
Complex Systems 2 (1988) 191-1 96

Steepest Descent Can Take Exponentia l T im e for
Symmetric Connection Networks'

Armin Haken
Michael Luby

Departm ent of Computer Science, University of Toronto,
10 King's College Road , Toronto, M5S l A4, Canada

Abstract. We construct a. family of symmet ric weight connect ion
networks that take expon ential time to reach a stable configuration
when th e sequential steepest descent update rule is used .

1. Introduction

A connect ion network is a graph toget her with assigned edge and node
weight s. If the edges in the graph are undirected, t hen it is called a sym­
metric connection net work. T he nodes of a connect ion network can be in
one of two states called 1 and _1.1 At each node N , the influence function is
defined to be t he sum over all edges to N , of t he quant ity "edge weight t imes
the state of the node at the ot her end of the edge" , plus t he node weight of
N . A node is called happy if it is in either state and th e influence at t he
node is zero, if it is in state 1 and the influence is posit ive, or if it is in state
-1 and the influence is negati ve. Otherwi se, the node is called unhappy. A
configurat ion of the network is a specificat ion of a state for each node in
th e network. A stable configurat ion of t he network is a configurat ion where
every node is happy.

One of the goals in connect ionist computing is to design good upd ate
rules for chan ging the states of the nodes which reach a stable configurat ion
start ing from an initial configurat ion. Two essent ial propert ies of the upd at e
rule are that it should be simple and th at it should reach a stable configure­
t ion very quickly from an input configuration. One natural cand idate for an
update rule is the greedy or stee pest descent ru le, which is to always change
the state of a node in t he network which is under the greatest magnitude of
influence and also unhappy. As discussed in [3], any update rule which only

"Supported by gran ts from the Natural Sciences and Engineering Research Council of
Canada, A-8092 and G-1366, and the University of Toronto.

"Other authors let the two states be 0 and 1. T here is an easy conversion from a
network using - I and 1 to one using 0 and I for the states such that the stable s tates in
the two networks are exactly the same [5J.

@ 1988 Complex Syste ms Publicat ions, Inc.



192 Armin Haken and Michael Luby

changes the state of unh appy nodes ensures th at a stable configuration will
be eventual ly reached start ing from any input configuration .

In t his pap er , we construct a family of networks for which there is an
initi al state such tha t the steepest descent update rule has to be applied a
number of t imes th at is expon ent ial in the size of the network .

2. Related work

Connect ionist networks have recently been widely studied as a possible par­
allel model of computat ion. For example, {3] suggests using symmetric con­
nect ion networks as a storage dev ice for associative memory. T here are two
foci in thi s work; the first is to fix a "learning update" rule which changes the
weights on the edges and nodes so that stable configura t ions corres pon d to
inform ati on that is stored in t he network, and the second is to fix a "ret rieval
update" rule for recalling stored information I which is a rule for going from
an arbitrary input configuration to a stable configuration. To put our result
in the proper light , it is known that when th e node and edge weights are
small [i.e. th e absolute values of the edge and node weights are polynomial
in th e number of nodes in t he graph) the greedy update rule always reaches
a stable configuration in polynomi al time [3]. T hus, our examples necessarily
use large node and edge weights, whose values can nevertheless be expressed
using a polynomi al number of bits. It is known that th e problem of finding a
stable configuration in a connect ion net work with directed edges is NP-hard
[1 ,4] .

Our result does not show that there is no polynomial time algorithm to
find a stable configuration in a symmetric connection network , it only shows
that the "obvious" algorithm of using stee pest descent can take exponential
t ime. In fact , although no polynomial t ime algorithm is known in general to
find a stable configuration, th ere is evide nce that this symmet ric problem is
not N P -hard, suggest ing that perha ps t here is a polynomial time algorithm
[2,4].

3. The construction

We const ruct a family of networks together with an initi al configuration
such that the steepest descent upd ate rule takes exponent ial time to reach
a st able configuration . T he intui ti ve idea behind the construction is "flows
of unhappiness": consider the network shown in figure 1. In all figures, edge
weights are written near the edge and node weights are written in parenth eses
near th e node. AU missing node weights are zero. If all nodes are in state -1,
th en th ey are all hap py except for t he leftmost. If the state of the leftmost
node is switched, th e next node to the right becomes unhappy. When that
node is switched, the unhappy node is the next one to the right . Note
that the unh appiness moves left to right but not the other way. We call
such a situa t ion a "flow of unhap piness" . A larger network t hat is being
subjected to th e updat e rule may have flows of unh appiness in various pa rts .



St eepest Descent Can Take Exponential Time 193

Whi ch flow moves when the steepest descent update ru le is app lied depends
on the magnitude of the influence involved , which in the above example is
the difference in successive connection weights . Two connect ion weights in
sequence tha t are almost the same will serve to delay the flow of unhappi ness
compared to flows in parts of the network where there is a greater difference
between the weights .

(5 1) 50 49 4. 47

Figure 1: A network in which unha.ppiness flows from left to right.

A path for a flow of unhappiness can split into two as shown in figure 2.
All nodes are initially in state -1. In this example, a flow moving from left
to right becomes two flows. It is not predetermined which branch will flow
faste r, since the edge weights are unbalanced by 1 at all of the nodes.

The final bit of intuition that moti vates the const ruct ion is the "two into
one flow valve." T his valve is a piece of th e network with two paths lead ing
in and one path out. A sequence of state changes along either of t he inp ut
paths propagates through to cause a sequence of state changes in the outgoing
path . A piece of network that comput es the XOR of two "input" nodes and
sets an "output" node meets the specifications.

