Complex Systems 2 (1988) 177-190

Undecidability of CA Classification Schemes*

Karel Culik IT
Department of Computer Science, University of South Carolina,
Columbia, SC 29208, USA

Sheng Yu
Department of Mathematical Sciences, Kent State University,
Kent, OH 44242, USA

Abstract. Stephen Wolfram introduced the use of cellular automata
as models of complex systems and proposed a classification of these
automata based on their statistically observed behavior. We investi-
gate various properties of these classes; in particular, we ask whether
certain properties are effective, and we obtain several somewhat sur-
prising results. For example, we show that it is undecidable whether
all the finite configurations of a given cellular automaton eventually
become quiescent. Consequently, it is undecidable to which class a
given cellular automaton belongs, even when choosing only between
the two simplest classes.

1. Introduction

In recent years, cellular automata (CA) have been extensively investigated
as mathematical models of complex systems in physics, biology, etc. In [7],
Wolfram suggested a classification of cellular automata by the qualitative
features of cellular automaton evolution. He observed that cellular automata
appear to fall into the following four classes:

1. Evolution leads to a homogeneous state.

2. Evolution leads to a set of separated simple stable or periodic struc-
tures.

3. Evolution leads to a chaotic pattern.

4. Evolution leads to complex localized structures, sometimes long-lived.

*This research was supported by the National Science Foundation under Grant No.
CCR-8702752.

© 1988 Complex Systems Publications, Inc.

178 Karel Culik IT and Sheng Yu

In this paper, we propose a more specific definition of these four classes of
CA. We will classify CA by their behavior on finite configurations even if the
computations on all possible configurations might be of interest. A configu-
ration is finite if all but finite number of cells are in the same state (usually
called the quiescent state). It is convenient for the presentation of our results
to define the classes as a hierarchy, i.e. a higher class includes each lower
class as a subset. It is, of course, easy to modify this definition, i.e. to define
Class Two as our Class Two minus Class One. Informally, the four classes are
described as follows. In Class One, all the finite configurations evolve into
a quiescent configuration. In Class Two, all the finite configurations have
an ultimately periodic evolution. In Class Three there are CAs for which it
is decidable whether o ever evolves to 3 for two given configurations « and
B. Class Four includes all CAs. The formal definitions of our classes are in
sections where they are studied, i.e. Class One in section 3, Class T'wo in
section 4, and Class Three and Four in section 5. Note that our classification
is not restricted to the totalistic CAs. When we compare our classification
with that of Wolfram we really mean the union of Wolfram classes up to
class k where we talk about Wolfram’s class k. The first class as defined
here appears to be in general somewhat larger when compared to Wolfram’s.
However, our definition coincides with Wolfram’s classification of totalistic
cellular automata with number of states k = 2, and neighborhood size r = 2,
which were shown as examples in [7]. The precise definitions allow us to
prove certain properties of these classes, rather than just speculate about
them.

In the next section, we give basic definitions of cellular automata. In
section 3, 4, and 5 we define and study the properties of Class One, Class
Two, and Class Three and Four, respectively. In section 6 we introduce the
products of cellular automata.

We investigate various properties of the classes, and we ask whether cer-
tain properties are effective. We show that it is undecidable whether all the
finite configurations of a given cellular automaton eventually become qui-
escent, and show that the fact that all finite configurations evolve to the
quiescent configuration does not imply that the limit language is regular.
We also show that all configurations of a cellular automata evolve to the
quiescent configuration if and only if all the finite configurations evolve to
the quiescent configuration in a bounded (i.e. constant) time. Using our
definition, we can easily show that universal cellular automata [1] are not In
Class Three, and that the product of two cellular automata is always in the
higher class of the two. On the other hand, it is undecidable to which class
a cellular automaton belongs, even when choosing only between Class One
and Class Two.

We hope this discussion will help bring some insight into the basic prop-
erties of cellular automata.

