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Abstract. For cellular automaton machines get ting increasingly smal­
Ier in size, a regime will be entered where quantum effects can not be
neglected . Ult imately, t hese quant um effects may very well be dom­
inant. Quantum mech anically this fact is described by intr od ucing
prob abil ity amp litu des imp lying tha t one will not be able to know for
certain whet her the value at a given site is 0 or 1 at a given instant
of time. We report results obtained by st udying the evolut ion of one­
dimensional cellular automata governed by quant um mechan ical rules
in such a way that superposit ion of probabil ity amplitudes is permit­
ted . We focus on st rict ly local interaction . The results are present ed
in the form of probability maps and clearly exhibit typical quantum
features like construct ive and destructive interferen ce, beats and the
like.

1 . I ntroduction

Hitherto, cellular automata research was restricted to t he study of deter ­
ministic or stochast ic evolution [1]. In the pr esent paper , we report on t he
first results extending cellular automata research into t he region of quantum
mechanics. This s tep, besides being of a funda mental interes t, should also
be of significance for the pr oblem of un derstanding th e impact of qua nt um
physics on computer operat ion. Th is follows, becau se it has been shown [2]
that certain classes of cellular automata are equiva lent to Turing machines.

T he main reason for qu antum mechanics to en ter compute r operation
some day is t hat , in order to become faster , these m achines have to get
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increasingly smaller in size. Therefore, a regime will be entered where qu an ­
tum effects cannot be neglected and ultimately these effects may very well
be dominant [3].

Con sequently, one will not be able any more to know for certain whether
the value at a given site is 0 or 1 at a given instant of t ime. Quantum
mechanically this fact is described by int roducing probability amp litudes.

We shall therefore attribute some comp lex number e lJ to each cite of the
cellular automaton and we shall construct t ransition rules in such a way that
superposition of probability amplitu des is permit ted . Studying tb e evolut ion
of one-dimensiona l cellular automata, we focus on strict ly local [i.e. nearest
neighbor ) interaction.

For small enough time steps, the unitary evolut ion operator U may be
approximated using only the first-order term of its expansion

Introd ucing periodical boundary conditions, the Hamiltonian becomes essen­
ti ally for 101 « 1:

H =

o

s: 0 0
s: 0 0

s: 0
o 1 (1.1)

T hus, the corresponding transit ion rule for quant um cellular automata spec­
ified in this way is

(1.2)

where I and J denote time-ste p and site location of the one-dimensional
quan tum cellular automato n respect ively, and N is a. norm alizati on factor
sueh that

L leI,; 12 = 1 for all I .
;

For a cellula r automaton consist ing of two sites only, th is would correspond
to the rule

~ { (~ ~) ( : ) +ts (~ ~) ( : ) +is: (~ ~) ( : ) } .
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Clearly, (1.1) represent s a uni tary evolution for small values of 8 only. For
larger values of 8, ot her matrix elements farther off the diagonal would have
to be nonzero in a very specific way to preserve un it urity. T his would imply
nonlocality. In contras t, we decided to study strictly local rules. These we
define such that the amplit ude at a given site and time depends only on
thi s sites ' amplitude and that of its nearest neighbors at the previous t ime
step. In ot her words , we adopt equation (1.2) to be the rule govern ing the
evolu tion of our quant um CAs independent of the size of 6. Rather th an
abandon ing locality, we believe our choice to be a good cand idate when en­
visaging possible future realizations of quantum cellular automata machines.
Also, this approach provides a natu ral procedure for the transition between
the quantum and the classical domain .

2. Results

The result s are presented in the form of probability maps, i.e. we plot the
"temporal" evolution of one-dimensiona l quant um cellular automata in terms
of the normali zed probabili ty values PJJ = cj JCJJ for each site J at each time
step I. Different shades of grey represent different probab ilities.

Our main interest in thi s paper is to study the evolution of quantum
cellular automat a as a function of the size of the off-diagonal elements 8 in the
Hamiltonian. T hat is, we want to invest igate the depe ndence of the resulting
patterns on the relative weighting of the nea rest neighbor's contributions.

