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Abstra ct. Stephen wolfram int roduced the use of cellula r au tom ata.
as mod els of complex sys tems and proposed a clas sification of th ese
automata based on th eir st a t ist ical ly observed behavior. We invest i­
gate various properti es of these classes; in part icular, we as k wheth er
certain prop erties are effective, and we obtain several somewhat sur­
pri sing result s. For examp le, we show th at it is undecidable wheth er
all th e fini te configu rations of a given cellular automaton eventually
become qu iescent. Consequently, it is undecidable to which class a
given cellula r automaton belongs, even when choosing only between
the two simp lest classes.

1. Introduction

In recent years, cellular automata (CA) have been extensively investigated
as mathemat ical models of complex systems in physics, biology, et c. In [71,
Wolfram suggested a classificat ion of cellular auto mata. by th e qualitat ive
fea tures of cellular aut omaton evolut ion. He observed t hat cellular automata
ap pear to fall into the following four classes:

1. Evolution leads to a homogeneous sta te.

2. Evolut ion leads to a set of separated simple stable or period ic struc­
tures.

3. Evolution leads to a chao tic pat tern.

4. Evolution leads to complex localized st ruct ures, somet imes long-l ived.

"T his resear ch was support ed by the Nati onal Science Foundati on under Gr ant No.
CC R-8702752.
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In th is paper, we propose a more speci fic definitio n of these four classes of
CA. Vic will classify CA by their behavior on finite con figurat ions even if th e
comp uta t ions on aU possible configura tions might be of int.erest. A configu­
ra t ion is finite if all hut finit e number of cells ar e in the same state (usually
called th e quiescent state). It is convenient for the presentation of our resul ts
to define the classes as a hierarchy, i.e. a higher class includes each lower
class as a subset. It is, of course, easy to modify thi s definition, i.e. to de fine
Class Two as O U f Class Two minus Class One. Informally, the Iour classes are
described as follows. In Class One, all the finite configurations evolve into
a quiescent configuration. In Class T wo, all the finite configurations have
an ult imat ely per iodic evolut ion. In Class T hree there are CAs for which i t
is decida ble whether a ever evolves to {3 for two given configurations a and
{3. Class Four includ es a ll CAs . The formal definiti ons of our classes are in
sect ions where t hey are studied , i.e. Class One in section 3, Class T wo in
sect ion 4, and Class T hree and Four in sect ion 5. Note that our classification
is not restri cted to the totalist ic CAs. \Vhen we compare our classification
wit h that of Wolfram we really mean the union of Wolfram classes up to
class k where we talk abo ut Wolfram's class k. T he first class as defined
here appears to be in genera] somewhat larger when compared to Wolfram's.
However, ou r definition coincides with Wolfram 's classification of tot alist ic
cellular automata with numb er of states k = 2, and neighborhood size 7' = 2,
which were shown as examples in [7j. Th e precise definitions allow us to
prove certain prop er ties of t hese classes, rather t han just speculate abou t
t hem.

In the next sect ion, we give basic definit ions of cellular automata. In
sect ion 3, 4, and 5 we define and st udy the propert ies of Class One, Class
Two, and Class Three an d Four, respectively. In sect ion 6 we int roduce the
products of cellular automata.

We invest igat e various propert ies of the classes, and we ask whether cer­
tain prope rt ies are effective. We show that it is undecidable whet her all th e
finite configurations of a given cellular auto maton eventually become qui­
escent, and show that the fact tha t all finite configurations evolve to t he
quiescent configuration does not imply that th e limit language is regular.
vVe also show that all configurations of a cellular automata evolve to th e
quiescent configuration if and only if all th e finite configurat ions evolve to
th e quiescent configuration in a bounded (i.e. constant) time. Using our
definit ion, we can easily show that universal cellular automata [1] are not In
Class Three , and that th e product of two cellular automata is always in the
higher class of the two. On the other hand, it is undec idable to which class
a cellular automaton belongs, even when choosing only between Class One
and Class Two.