Undecidability of CA Classification Schemes 179

2. Basic definitions

A cellular automaton is a quadruple A = (k, S, N, f), where £ > 1 is the
dimension, S is the finite set of states, NV is the neighborhood, and f is the
local function. Here, we mainly consider linear (one-dimensional) cellular
automata. Therefore, the dimension k will be omitted in the following. How-
ever, all the results except the one on limit languages can be easily extended
to multi-dimensional cellular automata. The neighborhood N is a sequence
{Ii,1,..., I} of relative locations I; € Z, 1 < j < h. Consequently, the
neighborhood of a cell I is the sequence of cells

N()={I+IL,I+5,....,]+1,}.

The local function f : §* — S is a total function which computes the next
state of a cell I from the current states of all cells in its neighborhood N(I).

A configuration ¢ is a function ¢ : Z — S, which assigns a state in S to
each cell of the CA. The set of all configurations is denoted SZ. The local
function f is extended to global function Gy : S% — SZ such that, for any
configurations ¢, ¢; € 5%,

G!(Cl) = Cz
if and only if
Cg(!) = f(C;(I + [1),C1(I + Iz), - ,C](I + I},)),

for all Iin Z.
A state s of a cellular automaton A is called a stable state if the following
condition holds:

a8, ..58) =48

A configuration with all cells being in a stable state s is called a homogeneous
configuration of s. A configuration with all but finitely many cells in the state
s is called an s-finite configuration.

A stable state g of A is distinguished and called the quiescent state of A.
The homogeneous configuration of ¢ is called the quiescent configuration. A
g-finite configuration is simply called a finite configuration.

A segment is a finite, consecutive part of a configuration surrounded by
quiescent cells and such that no cell in it is quiescent.

Let ¢; and ¢; be two configurations of A. If G*(¢;) = ¢; for some 7 > 0,
then we say that ¢; evolves to ¢;. For a configuration ¢, the infinite sequence

¢, Gyle), Gi(e), ---, Gfi(c):

is called the evolution sequence of ¢. If the sequence is ultimately periodic,
then we say that ¢ has an ultimately periodic evolution. The set

D(c) = {d|d= G/ (c) for some i >0}

180 Karel Culik IT and Sheng Yu

is called the descendant set of ¢. We are only interested in the finite non-s
part of an s-finite configuration. Therefore, for each stable state s we define
a mapping 7, : §% — S*, which maps each configuration ¢ into a word w the
minimum sequence of states in ¢ that covers all the non-s state in e. If ¢ is
an s-finite configuration then 7,(D(c)) is called the descendant language of
¢ with respect to s.

In [7], totalistic cellular automata are extensively used as examples of
the four classification classes. In this paper, we use the same notation for
those totalistic cellular automata. We use k to denote the number of states,
ie. § = {0,1,...,k— 1}, and r to denote the neighborhood radius, i.e.
N = {-r,...,0,...,7}. A function code of a totalistic cellular automaton
with & = 2 is denoted by a binary number

byrq1 ... bbby,
for b; € {0,1}, 0 <17 < 2r + 1, and it means that
Fldpy vy Sggnss) =g i 8oy F oo F o8 =1

Usually, we convert these binary function codes into decimal numbers for the
purpose of convenience.

3. Class One
We propose the following definition for Class One cellular automata.

Definition 1. A cellular automaton A = (S, N, f) is in Class One if there
is a stable state s € § such that all the s-finite configurations of A, evolve to
the homogeneous configuration of s.

Example 1. The cellular automaton with k = 2, r = 2 and function code
4 is in Class One. It can be shown that every finite configuration of this CA
evolves to a shorter one in at most five steps.

The reader can verily that the cellular automata with & = 2, » = 2 and
function codes 0, 4, 16, 32, 36, 48, 54, 60, and 62, are all in Class One by
our definition. Moreover, no other cellular automaton with ¥ =2 and r =2
is in Class One. Hence, our definition of Class One agrees with Wollram’s
definition for totalistic CA with & = 2 and r = 2. However, our definition for
Class One appears to be a larger class for more complex cellular automata.

Note that a Class One cellular automaton, by either Wolfram’s or our
definition, can have “exceptional” configurations that do not evolve to a
homogeneous configuration. See the following example.

