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Abstract. The difference sequence of a binary sequence is the bi-
nary sequence representing the presence of a difference in value at
two neighboring sites in the original sequence. The difference field is
the ordered ensemble of all difference sequences aligned one under the
other. It is equivalent to the space-time pattern of a one-dimensional
cellular automaton under a simple asymmetric rule. Periodic bound-
ary conditions imposed at the boundaries of the propagation net of
changes, which is induced by a finite change of values in the initial
state, give rise to periodic bands of tilings along these boundary lines.
Width and period of these bands evolve in a well-defined way, exhibit-
ing period and bandwidth doubling. A special kind of self-similarity
is apparent, and the pattern has a fractal skeleton. Periodic boundary
conditions may result from a conservation law imposed on the states
in the propagation net.

1. The difference field of a binary sequence: basic properties

Consider a binary sequence in which, for convenience, the binary symbols
are represented by 1 and 0. The difference sequence (in short, the difference)
of such a sequence is itself a binary sequence, a 1 being generated whenever
there is a change of value at consecutive sites in the original sequence and a 0
otherwise. The difference field is the well-aligned juxtaposition of successive
differences in proper order (figure 1). It forms a top-down triangular field
with a number of rows in each direction which is equal to the length of the
basic sequence.

Note that the binary values are placed on the sites of a triangular lattice.
They could have been placed along a square lattice, as is common in the study
of the state-time pattern of one-dimensional cellular automata. Indeed, in
that case (figure 2), the difference field emerges in the state-time pattern of a
ternary one-dimensional cellular automaton with the basic binary sequence
imbedded in the initial seed, evolving according to the asymmetric rule
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Figure 2: Equivalence of the difference field to the state-time pattern
of a cellular automaton (sequences considered circular).

af represents the value of site k at time ¢; @ is the classical modulo 2 sum-
mation.

In the sequel, the triangular-lattice patterns will be used.

The evolution rule given by equation (1.1) is non-additive. IL means
that the difference field of a sequence composed of different subsequences
cannot be obtained as a kind of superposition of the difference fields of these
subsequences.

On the other hand, rule (1.1) shows triangular symmetry for all pure
binary sequences (without the #-values). This implies left- and right-side
state-time exchangeability, meaning that the left or right side of the field
may be seen as initial state, while the columns parallel to the left or right
side are the successive differences of the left- or right-side sequence. As
a direct consequence, we formulate the triangular determination property:
Knowledge of all values on any side of a top-down triangle in a difference
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Figure 3: Triangular determination property. The values along line
DEFG completely determine all values on or inside ABC.

field completely determines all values in the whole triangle.

In the next sections, boundary conditions along the broken line DEFG,
as shown in figure 3, will be considered. It is a corollary of the triangular
determination property that fixing the values along all sites on this line (being
N in number) completely determines the circumscribed field ABC (side size
N, also).

2. The parity invariant net

The parity of a sequence or a set of binary values (0,1) will be defined as the
parity of the number of 1’s in that set. We will relate this to the following
theorem, the proof of which can be found in [1].

Theorem 1. The value of a site j on the k** level ((k— 1)* difference) can
be derived from the values at level (k —m) as follows:

a'}; - Z a{t';n (summation modulo 2) (2.1)
i€Am

with the following recursive scheme for the set of indices A,
Appr = [AeU (Ae + 1)\[Ae N (A +1)] (2.2)
and

Ay
Ac+1

{0}
{a+1:a€ A}

I
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Figure 4: The simple parity invariant net.

A graphical interpretation is illuminating. The theorem means that the par-
ity of any point P in a difference field equals the parity of the points on
whatever level as indicated in the graph of figure 4. This also means that
the parities of the point sets on any level are equal. Therefore, it seems
appropriate to call this ordered set of points the simple parity invariant net
(SPIN). The parity of a SPIN is the parity of the set of points on any level.

Notice that the SPIN can be constructed recursively, doubling the size of
the graph at each step. In fact, it is a fractal set reminding of the so-called
Sierpinsky gasket with [ractal dimension log, 3 (see [2]). On each level in the
SPIN, the number of points is of the form 2%. Knowledge of the (invariant)
parity completely determines the value of point P.

Now consider a second point P; on level k (figure 5.a). Its value is de-
termined by the parity of the corresponding SPIN (P;). The parity of the
joint set (P, P,) then equals the parity of all points on any level in both
SPINs taken together, so that if a point belongs to both SPINs, it is counted
twice. However, counting a point twice in parity determination is equivalent
to deleting these points. Therefore, it is found that there exists a compound
parity invariance net (CPIN) for the point set (P, P), which is, in fact, the
EXOR composition of the separate SPINs. More points can be added, and
the parity of their union may be considered. As EXORing has associative
properties, it is clear that we have established the following theorem.

