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Abstract. For cellular automaton machines getting increasingly smal-
ler in size, a regime will be entered where quantum effects cannot be
neglected. Ultimately, these quantum effects may very well be dom-
inant. Quantum mechanically this fact is described by introducing
probability amplitudes implying that one will not be able to know for
certain whether the value at a given site is 0 or 1 at a given instant
of time. We report results obtained by studying the evolution of one-
dimensional cellular automata governed by quantum mechanical rules
in such a way that superposition of probability amplitudes is permit-
ted. We focus on strictly local interaction. The results are presented
in the form of probability maps and clearly exhibit typical quantum
features like constructive and destructive interference, beats and the
like.

1. Introduction

Hitherto, cellular automata research was restricted to the study of deter-
ministic or stochastic evolution [1]. In the present paper, we report on the
first results extending cellular automata research into the region of quantum
mechanics. This step, besides being of a fundamental interest, should also
be of significance for the problem of understanding the impact of quantum
physics on computer operation. This follows, because it has been shown [2]
that certain classes of cellular automata are equivalent to Turing machines.

The main reason for quantum mechanics to enter computer operation
some day is that, in order to become faster, these machines have to get
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increasingly smaller in size. Therefore, a regime will be entered where quan-
tum effects cannot be neglected and ultimately these effects may very well
be dominant [3].

Consequently, one will not be able any more to know for certain whether
the value at a given site is 0 or 1 at a given instant of time. Quantum
mechanically this fact is described by introducing probability amplitudes.

We shall therefore attribute some complex number ¢;; to each cite of the
cellular automaton and we shall construct transition rules in such a way that
superposition of probability amplitudes is permitted. Studying the evolution
of one-dimensional cellular automata, we focus on strictly local (i.e. nearest
neighbor) interaction.

For small enough time steps, the unitary evolution operator U may be
approximated using only the first-order term of its expansion

U =eFth 1 —iHt/A.

Introducing periodical boundary conditions, the Hamiltonian becomes essen-
tially for |8] < 1:
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Thus, the corresponding transition rule for quantum cellular automata spec-
ified in this way is
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where I and J denote time-step and site location of the one-dimensional
quantum cellular automaton respectively, and N is a normalization factor
such that
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For a cellular automaton consisting of two sites only, this would correspond
to the rule
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Clearly, (1.1) represents a unitary evolution for small values of § only. For
larger values of §, other matrix elements farther off the diagonal would have
to be nonzero in a very specific way to preserve unitarity. This would imply
nonlocality. In contrast, we decided to study strictly local rules. These we
define such that the amplitude at a given site and time depends only on
this sites’ amplitude and that of its nearest neighbors at the previous time
step. In other words, we adopt equation (1.2) to be the rule governing the
evolution of our quantum CAs independent of the size of §. Rather than
abandoning locality, we believe our choice to be a good candidate when en-
visaging possible future realizations of quantum cellular automata machines.
Also, this approach provides a natural procedure for the transition between
the quantum and the classical domain.

2. Results

The results are presented in the form of probability maps, i.e. we plot the
“temporal” evolution of one-dimensional quantum cellular automata in terms
of the normalized probability values Py = ¢} ey for each site J at each time
step I. Different shades of grey represent different probabilities.

Our main interest in this paper is to study the evolution of quantum
cellular automata as a function of the size of the off-diagonal elements § in the
Hamiltonian. That is, we want to investigate the dependence of the resulting
patterns on the relative weighting of the nearest neighbor’s contributions.

In the figures plotting the probability maps the number of pixels is 120 x
532 for one image, and 120 x 1596 for three consecutive images respectively.
Generally, we vary the size of the off-diagonal contributions § = 6.(1 + 7) by
varying &, and we vary the initial point configurations.

3. Probability maps with one initial site of nonzero amplitude

The most obvious feature common to quantum cellular automata created by
rule (1.2) for all §, > /2 is their striped pattern, i.e. sites with relatively high
and relatively low intensities alternate regularly when the resulting pattern
is observed at a specific time step I. To see how this comes about, one has
to consider the explicit time evolution of the quantum cellular automaton.
Starting with one nonzero initial point ¢;; # 0 one obtains the probability
values for the “time” I + 1.

1 2
lersraf® = N lersr,g-1)” = lergal® = FS: (3.1)
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Thus, one obtains for §, > V2:

lersagl? > lersa,axal® > lersa,oe|? (3.3)

which corresponds to an overall striped pattern of the probability maps for
all quantum cellular automata governed by rule (1.2) with 6, > V2. For
§. < /2 striped patterns may arise, too, but they will in general occur only
locally.

To show characteristic results, figures 1 through 3 present examples with
one initial site of nonzero amplitude. In figure 1 we plot a quantum cellular
automaton with §. = 0.02. The resulting pattern exhibits a striped wave-
like structure with.interferences around the edges. For comparison, figures
2a through ¢ show a quantum cellular automaton with 6. = 20 and one
initial point. The ellipses typical for this range of &, gradually flatten and
eventually form “plane wave surfaces.” Finally, figure 3 shows a quantum
cellular automaton with §. = 4000 and omne initial point. Increasing the value
of é, does not change the pattern. One can therefore speak of a “final state”
pattern.