Example 2. The following (infinite) configuration of the Class One cellu-
lar automaton with k = 2,7 = 2 and function code 16 never evolves to a
homogeneous configuration:

B TO10 10 L0

Undecidability of CA Classification Schemes 181

Theorem 1. For each cellular automaton, the following four statements are
equivalent:

1. All configurations evelve to a homogeneous configuration.

2. All configurations evolve to a homogeneous configuration in a bounded
(constant) time.

3. All s-finite configurations evolve to the homogeneous configuration of
s in a bounded (constant) time.

4. The limit set consists of the homogeneous configuration of s only.

Proof. The equivalence of the first two statements can be easily proved by
considering the stable state as the quiescent state and applying corollary 2 of
[2]. Statements 2 and 3 are clearly equivalent. Statement 2 implies statement
4. Statement 4 implies statement 1.

Example 2 shows that if we defined Class One to be the set of all cellular
automata in which all the configurations evolve to a homogeneous configu-
ration, then some of Wolfram’s simple examples, e.g. cellular automata with
function code 4, 16, 32, 36, ... and £ =2, r = 2, would not be included. By
theorem 1 and the definition of Class One none of the above statements is
implied by the fact that a cellular automaton is in Class One.

Theorem 1 says that in general there does not exist a constant bound for
a Class One cellular automaton such that every finite configuration evolves to
a homogeneous configuration within this bound. But is there a linear bound
or a polynomial bound in terms of the lengths of (the non-s parts of) s-finite
configurations? We first look at an example.

Example 3. A cellular automaton A = (S, N, f) is defined as follows: § =
{0,1,—,9}, N = (_1,0,1), and f.‘

Mg,0,2)=¢q¢ flg,—2)=¢q [f(z,1,9)=0;
f0.0,9) == flv.—9=0 fly,—z)=1;
f(y1—'i7)=0; f(y: 1_")=—; f(mil‘l_)=0)

forz=0,1,—,0rq;y=0,1,0or —; z=0o0r 1; and
fla,b,e) = b, for all other cases.

A table for f without shorthand notations is available in Appendix B for
the readers who are interested in testing this CA. Following is an sample
evolution of A starting with a segment 1011 (surrounded by ¢’s):

(1) ...q1011q. (8 ...q0100q.
(2) wu. gl @ lBg, 8 s q10~gq.
B) ;s g101l=gq : (10} wpwns gq1l=04q -
(4) ...q1000q . (D) ewes 401 =9
(5) ...q100-gq . C12) e q00q .
{6) ...q10~04q . £18) rmaaweses g = s
(7) ...q1-1-gq. CAEY s ssmggoaisos « G uas oY

182 Karel Culik IT and Sheng Yu

The reader can verify that a segment is treated as a variation of a binary
number and it is subtracted by one at each evolution step.

In the above example, a segment may evolve for an exponential number
of steps in terms of its length until it becomes all quiescent. In fact, for
any computable function T(n), there exists a Class One cellular automaton
such that some of its s-finite configurations need T'(n) steps to evolve to the
quiescent configuration (homogeneous configuration of s).

Theorem 2. There exists a one-dimensional Class One cellular automaton
whose limit language is not regular.

Proof. Let A= (5, N, f) be a one-dimensional cellular automaton that has
a nonregular limit language L. See [4] for such a cellular automaton. We
construct a cellular automaton A" = (S, N, f'), where &' = SU {q}, ¢ & S
and ¢ is the quiescent state of A’. The local function f’ is the same as [on
all the states in 5, and maps any neighborhood that contains state g. Obvi-
ously, all the finite configurations of A’ evolve to the quiescent configuration.
Therefore, A’ is in Class One. Let L' be the limit language of A’. Note
that L' N S* = L and L is not regular. By the closure property of regular
languages, L’ is not regular. B

In fact, we can show, using a similar proof, that the limit language of a
Class One cellular automaton can be a non-context-free language or even a
language of any given time or space complexity. It has been suggested that
the limit languages are related to the classification. The above shows that
there is no such simple relation. However, descendant languages of finite
configurations are indeed related to our classification.

