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A bst r a ct . T he di fference sequence of a binary sequence is th e bi­
na ry sequence representing the presen ce of a difference in value at
two neighboring sites in the or iginal seq uence . The difference field is
the or dered ensemble of all difference seq uences aligne d one und er th e
other. I t is equi valent to t he space-time pattern of a one-dimensional
cellular au tom a ton un der a simple asymmet ric rule . Periodi c bound­
ary conditions imposed at t he bou nd a.ries of the propagation net of
changes, wh ich is ind uced by a fini te change of values in th e init ial
state, give rise to pe riodic ban ds of t ilings along t hese boun da ry lines .
Width and per iod of th ese bands evolve in a well-defined way, ex hibit­
ing period and bandwidth doubling. A specia l kind of self-similarity
is apparent, a nd t he pattern has a fractal skeleton. Periodic bou nd ary
con ditions may resu lt from a conservation law imposed on t he states
in the propagat ion net .

1. The diffe ren ce field of a bina ry sequence: basic prope rti es

Consider a binary sequence in which, for convenience, the binary symbols
are represented by 1 and O. The difference sequence (in shor t, the diffeJ-ence)
of such a sequence is itself a binary sequence, a 1 being generated whenever
there is a change of value at consecut ive sites in the original sequence and a 0
otherwi se. The difference field is the well-aligned ju xtaposition of successive
differences in proper order (figure 1). It forms a top-down triangular field
with a number of rows in each direction which is equal to the length of the
basic sequence.

Note that t he binary values are placed on the sites of a tr iangular latt ice.
Th ey could have been placed along a square latt ice, as is common in the st udy
of the state-t ime pattern of one-dimensional cellular automata. Indeed, in
that case (figure 2), the difference field emerges in the state-t ime pattern of a
ternary one-dimensional cellular automaton with the basic binary sequence
imbedded in the init ial seed, evolving accord ing to the asymmetric ru le

a~+l = a~ E9 a~+l when a~ = * and a~+l::j:. *
= * when a~ = * or a~+l = *.
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Figure 1: The difference field D F( S) of binary sequence S . Ord ering
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Figure 2: Equivalence of the difference field to the state-time pa t tern
of a cellular autom aton (sequences considered circular).

a7 represents th e value of site k at time t; EB is the classical modulo 2 sum­
mation.

In the seque l, the tri angular-lattice pat terns will be used.
The evolut ion rule given by equation (1.1) is non~additj ve . It means

that the difference field of a sequence composed of different subsequences
cannot be ob tained as a kind of superposit ion of the difference fields of these
subsequences .

On the other hand, rule (1.1) shows triangular symmetry for all pure
binary sequences (with out the e-valuee). T his implies left- and right -side
sta te-time exchan geability , meaning th at th e left or right side of the field
may be seen as initial st at e, while t he columns parallel to t he left or right
side are the successive differences of th e left- or right-s ide sequence. As
a direct consequence, we form ulate the triangular determina tion property :
Knowledge of all values on any side of a top-down triangle in a difference
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A E F B

Figure 3: Triangular determination property. The values along line
DEFG completely determine all values on or inside AB C.

field completely determines all values in the whole triangle.
In the next sections, boundary conditions along the broken line DEFG,

as shown in figure 3, will be considered. It is a corollary of the triangular
determination property that fixing the values along all sites on this line (being
N in number) complete ly determines the circumscribed field ABC (side size
N, also).

2. The parity invariant net

The parity of a sequence or a set of binary values (0,1) will be defined as the
parity of the number of 1's in that set. We will relate this to the following
theorem, t he proof of which can be found in [I].

Theorem 1. Th e value of a site j on the k'h level ((k - I )th difference) can
be derived [rom the values at level (k - m) as follows:

ai = "" ai+i (summation modulo 2)k LJ k-m
iE Am

with the following recursive scheme for the set of indices Am

At+! = [At U (At + 1)1\ [At n (At + I)J

and

= {OJ
{a+l: a EAt } .

(2.1)

(2.2)
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Figure 4: The simple parity invariant net.

A graphical interpretation is illuminating. The theorem means that the par­
ity of any point P in a difference field equals the parity of the points on
whatever level as indicated in the graph of figure 4. This also means that
the parities of the point sets on any level are equal. T herefore, it seems
appropriate to call th is ordered set of point s the sim ple parity invariant net
(SPIN). The parity of a SPIN is the par ity of the set of points on any level.

Notice that the SPIN can be constructed recursively, doubling the size of
the graph at each step . In fact, it is a fractal set reminding of the so-called
Sierpinsky gasket with fractal dimension log, 3 (see [2)). On each level in the
SPI N, the numher of points is of the form 2" Knowledge of the (invariant)
parity completely determines the value of point P.

Now 'consider a second point P2 on level k (figure 5.a). Its value is de­
termined hy the pari ty of the corresponding SPIN (P, ). T he parity of the
joint set (PI> P, ) then equals the parity of all points on any level in both
SPINs taken toget her, so that if a point belongs to both SPI Ns, it is counted
twice. However, counting a point twice in parity determination is equivalent
to deleti ng these points . Therefore , it is found that there exists a compo und
parity in variance net (CPIN) for the point set (Pl, P2 ) , which is, in fact , the
EXOR composit ion of the separate SPINs . More points can be add ed, and
the parity of their union may be considered. As EXORing has associat ive
properties, it is clear that we have established the following theorem.