Theorem 2. There exists a compound parity invariance net for any arbi-
trary point set on a given level in a difference field. It is the EXOR compo-
sition of the simple parity invariance nets for all separate points.

An example is given in figure 5.b. Notice that the number of points on all
levels, except the basic one, is always even. The self-similar properties of
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Figure 5: Compound parity invariant nets.
CPINs will be discussed in the next section.

3. The dual of the parity invariant net: the change propagation
net (CPN)

Consider a binary sequence (possibly unbounded) and the corresponding dif-
ference field. A change in binary value on one site in the sequence is seen to
induce changes at the underlying levels over an ever increasing region (figure
6.a). The set of sites for which the values change will be called the simple
change propagation net (SCPN). This set is the upsidedown version of the
SPIN. It is also the set of sites with value 1 in the difference field on a infi-
nite binary sequence with a 1 on a single site. It has additive properties; i.e.,
the compound change propagation net (CCPN) according to a set of value
changes in the basic sequence is the EXOR composition of the SCPNs of all
points in that set (figure 6.b).

Lemma 1. The values along columns parallel to the sides of the simple CPN
form a periodic chain. The k" column has minimal period 2/"92*1 (see figure

6).

This follows from the recursive construction of the SCPN as discussed in
section 2. As a consequence, there is a doubling of the period length by
moving from column 2¥ to column 2% 4 1.

Theorem 3. (Generalization of lemma 1.) The values along columns paral-
lel to the sides of the compound CPN form a periodic chain. The k** column
has minimal period 2[%92¥1,

Proof. Column k is the EXOR composition of columns 1, k —p; +1...,
k — py + 1 of the SCPN, where p,, is the largest site number not exceeding
k. Tt follows from lemma 1 and the superposition property that 2108251 is a
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Figure 6: (a) Simple change propagation net (SCPN), (b) Compound
change propagation net (CCPN).

period length of the resulting sequence. It is also the minimal period as a
consequence of two observafions. The first one is that the period sequence in
column k and of length 2M'%2¥] has nonidentical first and second half parts.
The second one is that if there would be a smaller period-length P, there
must be a minimal period length which is a common divisor of (P, 2082 #1),
i.e. of the form 2™ (m integer < [log, k]). But this would contradict the
first observation. B

Theorem 4. The compound change propagation net and its dual, the com-
pound parity invariant net, have a fractal structure with fractal dimensions
log,3.

Proof. Consider a CCPN with base length £ up to level 2%, with £ < 2F
(figure 7). The CCPN up to level 25+! is obtained by copying the hatched
areas between levels 1 and 2* on the levels 2% 4 1 to 2¥+1 as indicated. This
is a consequence of theorem 3. As to the configuration of the UVW part,
this is the EXOR superposition of the configuration in EFD and HCG. This
is a consequence of the relationship of values on levels in the difference field
which are a distance 2* apart, as given by the SPIN: a{.+2k = a{u EBa:;:'zk (see
equation (2.1),(2.2)). Globally speaking, this means that the configuration
on levels 2% + 1 to 25+! is obtained by EXORing two copies of the original
configuration ABCD on these levels (one copy aligned to the left, the other
to the right).

The same procedure applies when doubling the linear dimension once
more. Notice that by the periodicity theorem, the parts which are to be
EXORed every time, remain the same. This allows us to write the following
recursion for the number V of 1-valued points up to the level 241
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Figure 7: Recursive structure of the compound change propagation
net.

V(2H') = 3V(2%) — V. for k> ko and 2% > ¢, )

in which V, = number of points in HGC + number of points in EDF - number
of points in [HCG @ EDF].
Solving the recursion (3.1) gives the growth rate equation.

V{eFty = gYuas) - %} +% (3.2)
og2 {35[v(2%0 -lf-v iv
2(k+kD)I 6221 (:-u: It (33)

So, the growth rate is volume dependent. From equation (3.3), we find the
fractal dimension as [3]:
. log, {3¥[V(2%) — %] + %}
lim
koo k + ko

=log, 3. (3.4)
"

4. The partially extended and globally extended difference field

Consider the difference field of a basic sequence S. This field can be extended
by adding two values on the second level, one at the left and one at the right
boundary. This extends automatically the field on the third level, where once
again two new values are added at the boundaries.

This can be continued in an unbounded way. The field obtained in this
way will be called the partially extended field (figure 8). It is completely
determined by the basic sequence values and by the extra added values, which
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Figure 8: ABCDE: inner partially extended difference field of 100101.
F'GE: globally extended difference field. FAD, BGC: left and right
outer extended field.

are actually placed along the boundary of any CCPN whose basis covers the
basic sequence. By the corollary of the Triangular Determination Property of
section 1, the circumseribed triangular field is completely determined. This
will be called the globally extended field.