Theorem 3. If a cellular automaton A = (S, N, f) is in Class One, then
there exists a stable state s € S such that the descendant language D,(c) is
finite for each s-finite configuration c.

Proof. By the definition of Class One automaton A started in any s-finite
configuration reaches the homogeneous configuration (in s) in possibly un-
bounded but finite number of steps. B

Theorem 4. Let A= (S, N, f) be a cellular automaton in Class One. Then
the global mapping of A is not injective (even restricted to finite configura-
tions in the sense of [6]), L.e., there exists a Garden of Eden configuration

[5].
Proof. Obvious. H

Theorem 5. It is undecidable whether all the finite configurations of a given
cellular automaton evolve to the quiescent configuration (in linear time).

Undecidability of CA Classification Schemes 183

Proof. We reduce the emptiness problem for Turing machines to this prob-
lem. Here, we use the Turing machine model with a single one-way infinite
tape and a single read-write head. The reduction is not straightforward due
to the fact that unlike a Turing machine, a cellular automaton does not have a
separate input alphabet and thus has no distinguished initial configurations.
If the finite configurations of a cellular automaton A are used to encode the
instantaneous descriptions (IDs) of M, then the encoding of every ID of M
including the unreachable ones can appear as an initial configuration of A.

For a given Turing machine M, we construct a cellular automaton A such
that M accepts an empty language if and only if all finite configurations of A
evolve to the quiescent configuration. Each state of A except the quiescent
state consists of three components. Therefore, each segment can be viewed
as having three tracks. The first track is used to store a sequence of [Ds of
M separated by dollar signs. The second track is a working track and is used
to check whether the first track contains a legal sequence of IDs started with
a valid initial ID and ended with an accepting ID. The third track contains
a signal which controls the phase changes of the second track. A valid third
track should be of the following form:

k. SRR .- RS s

and its validity can be checked by a local function in one step.

A segment that has a valid third track and has two special boundary
states at both ends evolves as follows: The first track remains unchanged il
no quiescent state is generated within the segment. The second track works
in three phases in turn. In Phase I it does the cleaning job, meaning that
this track is being cleared cell by cell. In Phase II it simulates the Firing
Squad Synchronization problem. In Phase III all cells of this track start at
the same time. They check whether track 1 stores a legal sequence of IDs of
M. The three phases take n — 1, 2n — 2, and n — 1 steps, respectively, where
n is the length of the segment. The timing is controlled by the third track
by moving a signal. Track 2 goes repeatedly through these three phases in
turn. However, the quiescent state will be generated and will spread if

1. the segment has an invalid third track; or

2. the segment does not have two special boundary states at both ends;
or

3. the second track finds, in its Phase III, that the first track does not
contain a legal sequence of IDs of M.

If M accepts an empty language, then no legal sequence of 1D’ exists.
All finite configurations of A evolve to the quiescent configuration in linear
time. If the language accepted by M is not empty, then all segments that
encode legal accepting sequences of M will never evolve to the quiescent con-
figuration. Since the emptiness problem for Turing machine is undecidable
in general, our problem is also undecidable.

184 Karel Culik IT and Sheng Yu

Note that an initial segment of A may contain “junk” in the second track
that may be in any phase. Therefore, a segment of length n that eventually
evolves to the quiescent configuration may take up to 8n — 9 steps to be
totally quiescent. B

Corollary 1. It is undecidable whether a given cellular automaton is in
Class One.

Proof. By using the above theorem and considering the stable state to be
the quiescent state. B
We also have the following by-products.

Corollary 2. Let M be an arbitrary Turing machine and Q) be the set of all
the instantaneous descriptions (IDs).of M. Then it is undecidable in general
whether M starting with e € Q halts for all ¢ € ().

Proof. Instead of reducing directly the halting problem for Turing machines
to the new problem, we reduce the problem from theorem 5. We have not
found a proof that uses the former approach without actually mimicking the
latter.