vVe hope this discussion will help brin g some insight into the basic prop­
erties of cellular automata .
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2. B asic definitions
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A cellu lar automaton is a quadru ple A = (k, S, N, fl, where k ?: 1 is the
dime nsion, S is th e finite set of states, N is the neighborhood , and J is the
loca.l function. Here, we main ly consider linear (one-dime nsiona l) cellular
automata. Th erefore, the dimension k will be omit ted in the following. How­
ever , a ll the resul ts except the one on limit languages can be easily extended
to mult i-dime nsional cellula r auto mata. T he neighborhood N is a sequence
{II, J2 , . .. ,h} of relative locations t, E Z, 1 ~ j .5 h. Consequently, the
neighborhood of a cell I is th e sequence of cells

The loca l function f : Sit --+ S is a total funct ion which comp utes the next
state of a cell f [rom the current states of all cells in its neighbo rhood N(J) .

A con fig urat ion c is a function c : Z --+ 5, which assigns a stale in S to
each cell of th e CA. The set of all configurat ions is denoted SZ. T he local
function f is exte nded to global [unction Gf : SZ -t SZ such that , for any
configurat ions ci , C2 E SZ,

if and on ly if

[or all f in Z.
A state s of a cellular automaton A is called a stable sta.te if the following

condit ion holds:

f (s , s , . .. , s ) = s.

A configuration wit h all cells being in a. stable state s is called a hom ogeneous
config uration of s , A configurat ion with all bu t finitely ma ny cells in the state
s is called an s- Iini te configuration.

A stable state q of A is distin guished and called the quiescent state of A.
T he homogeneous configurat ion of q is called the quiescent configura tion. A
q-finite configurat ion is simply called a fini te configurat ion.

A segment is a finite, consecut ive part of a configuration surrounded by
quiescent cells an d such th at no cell in it is qu iescent .

Let CI and C2 be two configurations of A. If G/ ( CI) = C2 for some i 2: 0,
then we say that ci evolves to C2 . For a configura t ion c, t he infinit e sequence

e, Gf(e), G/(e), ... , G/(c), . . .

is called the evol ution sequence of c. If the sequence is ult imately period ic,
th en we say that C has an ult imately per iodic evoluti on. T he set

D(e) = { d I d = G/(e) [or some i?: 0)
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is called t he descendant set of c. We a re onl y interested in the finite non-s
part of an a-finite configuration. T herefore, for each stable state s we define
a mapping 71"$ : SZ --+ S*, which maps each config urat ion c in to a wor d w t he
min imum seque nce of states in c that covers a ll th e non-s state in c. If c is
an s-fin ite configurat ion then 1!"$( D(c)) is called the descendant language of
c with respect to s ,

In [7], totalist ic cellu lar automata are extensively used as examples of
the four class ification classes. In this pa pe r 1 we use the same nota tion for
those to talistic cellular automata. We use k to denote the numb er of states,
I.e. S = {O,l""lk - I}, and r- to den ote the ne ighborhoo d radius, i.e.
N = {-r, .. . , 0, . .. , T·} . A funct ion code of a totalist ic cellular automaton
with k = 2 is de noted by a binary number

for bi E {O,I }, 0 ~ i ~ 2r + I , and it means th a t

Usuall y, we convert these binary function codes into decimal numbers for the
purpose of convenience.

3 . C lass O ne

Vile propose the following definition for Class O ne cellular automata.

Defin it ion 1. A cellu lar automaton A = (5, N , f) is in Class One if there
is a stable state s E 5 sucb that all the s-finite configu rations of A, evolve to
the homogeneous configuration of s .

Exam p le 1. The cellular automaton with k = 2, r ;:::; 2 and function code
4 is in Class One. I t can be shown tha t every finite configurat ion of tlJis CA
evolves to a shorter one in at most five steps.

T he reader can verify that the cellula r automata with k = 2, r = 2 and
functio n codes 0, 4, 16, 32, 36, 48, 54, 60, and 62, are all in C lass One by
our definit ion. Moreover, no other cellu la r automaton with k = 2 and r = 2
is in Class One. Hence, our definit ion of Class One agrees with Wolfr am's
defin ition for total isti c CA with k = 2 an d r = 2. However, our definit ion for
Class One appears to be a larger class for more complex cellular automata.