In the figures plott ing the probability maps the number of pixels is 120 x
532 for one image, and 120 x 1596 for three consecut ive images respecti vely.
Generally , we vary the size of the off-diagonal contributions 8 = 8e(1 + i) by
varying Se and we vary the initial point configurat ions.

3. Probability maps with one initial site of nonzero amplitude

The most obvious featu re common to quantum cellular automata created by
rule (1.2) for all 0, > ../2 is their st riped pattern, i.e. sites with relatively high
and relati vely low intensities alte rnate regularly when t he resulting pattern
is observed at a specific t ime step I . To see how t his comes about , one has
to consider the explicit time evolution of the quantum cellular automaton.
Starting with one nonzero init ial point ClJ ¥- 0 one obtains the probab ility
values for the "t ime" I + 1.

Ic/+I,JI' = ~ , Ic/+ " J - d' = 1c/+t.J+,I' = ~o~ (3.1)

and for "t ime" I +2

Ic/+"JI' = 2. [~ _20'1' (3.2)N' 2 c

[cl+"J±d' = .i.o'
N ' c

IC/+',J±,I' = 2.0,
N' ,
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T hus, one obtains for .sc > V2:
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(3.3)

which corres ponds to an overall st riped pa tt ern of the probability maps for
all quantum cellula r automata governed by rule (1.2) with 6, > ,,12. For
be ~ .J2 striped pat tern s may arise, too , but they will in genera l occu r only
locally.

To show characterist ic results, figures 1 through 3 present examples with
one initi al site of non zero amplitude. In figure 1 we plot a quantum cellula r
automaton with ac = 0.02. The result ing pattern exhib its a st riped wave­
like struct ure with. interferences around the edges. For comparison , figures
2a through c show a quantum cellular au tomaton with Dc = 20 and one
initial poin t. T he ellipses typical for thi s range of 6, gradually flatten and
eventually form "p lane wave surfaces ." Finally, figure 3 shows a quantum
cellular automaton with 6c = 4000 and one init ial point. Increas ing the value
of 6e does not cha nge the pat tern . One can therefore speak of a "final state"
pattern.

4. P robability m aps with more t han one in it ial site of nonzero
amplitude

For the pattern s studied by us so far with more than one init ial site of nonzero
amplitude, two characterist ic state ments can be made.

1. As a consequence of patterns being st riped in the way described above
one can formulate a relative ini tial point location rule: Whenever the
number of intermediate states in one row of equal t ime I between two
in it ia l point s is odd, one obt ains symme trica l or melt ing featu res (e.g.
melti ng ellipses ). Whenever that number is even, the figures are dis­
torted or die out (t he lat ter being the case for small-grained patterns).
Generally, if the number of init ial points is increased one can obtain
more and more complex behavio r (dy ing out of some figures and melt­
ing of ot hers, etc.) which leads to an increasing sens it ivity to t he inti al
conditions-changing one out of, say, four initi al point s by moving it
one site to the right or left (or by reducing or increasing the value of its
am plitude) can lead to dramatic differences in the result ing patterns.

2. There is one specific condition that-if fulfilled-produces a stable pat­
tern after a few tim e steps. Th is one may be called t he constancy in
time criterion: Whenever the initial configuration is such that the loca­
tion of the (at least two) sets of initial points , with each set containing
at least one initial po int, is rotation symme tric along the axis of the
torus defined by th e period boundary conditions, one obtains stable
pattern s afte r a few initi al time steps {i.e. typically between 300 and
500) which are then conserved for all later t imes .



Quantum Cellular Automata.