4. Probability maps with more than one initial site of nonzero
amplitude

For the patterns studied by us so far with more than one initial site of nonzero
amplitude, two characteristic statements can be made.

1. As a consequence of patterns being striped in the way described above
one can formulate a relative initial point location rule: Whenever the
number of intermediate states in one row of equal time I between two
initial points is odd, one obtains symmetrical or melting features (e.g.
melting ellipses). Whenever that number is even, the figures are dis-
torted or die out (the latter being the case for small-grained patterns).
Generally, if the number of initial points is increased one can obtain
more and more complex behavior (dying out of some figures and melt-
ing of others, etc.) which leads to an increasing sensitivity to the intial
conditions—changing one out of, say, four initial points by moving it
one site to the right or left (or by reducing or increasing the value of its
amplitude) can lead to dramatic differences in the resulting patterns.

2. There is one specific condition that—if fulfilled—produces a stable pat-
tern after a few time steps. This one may be called the constancy in
time criterion: Whenever the initial configuration is such that the loca-
tion of the (at least two) sets of initial points, with each set containing
at least one initial point, is rotation symmetric along the axis of the
torus defined by the period boundary conditions, one obtains stable
patterns after a few initial time steps (i.e. typically between 300 and
500) which are then conserved for all later times.
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Figure 1: Quantum cellular automaton with §. = 0.02 and one initial
point. The resulting pattern exhibits a striped wave-like structure
with interferences around the edges.
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Figure 2: Quantum cellular automaton with 6, = 20 and one initial
point. The ellipses typical for this range of 4. gradually flatten with
time and eventually form “plane wave surfaces.”
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Figure 3: Quantum cellular automaton with §. = 4000 and one initial
point. Increasing the value of . does not change the pattern. One
can therefore speak of a “final state” pattern.
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The following figures present examples of the various consequences result-
ing from the features described above. Figure 4 shows a quantum cellular
automaton with 6, = 0.08 and two initial points at locations (I, J) = (1,30)
and (1,90). The two initial amplitudes are chosen with slightly different
values (1 and 0.9), and the resulting pattern shows corresponding slight dif-
ferences in the intensity distribution. Note that the two evolutions never
merge. Figure 5 presents a quantum cellular automaton with §. = 0.2 and
two equal initial amplitudes at (I,J) = (1,40) and (1,80). Note that here
the two evolutions merge to form one connected pattern. Figure 6 shows a
quantum cellular automaton with é, = 0.5 and four initial points with equal
amplitudes. The initial points are located rotationally invariant with respect
to the axis of the torus generated by the periodic boundary conditions. Con-
sequently, the resulting pattern stabilizes after approximately 500 time steps
and remains stable for all later times. In figure 7 we plot a quantum cel-
lular automaton with §. = 10 and six equal initial amplitudes at locations
J = 15, 30, 45, 75, 90, and 105. The pattern stabilizes after a few initial
time steps. Finally, figures 8a through c show a quantum cellular automaton
with 6, = 50 and four initial points at J = 1, 40, 43, and 80, with equal
amplitudes providing a pattern that is irregular in the beginning and then
gradually becomes more regular.

Figure 4: Quantum cellular automaton with é, = 0.08 and two initial
points at locations (I,J) = (1,30) and (1,90). The two initial am-
plitudes are chosen with slightly different values (1 and 0.9), and the
resulting pattern shows corresponding slight differences in the inten-
sity distribution. Note that the two evolutions never merge.
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Figure 5: Quantum cellular automaton with §. = 0.2 and two equal
initial amplitudes at (I,J) = (1,40) and (1,80). Note that here the
two evolutions merge to form one connected pattern.

Figure 6: Quantum cellular automaton with . = 0.5 and four initial
points with equal amplitudes. The initial points are located rotation-
ally invariant with respect to the axis of the torus generated by the
periodic boundary conditions. Consequently, the resulting pattern
stabilizes after approximately 500 time steps and remains stable for
all later times.



206 Gerhard Gréssing and Anton Zeilinger

Figure 7: Quantum cellular automaton with é. = 10 and six equal
initial amplitudes at locations J = 15, 30, 45, 75, 90, and 105. The
pattern stabilizes after a few initial time steps.
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Figure 8: Quantum cellular antomaton with . = 50 and four initial
points at J = 1, 40, 43, and 80, proividing an irregular pattern that
gradually becomes more regular.
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The examples presented above are not arbitrary but are chosen as rep-
resentations of various classes we found upon variation of the parameter 4.
The classes can be characterized by their patterns and “prototype-values”
of 8, as follows: striped waves (6, = 0.02), separated interference patterns
(6. = 0.08), melting interference patterns (6. = 0.2), ripples (6. = 0.5), ellip-
tical disks (8. = 20), and “final state” disk (&, 2 4000). The resulting maps
clearly exhibit typical quantum features such as constructive and destructive
interferences, beats, and the like.
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Note

Since the first presentation of this work at the 1986 MIT conference on Cel-
lular Automata, we have continuously studied properties of quantum cellular
automata. Among the published results we mention papers discussing irre-
versibility [4] and a conservation law [5] in QCAs.
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