Note that a Class One cellular au tomaton, by eit her Wolfram's or our
definition, can have "exceptional" configurat ions tha t do not evolve to a
homogeneous configuration. See the following example .

Examp le 2, The following (infinite) configuration of the Clsss One cellu­
lar automaton with k = 2, r = 2 and function code 16 never evolves to a
homogeneous configuration :

... 01010101 01 ...
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Theorem L For each cellular automaton, the following {our statements a rc
equivalent:

1. All configurations evolve to a hom ogeneous config urat ion.

2. Al l configurations evo lve to a homogeneo us configuration in a bou nded
(cons tant) time.

3. All s -Iinite configuration s evolve to the homogen eous configuration of
s in a bo unded (constan t) time.

4. Th e limit set consists o f the homogeneous configurat ion of s only.

Proof. The equivalence of the first two st atements can be easily proved by
considering the stable sla te as the quiescent state an d applying corollary 2 of
[21. Statements 2 and 3 are clearly equivalent. St ate ment 2 implies statement
4. Statement 4 implies statement 1. •

Example 2 shows that if we defined Class One to be the set of all cellular
automata in which all the configurations evolve to a homogeneous configu­
rat ion, t hen some of Wolfram 's simple examples, e.g. cellular automata wit li
funct ion code 4, 16, 32, 36, ... and k = 2\ r = 2, would not be included. By
theorem 1 and t he definit ion of Class One none of the ab ove statements is
implied by the fact that a cellular automaton is in Class One.

T heorem 1 says that in general th ere does not exist a const ant bound for
a Class One cellular automaton such that every finite configurat ion evolves to
a homogeneous configurat ion within this bound. But is there a linear boun d
or a polynomial bound in terms of th e lengths of (the non -s parts of) a-finite
configurations? We first look at an example.

Example 3. A cellular automaton A = (S, N, J) is defined as [allows: S =
{O, I , -, q}, N = (-1,0 , I ), and f :

f (q,O, x ) = q;
f (y ,O, q) = -;
f (y, - , - ) = 0;

f (q, -, x) = q;
f (y, - ,q) = 0;
f(y,O ,-) = -;

f (x, I ,q) = 0;
f(y , -, z) = I ;
f(x ,I,-)= O;

[or x = 0, 1, - , or qj Y = 0, 1, or -j Z = 0 or I j and

f(a , b, c) = b, [or all other cases.

A tabl e for f without shorthand nota tions is availa.b le in A ppendix B faI'
the read ers who are interested in test ing this CA. Following is an sample
evolution of A sta rting with a segment 1011 (surrounded by q 's):

(1)
(2)
(3)

(4)
(5)
( 6 )

(7)

ql0l lq
ql 0l0 q
q l0 l - q
q l000q
q l00 -q
q 1 0 - 0 q
ql-l -q

(8)

(9 )
(10)
(11)
(12)
( 13)
(14)

. .. q O l 0 0 q
q 1 0 - q

. . . . . q l-0q

..... q O l -q

. . ... .. q 0 0 q

.. ... .... q - q

. . ......... q .....
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Th e reader can verify that a segm ent is treated as a variat ion of a binary
number and it is subtracted by one at each evolut ion s tep.

In t he above example, a segment may evo lve for an exponent ial number
of steps in terms of its length until it becomes all quiescent. In fact, for
any compu table function T{n) , t here exists a Class One cellul ar automaton
such that some of its s-finite configurations need T(n) steps to evolve to t he
quiescent configurat ion (homogeneous configuration of s ).

T heorem 2 . T here exists a one-dim ension al Class One cell ular automaton
whose limit language is not regular.

Proof. Let A = (S , N, J) be a one-d imensional cellu lar automaton tha t has
a nonregular limit language L. See [4] for such a cellu lar aut omaton. Vie
construct a cellular automaton A' = (S' ,N,!,), where S ' = SU [c} , q '1- S
an d q is the quiescent st ate of A' . The local funct ion f' is the same as f on
a ll the st a tes in S, an d maps any neighbor hood that contains state q. Obvi­
ously, all t he fini te configurat ions of A' evolve to the qu iescent configurat ion .
Therefore, A' is in C lass One. Let L' be t he limit language of A' . Note
t hat L' n S '" = L and L is not regular. By t he closure property of regular
languages, L' is not regul ar. •

In fact, we ca n show, using a similar proo f, that t he limit la nguage of a
Class One cellular automaton can be a non-context-free language or even a
language of any given time or space comp lexity. It has been suggested that
the limit languages are related to the classification . T he abo ve shows that
there is no such simple relat ion. However, descendant languages of finite
configurations are indeed related to our classifica t ion.