We will now consider periodic boundary conditions along columns AD
and/or BC. This presupposes a potentially unbounded field size, although it
is possible to interpret the properties on a more restricted field (sufficiently
extended to incorporate a few periods for the lines considered). Boundary
conditions along AD and BC may be taken totally independent of each other.
Configurations on columns parallel to AD and to BC will be considered (these
will be referred to as left- and right-skew columns). Because of the symmetry
of the difference rule, all properties which are valid for left-skew columns are
also valid for right-skew columns. Therefore, only left-skew columns will be
considered in the derivations that follow.

Some notations:

Sp(y) will denote the minimal period sequence on column j.
P[Sp(7)] will denote the period length of Sp(j).

Par[Sp(7)] will denote the parity of the sequence Sp(7).
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A single element in the field will be denoted by (r,¢), r being the row
number and ¢ the column number.

V(r,c) represents the value of element (r,¢), V(r,c) its complement.

Par[(a,b), (c,d),(c, f)...] represents the parity of the set of elements
mentioned between [...].

Theorem 5. In the globally extended field, either all columns are periodic
or all are non-periodic. Left-skew columns may show a period-doubling from
left to right.

Proof. Consider column j, with Sp(j) and P[Sp(j)] = p. Then, column
(7 — 1) must be periodic too as it is the uniquely determined difference of
column j which is periodic. Moreover, P[Sp(j — 1)] < P[Sp(j)]- Column
(7+1) must also be periodic. With a given Sp(j), two possible corresponding
sequences which are each others complement may occur at column (7 +1).
(As complementary sequences are the only different sequences with equal
differences). So, column (j+ 1) is a sequence of alternating complements, or
a succession of either one of the two possible sequences. In the latter case,

:’[Sp(j +1)] = P[Sp(7)]. The former case implies P[Sp(j +1)] = 2P[Sp(j)].

We will now elaborate further on the evolution of the periods.

Lemma 2.
& P[Sp(7 +1)] = 2P(Sp(5)]
Par{Sp(j)] = odd{ = Par[Sp(j + 1)] = odd/even when (4.1)
P[5(5)] = odd/even
Par[Sp(j)] = even < P[Sp(j+1)] = P[Sp(j)]. (4.2)

Proof. Consider a period sequence Sp(j) with P[Sp(7)] = p. According to
the parity invariance net theorem 2:

Par[(1,j +1),(p+ 1,5 + 1)] = Par[Sp(j)].

If Par[Sp(j)] = odd, this means that V(p + 1,7 +1) = V(1,j +1). In
consequence of this and theorem 5, there is a period doubling on column
(j +2). Also, V(k+p,j+1) = V(k,j+1) so that there is an equal number
of 1’ and 0’s in Sp(7 + 1). This number equals P[Sp(j)] and this implies
evenness of Sp(j + 1) in case P[Sp(j)] = even, and oddness in the opposite
case. If Par[Sp(j)] = even,V(p+1,j+1) = V(1,7+1) and there is no change
in period length. W

Lemma 3. Par[Sp(j)] = odd and ZERIl = odd for some integer ko > 1
implies that
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Par[Sp(j + 2%)] = Par[Sp(j)] = odd (4.3)
and
P[Sp(j +2*)] = 2P[Sp(3)]- (4.4)

Proof. (See figure 9.) Partition Sp(j) in Ny = P[Sp(j)]/2* groups of
2% successive elements each. Consider the same groups in the second pe-
riod on column j. Select groups 1,3,5... Ny in the first period and groups
2,4,...(Np — 1) in the second period. Construct the parity invariant net
on the elements of the selected groups and observe that this net completely
covers all elements of a sequence S, of length 2P in column (5 + 2*). (This
is only true for Ny = odd, and follows from the overall PIN-structure). Ac-
cording to the PIN-properties:

Par[S,] = Par[group 1+ group 2 + group 3 + - -+ + group Ny]
Par(Sp(j)). (4.5)

Now, Par[Sp(j)] is odd (premise), and so is Par[S,]. This means that se-
quence Sz on column (j +2% +1) with length (S3) = 2-length (S,), is a con-
catenation of 2 complementary sequences of length 2P (lemma 2). These have
identical differences (on column (j + 2%)), implying that S, = Sp(;7 + 2*).
Together with equation (4.5) this gives equation (4.3). As length (S,) =
2P[5(5)], equation (4.4) follows.

Lemma 4. Par[Sp(j)] = odd and ﬂ-_;"ﬁ(ﬂl = odd (for some ko > 1) implies
that

P[Sp(j + @)] = 2P[Sp(j)] for 1 < a < 2%, (4.6)

Proof. Lemmas 2 and 3 imply that both P[Sp(j + 1)] and P[Sp(j + 2%)]
equal 2P[Sp(7)]. By the monotic evolution of periods implied by theorem 5,
the period lengths on all intermediate columns must be constant and equal
to 2P[Sp(5)]- B

As a direct consequence of the lemmas 3 and 4, the following global
theorem can now be formulated.