Theorem 2. There exists a comp ound parity invarian ce net {or any arbi­
trary point set on a given level in a difference field. It is the EXOR compo­
sit ion of the simple parity invariance nets {or all separate points.

An example is given in figure 5.b. Notice that the number of points on all
levels, exce pt the basic one, is always even. The self-similar properties of



Periodic Patterns in the Binary Difference Field 213

• • • • • • • •
• • • •
• • • • • •••
• • • •• • • •

• •• • • • • • • •• • • •
• • • •• •

• • • •p; · P2

al

• • • • • • • • •• ••
• ••• • ••• ••• •••• •••• • ••• • • • •• • •• •• ••• • • ••

• •• • • • • ••• ••• • • • • •
• • • •••... ... ... .... .... .. .

• • •• •

bl

Figure 5: Compound parity invariant nets.

CPINs will be discussed in the next sect ion.

3. The du al of the pa rity invariant net : the change pro pagation
net (C P N)

Consider a binary seque nce (possibly unbounded ) and the corresponding dif­
ference field. A change in binary value on one site in the sequence is seen to
induce changes at the underlying levels over an ever increasing region (figure
6.a). The set of sites for which the values change will be called the simple
change propagat ion net (SCPN). This set is the upsidedown version of the
SPI N. It is also the set of sites with value 1 in the difference field on a infi­
nite binary sequence with a 1 on a single site. It has additive properties; i.e.,
the compound dlange propagation net (CCPN ) according to a set of value
changes in the basic sequence is the EXOR composition of the SCPNs of all
point s in that set (figure 6.b).

Lemma 1. Th e values along columns parallel to the sides of th e simple CPN
[arm a period ic chain. The ph column has minimal period 2 f1og,kl (see figure
6) .

This follows from the recursive construction of the SCPN as discussed in
sec tion 2. As a consequence, there is a doubljng of the period length by
moving from column 2k to column 2k + 1.

T heorem 3 . (Generalization of lemma 1.) The values along columns psuel­
leI to the sides of the compound CPN form a periodic chain. The kth column
has minimal period 2 f1og,kl.

Proof. Column k is the EXOR compo sition or column s 1, k - PI + 1 . .. ,
k - Pm + 1 of the SCPN, where Pm is the largest site number not exceed ing
k. It follows from lemma 1 and the superposit ion property that 2 11012 k1 is a
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Figure 6: (a) Simple change propagation net (SCPN), (b) Compound
change propagation net (C CPN) .

period length of the resulti ng sequence. It is also the minimal period as a
consequence of two observations. T he first one is that the period sequence in
column k and of length 2nog, k1 has nonident ical first and second half part s.
The second one is that if there would be a smaller period-length P, there
must be a minimal period length which is a commo n divisor of (P, 2nos, k1L
i.e. of tbe form 2m (m integer < [log, kl ). But this would cont ra dict the
first observat ion. •

T heor em 4. T he compound change propaga.tion net and its dual, the com ­
pound pari ty invariant net, have a fractal structure Wit11 fra.ctal dimensions
109,3.

P roof. Consider a CCPN with base length l up to level 2" with l < 2'
(figure 7). T he CC PN up to level 2' +' is obtained by copying tbe hatched
areas between levels 1 an d 2k on the levels 2k + 1 to 2k+J as indica ted . T his
is a consequence of theorem 3. As to the configuration of the UVW pa rt ,
this is the EXOR supe rposition of the configurat ion in EFD an d BCG. T his
is a consequence of the relat ionship of values on levels in the difference field

• •• 2,1:
which are a distan ce 2k apa rt, as given by the SP IN: at+2,1: = at EB a:~ (see
equat ion (2.1),(2.2)) . Globally speaking, this means th at the configura t ion
on levels 2k + 1 to 2k+ l is obtained by EXORing two copies of t he original
configuration ABCD on these levels (one copy aligned to t he left, the ot her
to the right).

T he same procedure ap plies when doubli ng the linear d imension once
more. Not ice that by the periodicity th eorem, the parts which are to be
EXORed every time , remain t he same. This allows us to write the following
recursion for the numbe r V of l-valued points up to the level 2k+l :
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Figure 7: Recursive structure of the compound change propagation
net.

(3.1)

in which ~ = number of points in HGC + number of points in EDF - number
of points in [RCG 6l EDF ].

Solving the recursion (3.1) gives the growth rate equation.

(3.2)

(3.3)

(3.4)

So, the growth rate is volume dependent. From equation (3.3), we find the
fractal dimension as [3J:

. log,{3k [V (2ko ) -.!fJ+ .!f)
lim k I. = log, 3.
k-oo . + ti:o

•
4 . The partially extended and globally extended diffe rence field

Consider the difference field of a basic sequence S. T his field can be extended
by adding two values on the second level, one at the left and one at the right
boundary. This extends automatically the field on the third level, where once
again two new values are added at the boundaries.