T he orem 3 . If a cellular automaton A = (S, N, J) is in Class One, then
there exis ts a st able s tate s E S such tha t the descendant langu Glge Ds(c) is
finite for each s-fin it e configuration c.

P roof. By th e definition of Class One auto maton A started in any s-finite
configuration reaches the homogeneous configuration (in s) in possibly un­
bounded but finite number of steps.•

T heorem 4. Let A = (S, N , f) be a cellular au tomaton in Class One. T hen
the global mapping of A is not inj ective (even restricted to fini te configu ra.­
tion s in th e sense of [6]), i.e. , there ex ists a Garden of Eden configu ration
[5}

Proof. Obvious.•

T heor em 5. It is undecidable whether all the finite configurations of a given
cellu lar automaton evolve to the quiescent configuration (in linear time).
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Proof. We reduce the emptiness problem for Turing machines to thi s prob­
lem. Here, we use the Turing mach ine model wit h a single one-way infinite
tape and a single read -write head. T he reduction is not st ra ightforward due
to the fact that unlike a Turing machine, a cellular automato n does not have a
separate input alpha bet and thus has no dist inguished initial configurations.
U the finite configurations of a cellular au tomaton A are used to encode t he
instant aneous descript ions (IDs) of M, th en th e encod ing of every ID of Ad
including the unreachable ones can appear as an initial configurat ion of A .

For a given Turing machine A1, we const ruct a cellular automaton A such
t hat M accepts an empty language if and only if all finite configura t ions of A
evolve to the qu iescent configurat ion. Each state of A except the qu iescen t
sta te consists of t hree components . T herefore, each segment can be viewed
as having three t racks. The first track is used to store a sequence of IDs of
M separa ted by dollar signs. The second t rack is a working t rac k and is used
to check whether t he first track cont ains a legal sequence of IDs started with
a valid init ia l ID and ended with an accepting ID . The third t rack contai ns
a signal which cont rols the phase changes of the second t rack. A valid third
track should be of the following form:

» .. . > S« I. . . <

and its valid ity can be checked by a local functi on in one step.
A segment that has a valid th ird tr ack and has two special bou ndary

sta tes at bot h end s evolves as follows: T he first t rack remain s unchanged if
no quiescent state is genera ted with in the segment . The second t rack works
in t hree phases in t urn. In Phase I it does the cleaning jo b, mea ning that
thi s tr ack is be ing cleared cell by cell. In Phase II it simulates the Fir ing
Squad Synchronizat ion problem. In Ph ase III all cells of this t rack start at
the same t ime. T hey check whether t rac k 1 stores a legal sequence of IDs of
1\1. Th e three phases take n - I, 2n - 2, and n -1 ste ps, respecti vely, where
n is th e length of the segment. The timing is controlled by the third track
by moving a signal. Track 2 goes repeatedly th rough th ese three phases III

turn . However , the quiescent state will be genera ted and will spread if

1. th e segment has an invalid third t rack; or

2. th e segment does not have two special boundary sta tes at both ends;
or

3. the second track finds, in its Phase III , that th e first t rack does not
contain a legal sequence of IDs of M .

If At! accepts an empty language, then no legal sequence of TO's exists.
All finite configura t ions of A evolve to the quiescent configurat ion in linear
t ime. If the lan guage accepted by M is not empty, then a ll segments that
encode legal accep t ing sequences of M will never evolve to th e quiescent con­
figur a tion. Since t he emptiness problem for Turing machine is undecidable
in general, our problem is also undecidable.
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Note that an initial segment of A may contai n "junk" in the second track
tha t may be in any phase . Therefore, a segment of length n that eventually
evolves to the quiescen t configurat ion may lake up to 8n - 9 steps to be
totally quiescent. •

Corollary 1. It is undecidable whether a given cellular automaton I S m
Clsss One.

