Complex Systems 2 (1988) 191-196

Steepest Descent Can Take Exponential Time for
Symmetric Connection Networks*

Armin Haken
Michael Luby
Department of Computer Science, University of Toronto,
10 King’s College Road, Toronto, M55 1A4, Canada

Abstract. We construct a family of symmetric weight connection
networks that take exponential time to reach a stable configuration
when the sequential steepest descent update rule is used.

1. Introduction

A connection network is a graph together with assigned edge and node
weights. If the edges in the graph are undirected, then it is called a sym-
metric connection network. The nodes of a connection network can be in
one of two states called 1 and -1.! At each node N, the influence function is
defined to be the sum over all edges to N, of the quantity “edge weight times
the state of the node at the other end of the edge”, plus the node weight of
N. A node is called happy if it is in either state and the influence at the
node is zero, if it is in state 1 and the influence is positive, or if it is in state
-1 and the influence is negative. Otherwise, the node is called unhappy. A
configuration of the network is a specification of a state for each node in
the network. A stable configuration of the network is a configuration where
every node is happy.

One of the goals in connectionist computing is to design good update
rules for changing the states of the nodes which reach a stable configuration
starting from an initial configuration. Two essential properties of the update
rule are that it should be simple and that it should reach a stable configura-
tion very quickly from an input configuration. One natural candidate for an
update rule is the greedy or steepest descent rule, which is to always change
the state of a node in the network which is under the greatest magnitude of
influence and also unhappy. As discussed in [3], any update rule which only

*Supported by grants from the Natural Sciences and Engineering Research Council of
Canada, A-8092 and G-1366, and the University of Toronto.

10ther authors let the two states be 0 and 1. There is an easy conversion from a
network using -1 and 1 to one using 0 and 1 for the states such that the stable states in
the two networks are exactly the same [5].

© 1988 Complex Systems Publications, Inc.



192 Armin Haken and Michael Luby

changes the state of unhappy nodes ensures that a stable configuration will
be eventually reached starting from any input configuration.

In this paper, we construct a family of networks for which there is an
initial state such that the steepest descent update rule has to be applied a
number of times that is exponential in the size of the network.

2. Related work

Connectionist networks have recently been widely studied as a possible par-
allel model of computation. For example, [3] suggests using symmetric con-
nection networks as a storage device for associative memory. There are two
foci in this work; the first is to fix a “learning update” rule which changes the
weights on the edges and nodes so that stable configurations correspond to
information that is stored in the network, and the second is to fix a “retrieval
update” rule for recalling stored information, which is a rule for going from
an arbitrary input configuration to a stable configuration. To put our result
in the proper light, it is known that when the node and edge weights are
small (i.e. the absolute values of the edge and node weights are polynomial
in the number of nodes in the graph) the greedy update rule always reaches
a stable configuration in polynomial time [3]. Thus, our examples necessarily
use large node and edge weights, whose values can nevertheless be expressed
using a polynomial number of bits. It is known that the problem of finding a
stable configuration in a connection network with directed edges is N P-hard
[1,4].

Our result does not show that there is no polynomial time algorithm to
find a stable configuration in a symmetric connection network, it only shows
that the “obvious” algorithm of using steepest descent can take exponential
time. In fact, although no polynomial time algorithm is known in general to
find a stable configuration, there is evidence that this symmetric problem is
not N P-hard, suggesting that perhaps there is a polynomial time algorithm
(2,4].

3. The construction

We construct a family of networks together with an initial configuration
such that the steepest descent update rule takes exponential time to reach
a stable configuration. The intuitive idea behind the construction is “flows
of unhappiness”: consider the network shown in figure 1. In all figures, edge
weights are written near the edge and node weights are written in parentheses
near the node. All missing node weights are zero. If all nodes are in state -1,
then they are all happy except for the leftmost. If the state of the leftmost
node is switched, the next node to the right becomes unhappy. When that
node is switched, the unhappy node is the next one to the right. Note
that the unhappiness moves left to right but not the other way. We call
such a situation a “flow of unhappiness”. A larger network that is being
subjected to the update rule may have flows of unhappiness in various parts.



Steepest Descent Can Take Exponential Time 193

Which flow moves when the steepest descent update rule is applied depends
on the magnitude of the influence involved, which in the above example is
the difference in successive connection weights. Two connection weights in
sequence that are almost the same will serve to delay the flow of unhappiness
compared to flows in parts of the network where there is a greater difference
between the weights.

O
O
O
O

(51) 50 49 48 47

Figure 1: A network in which unhappiness flows from left to right.

A path for a flow of unhappiness can split into two as shown in figure 2.
All nodes are initially in state -1. In this example, a flow moving from left
to right becomes two flows. It is not predetermined which branch will flow
faster, since the edge weights are unbalanced by 1 at all of the nodes.

The final bit of intuition that motivates the construction is the “two into
one flow valve.” This valve is a piece of the network with two paths leading
in and one path out. A sequence of state changes along either of the input
paths propagates through to cause a sequence of state changes in the outgoing
path. A piece of network that computes the XOR of two “input” nodes and
sets an “output” node meets the specifications.