This can be continued in an unbounded way. The field obtained in this
way will be called the part ially ext ended field (figure 8). It is completely
determined. by the basic sequence values and by the extra added values, which
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Figure 8: ABCDE: inner partially extended difference field of 10010l.
FGE: globally exten ded difference field. FAD, BCe: left and right
outer extended field.

are actually placed along the boun dary of any CePN whose basis covers the
basic sequence. By the corollary of the Triangular Determinat ion Property of
section I, the circumscribed triangular field is completely determined . Thi s
will be called tbe globally extended field.

We will now consider per iodic boundary condit ions along columns AD
and/or BC. T his presupposes a potent ially unhounded field size, although it
is possible to interpret the properties on a more restricted field (sufficiently
extended to incorporate a few periods for the lines considered). Boundary
conditions along AD and BC may be taken totally independent of each other.
Configurat ions on columns parallel to AD and to BC will be considered (t hese
will be referred to as left- and righ t-skew columns) . Because of the symmetry
of the difference rule, all properties which are valid for left-skew columns are
also valid for righ t-skew columns. Therefore, only left- skew columns will be
considered in the derivations that follow.

Some notations:

Sp(j) will denote the minimal period sequence on column j .

P[Sp(j)) will denote the period lengt h of Sp(j ).

Par[Sp(j )) will denote the parity of the sequence Sp(j).
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A single element in the field will be denoted by (r,c), r being the row
number and c the column number.

V (r , c) represents the value of element (r, c), V(r ,c) its complement.

Par [(a, b), (c,d) , (c, J) ) represents the parity of the set of elements
ment ioned between [ ).

T heorem 5. In the globally extended field, either all columns are periodic
or all are non-periodic. Left -skew columns may show a period-do ub]jng from
left to right.

Proof. Consider column i , with Sp(j) and P[Sp(j )) = p. T hen, column
(j - 1) must be periodic too as it is the uniquely determined difference of
column j which is periodic. Moreover, P[Sp(j - I )J ~ P[Sp(j) J. Column
(j + 1) must also be periodic. With a given Sp(j ), two possible corresponding
sequences which are each others complement may occur at column (j + 1).
(As complementary sequences are the only different sequences with equal
differences). So, column (j + 1) is a sequence of alternating complements, or
a succession of either one of the two possible sequences. In the latter case,
P[Sp(j + I )) =P [Sp(j )). The former case implies P [Sp(j + I )) =2P[Sp(j )).

• Vve will now elaborate further on the evolution of the periods.

Lemma 2.

{

¢> P[Sp(j + I) J = 2P[Sp(j) J
Par[Sp(j )) = odd '* Par[S p(j + I)] =odd/even when

P [S (j )) = odd/ even
Par[Sp(j)) = even ¢> P[Sp(j + I)) = P[Sp(j) J.

(4.1)

(4.2)

Proof. Consider a period sequence Sp(j) wit h P[Sp(j )] = p. According to
the parity invariance net theorem 2:

Par[(I , j + I) , (p + I ,j + I )) = Par[Sp(j )).

If Pa r[Sp(j)J = odd, this means that V(p + I , j + I) = V(1,j + I ). In
consequence of this and theorem 5, there is a period doubling on column
(j + 2). Also, V(k + v.i + I ) = V(k,j + I ) so that ther e is an equal number
of I' and O's in Sp(j + I ). This number equals P[Sp(j )] and this implies
evenness of Sp(j + I ) in case P[Sp(j )J = even, and odd ness in the opposite
case. If Par[Sp(j)) = even,v(p + I ,j + I) = V( I ,j + I ) and there is no change
in period length . •

PIS, (iliLemma 3. Par[Sp(j )) = odd and ---,.;-
implies that

= odd for some integer ko ;::: 1
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and

ParlSp(j +2k
, )) = Par{Sp(j )] = odd

P[Sp(j +2")] = 2P[Sp(j) ].

Andre Barbe

(4.3)

(4.4)

P roof. (See figure 9.) Partit ion Sp(j) in No = P [Sp(j )]/ 2" groups of
2"'0 successive eleme nts each. Consider the same groups in the second pe­
riod on column j. Select groups 1, 3, 5 .. . No in the first period and groups
2,4 , . .. (No - 1) in the second period. Construet the parity invariant net
on the elements of the selected groups and observe that this net complete ly
covers all elements of a sequence SOl of length 2P in column (j + 2kO) . (This
is only true for No = odd, and follows from t he overall P IN-st ructu re). Ac­
cording to the PI N-propert ies:

Pa r[group I +group 2 +group 3 +...+group No]
Par[Sp(j)J. (4.5)

Now, Par [Sp(j )] is odd (premise), and so is Par[So]' T his means th at se­
quence Sp on column (j +2k

, +1) with length (Sp) = 2 . length (So) , is a con­
catenat ion of 2 comp lementary sequences of length 2P (lemma 2). T hese have
identical differences (on column (j + 2" )), implying that So = Sp(j + 2k

, ) .

Toget her with equation (4.5) th is gives equation (4.3). As length (So) =
2P[S(j)]' equation (4.4) follows.