For any cellular automaton A we construct a Turing machine M as fol-
lows. Informally, M simulate the mapping defined by f. It stops if all the
nonblank symbols (states of A) on the tape become quiescent. So, all the
finite configurations of A evolve to the quiescent configuration if and only
if M starting with any ID halts. The latter is undecidable because of the
undecidability of the former by theorem 5.

A formal construction of M is given in the appendix. B

Corollary 3. Let M = (Q,T,%,6,q,9s,3) be a Turing machine with the
special property of I' = ¥, U {B}. Then it is undecidable in general whether
M halts on all inputs.

4, Class Two

We define Class Two cellular automata as follows.

Definition 2. A cellular automaton A is said to be in Class Two if there
exists a stable state s such that every s-finite configuration of A has an
ultimately periodic evolution.

Obviously, Class One is included in Class Two. Our definition for Class
Two appears to specify a larger class than that of Wolfram’s. However, for
the cellular automata with k = 2, r = 2, our definition again coincides with
his.

Example 4. The cellular automaton with k = 2, r = 2 and function code
52 is not in Class Two since the finite configuration

Undecidability of CA Classification Schemes 185

110111100100001001111011
does not have a ultimately periodic evolution.
Similarly, like for Class One we have the following.

Theorem 6. Let A be in Class Two. Then there exists a stable state s such
that the descendant language of every s-finite configuration is finite.

Theorem 7. If A is in Class Two with respect to a stable state s and its
global mapping is surjective, then every s-finite configuration has a periodic
evolution.

Proof. The surjectivity of the global mapping G'; implies that Gy is injective
on s-finite configurations. Assume that there exists an s-finite configuration
¢ such that the evolution of ¢ is not periodic. Since the evolution of ¢ is
ultimately periodic, there exist two s-finite configurations that are mapped
to the same configuration. This contradicts the condition that G is injective
on all s-finite configurations. B

Theorem 8. It is undecidable whether a cellular automaton is in Class Two.

Proof. We use the result in corollary 2. We show that for any Turing
machine M we can construct a cellular automaton A such that every finite
configuration of A has an ultimately periodic evolution if and only if M
starting with any ID halts.

We define a valid segment of A to be one that encodes a valid ID of M and
has two boundary states [and r at the left and the right end, respectively.
A valid ID of M is a string of ugv where u and v are strings of tape symbols
and ¢ is a state. It means that M is in state ¢, the nonempty portion of its
tape is uv and the reading head is over the first symbol of v. In order to
make the validity of an encoding checkable by a local CA function, all the
tape symbols to the left of the head of M should have a direction bit ‘—’
and all the ones to the right of the head should have a bit ‘. If a segment
is invalid, it must have some invalid neighborhood.

The successor of a segment in the evolution of A is defined as follows. The
successor of a valid segment, which encodes an ID I of M, encodes an ID I’
such that [is the ID computed from I by M and has its two boundaries
expanded by one cell in both directions. However, if ID I does not have a
successor [D, the quiescent state is generated at the position of the head. The
successor of an invalid segment contains quiescent cells generated by invalid
neighborhoods of its predecessor. The quiescent state is spreading at a speed
of two cells at each step in both directions. It overruns all states except the
left boundary state ! from the left and the right boundary state r from the
right.

If there exists an 1D d of M such that M starting with d never halts, then
the finite configuration containing a single segment that encodes d does not
have an ultimately periodic evolution, and thus it is not in Class Two. If
there is no such ID at all, then every finite configuration of A evolves to the
quiescent configuration. Thus A is in Class Two. B

186 Karel Culik IT and Sheng Yu

Theorem 9. It is undecidable whether a Class Two cellular automaton is
in Class One.

Proof. This has actually been proved in the proof of theorem 5. B

5. Class Three and Four

Definition 3. A cellular automaton is in Class Three if there exists a stable
state s such that for any pair of s-finite configurations ¢; and ¢, it is decidable
whether ¢; evolves to ¢;. Class Four includes all cellular automata.

Clearly, Class One and Class Two are contained in Class Three. We can
also show that the cellular automata with & = 2, r = 2, and function code
2, 6, 10, 12, 14, 18, 22, 26, 28, 30, 34, 38, 42, 44, 46, and 50 are all in Class
Three by using their property of expanding. However, we are unable to show
that the ones with function code 20 and 52 are or are not in Class Three.
One way of showing that a cellular automaton is not in Class Three is to
show that this cellular automaton is capable of simulating a universal Turing
machine.

