;=-15j=+1 1=1

(B2)

•

We now define class of local opera tions on a given configuration S =
(SI" ' " SN) · Vve define a neighbo rhood of a given configurat ion § to be
those configu rations that can be ob tain ed by t he appl ica tion of a single local
operat ion. If the current configurat ion is a bisectio n, we define a pair swap
to cons ist of swapping any pair of vertices (i,)) with i E VI ,) E V2• Th ere
are N 2/4 neighbors defined by a pair swap . For any configurat ion, we define
a single swap to cons ist of moving any vertex to th e other set. Th ere are N
neighbors defined by a single swap .
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1. Gel an initial configurat ion § {i.e. a rand om bi­
sect ion) .

2. For a randomized list of N neighbors of § do the
following:

2.1 Let 5' be a neigbbor of 5.
2.2 If E(5' ) < E(5), set 5 = 5'.

3. If a neighbo r was accepted in Step 2, then repeat
Step 2.

4. Return S.

Figure 16: Local opt imizati on.

Loca l optimiza ti on

Given an init ia l partition of a graph G(V,E ), improvements to the GB cost
function (B.2) ca n be made by performi ng local opera t ions tha t red uce the
cost funct ion . Th e local opti mization algori th m is given in figure 16.

For the neighborhood produced by single swap} the a lgorithm proceeds
unt il a loca l minimum has been reached, as all N neighbors of § are checked.
However, single swap may resu lt in an unb alan ced part it ion , in which case a
greedy heurist ic is used to balance t he pa rtition. T his consists of searching
the larger set for a vertex that can be moved to the smaller set with th e least
increase to the cutsize. T his operation is repeated until bot h sets are th e
same size.

For the neighb orhood produced by pair swap} a repeated sea rch of all
N 2/4 neighbor s wou ld take too long to comp lete for large N. So} in Step 2,
the algorithm sea rches on ly N randomly selected neighbors in the neighbor­
hood of S. Thus} the algor ith m may not find a true local minimum of the
cost funct ion Ecs(S), bu t th e solut ions prod uced will be bisecti ons.

\Ve have run loca l opt imization on random and geometric graphs for N =
20, 100,500, 2000 using both classes of local neighb orho ods. For the single
swap method}we used a value of a ::::: 0.05 based on t he results repor ted in IS] .
T he experiment was repeated 1000 t imes and a histogram was prod uced for
each neighborhood method. In each easel the bett er of th e two histograms is
disp layed in figure 5. Also shown, under th e category Ran dom Bisect ion, are
histogram s of th e 1000 random init ial bisecti ons used for local optimization.

Simulat ed a n nealing

Th e cost funct ion and local opera t ions for generating new part it ions are
identical to t hose described for local op timization. T he mai n difference is
the ad dit ion of a probabilistic acceptance of uphill moves according to t he
Boltzmann dist ribu t ion (see (2.4)) . T he simulated annealing algorithm is
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1. Get an initial configura t ion S [i.e. a random bi­
sect ion) .

2. Get initia l te mperature To and init ial time Lo.
3. While not yet "frozen" 1 do the following:

3.1 For 1 :s i :s L , do the following:

3.1.1 Pick a random neighbor 5' of 5.
3.1.2 Let Cl ~ E(5') - E(5) .
3.1.3 If Cl :s 0 (downhi ll move), set 5 ~ 5'.
3.1.4 If (:, > 0 (uphill move) , set 5 ~ 5' wit h

probability <-"'IT.

3.2 Update tempera ture T and t ime L.

4. Return 5.

Figure 17: Simulated annealing.

1. To - 10; Lo ~ N.
2. Unt il var ian ce of cost funct ion < 0.05, update
according to :

T ~ T j O.8; L ~ N (heating up).
3. While percentage of accepted moves > 50%, up­

date acco rding to:
T ~ 0.95 x T; L ~ N (cooling) .

4. Unt il number of uphill moves = 0, update accord­
ing to :

T ~ 0.95 x T; L ~ 16N (slow cooling) .

Fig ure 18: Annealing schedule.
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given in figure 17.
Th e parameters of t his algorithm are t he initial temperature To, and the

annealing schedule, which determines th e next value of T and the length of
t ime L spen t at each T. Our anneal ing schedule (see figure 18) is based upon
a requ irement that the tem perature be high enough such the variance of the
energy is less tha n T [151:

((E(5)') - (E(5))') jT -e; 1. (B.3)

Simulated annealing was run 100 t imes for the same combinat ion of
graphs and neighborhood met hods as local optimiza tion . For single swap
neighbo rhood s, Q = 0.05, and the sam e balancing heuristic was used to
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balance fina l par ti ti ons. T he bette r histogr ams from t he two ne ighbo rh ood
me thods are displayed in figure 5. For random graphs, simulated annealing is
ex pect ed to pr ovide the best solutions of met hods curr ent ly availa ble . How­
ever, for geometric gra phs , simulated annea ling may not produce as good a
solution as specialized heurist ics [8]. However , we do expect that simulated
annealing provides a reasonable lower limit on achievable solu tion quality for
general solu tion methods.
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