Theorem 6. (odd parity - even period theorem). If —P%Ein = odd (for some
ko > 1) and Par[Sp(;)] = odd, then
a

P[Sp(j + @)] = 2™ - 2% with m = ﬂog,(zku

+1)]. (4.7)
Remark. m = [logy(5% +1)] is equivalent to m = |log,(% +1)+1]. Both
equalities arise from the condition (2"~ —1)2% +1 <a < (2™ —1)2%, m =
1,2,..., resulting from application of lemma 4. Notice that the conditions
of the theorem always imply that P[Sp(j)] = even. For P[Sp(j)] = odd,
following theorem emerges:
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Figure 9: Relationship between parity and period length of columns
j and j + 2%,

Theorem 7. (odd parity - odd period theorem). If P[Sp(j)] = odd and
Par[Sp(7)] = odd, then

P[Sp(j + a)] = 2™ with m = |log, /. (4.8)

Proof. This is a direct consequence of lemma 2 which implies that P[Sp(j +
1)] = 2P[Sp(j)] = even and Par[Sp(j+1)] = odd under the given conditions.
This then makes Sp(j + 1) satisfy the conditions of theorem 6 with ky = 1. B

Theorems 6 and 7 both deal with the conditions that the first period
sequence considered had an odd parity. This fixes completely the further pe-
riodicity evolution in strict dependence on the length of that period sequence,
but totally independent of any other boundary condition in the field. In what
follows, even parity for Sp(7) will be considered. It will be shown that a given
period length may persist over a band of arbitrary width, by fixing certain
boundary conditions. Of course, in view of theorems 6 and 7, the parity
within this fixed-period band remains even up to the (rightmost) last col-
umn with the same period length. From then on, the odd-parity theorems
begin to work.

Theorem 8. (Even parity-odd period theorem) For P[Sp(j)] = odd and
Par[Sp(j)] = even, it is always possible to construct Sp(j + 1) in such a way
that P[Sp(j + 1)] = P[Sp(j)] and Par[Sp(j + 1)] = odd or even.

Proof. Consider a completely specified Sp(j) satisfying the conditions of the
theorem. Set p = P[Sp(j)]. From lemma 2 it follows that P[Sp(j + 1)] = p.
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Pick out one arbitrary place (e, j + 1) with 1 < a < p. Due to the oddness
of p, it is always possible to construct a PIN relating Par[{(y,7 + 1) : pp =
1...p,p # a}] to the parity of a set §2;, of elements in Sp(j). So, we have

Par[Sp(j +1)] = Parf(o,j+1),{(mj+1) p=1...p,u # a)}]
= Par(a,j+1), Qal (4.9)

Il

As Par[{2;.] is given, equation (4.9) implies that Par[Sp(j + 1)] can be set
to either parity by appropriately choosing V(e, 7 + 1). Notice that fixing a
single element on (j + 1) completely determines column (7 +1). B

Remark. A repeated application of this theorem implies the possibility of
constancy of period length over an arbitrary number of columns (possibly
leading to periodic behavior over columns).

Theorem 9. (Even parity-even period theorem.)

A. P[Sp(7)] = 25(k > 1) and Par [Sp(j)] = even = Sp(j) is a column in a
band of width 2*~' according to the period doubling scheme of theorem
6.

B. P[Sp(j)] = P = even, but # 2* (k > 1) and Par[Sp(j)] = even

Par[Sp(j +1)] = even & Par[(1,5),(3,7)---(p—1,7)] =

& itis always possible to

construct Sp(j + 2) such
that Par[Sp(j + 2)] =
odd or even.

Proof.

A. Observe that according to the PIN property : Par[Sp(j)] = Par[V (1,7 —
2F)]. As this parity is odd, V(1,7 — 2¥) = 0. As Sp(j) is periodic, any
period has the same parity and so all elements on column (j —2*) have
a value = 0. So P[Sp(j — 2¥)] = 1, and all columns of rank less than
(j —2*) are identically zero. Now, either all first elements of all columns
of rank > j — 2F are zero and then all elements are zero which implies
that P[Sp(7)] # 2¥(k = 1)), or there is a column (j — p) > j — 2% with
V(1,7 — p) = 1. Tt is a column with all elements equal to 1, and it
satisfies the conditions of the odd parity-odd period theorem 7. It even
follows that if P[Sp(j)] = 2* is the minimal period of Sp(j), p satisfies
2k=1 < p < 2%, The actual value of p depends on the parity of a certain
subset of Sp(j) and can be derived using the PIN-properties. If the
elements in Sp(f) can be chosen freely, it is always possible to make
Sp(j) have an arbitrary rank in the band of width 2! in which it is
embedded.
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B. &: is directly clear from the PIN connecting the elements on columns
J+1 and j.