Theorem 10. A cellular automaton that simulates the computation of a
universal Turing machine is not in Class Three. A universal cellular automa-
ton is not in Class Three.

Proof. Obvious. B
See [1] for a simple universal cellular automaton.

Theorem 11. A cellular automaton is in Class Three if and only if there
exists a stable state s such that the descendant language of every s-finite
configuration is recursive.

Proof. The theorem is just a restatement of definition 3. B

A cellular automaton with the property that every finite configuration
either evolves to the quiescent configuration or evolves to a longer finite
configuration in a bounded time is clearly in Class Three.

The next theorem appears to be obvious. However, our proof is more
complicated than we expected. We encourage reader to give a simpler proof.

Theorem 12. It is undecidable whether a given cellular automaton is in
Class Three.

Proof The idea of our proof is the following. For any given Turing machine
M (with a single head and a one-way infinite tape), we construct a cellular
automaton A(M) as follows. Each segment of nonquiescent cells of A(M) has
two tracks. One track is used to simulate the computation of M. The other
is used to simulate a universal Turing machine U. The construction of A(M)
should guarantee that if M halts on input €, then every finite configuration

Undecidability of CA Classification Schemes 187

of A(M) eventually evolves periodically or to the quiescent configuration.
Otherwise, A(M) can simulate all the computations of U. Therefore, by
the definition of Class Three, M halts on ¢ if and only if A(M) is in Class
Three. The undecidability of the former implies the undecidability of the
latter. Thus, we have proved the theorem. More details follow. See figure 1.

l r

l r

I r
b=, T

I T
[r
[r
{ r
[r
/i e
! r

! r

l r

) T

! r

e r

L T

¢ r

l r

!

Figure 1: The evolution of a valid segment.

A valid segment of A(M) has two boundary states [and r. The cells between
the two boundaries have two tracks. The second track contains an encoding
of an instantaneous description (ID) of U. See [3, page 148] for the definition
of an ID. One computation step of I/ is simulated by two evolution steps of
A(M). The boundaries of a segment are the boundaries of the ID of U on its
second track. On the first track, a signal travels between two boundaries at
a speed of one cell each step. Whenever the signal reaches the left boundary,
it turns to the right and a simulation of M is initiated on this track and
proceeds in the area between the left boundary and the signal. If a segment
is invalid or the simulation of M or U halts, quiescent states are generated
and they spread in both directions until all the cell become quiescent. B

6. Products of cellular automata

Definition 4. Let A; = (51, N1, f1) and Ay = (S2, N3, f2) be two cellular
automata of a same dimension with q; and g, being the quiescent state of
A, and A,, respectively. Then the product of Ay and A, is the cellular
automaton A = (S, N, f), where

S = ‘[(31,32”3; € 51,82 € Sa},

N =N UN,,

188 Karel Culik IT and Sheng Yu

the quiescent state is the state (qy, ¢}, and A can be considered having two
tracks, f simulates f, on the first track and f, on the second track.

Theorem 13. Let A, and A, be two cellular automata in Class I and Class
I,, respectively. Then the product of A, and A, is in Class max(ly, I).

Proof. Obvious. B

In [9] Wolfram discussed how a change of one site (cell) in the initial con-
figuration propagates in the development of that configuration. He observed
that the propagation of the difference is typical for each of his classes. We
obtain the same result as an application of theorem 13.

Let two cellular automata have the same set of states. Starting from the
same configuration, these two cellular automata may evolve differently. In
order to see the difference of these two evolutions, we can define a morphism
h on the product of the two automata such that

h:p,q) — 1,if p # ¢
h: {p,qg) — 0,ifp=gq.