P roof. By using th e above theorem an d consider ing the stable state to be
the quiescent state. •

We a lso have th e following by-product s.

Coro lla r y 2. Let M be an arbit1°ary Turing machine and n be the set of all
the instantan eous descript ions (IDs) of M. Th en it is undecidable ill general
whether M starting with cE il halts for all cE il .

Proof. Instead of reducing di rect ly the halting problem for Turing machines
to the new problem} we reduce the problem from th eorem 5. We have not
found a proof th at uses the former approach without actually mimicking the
latter.

For any cellular auto maton A we construct a Turing machin e M as fol­
lows. Informally, M simulate th e mappi ng defined by f. It stops if all the
nonblank symbols (stales of A) on the tape become quiescent. So, all th e
finite configurations of A evolve to the quiescent configurat ion if and only
if M starl ing with any ID halts. T he lal ler is undecidable because of the
undecidability of t he form er by theorem 5.

A formal construction of M is given in the append ix.•

Co ro llary 3. Let M = (Q,r,E,8, qo,q/, B) be a Turing machine with the
special property of r =E U {B). Then i t is undecidable in general wheth er
N! halts all all inp uts.

4. C lass T wo

We define Class Two cellular aut omata as follows.

D efinition 2. A ceUular automaton A is sa.id to be in Class T wo if there
exists a stable state s such that every s-finite con fig uration of A has an
ult imately periodic evolut ion.

Obviously, Class One is included in Class T wo. Our definition for Class
Two appears to specify a larger class than tha t of Wolfram 's. However , for
the cellular automata wit h k = 2, r = 2, our definitio n again coincides wit h
his.

Exam ple 4. Th e cellular automa ton with k = 2, r = 2 and function code
52 is not in Class T wo since the finite con figuration
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does not have a ult imately periodic evolution.

Similarly, like for Class One we have the following.

T heorem 6. Let A be in Class Two. Th en there exists a st able state s such
that the descendant language of every s- finite configuration is finite .

Theorem 7. If A is in Class Two wit h resp ect to a stable state s and it s
global mapping is surjective, then every s-finite configuration has a periodic
evolution.

Proof. Th e surject ivity of th e global mapping GI imp lies tha t GI is injecti ve
on a-finite configurations. Assume th at there exists an s-finite configuration
c such that th e evolut ion of c is not per iodic. Since the evoluti on of c is
ult imate ly periodi c, th ere exist two s-finite configurations that are mapped
to the sam e configurat ion. This contradicts th e condit ion that G I is injecti ve
on all s-finite configurations. •

Theorem 8. It is undecidable wheth er a cellular automaton is in Class T wo.

Proof. We use the resu lt in corollary 2. We show that for any Turing
machine M we can construct a cellular au tomaton A such that every finite
configurat ion of A has an ultimately periodic evolut ion if and only if M
start ing with any lD ha lts.

We define a valid segment of A to be one th at encodes a valid 10 of M and
has two boundary states I and r at th e left and the right end, respecti vely.
A valid ID of M is a st ring of uqv where u and v are st rings of tape symbols
an d q is a sta te. It means that M is in state q, th e nonempty portion of its
tap e is uv and th e reading head is over the first symbol of v . In order to
make th e validity of an encod ing checkable by a local CA function, all the
tape symbols to th e left of th e head of M should have a direction bit '--+ '
and all th e ones to the right of the head should have a hit '.-'. If a segment
is invalid, it must have some invalid neighborhood.

T he successor of a segment in th e evolut ion of A is defined as follows. Th e
successor of a valid segment , which encodes an ID I of M, encodes an 10 I f
such that I' is the 10 computed from I by M an d has its two bou ndaries
expanded by one cell in both directi ons. However , if ID I does not have a
successor ID, t he quiescent state is generated at the posit ion of the head . T he
successor of an invalid segment contains quiescent cells generated by invalid
neighborhoods of its predecessor. The quiescent state is spread ing at a speed
of two cells at each step in both directions. It overruns all states except t he
left houndary state I from th e left and the right boundary state r from the
right.