&: consider column (j + 2). Par[Sp(j + 2)] = even iff Par[(1,j +
1),(3,7 +1),...(p — 1,7 + 1)] = even. The last parity also equals
Par[(p — 1,7 + 1)+ some elements on columns of rank < j as can be
found from the PIN covering the points [(3,7+1)...(p—1,7+1)]. So, it
suffices to choose V(p—1, j+1) in an appropriate way to make the parity
above even. Notice that this choice completely determines Sp(j + 1)
and sets Par[Sp(j + 2)] = even. Then Sp(7 + 1) and Sp(j + 2) satisfy
the conditions of the theorem, so that it can be repeatedly applied in
order to provide a band of columns of arbitrary width. B

Until now, we have considered the possible evolution of periodicities for
left-skew columns when moving from left to right when starting with an ini-
tial Sp(7). In case P[Sp(j)] = odd, this evolution of periodicities is fixed in a
way which solely depends on Par[Sp(7)]. When P[Sp(j)] = even, some arbi-
trariness in the possible width of bands of a given period length is possible by
properly choosing some boundary conditions. For the sake of completeness,
we still have to consider the evolution of left-skew columns when moving to
the left. As moving to the left of Sp(j) means that we consider the difference
field of column j, it is completely determined by Sp(7). In fact, the evolution
of some Sp(j+ ) in horizontal direction to the left is the state-time evolution
of a fixed length circular cellular automaton. It is known that these evolve
towards some limit cycle of a restricted set of states. Hence, when moving to
the left, after crossing a transient zone, a region will eventually be entered
in which there is also periodicity in the horizontal direction. We state some
specific results for the periodic evolution for extension of left-skew columns
to the left.

Theorem 10. If P[Sp(j)] = odd, then Vk > 1: P[Sp(j — k)] = P[Sp(j)]
and Par[Sp(j — k)] = even.

Proof. Suppose Par[Sp(; — a)] = odd for some o > 1, then there must
be a period doubling on line j — a + 1 (theorem 5). This would imply
P[Sp(3)] = even, what contradicts the premises. i

Theorem 11. A. P[Sp(j)] = 2¥(= even) implies that j is a column in a
band of columns of constant periodicity P[Sp(j)] and bandwidth 25~!.
With p the rank of j in this band (which depends on the parity of
some subset in Sp(j)), halving of the period must occur at columns
j+tp—(2°—1)-25° a=1,2,...,(k—1). Column j+p—2(2"1-1)
is full of 1’s, and all columns further to the left are 0.

B. P[Sp(j)] = even # 2%, and ﬂ%’.%in = po = odd implies that either there

18:

a) an unlimited band of columns with period P[Sp(j)):
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1. sufficient is that Sp(j) already belongs to a band of width
> 2%=1 (this is possible by theorem 9.B).

2. if Sp(j) is the first column of a band of width = w < 2%~ jt
is necessary that the parity of the elements of Sp(j) covered
by the PIN which covers the first _EI-_Szz(iH elements of column
(j 4w —2%"1 —1) is even. Or,

b) a band of width 2%~' and period P[Sp(j)] surrounding Sp(j) :
sufficient is that the parity of the elements of Sp(j) covered by
the PIN which covers the first EE‘%(J]I elements of column (j +w—
2k=1 _ 1) is odd.

Proof.

A. This is the only way to extend the difference field to the left without
contradicting theorem 9.A.

B. Suppose that under condition a)l, there would be a halving of period.
The parity of the first halve period must then be odd and the odd-
parity theorems 6 or 7 apply. These would be in contradiction with
the premises. For a)2 and b): if not so, theorems 6 or 7 should become
violated again. B

The results obtained in this section are summarized in configuration table
1 showing period sequence parity (Py), period length (Pl), and bandwidth
(Bw). P is the length of the initial period sequence. 2% is such that P/2% =
odd (for some ko € {0,1,2,...}).

Corollaries to theorems 10 and 11:

1. The occurrence of one period-doubling induces an infinite series of pe-
riod doublings. The bandwidths are also doubling. As a consequence, it
is impossible to find identical period sequences on two different columns
(identical even under shift).

2. In bands of constant irreducible period length P (irreducible: the pe-
riod is not a multiple of a smaller one), the bandwidth never exceeds
P/2, unless it is unbounded.

3. For bands of constant (but possibly reducible) period length P, starting
with an odd parity period Py (from left for left-skew bands), the band-
width never exceeds 1+(2%—1)2%, (with ko: Py/2% = o0dd and a=
log, P/ P;). The absolute upper bound occurs for Py = 1 and equals P.