Lemma 4 . Par[Sp(j )] = odd and P[~flj)1 = odd (for some ko ~ j ) implies
tha t

P{Sp(j + a) J = 2P[Sp(j)J for 1 S a S 2k
, . (4.6)

Proof. Lemmas 2 and 3 imply that both P[Sp(j + I )J and P[Sp(j + 2k
, ) ]

equal 2P[Sp(j)). By the monotic evolut ion of periods implied by theorem 5,
the period lengths on all intermediate columns must be constant and equal
to 2P[Sp(j )] . •

As a direct consequence of the lemmas 3 and 4, the following global
theorem can now be formulated.

Theorem 6. (odd parity - even period theorem). If~ = odd (for some
ko ~ 1) and Par{S p(j )]= odd, then

P [Sp(j + a )] = 2m . 2" withm= pog' (~k + 1)]. (4.7)
2 '

R emark. m = pog, (fr,-+l )l is equivalent to m = llog, ('ii'! +l )+ IJ . Bot h
equalit ies arise from the condition (2m - I _1 )2k

' +1 S a S (2m - 1)2k" m =
1, 2, . . . , resulting from applicat ion of lemma 4. Notice that the conditions
of the theorem always imply that P [S p(j )] = even. For P [Sp(j )] = odd,
following theorem emerges:
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Figure 9: Relationship between parity and period length of columns
j andj+ 2ko .
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T heorem 7. (odd parity - odd period theorem). If P[ Sp(j)] = odd and
Par[Sp(j)] = odd, then

P[Sp(j +all = 2m
+! with m = [log, o]. (4.8)

Proof. This is a direct consequence of lemma 2 which implies that P[Sp(j +
I )J = 2P [Sp(j)] = even and Par[Sp(j +1 )) = odd under the given conditions.
Thi s the n makes Sp(j +1) satisfy the conditions of theo rem 6 with ko = 1. •

Theorems 6 and 7 both deal with the conditions that the first period
sequence considered had an odd parity. This fixes completely the further pe­
riodicity evolut ion in strict dependence on the length of that period sequence,
but totally independent of any other boundary condit ion in the field. In what
follows, even parity for Sp(j ) will be considered. It will be shown that a given
period length may persist over a band of arbitrary width, by fixing certain
boundary conditions. or course, in view of theorems 6 and 7, the parity
within this fixed-period band remains even up to the (rightmost) last col­
umn with the same period length. From then on, the odd-parity theorems
begin to work.

Theorem 8. (Even parity-odd period theorem) For P [Sp(j)) = odd and
Pa.r{Sp(j )) = even, it is always possible to const ruct Sp(j + 1) in such a way
that P[S p(j + I )] = P[Sp(j)] and Par[Sp(j + I )] = odd or even.

Proof. Consider a completely specified Sp(j) satisfying the conditions of the
theorem. Set p = P[Sp(j)] . From lemma 2 it follows that P[Sp(j + 1)) = p.
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Pick out one arbitrary place (a , j + 1) with 1 ::; a :S p. Due to the oddness
of p, it is always possib le to const ru ct a P IN relating Par[{(I',j + 1) : I' =
1 ... p, I' # a }] to the parity of a set 11;,0 of elements in Sp(j) . So, we have

Par[Sp(j +1)] Par[(a,j +1), {(I',j +1) I' = 1 . . .p,1' # a)}]
Par[(a,j + 1), 11;,0]' (4,9)

As Par[I1;,o] is given, equation (4,9) implies that Par[Sp(j + I) J can be set
to either parity by appropriately choosing V(a,j + 1). Notice that fixing a
single element on (j + 1) completely det ermines column (j + 1). •

Remark. A repeated applicat ion of this theorem implies the poss ibility of
cons tancy of period length over an arbit rary number of columns (poss ibly
leading to periodic behavior over columns).

Theorem 9. (Ev en parity -even period theorem.)

A. P[Sp(j)] = 2k(k ~ 1) and Par [Sp(j )] = even =? Sp(j) is a column in a
band of width 2k- 1 according to the period doubling scheme of theorem
6.

B. P[Sp(j)J = P = even, but # 2k (k ~ 1) and Pa,[Sp(j)] = even

Par[Sp(j + I )J = even {!; Par[(I,j), (3,j) · · · (p - l,j)] =
even

.b i t is always possible to
construct Sp(j + 2) such
that Par[Sp(j +2)] =
odd or even.

Proof.

A . Observe that according to the PIN pro perty : Pa r[Sp(j)J = Par[V( I , j ­
2k ) ]. As thi s parity is odd, V(I,j - 2k ) = O. As Sp(j) is periodic, any
period has the same parity and so all elements on column (j - 2k ) have
a value = O. So P[Sp(j - 2k

) ] = 1, and all columns of rank less than
(j - 2k ) are ident ically zero. Now , either all first elements of all columns
of rank> j - 2k are zero and then all elements are zero which implies
that P[Sp(j)] # 2k(k ~ 1)), or there is a column (j - p) > j - 2k with
V (1,j - p) = 1. It is a column with all elements equal to 1, and it
satisfies the conditions of the odd parity-odd period theorem 7. It even
follows that if P[Sp(j)] = 2k is the minimal period of Sp(j), p sa tisfies
2k- 1 .:s; p < 21.. The actu al value of p depends on the parity of a certain
subset of S p(j ) and can be der ived using the PIN-propert ies. If t he
elements in Sp(j) can be chosen freely, it is always possible to make
Sp(j) have an arbitrary rank in the band of width 2k - 1 in which it is
embe dded .
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B . ~: is directly clear from the PI N connecting the elements on columns
j +1 and j .