If t here exists an ID d of M such that M start ing with d never hal ts, th en
th e finite configuration cont aining a single segment that encodes d does not
have an ultimately periodi c evolut ion, and thus it is not in Class T wo. If
there is no such ID at all, then every finite configurat ion of A evolves to the
quiescent configuration. Thus A is in Class Two.•
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T h eo r em 9. It is undecidable whether a Class Two cellular a utomaton is
in Class One.

Proof. T his has actually bee n proved in the proof of theorem 5. •

5. C las s Three and Four

D efinition 3. A cellular automaton is in Class Three jf ther e exists a stable
state 5 such that for any pair ofs-finite configurat ions C I and C2, it is decidable
whether Cl evolves to ~. Class Four includes all cellular automata.

Clearly, Class One and Class Two arc contained in Class Three. We can
also show that the cellular automata with k = 2, r = 2) and function code
2, 6, 10, 12, 14, 18, 22, 26, 28, 30, 34, 38, 42, 44, 46, and 50 are all in Class
Three by using th eir property of expanding. However, we a re unable to show
th at th e ones with funct ion code 20 and 52 are or arc not in Class Th ree.
One way of showing th at a cellular automaton is not in Class T hree is to
show that thi s cellular auto ma ton is capable of simulat ing a universal Turing
machine .

Theorem 10. A cellular au tomaton that sim ulates the computation of a
universa l Turing machine is not in Class Three. A universa l cellu lar automa­
ton is not in Class T hree.

Proof. Obvious.•
See [I] for a simple uni versal cellular auto maton .

T heore m 11. A cellular autom aton is in Class Th ree if and only if there
ex ists a stable sta te s s uch that the descendant language of every s· finit e
con fig uration is recursive .

P roof. T he t heorem is just a restatement of definition 3.•
A cellular automaton with the property that every finite configuration

either evolves to the quiescent configurat ion or evolves to a longer finite
configurat ion in a bounded t ime is clearly in Class Th ree.

The next theorem ap pears to be obvious. However , ou r proof is more
comp licated than we expected . We encou rage reader to give a simp ler proof.

T heorem 12 . Jt is undecidable whether a given cellular automaton is in
Class Three.

Proof T he idea of our proof is the following. For any given Tu ring machine
/VI (with a single head and a one-way infinite tape), we const ruct a cellular
auto mat on A(M) as follows. Each segment of nonquiescent cells of A(M) has
two tr acks. One track is used to simulate the comput at ion of M. The ot her
is used to simulate a universal Turing machine U. The construct ion of A(J\!!)
sho uld guarantee that if M halts on input s , then every finite configuration



Undecidability of CA Classification Schemes 187

of A( l\1) event ua lly evolves periodically or to th e quiescent configuration.
Ot herwise, A( tvI) can simulate all th e computat ions of U, Therefore, by
th e definition of Class Th ree, M halt s on s if and only if A(NJ) is in Class
Three. The und ecidabi lity of the former imp lies the undecidability of th e
latter. Thus, we have proved the theorem. More details follow. See figure L

/ r
/ r
/ . r
/ .. r
/ r
/ r
/ r
/ r
/ r
I T
I T
I T
I r
I T
I r
I . r
i. T
l ,.
l r
l r

Figure 1: T he evolution of a valid segment .

A valid segment of A(M ) has two boundary states I and r . The cells between
the two boundaries have two tracks. The second track contains an encodin g
of an instantaneous descrip tion (ID) of U. See [3, page 148J for the definit ion
of an ID. One computat ion step of U is simulated by two evolut ion steps of
A(M ). The boundaries of a segment are the boundaries of the ID of U on its
second track. On th e first track, a. signal t ravels betwee n two bound aries at
a speed of one cell each step. Whenever the signal reaches the left boundary,
it turns to th e right a nd a simulat ion of M is initi ated on this t rack and
proceeds in the area between the left bou ndary and the signal. If a segme nt
is invalid or th e simulat ion of M or U halts, quiescent states are generated
and they spread in bot h di rections until all the cell become quiescent . •

6. Products of cellu lar a ut omata

D efini tion 4. Let Al = (S" NI,fd and A, = (S"N,,f, ) be two cellular
automat a. of a sa.me dim ension witb ql and q2 being the quiescent state of
Al and A2 , respectively. Th en the product of Al and A2 is tbe cellular
automaton A = (S,N,! ), where
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the quiescent state is tile state (qt,Q2) , and A can be considered having two
track s, f sim ulates 11 on the first track and h on the secon d track.