5. Some examples of extended binary fields

Any change propagation net is a special case of an extended binary field with
initial state the sequence of initial value-changes and with periodic left- and
right-skew columns full of 1’s. (figure 10.a)
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3. P= even # 2¢

Bw unbounded b.iorb3

B. Even parity of initial period - sequence

0 E O E...E.
p

Py...f..EEEm_..OEE.
PE 2uaPo P P P B P
z

Ce— B 1

Bw  unbounded 1 2 4 243

2kt

Py Eove o B B Buw B 0 Eua B B B

Bl L. PR, ... @ P, ..., # 1P, .
: i e e

Bw 2% 2t gher

Py ....EEEEUEGEEEG

P ....P P PP P 4P 4P 8P 8P 8P &P
o —

Bw unbounded according to Aa.

..E

This sequence can only coincide with an (E,P)- sequence from
the configurations under A. The corresponding difference-field
configuration must be consistent with one of the possibilities

mentioned under A.

Table 1: Configuration of possible parities, period lengths, and band-

widths.
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An astonishing variety of patterns emerges, depending on the specific
choice of periodic (or aperiodic, chaotic or random) boundary sequences (fig-
ures 10 and 11). For any periodic boundary (left/right, or both), a difference
in patterns between the inner partially extended field and the (left/right or
both) outer extended fields becomes apparent. Whereas the (inner) partially
extended field mostly shows a very complex pattern, the outer extensions
become periodic (for increasing periods, the structure of a period may be-
come complex too). For an aperiodic boundary, such a clear distinction in
patterns between inner and outer extension does not seem to exist. It could
be worthwhile to investigate this different behavior in view of aperiodicity

and randomness characterizations of sequences.

In the next section, we will have a closer look at the global structure.
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N

(a) A change propagation net (CCPN)
BF(0,10010111100101011010,0)

(c) A left half-infinite CCPN
BF(101,,0)

André Barbé

(b) A right half-infinite CCPN
BF(0,,11110)

(d) BF(101,,11110)
= figure (b) & figure (c)
(theorem 12)

(e) BF(101,10010111100101011010,
11110) = figure (a) @ figure (b)
@ figure (c) (theorem 12)

(f) BF(1111110,,1110111)

Figure 10: Examples of difference fields (number of levels ~ 315).
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(a) BF(101011100110100,, (b) BF(1110101110,,1110101110)
101011100110100) Identical left and right period
Identical left and right period sequences.
sequences.

(c) BF(1010110,,011010101) (d) BF(0110101,,011010101)
Compare to 12(c): shift
in left sequence.

(e) BF(1010101,,random): (f) BF(random,,random):

there is still left-skew completely unstructured.
periodicity.

Figure 11: Examples of difference fields (continued).
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6. Recursive and fractal properties of the inner extended field

6.1 A decomposition property

In section 3, we discussed the fractal properties of the CCPN, which is a spe-
cial case of an extended difference field. Its fractal dimension was derived on
basis of the growth rate equation (3.3) which was easily determined because
the whole structure could be built up recursively starting with small-sized
building blocks of known mass (number of 1’s in it).

In the more general case, such an exact recursive procedure based on finite
building blocks does not seem to exist. However, a growth rate equation
can be found with some bounded unknown parameters. This shows that
the overall structure of the inner extended field can be decomposed in two
subsets. One has a fractal nature with a fractal dimension which seemingly
depends on specific boundary conditions and that may possibly differ from
log,3. The other subset has dimension 0, 1, or 2.

We will first introduce a notation for characterizing a specific (extended)
difference field. A field will be denoted by BF(Py, Is, Pr), in which Pp, Is, Pr,
respectively refer to the left periodic sequence, the interconnecting sequence
at the basic level and the right periodic sequence (figure 12). Is may be
the empty sequence; the corresponding notation is BF(Py,, Pg). All fields
and nets will be considered relative to a reference point in the lattice : i.e.
the point at which the first element of Py is located. A shift of £ places
to the right will be represented by multiplication of BF(.,.,.) with zf a
shift to the left by multiplication with z=¢. Notice that any CCPN is a
BF(1,15,1) = z7' - BF(0,1+ Is+1,0). (+ stands here for concatenation).
BF(Py,Is,1) = z7°BF(.,,H(Py) + Is,1) will be called a left half-infinite
CCPN. BF(1,Is, Pr) = BF(1,Is + H(Pg),.) is a right half-infinite CCPN.
H(PL), H(Pg) are the equivalent boundary conditions on the basic level cor-
responding to Pr, Pr respectively. After a transient zone, these sequences
become periodic too.