Now, in order to apply theorem 13 to the problem of propagation of
a single site difference, we consider the product of the given CA A with
itself and run this automaton on an initial configuration ¢ in which both
tracks agree everywhere but in one cell. Clearly, the product of A with A
belongs to the same class of A and if we observe the output & for computation
initiating in ¢, we see that it corresponds (as the output is concerned) to the
computation from one site and therefore the growth of non-zero sites indicates
the propagation of difference. Hence, we can conclude that the propagation
of difference has the same “class characteristics” as growth from one or finite
number of non-zero sites.

Appendix A. Formal construction of M in the proof of corollary
2

Let A = (S, N, f) be a linear cellular automaton. Without loss of generality
we assume that N = (=h +1,—h +2,...,—-1,0). We construct a Turing
machine M = (Q,T, Z, 6, g0, q7, B) as follows:

=5 0U40},

=g,

@ = {{s1,92,- 280 | 31552, , 81 € S} U{qes 55,41},

6((50351v e !Sh—l)ssh) = ((5115’27 i -J'Sh)ﬂ f(31=827‘ g 15h)1R)! if S0y 51,

g
ci g Oy Sk B8

5(('90:317 R 33-'1—1)33) == (<‘511 82400)‘Sh—lsq)a f(‘511527 s 1Sh—IJQ)7 R}’
where g is the quiescent state of A, if 54,81,...,8,-1 € 5, and 5; # ¢
for some i € {0,1,...,h—1};

Undecidability of CA Classification Schemes 189

6((¢,9,---,49), B) = (4. B, L);

6(ge, 9) = (e, B, L);

6(qess) = (gs,5, L), for all s € S — {q};
&(qs,5) = (qv, 5, L), for all s € S;
6(qe, B) = ((9,9,---,49), B, R); and

Jo = (qu'n""Q)-

Intuitively, M repeatedly moves from left to right and from right to left.
During its left or right move, it simulates the local mapping f on its input.
Each state of M has h registers memorizing the last h symbols it has read.
Note that the quiescent state q of A is not the blank symbol B of M. M starts
at the left end of the input string with the state g5 = {¢,¢,...,¢). When
it reaches the right end of the input, it continues to read h Bs (considering
them to be ¢ for the mapping) and turns back to the left. During its right
to left move, it changes all the trailing ¢’s to Bs, and it starts a new cycle
again when it meets the first B left to the nonblank string.

Appendix B. Example 3, continued

The transition table of CA from example 3 is given in figure 2.

J(z,9,2)
X Yz
00 01 0O- 0Oq 10 11 1- 1q -0 -1 -- -q q0 ql q qq
0l0 0 - - 1 1 0 0 1 1 0 0 q q q q
110 0 - - 1 1 0 0 1 1 0 0 q q q q
-0 0 - - 1 1 0 0 1 1 0 0 q q q q
alg 9 g g 1 1 0 0 q 9 9 9 9 9 9 ¢
Figure 2: The transition table of the CA from example 3.
References

[1] J. Albert and K. Culik II, “A Simple Universal Cellular Automaton and its
One-Way and Totalistic Version”, Complex Systems, 1 (1987) 1-16.

[2] K. Culik, J. Pachl, and S. Yu, “On the Limit Sets of Cellular Automata”,
Research Report CS-87-47, Department of Computer Science, University of
Waterloo (1987).

[3] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, 1979.

190 Karel Culik II and Sheng Yu

[4] L. P. Hurd, “Formal Language Characterization of Cellular Automaton Limit
Sets”, Complex Systems, 1 (1987) 69-80.

[5] E. F. Moore, “Machine Models od Self-Reproduction”, Proc. of Symposium
in Applied Mathematics, 14 (1961) 17-33.

[6] D. Richardson, “Tessellation with Local Transformations”, Journal of Com-
puter and System Sciences, 6 (1972) 373-388.

[7] S. Wolfram, “Universality and Complexity in Cellular Automata”, Physica,
10D (1984) 1-35.

[8] S. Wolfram, “Computation Theory of Cellular Automata”, Communications
in Mathematical Physics, 96 (1984) 15-57.

[9] S. Wolfram, “Twenty Problems in the Theory of Cellular Automata”, Phys-
ica Scripta, T9 (1985) 170-183.