Figure 1: Quant um cellular automaton with Oe = 0.02 and one init ial
point. T he result ing pattern exhibits a striped wave-like struct ure
with interferences around t he edges.
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Figure 2: Quantum cellular au tomaton wit h 6c = 20 and one initial
point. The ellipses typical for this ra.nge of 6c grad ually flatten with
time and event ually form "plane wave surfaces."
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Figure 3: Quantum cellular automato n with 6c = 4000 and one initial
point. Increasing t he value of 6c does not change t he pa.ttern . One
can therefore speak of a. "final stat e" pat tern .
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T he following figures present examples of the various consequences result­
ing from the features desc rib ed above. Figure 4 shows a quantum cellular
automaton with Dc = 0.08 and two initial points at locations (I , J) = (1,30)
an d (1,90). The two init ial amplitudes are chosen with slight ly different
values (1 and 0.9), and the resulting pa t tern shows correspond ing slight dif­
ferences in the intensity distribut ion. Note that the two evolutions never
merge. Figure 5 presents a quantum cellular au tomaton with Dc = 0.2 and
two equal initial amplitu des at (I,J) = (1,40) and (1,80). Note that here
the two evolutions merge to form one connected pattern. F igure 6 shows a
quantum cellular automaton with 8c = 0.5 and four initial points with equal
amp litudes. The initi al points are located rotat ionally invarian t with respect
to th e axis of the tor us generated by the pe riod ic bo undary con ditio ns . Con­
sequent ly, the result ing pattern stabi lizes after approximately 500 t ime steps
and remains stable for all later times. In figure 7 we plot a quant um cel­
lular automaton with 6e = 10 and six equal ini tial am plitudes at loca t ions
J = 15, 30, 45, 75, 90, and 105. T he pa ttern stabilizes after a few init ial
time st eps. F inally, figures 8a through c show a quantum cellula r au tomaton
with 6e = 50 and four initial points at J = 1, 40, 43, and 80, wit h equ al
amplit udes providing a pattern that is irregular in the beginning and then
gradually becomes more regu lar.

Figure 4: Quant um cellular automaton with be :::: 0.08 and two init ial
point s at locations (I, l) :::: (1,30) and (1,90). The two initi al am­
plitudes are chosen with slightly different values (1 and 0.9), and the
resulti ng pattern shows corres ponding slight differences in the int en­
sity distribution. Note that t he two evolut ions never merge.
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Figure 5: Quantum cellular automat on with be = 0.2 and two equal
initial am plitudes at (I ,J) = (1,40) and (1,80). Note that here the
two evolutions merge to form one connected pattern.

Figur e 6: Quan tum cellular automat on wit h be = 0.5 and four init ial
points with equal am plitudes. Th e initial points are locat ed rotation­
ally invariant wit h respect to the axis of the torus generated by t he
periodic boundary condit ions. Consequently, the result ing pattern
st abilizes after app roximately 500 time steps and remains stable for
all lat er times.
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Figure 7: Quantum cellular automaton with 5c = 10 and six equal
initi al a mplitudes at locations J = 15, 30, 45, 75, 90, and 105. Th e
pattern stabilizes after a few initial time steps.
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Figure 8: Quan tum cellular autom aton with he = 50 and four initial
points at J = 1,40,43, and 80, proividing an irregular pa tt ern t hat
gradual ly becomes more regular.
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The examples presented ab ove are not arbi t rary but are chosen as rep­
resentat ions of various classes we found upon variation of the parameter 0c '
The classes can be characterized by their patterns and "prototype-values"
of oe as follows: str iped waves (oc = 0.02), separated interference patterns
(80 = 0.08), melt ing interference patterns (80 = 0.2), ripples (80 = 0.5), ellip­
t ical disks (Dc = 20) , and "fina l state" disk (Dc 2:. 4000) . The resul tin g maps
clearly exhibit typi cal quantum features such as cons t ruct ive and destru ct ive
interferences, beats, and the like.
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N ote

Since the first presentat ion of this work at the 1986 MIT conference on Cel­
lular Automata, we have cont inuously studied propert ies of qua nt um cellular
automata. Among the published results we mention pa pers discussing irre­
versibility [4] and a conservat ion law [5] in QCAs.
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