J.: consider column (j + 2). Par [Sp(j + 2)] = even iff Pa r[(I,j +
I ), (3,j + I) , .. . (p - I,j + I )J = even. The last par ity also equals
Par[(p - I,j + 1)+ some elements on columns of rank ~ j as can be
found from the PIN covering the point s [(3,j+I) . .. (p-l, j+ I) ]. So, it
suffices to choose V(p-l ,j+l) in an appropriate way tn make the parity
above even. Notice that this choice completely determines S p(j + I )
and sets Par[S p(j + 2)J = even. Then Sp(j + I ) and Sp(j + 2) satisfy
the conditions of the theorem, so that it can be repeated ly applied in
order to provide a band of columns of arbitrary width. •

Until now, we have considered the possible evolution of periodicities for
left-skew columns when moving from left to right when starting with an ini­
t ial Sp(j) . In case P[S p(j)] = odd, this evolut ion nf periodicities is fixed in a
way which solely depends on Par[Sp(j)J . When P [S p(j )J = even, some arbi­
trariness in the possible width of bands of a given period length is possible by
properly choosing some boundary conditions. For the sake of completeness,
we still have to consider the evolution of left-skew columns when moving to
the left . As moving to the left of Sp(j ) means that we consider the difference
field of column i , it is completely determined by Sp(j). In fact , the evolut ion
of some Sp(j +a) in horizontal direction to the left is the state-time evolution
of a fixed length circular cellular automaton. It is known that these evolve
towards some limit cycle of a restricted set of sta tes. Hence, when moving to
the left , after crossing a transient zone, a region will eventually be entered
in which there is also periodicity in the horizontal direction. We state some
specific results for the periodic evolution for extension of left-skew columns
to the left .

Theorem 10. If P[Sp(j )) = odd, then Vk ~ 1: P [Sp (j - k)J = P [S p(j )J
and Par{Sp(j - k)) = even.

P roof. Suppose Par[Sp(j - a)J = odd for some a ~ I , then there must
be a period doublin g on line j - a + I (theorem 5). This would imply
P[Sp(j)] = even, what contradicts the premises. •

Theorem 11. A. P[Sp(j )J = 2' (= even) im plies that j is a column in a
band of columns of constant periodicity P [Sp(j)] and bandwidtb 2'-1.
With p the rank of j in this band (which depends on the parity of
some subset in S p(j )), halving of the period must occur a t column s
j +p - (2" - I) ·2' - " , 0= 1, 2, . . . ,(k- I). Column j + p - 2(2'-I _I )
is full of 1's, and all colum ns further to the left are O.

B. P[Sp(j )) = even f 2', and PI;li!ill = Po = odd impli es that either there
18 :

a) an unlimited band of columns with period P[S p(j)]:
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1. sufficient is that Sp(j) already belongs to a band of width
> 2ko- 1 (this is possible by theorem 9.B).

2. if Sp(j ) is the first column of a band of width = w < 2ko- 1
, it

is necessary that the parity of the elements of Sp(j) covered
.!lliW.lby the PfN which covers the first a elements of column

(j + w - 2ko- 1 - 1) is even. Or,

b) a band of width 2"0-1 and period P[Sp(j) ) surrounding Sp(j ) :
sufficient is that the parity of the elements of Sp(j) covered by
the PIN which covers the first~ elements of column (j +w­
2ko- 1 _ I ) is odd.

P roof.

A . T his isthe only way to extend the difference field to the left without
contradict ing theorem 9.A.

B. Suppose that under condition a)1, there would be a halving of period.
The pari ty of the first halve period must theo he odd and the odd ­
pari ty theorems 6 or 7 apply. These would be in cont radiction with
the premises. For a) 2 and b): if not so, theorems 6 or 7 should become
violated again. •

Th e results obta ined in this sect ion are summarized in configuration tab le
I showing period sequence par ity (Py), period length (PI) , and bandwidt h
(Bw). P is the length of the initial period sequence. 2"0 is such that P/2ko =
odd (for some ko E {0,1 ,2 , ... )).

Corollaries to theorems 10 and 11:

1. The occurrence of one period-doubling induces an infinite series of pe­
riod doublings. The bandwidths are also doubling. As a consequence, it
is impossible to find ident ical period sequences on two different columns
(identical even under shift).

2. In band s of constant irreducible period length P (irreducible: the pe­
riod is not a multip le of a smaller one), the bandwidth never exceeds
P/2, unless it is unbounded.

3. For bands of consta nt (but possibly reducible) period length P , start ing
with an odd parity period Po (from left for left -skew bands), the band­
width never exceeds 1+(2"-1 )2ko , (with ko : Po/2 "o = odd and cr =
log, P/ Po). T he abso lute upper bound occurs for Po= I and equals P.