Figure 3 shows a piece of connection network which performs this function
which we call an XOR module. Supp ose all oodes shown are happy. If one of
the nodes on the left changes state due to state changes further left, then after
a sequence of update rule appli cations t he rightmo st node changes state and
all nodes in the module are once again happy. If a node on the left changes
state again then after a few update rule app licat ions the rightmost node
changes state once again and all nodes wit hin the modu le are happy. Th us,
using the steepest descent update rule, changing the state of a node on the
left eventu ally causes the rightm ost node to change state in a X OR modu le.

The networks that exhibit the exponential set tl ing behavior consist of a
series of XOR modu les with the input paths of each module split from the
output path of the module to the left . The leftmost module simply has its
inpu t paths split from one node. That leftmost node is in a sense the source
of the flow of unh appi ness through the network . Figure 4 shows a sequence
of two X 0 R modul es put together.

The weights on the edges and nodes of the rightmos t modul e are as in
figure 3. For the oth er modul es, the weights are all 20 t imes the weights of
the module to the right . Th e leftmost node has weight 220 • 20", where n



194 Armin Haken and Michael Luby

B
9

7

6

Figure 2: A flow of unhappiness splits into two.

7

5

100

(-111 )

74

(- 24 )

11

100

Figure 3: The XOR module that channels unhappiness from two In­
put s into one output .



Steepest Descent Can Take Exponential Time

2000

220

2000

(-24)

11

195

Figure 4: Relationship between t he weights of two successive XOR
modules wit h delay edges shown.

is the number of XOR modules. For each XOR module, there are delays
(in the form of two edge weights that are almost equal) on the inpu t paths.
The delay on the lower input of each module is an imbalance of 1 between
weights. The upper delay is caused hy an imbalance of 1/2 at t he right most
module. For the other modules, the weights are chosen to give an imbalance
at the upper delay node that is ha lf of the corresponding imbalance of the
module to the right. Th e network is stable except for the leftmost node when
all nodes are in state - l.

For such a network consist ing of n XOR modules, if all nodes except for
the leftmost are happy, the rightmost node changes state 2n times during
the set tling process. T his claim can be verified using inducti on on n : In
case n = 0 the rightmost node and the leftmost node are the same and the
claim is trivially t rue. Assume the claim for k -1 modules. Now consider the
network consisti ng of k X 0 R modules. When the leftm ost node switches, the
two delay nodes in front of the leftmost X 0 R are unhappy. The top delay
node will not switch st ate until all other nodes in the network are happy,
since no other node in the networ k is capable of being unbalanced by as little
as 2-k . The bottom delay node changes state, and the output node at the
leftm ost X OR changes state, as can be checked by considering the possible
stable states of the X OR and the way they change when one of the inp uts
changes. The next node to the right of that out put node is then unhappy, so
it changes state. T he- situation to the right of that first XOR module is just
the case for k - 1 modules, so by inductive hypot hesis t he rightmost node
changes state 2k- 1 times as that part of the network stabilizes. Note that



196 Armin Haken and Michael Luby

the up per left delay node is st ill un happy t hroughout t hese state changes to
the right , bu t only gets swit ched aft er all ot her nodes are happy. When that
delay node eventually switches state, t he output to the left most XOR again
switches state and as before the induct ive hypothesis a pp lies to t he po rtion of
the network to the right. T herefore the rightmost node switc hes state 2k- 1

tim es again , making a total of 2k switches. Thus the network takes more
than 2k app lications of the greedy update ru le to stabilize when started with
all nodes in state -1.

4. Conclusions a nd open problems

Vve have exhibi ted a family of symmetric connection networks together wit h
input configurations which take exponential time to reach a stable configura­
tion when the steepest descent update rule is used. For this same family, it
can be easily shown that the probabi list ic up dat e ru le which ra ndomly selects
an unhappy node with probability direct ly proportional to the mag nitude of
influence on the node runs in expected exponential t ime . On th e ot her han d,
consider the following probabilistic upd at e rule which was suggested in [3] :
randomly choose an unhappy node (independently of the mag nitu de of the
influence on the node) and change its state. For the connect ion net wor ks
and th e input configurations we give in our exam ple, this upd at e rule has
expected runn ing t ime which is polynomial. We do not know if this is true
for all symmetric connection networks and all input configura tions .

5 . Acknowledgements

vVe th ank both Gail Godbeer and Jo hn Lipscomb for many helpful discussions
concern ing this work .

References

[1] N. Alon, "Asy nchronous threshold networks", Graphs and Com binatorics, 1
(1985) 305-310.

[2J G. H. Godbeer , "The Comp utational Complexity of the Stable Configuration
Problem for Connectionist Models", M.Sc. T hesis, Department of Computer
Science, Universi ty of Toronto, 1987.

[3] J. J . Hopfield, "Neural networks and physical sys tems with emergent collec­
tive comp utational abilit ies" , Proceed ing Na.tiona.l A cademy of Sciences, 79
(1982) 2554-2558.

[4] J. Lipscomb, "On the comp utational complexity of finding a connection ist
model's stable state vectors ", M.Sc. Thesis, Depa rtme nt of Computer Sci­
ence, University of Toronto, 1987.

[5] B. Selman, "Rule-Based Process ing in a Connectionist System for Natural
Language Under standing" , Technical report CSRI-168, Computer Systems
Research Institu te, University of Toronto, 1985.