Figure 3 shows a piece of connection network which performs this function
which we call an XOR module. Suppose all nodes shown are happy. If one of
the nodes on the left changes state due to state changes further left, then after
a sequence of update rule applications the rightmost node changes state and
all nodes in the module are once again happy. If a node on the left changes
state again then after a few update rule applications the rightmost node
changes state once again and all nodes within the module are happy. Thus,
using the steepest descent update rule, changing the state of a node on the
left eventually causes the rightmost node to change state in a XOR module.

The networks that exhibit the exponential settling behavior consist of a
series of XOR modules with the input paths of each module split from the
output path of the module to the left. The leftmost module simply has its
input paths split from one node. That leftmost node is in a sense the source
of the flow of unhappiness through the network. Figure 4 shows a sequence
of two XOR modules put together.

The weights on the edges and nodes of the rightmost module are as in

figure 3. For the other modules, the weights are all 20 times the weights of
the module to the right. The leftmost node has weight 220 * 20", where n



194 Armin Haken and Michael Luby

O
O

O

18 17

O O

Figure 2: A flow of unhappiness splits into two.

100
- 24
-36 (-24)
e O O—
11
74 2

o

100

Figure 3: The XOR module that channels unhappiness from two in-
puts into one output.



Steepest Descent Can Take Exponential Time 195

2000.25

Ton‘CP

2001

Figure 4: Relationship between the weights of two successive XOR
modules with delay edges shown.

is the number of XOR modules. For each XOR module, there are delays
(in the form of two edge weights that are almost equal) on the input paths.
The delay on the lower input of each module is an imbalance of 1 between
weights. The upper delay is caused by an imbalance of 1/2 at the rightmost
module. For the other modules, the weights are chosen to give an imbalance
at the upper delay node that is half of the corresponding imbalance of the
module to the right. The network is stable except for the leftmost node when
all nodes are in state -1.

For such a network consisting of n XOR modules, if all nodes except for
the leftmost are happy, the rightmost node changes state 2" times during
the settling process. This claim can be verified using induction on n: In
case n = 0 the rightmost node and the leftmost node are the same and the
claim is trivially true. Assume the claim for £—1 modules. Now consider the
network consisting of £ X O R modules. When the leftmost node switches, the
two delay nodes in front of the leftmost XOR are unhappy. The top delay
node will not switch state until all other nodes in the network are happy,
since no other node in the network is capable of being unbalanced by as little
as 2. The bottom delay node changes state, and the output node at the
leftmost X OR changes state, as can be checked by considering the possible
stable states of the XOR and the way they change when one of the inputs
changes. The next node to the right of that output node is then unhappy, so
it changes state. The situation to the right of that first XOR module is just
the case for k — 1 modules, so by inductive hypothesis the rightmost node
changes state 27! times as that part of the network stabilizes. Note that



196 Armin Haken and Michael Luby

the upper left delay node is still unhappy throughout these state changes to
the right, but only gets switched after all other nodes are happy. When that
delay node eventually switches state, the output to the leftmost X OR again
switches state and as before the inductive hypothesis applies to the portion of
the network to the right. Therefore the rightmost node switches state 2571
times again, making a total of 2¥ switches. Thus the network takes more
than 2% applications of the greedy update rule to stabilize when started with
all nodes in state -1.

4. Conclusions and open problems

We have exhibited a family of symmetric connection networks together with
input configurations which take exponential time to reach a stable configura-
tion when the steepest descent update rule is used. For this same family, it
can be easily shown that the probabilistic update rule which randomly selects
an unhappy node with probability directly proportional to the magnitude of
influence on the node runs in expected exponential time. On the other hand,
consider the following probabilistic update rule which was suggested in [3]:
randomly choose an unhappy node (independently of the magnitude of the
influence on the node) and change its state. For the connection networks
and the input configurations we give in our example, this update rule has
expected running time which is polynomial. We do not know if this is true
for all symmetric connection networks and all input configurations.

5. Acknowledgements

We thank both Gail Godbeer and John Lipscomb for many helpful discussions
concerning this work,

References

[1] N. Alon, “Asynchronous threshold networks”, Graphs and Combinatorics, 1
(1985) 305-310.

[2] G.H. Godbeer, “The Computational Complexity of the Stable Configuration
Problem for Connectionist Models”, M.Sc. Thesis, Department of Computer
Science, University of Toronto, 1987.

[3] J. J. Hopfield, “Neural networks and physical systems with emergent collec-
tive computational abilities”, Proceeding National Academy of Sciences, 79
(1982) 2554-2558.

[4] J. Lipscomb, “On the computational complexity of finding a connectionist
model’s stable state vectors”, M.Sc. Thesis, Department of Computer Sci-
ence, University of Toronto, 1987.

[5] B. Selman, “Rule-Based Processing in a Connectionist System for Natural
Language Understanding”, Technical report CSRI-168, Computer Systems
Research Institute, University of Toronto, 1985.