5. Some examples of ext ended b inary fields

Any change propagat ion net is a specia l case of an extended binary field with
initial state the sequence of initial value-changes and with periodic left- and
right-skew columns full of L's. (figure 10.a)
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A.. Odd pari ty of initial period- sequence

a. Extensions 10 the right

P,
Pi

rol E . . f 0 f. . . f 0 E . .• f 0 E • •

~ 2P .. . .. 2? loP • • • •• 4P 8P • . . . . 8P 16P..

II,">----,,-----<,,>--:-~

Bw

b. Extensions to the left

1. p: odd

P, ., , ,
PI ••• P P P

E fOlO EOEEEO

P lfl 2P loP 4P 8P 8P 8P 8P

-----~I H 1------11 r..--
8w unbounded according to A.a.

2. P", even", i' lk",0.1.2 ... 1

P, ., r , 0 0 , 0 E. . • E • . • 0 E ...~
PI .. , 1. 1. , , , ,

8. "'f"" ~ P • • . P

II--ll----lr- ' .. t--------ll--t
Bw unbounded 1 , , 2~ - 1 z

1 P", even 'F 2k

Py .•. L .E E E fOlpO

PI • . • P • • P P P l£J

Bw unbounded

or: :; ~ E. . . E ~
2

. . -I 11-- - ----<

e.t or bJ 2 ~-1

8. Even parity of initia l per iod - sequence

·This s equence can only coincide with an IE.PI- s t lJJence fr om
the configurations unde r A. The corr es ponding difference- field
configuration must be consistent with one of the poss ibilities
ment ioned under A.

Table 1: Configura tion of possible pariti es , period lengths, and band­
width s.

An astonishing variety of patterns emerges, depe nding on the specific
choice of perio dic (or aperiodic, chaot ic or random) boundary sequences (fig­
ures 10 and 11). For any periodic boundary (left/right , or both) , a difference
in patterns between the inner par ti ally extended field and the (left / right or
both) oute r extended fields becomes apparent. Whereas the (inner) partially
extended field mostly shows a very complex pattern, the outer extensions
become periodic (for increasing period s, the st ructure of a. period may be­
come complex too). For an aperiodic boun dary, such a clear dist inction in
patterns between inner and outer extension does not seem to exist. It could
be worthwhile to investigate this different behavior in view of aperiodicity
and randomness charact er izat ions of sequences.

In the next sect ion, we will have a closer look at the global st ructure.
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(a) A change propagation net (CCPN)
BF( O, 10010111100101011010, 0)

(e) A left half-infinite CCPN
BF(101,, 0)

(e) BF(101,10010111100101011010,
11110) = figure (a) 6l figure (b)
6l figure (e) (t heorem 12)

Andre Barbe

(b) A right half-infinite CCPN
BF( 0,, 11110)

(d) BF( 101" 11110)
= figure (b) 6l figure (e)
(theorem 12)

(f) BF(1111110" 1110111)

Figure 10: Exa.mples of difference fields (number of levels ~ 315).
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(a) DF(101011100110100"
101011100110100)
Identi cal left and right period
sequences.

(c) BF(1010110, , 011010101)

(e) BF(101 0101" random):
there is still left-skew
periodicity.

(b) BF (111010111O" 1110101110)
Identical left and right period
sequences.

(d) BF(011010 1, , 011010101)
Compare to 12(c): shift
in left sequence.

(f) Bf' (random.irandom ]:
completely unstructured. .

Figure 11: Examples of difference fields (continued) .
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6. Recurs ive and fractal properties of t he inner extend ed fie ld

6 .1 A de comp osit io n property

In sect ion 3, we discussed the fract al properties of the cePN, which is a spe­
cial case of an extended difference field. Its fractal dimension was derived on
basis of the growth rate equation (3.3) which was easily determined because
the whole structure could be built up recursively starting with small-sized
building blocks of known mass (number of L's in it ).

In the more general case, such an exact recursive procedure based on finite
building blocks does not seem to exist. However, a growth rate equation
can be found with some bounded unknown parameters. This shows that
the overall structu re of the inner extended field can be decomposed in two
subsets . One has a fractal nature with a fractal dimension which seeming ly
depends on specific boundary conditions and that may possi bly differ from
10923 . The other subset has dimension 0, 1, or 2.

We will first introduce a notation for characterizing a specific (extended)
difference field. A field will be denoted by BF(PL , I s , PRJ, in which PL , Is , PR,
respectively refer to the left periodic sequence, the interconnect ing sequence
at the basic level and the right periodic sequence (figure 12). Is may be
the empty sequence; the corresponding notat ion is BF(PL , ,Pn). All fields
and nets will be considered relat ive to a reference point in the latt ice : i.e.
the point at which the first element of PL is located. A shift of l places
to the right will be represen ted by multiplication of B F (., ., .) with zt, a
shift to the left by multiplication with e:', Notice t hat any CCPN is a
BF( I, Is, 1) = z-1 . BF(O, 1 + Is + 1, 0). (+ stands here for concatenat ion).
BF(h,!s, I) = z-=BF( ., H(h) + Is, 1) will be called a left half·infinite
CCPN. BF(1, Is, PRJ = B F (I , Is + H( PR),.) is a right half· infinite CCPN.
H (PL ) , H (PR ) are the equiva lent boundary condit ions on the basic level cot­
responding to PL , Pn respectively. After a transient zone, these sequences
become periodic too.