As a consequence of the additive property of CCPN, we can now state:

Theorem 12. (Decomposition theorem). Any extended binary difference
field can be decomposed as a sum (modulo 2) of a left and right half-infinite
field and of a finite field as follows: (0[len(Is)] denotes a sequence of 0’s of
length equal to the length of Ig)

BF(Py,Is,Pr) = BF(Py,0[len(I5)],0) @ BF(0,0[len(Is)], Pr)
EBBF{U,Is,U)
= BF(Pg,,0) @ +endsIBr(o, | Pp)
@®BF(0,Is,0).

(6.1)

6.2 The half-infinite CCPN

Now consider a left half-infinite CCPN: BF(Py,,0) in which the reference
point has value 1 (figure 13). Distinguish between Fy,, the left outer extended
field with transient zone included, and Ff, the two-dimensional periodic part
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reference point

H(P._}TIS H{pﬂy H(P,_) L Hanl “T"
left right finite
half-infinite half-infinite CCPN
CCPN CCPN

Figure 12: The decomposition theorem.

of it. Fi(k),ar(k), Br(k+1) refer to the triangular fields ABD, BCD, ELJ as
shown in figure 13. k refers to the exponent of the linear field size 2%. This
CCPN satisfies the periodicity properties of difference fields with periodic
boundary conditions (section 4). There are right-skew bands of width 2* with
periodicity 2% (k integer, these bands start from the rightmost 1-sequence).
Left-skew sequences have a bandwidth which is smaller than the period length
P[Py.). Consider a basic triangular field with linear dimension 2* and volume
(number of 1’s it contains) V(2¥). Doubling the linear scale to 2¥*! gives a
structure which can only be partly reconstructed from the extended field of
linear dimension 2*, as shown in figure 13. Notice the appearance of small
top-down triangular fields at levels mP[Pr] + 1, (m = 1,2,...). These are
doubling in size for increasing m = 2°. The growth rate of V from linear
dimension 2* to 25*1 satisfies:

V(25) = 2V(ay (k) + V(Br(k +1)) + V(F5(R)). (6.2)
Now, field Br(k + 1) is of the same nature as field ar(k), and so we write
V(Bu(k +1)) = praV(ap(k)) = prsaV(25) (6.3)
with pz4; uniformly bounded above.
Also,
V(Fy(k)) = 257(2" + 1) (peo + wa) (6.4)

in which pg, is the limit density over the unbounded two-dimensional periodic
region Fr. v is a correction factor for considering only a finite-dimensional
triangle Fy(k) in Fp; it is uniformly bounded (will — 0 for k — o0). The
recursion therefore becomes:

V(2H1) = 2+ prsn)V(25) + 2725 + 1)(peo + ). (6-5)

Defining
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lovel 1 __A B} o-valued
boundary

o-valued zone

WINDOWS

ABCD :dl. (k)= AFGH AE :PL (k+1)

Figure 13: The left half-infinite CCPN.

¢
P =V (24 pra1) (2 + pris2) - (2 + prse) (6.6)
and starting with a linear dimension V(2*), the solution of (6.5) is given by:
—k
V(@) = {V(2R) 42T IRy,

—(kg+1)
P T

+£%(ﬂ,+_nl(pm + Vig42) -+
AN (e o+ Vige-1)) -

Pe
= V(2®)
+2 (o, + 14,)(142°5)

. +Ukgts —(ko+i)y ot
(i) (M52) S

Poo +vy,o

Now there are two possibilities:

Possibility 1. p,, = 0iff len[P;] = 2° for some integer £. p., = 0 also implies
that the fractal dimension of the inner extended field is equal to log, 3.

The “iff” follows from the periodicity properties of section 4. p,, =
0 implies that the zone to the left of P;, becomes a pure 0-valued area,
possibly after crossing a transient band (which implies v; # 0). In case
v; = 0, the transient zone does not exist and the inner extended field is
identical to the SCPN, and it has fractal dimension log, 3. When »; # 0,
the condition p,, = 0 produces a field that is identical to a CCPN, so it
has fractal dimension log, 3, too. Limiting this CCPN to the inner extended
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field under consideration does not alter the fractional dimension, because
of the constant width of the transient band. This implies that the volume
contribution of this band is bounded above by linear proportionality to the
linear scale, so it is dominated by log, 3.

Possibility 2. p. # 0: the fractal dimension of the inner extended field is
2. In this case, it follows from equation (6.7) that V(2**¢) is bounded below
by

V(2k°+l) >
ko
28 | 92, 4 )(1 4+ 271 = (31 (6:3)

The right-hand part is the expression in (6.7) for g, = 0, i.e., ¢ = 2% The
second term tends to a constant and dominates. Therefore, the resulting
dimension is 2.