T heorem 13. Let At and A 2 be two cellular automata in Class 11 and Class
12 , respectively. Tb en th e product of At and A 2 is in Class max(l}) 12) ,

Proof. Obvious.•
In [9J Wolfram discuss ed how a change of one site (cell) in the initial con­

figuration propagates in the development of that configuration. He observed
that the propagation of the difference is typical for each of his classe s. We
ob tain th e sam e result as an applicat ion of theorem 13.

Let two cellular automata have the same set of states. Starting from the
same configuration, th ese two cellular a utomat a may evolve differently. In
order to see th e difference of these two evolutions, we can define a morphism
It on the product of th e two au tomata such that

h: (p,q) --+ 1, if P i' q;

h: (p, q) --+ 0, if p = q.

Now, in order to apply theorem 13 to the problem of propagat ion of
a single site difference , we consider th e product of the given CA A with
it self and run this au tomaton on an initial configuration c in which both
t racks agree everywhere but in one cell. Clearly, the product of A with A
belongs to the same class of A and if we observe the output h for compu tation
ini tiatin g in c, we see th at it corresponds (as the output is concerned) to t he
computation from one site and therefore the growth of non-zero sites indica tes
t he propagation of difference. Hence, we can conclude that the propagation
of differenc e has th e same "class characteristics" as growth from one or finite
number of non -zero sites .

Appendix A . Formal construction of M in the proof of corollary
2

Let A = (5, N, 1) be a linear cellular au tomaton. Without loss of generality
we ass ume that N = (-h + l, -h + 2, . . . ,-1, 0). We cons truct a Turing
machine M = (Q,r, :E , 0, 10, qj, B ) as follows:

r = SU {B },

E = 5 ,

Q = {h, S" . . . ,s0 I S J, s" ...,Sh E S} U{ q. ; Sb, qJ},

o((SO,Sl", .,Sh_I),Sh) = ((Sl , S2,· .. ,SJJ, !(Sr, S2"" ,Sh),RL if So, Sh

"' Sh-l , Sh E S,

O((SO, Sh .. ·, Sh_J),B) = « Sh 52 , . . . ,5h-hq), !(Sll S2, . . . ,5h-l,Q) ,R),
where q is th e quiescent state of A, if 50,51," ", 8h-1 E S , and 5 i # q
for some i E {O , 1, """, h - I};
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6((q, q, . .. , q}, B ) = (q., B, L );

6(q.,q) = (q. ,B,L);

6(q.,s) = (q"s , L) , for all s E S - (q );

6(q" s) = (q" s , L), for all s E S ;

6(q" B } = ((q,q , . . . , q},B , R ); and

qo = (q,q, . . . ,q ).
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Int uit ively, M repeatedly moves from left to right and from right to Jell .
During its left or right move, it simulates the local map ping f on its in put.
Each state of M has h regist ers memorizing th e last h sym bols it has read.
Note t hat t he quiescent state q of A is not t he blan k symbol B of M. M sta rts
at the left end of the input st ring with the state 90 = (q,q, ... I q). When
i t reaches t he right end of th e input , it cont inues to read h Bs (consideri ng
them to be q for the mapping) and turns back to the left. Durin g its right
to left move, it cha nges all the t ra iling q's to Bs, an d it starts a new cycle
again when it meets the fi rst B left to the nonblank string.

Append ix B . Examp le 3, continued

The transit ion tab le of C A from example 3 is given in figure 2.

! (x ,y, z )
x y z

00 01 0- Oq 10 11 1- lq -0 -1 -- -q qO ql q- qq
a a a - - 1 1 a a 1 1 a a q q q q
1 a a - - 1 1 a a 1 1 a a q q q q
- a a - - 1 1 a a 1 1 a a q q q q
q q q q q 1 1 a a q q q q q q q q

Figure 2: T he transit ion table of the CA from exam ple 3.
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