As a consequence of the addit ive property of CCPN, we can now state:

Theor em 12. (Decomposit ion theorem) . Any extended binary difference
field can be decomposed as a sum (modulo 2) of a left and righ t bel i-intini te
field and of a fini te field as follows: (O[len(Is )] denotes a sequence of D's of
length equal to the length of Is)

= BF(h, O[len(I s)), 0) Ell B F(O, o[len(Is)), PRJ
EIlBF(O,!s, O)
BF(PL " 0) Ell zlI+len(ls)JBF(O" PRJ
EIlBF(O, Is, 0).

(6.1)

6 .2 The half-infinite CCPN

Now consider a left half-infinite CePN: BF(PL " 0) in which the reference
point has value 1 (figure 13). Dist inguish between FL , the left outer extended
field with transient zone included, and F[, the two-dimensional periodic part
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reference point

HIP l ) I Is HIP.)

y~=~
HIP I 0

\-
Pl ,0 <D

\
left

half-infinit e
((PN

right
hal f-infinite

((PN

o Is 0-nr
<D O/. \ 0

/. \

finite
((PN

Figure 12: The decomposition theorem.

of it . Fdk), adk) ,Ih (k+1) refer to the triangular fields ABD, BCD, EIJ as
shown in figure 13. k refers to the exponent of the linear field size 2k . This
CCPN satisfies the periodicit y properties of difference fields with periodic
boundary conditions (section 4). There are right-skew bands of width 2k with
periodicity 2k (k integer, these bands start from the rightmost I -sequence).
Left-skew sequences have a bandwidth which is smaller t han t he period length
P[PL] . Consider a basic triangular field with linear dimension 2k and volume
(number of l's it contains) V(2' ). Doubling the linear scale to 2'+l gives a
structure which can only be partly reconstructed from the extended field of
linear dimension 2k

, as shown in figure 13. Notice the appearance of small
top-down tri angular fields at levels mP[PLI + 1, (m = 1,2, . . .). T hese are
doubling in size for increasing m = 2t'. The growth rate of V from linear
dimension 2k to 2k+1 satisfies:

(6.2)

Now, field fh (k + 1) is of the same na ture as field aL(k), and so we write

V(fh(k +1)) =1'k+1V(adk)) =1'k+1V(2')

with Ilk+! uniformly bounded above.
Also,

(6.3)

(6.4)

in which Poo is the limit density over the unbounded two-dimensional periodic
region FL . l/k is a correction factor for considering only a finite-dimensional
tr iangle FL(k) in FL ; it is uni formly bounded (will ---; 0 for k ---; 00). The
recursion therefore becomes:

(6.5)

Defining
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A o-valued
oun ary

o- valued zone

1;;;~;;;;;j~~71 WINDOWS7, FULL OF O'S

G
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Figure 13: The left half· infinit e CCPN.

'P, =:; "(2'""+-:-1'-. +-,")("'"2--:+-1'-.-+,' )-, -..""7( 2;;-+-:-1'-.+"""',) (6.6)

and starting with a linear dimension V(2" ), the solut ion of (6.5) is given by:

V(2""+l) = (V(2"") +2""-1 . 2""'+;~" (Poo + v., )

+ 4(1+' - ( '0 « )) ( + )
"F~ Poo Vko+ l

(6.7)

Now there are two possibilities:

Poss ibility 1. Poo = 0 iff len[PLJ = 2' for some in teger l . Poo = 0 also im plies
tha t the fractaJ dimension of the inner extended field is equal to log, 3.

The "iff" follows from the periodicity properties of section 4. Poo =
o implies that the zone to the left of PL becomes a pure O-valued area ,
possibly after crossing a tr ansient band (which implies vi # 0). In case
Vj = 0, the tra.nsient zone does not exist and the inner exte nded field is
identical to the SCPN , and it has fractal dimension log, 3. When Vi # 0,
the condition Poo = 0 produces a field that is identical to a Ce PN, so it
has fractal dimension log23, too. Limiting this cePN to the inner extended
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field under consideration does not alter the fractional dimension, because
of the constant width of the transient band. This implies that the volume
contribution of this band is bounded above by linear proportionality to the
linear scale, so it is dominated by log23.

P oss ibility 2. Poo ¥ 0: the fractal dimension of the inner extended field is
2. In this case, it follows from equat ion (6.7) that V (2' , H) is bounded below
by

V(2 koH ) ::::

V(2"' ) 1
4'[-2'- +2'ko-'(poo + vk,)(1 + 2-"')(1 - ('2)')). (6.8)

The right-hand part is the expression in (6.7) for p., = 0, i . e . , ,., ~ = 2' . The
second term tends to a constant and dominates. Therefore, the resulting
dimension is 2.

Notice that the difference between the two cases above does not seem to
be a structural one. Where we have growing white spaces (overall zero-value)
in the first case, we find the left-hand periodic texture in the second case.
It is this fact that brings the pattern to full dimensionality, as is clear from
equation (6.7). Emptying the zone in which this texture appears produces a
patte rn that now satisfies

with

,.,; =J"(2"'+C-p.',,-+-,")("'2-;+-p.',~,+-,')-. -..'(2;;-:'+-p.',-,+-,').