Notice that the difference between the two cases above does not seem to
be a structural one. Where we have growing white spaces (overall zero-value)
in the first case, we find the left-hand periodic texture in the second case.
It is this fact that brings the pattern to full dimensionality, as is clear from
equation (6.7). Emptying the zone in which this texture appears produces a
pattern that now satisfies

V(2% = () 'V (2h)

with

4
Pt =V (24 pho1) (2 + Hhypa) - (2 + Bhope)-

It follows that the fractal dimension is lim;_., (log, ¢}) = log, (lim—.. ¢}).

It is not clear how pj, the ratio between the resulting volumes of the
left lower triangle and the top triangle in the linear scale doubling scheme of
figure 13 evolves. Unless gy — 1 for £ — o0, ¢} # 3.

So, if we squeeze out the periodic-field pattern from the global difference
field pattern, we are left with a fractal object. We will call this the fractal
skeleton of the difference field. The difference field patterns will then be
considered as a submerged fractal skeleton (figure 14).

6.3 The general difference field with periodic boundary conditions

From the decomposition property (section 6.1) and the considerations about
the half-infinite CCPN, it follows that a general difference field BF'(Py,, Pr)
is the EXOR superposition of two submerged fractal skeletons. The result-
ing skeleton is now filled with an EXOR mixture of the left- and right-hand
periodic “liquids” (figure 15). This mixture is “locally” periodic. Different
mixture compositions are possible, due to phase shifts in the superpositions
of the left and right periodic fields. Multicomponent mixtures may occur,
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Figure 14: Fractal (b) and submerged (a) fractal skeletons.

in which the components are different shifted versions of the left and right
periodic fields. The resulting volume (global as well as for the skeletons) is
bounded above by the sum of the volumes of the two half-infinite fields. The
resulting dimensionality is thus bounded above by the maximal dimension-
alities of these two component fields.

As far as BF(Pp,Is, Pr) is concerned, its fractal skeleton dimension is
the same as that of the fractal skeleton of a corresponding BF(Pj,, Pf)
(figure 16). Both patterns differ in the width of the transient bands and in
some extra initial volume. But this becomes eventually dominated by the
BF(P;,, Pg) inner volume.

The last point also shows that seen at sufficiently large scale, the BF
(Pr,Is, Pr) patterns are similar in nature, independent of Ig. Only the
occurence of specific mixtures will be influenced (compare figures 17a.b.c.d).

7. A conservation law that generates periodic boundary condi-
tions

Consider a difference field. The vector (nq,n2,n3...74), the components of
which represent the number of 1’s on each difference level is a characteristic
of this field. Consider a balanced set of places at the basic level, i.e. a set
of places in which the number of 0-values equals the number of 1-values.
Take this set of points as the generating sequence for a CCPN (figure 18).
The value-changes induced by this CCPN will not alter n; (because of the
balancedness of the generating sequence), but will generally alter the other
components n;, as the CCPN will not cover balanced subsets at all levels.
However, we can search for difference fields which are balanced everywhere
under a given CCPN (up to the level where the CCPN completely covers
the difference field, which should be potentially unbounded). Exploratory
computer experiments show that this forces periodicity at the CCPN bound-
aries (from a certain level on), and hence overall periodicity. It has not yet
become clear why this is so, The reverse fact that periodic boundary condi-
tions imply balancedness is certainly not true. As a matter of fact, looking
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ADEF=dgfkl@g (k+1)  AGHI=d, (KI®Bg(k+1)

Figure 15: Structure of BF(Pr,, PR).

transient zones
(dimensionality = 1)

Figure 16:  Relationship between a general difference field
BF(PL1]SaPH) and BF(PLHP}'?)
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(¢) BF(Py,11001111111, Pr) (d) BF(Py,01001011101, Pg)

Figure 17: Fields with identical P, and Pr sequences but with dif-
ferent I's sequences. P, = Pr = 101011100110100. Compare also to
figure 12.a showing the outer field.

*/= =1/8 ,POINTS OF CCPM

u/® 21/8 ,POINTS OF CCPN UITH AN
UNDERLYING DEGREE OF FREEDOH

/= =178 ,FIHED POINIS OF THE

UNDERLYING DIFFERENCE-FIELD

Figure 18: A balanced CCPN.
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for the set of sequences with the same (n,,n3,n3...) was at the origin of the
material which was developed here.

8. Conclusions

The binary difference field originates from the most simple non-trivial local
interaction rule: a modulo-2 summation of just two neighboring cells. A
complete analysis has been presented of the overall pattern resulting from
periodic boundary conditions along a left- and/or right-skew column. These
patterns exhibit a fascinating and unlimited variety in details embedded in an
invariant overall structure. Immediately, the question arises whether similar
results exist in more general cases involving other interaction-rules between
multiple-valued cells. Even more intriguing is the fact that this behavior
is induced by a kind of conservation law, as mentioned under section 7.
Further work needs to be done in order to come to a full understanding
and generalization of the conditions under which such a structured behavior
emerges.
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