It follows that the fractal dimension is lim,_oo (log, ,.,;) = log, (lim,_oo ,.,;).
It is not dear how Jl~ , the ratio between the resulting volumes of the

left lower triangle and the top tr iangle in the linear scale doubling scheme of
figure 13 evolves. Unless Jlt-+ 1 for t -+ oo,cpi 1: 3.

So, if we squeeze out the periodic-field pattern from the global difference
field pat tern , we are left with a fractal object. We will call this the fractal
skeleton of the difference field. The difference field patterns will then be
considered as a submerged fractal skele ton (figure 14).

6.3 T he general difference field with periodic boundary co n d it ions

From the decomposition property (section 6.1) and the considerations about
the half-infi nite CCPN, it follows t hat a genera l difference field BF(h, , PRJ
is the EXOR superposition of two submerged fractal skeletons. The result­
ing skeleton is now fi lled with an EXOR mixture of the left- and right- hand
periodic "liquids" (figure 15). This mixture is "locally" periodic. Different
mixture compositions are possible, due to phase shifts in the superposit ions
of the left and right periodic fields. Multicomponent mixtures may occur,
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Figure 14: Fractal (b) and submerged (a) fractal skeletons.

in which the components are different shifted versions of the left an d right
periodic fields . T he resu lt ing volume (global as well as for the skeleto ns) is
bounded above by th e sum of the volumes of the two half-infinite fields . T he
resu lt ing dimensionality is thus bounded above by the maximal dimension­
alities of these two component fields.

As far as BP(FL I Is, Fn) is concerned, its fractal skeleto n dimens ion is
the sa me as that of the fractal skelet on of a corresponding BF(PLII PnJ
(figure 16). Both pat terns differ in the width of the trans ient bands and in
some extra initi al volume. But th is becomes eventua lly dominated by the
B F (P£, I Pn) inner volume.

The last point also shows that seen at sufficient ly large scale, the B F
(PL,!s, Pn) pa tterns are simila r in na t ure, independent of Is . On ly the
occurence of specific mixtures will be influenced (compare figures 17a.b.c.d).

7. A conserva t ion law that generates p er iodic bound ary condi­
t ion s

Cons ider a difference field. T he vecto r (nI, na, na ... nl), th e comp onents of
which represent the num ber of L's on each difference level is a cha.racteris tic
of th is field. Cons ider a bala.nce d set of places a t the basic level, i.e. a set
of places in which the num ber of O-valu es equa ls the numbe r of I -values.
Take this set of points as t he gene rating sequence for a CC PN (figure 18).
Th e value-changes induced by th is CCPN will not alter n, (because of th e
balancedness of the generating sequence), bu t will genera lly alte r the ot her
components nj, as th e CePN will not cover balanced subsets at all levels.
However, we can search for difference fields which are balance d everywhere
under a given CCPN (up to the level where the CCPN comp letely covers
the difference field, which should be potent ially unbo unded). Exploratory
comp uter experi ments show tha t this forces per iodicity at the CC P N bound­
aries (from a certain level on), and hence overall periodicity. It has not yet
become clear why th is is so. T he reverse fact th at periodic boundary condi­
tions imply balancedness is certainly not true. As a mat ter of fact, looking
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Figure 15: Struct ure of BF(PLl l PR).

pl
, L

/, PL

/ /
~ ---~=--'""->

transient zones
(dimens ionalit y = 1)

Figure 16: Relationship between a general difference field
BF(PL,!S,Pll ) and BF(P~"P~).
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(a) BF(PL, 0100101110, PRJ

(c) BF(h, 11001111111, PRJ

ARdre Barbe

(b) BF(PL, 0000011111, PRJ

(d) BF( PL, 01001011101, PRJ

Figure 17: Fields wit h identical PL and PR sequences but with dif­
ferent Is sequences . PL = PR = 101011100110100. Compare also to
figure 12.a showing the ou ter field .

..:t~~~::~~~~~~~. :;: ~ ;~ : ~~:~~~ ~~ ~~~ UITH M
.~.:.:.:.:.:~.:.:-:.:-:.:.:.:~. UIIDERLVI I1G DEGREE or mEDOn

Figure 18; A balanced CCPN .
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for the set of sequences with the same (nl ' na, na . . .) was at the origin of the
mat erial which was developed here.

8 . Conclusions

The binary difference field originates from the most simple non-t rivial local
interaction rule: a modu lo-2 summation of ju st two neighboring cells. A
complete analysis has been presented of the overall pat tern result ing from
periodic boundary condit ions along a left- and/or right-skew column. These
patterns exhibit a fascinating and unlimited variety in detail s embedded in an
invar iant overall st ruct ure. Immediately, t he quest ion arises whether similar
result s exist in more generalcases involving other interaction-ru les between
multip le-valued cells. Even more int riguing is the fact that this behavior
is induced by a kind of conservation law, as mentioned under sect ion 7.
Further work needs to be done in order to come to a full underst anding
and generalizat ion of the conditions unde r which such a struct ured behavior
emerges.
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