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Classification of Se m itotalist ic Cellular A utomata III

Three D imensions

Carter Bays
University of South Carolina, Columbia se 29208, USA

Abstract. Thi s paper describes a mechani sm by which three-dime n­
sional semitotalistic cellular automata. (CA) may be classified. The
classificat ion scheme is based upon t he behavior of speci fic CA rules
when original ly configured (a) as isola ted form s and (b) as random
"primordial soup." The classificat ions of t he behavior under th ese two
separate schemes may then be ort hogonally related.

Most of the simulations describ ed herein were done in a. un iverse
of dense-pac ked sp heres , where each cell has 12 touching neighbors.
Resu lts also ap ply to Jt3, wit h 26 neighbors touching each (cubic) cell.

1. Introductio n and notation

In a three-dime nsional unive rse of dense-packed spheres, the spatial rela­
t ionship between neighbors can be illustrated by placing a cell at the center
of a cuboctahedron. The 12 corners then show t he locatio n of neighbor
cells (see figure 1A)j these 12 corners form four intersect ing hexagons (e.g.
(1,7,8,4,12,10), (6,10,11,3,8,9), etc.) which are parallel to four coordinate
planes.

Let n denote a universe of dense packed spheres; j{J will be used to
refer to a three-dimensional Cartesian universe. For convenience, all of the
simulations illustrated in th is paper are for rules in D:j nevertheless, the
classifi cat ion scheme herein described app lies to rules in R3 as well.

In general, a cell can have k states; in t his paper , we will deal only wit h
k = 2 and will be concerned with the 12 touch ing neighbors. The next
generat ion state of a cell will be determined by the current state of the
cell and its neighbors. The two states of a cell are called Ji ving and dead ,
which is also refered to as the quiescent or zero state, or as "space." Defi ne
environment, E, as the number of living neighbors of a given living cell, c, so
t hat c remains alive the next generat ion. Fertility, F, is the number of living
neighbors of a given dea.d cell so that the cell becomes alive next generat ion.

One way to describe rules governing the next generat ion state of a cell
is to specify a range, given as E1 :5 E :5 Ell. and Fl :5 F :5 r; Then,
all rules, R , under considerat ion can be written as d-t uples of the form R =
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(E ll Eu,F1, Fu)· These rules are semi-totalistic [1] in that the next generation
outcome depends solely upo n the current state of c and the quantity of living
neighbors an d not their relative pos itions. The special cases of totalistic ru les
treat c itself as a neighbor; e.g., rules of the form (x,y,x - 1,Y - 1). Of
course, ot her semi-totalistic rules exist; these can be specified as follows. Let
E = (el' e2, . . .) where ej, an envi ronment state, specifies a number of living
ne ighbors such that c remains alive next generation; and F = (/1,12, .. .)
where h is a similarly described fertil ity state. We now use the not ation
R= [F,E]=

[(e" e" . . .em),(II .I« .. . In)], m 2: 0; n > 0

(note th at there might be no valid environment state). T he upper limit s for
rn , n will depend upon the universe; for n, m S 13, n :S: 12. For conven ience,
we will a lso specify that i < j <=> ej < ej and Ji < fJ . Note tha t we
eliminate as invalid a ll rules where Jl = O. Such rules violate the "qu iescient
state" requirement [3]; that is, if all cells in a uni verse are zero, they must
remain zero . T hroughou t , we will use both notat ions, supply ing whichever
is the most convenient for the purpose. Note that R is contained in Rand
that, for example, (3,3,3,3) and [(3), (3)] are equivalent, as are (4,6,3,3)
and [(4,5, 6), (3)J; and, of course, [(4,6,9), (3)] cannot be represented in the
former notation . We might also write [O ,(x)] as (oo,oo,x,x) . These nota­
tio ns seem more appropriate for three dimensions than Wolfram codes [3, p.
1271·

Mos t of our empirical simulat ions have bee n done in n. Com puter ex­
perimentat ion req uired var ious finite universe sizes, occasionally wrapping
coordinates in order to simulate an infinite un iverse. Because of the method
of computer implementation , th e finite values for n appear rhombohedri c in
shape and may be considered as be ing composed of successive layers: the
number of such layers is referred to as the universe size. Figure I B sho ws a
size-5 universe where all cells are alive.

A form is a fin ite grouping of cells. Many rules yield forms called oscilla­
tors, that is they are periodic. An oscillator of period one is called a sta ble
form.. An oscillator that translates tb rough space is called a glider. A con­
vex hull, h, is the minimal convex polyhedron that can wrap a form. It will
include cells on the outer periphery of th e form. An n hull is the minimal
wrapping octahedron that can be constructed with eight planes pa rallel to
the four coordinate planes: similarly, an R3 huJ1 wraps with a hexahedron
const ructed with planes parallel to the three coordinate planes. Let tr! de­
note the minimal distance between the n hulls of forms i and j . If n i ,j > 1,
then we say that forms i an d j are isolated. A similar de finit ion may be
made for R3 .

2. A general classification scheme

Although one might like to ut ilize the classification system of Wolfram [3, p.
111], it is per haps not unexpected that three- dimensional cellular aut omata
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Figure 1: T he twelve immediate neighbors in n can be depicted as the
numbered corners of a cuboctahedron, each being a neighbor of the
black spot in the center. The universe can be rhombohedric; an infi­
nite universe may be simulated by wrapping, along traditional axes,
the sides of a sufficiently large finite universe. (T he size-5 universe in
B would be too small for a useful simulat ion.) In figures 2 throu gh 13
all rules specified are in n unless otherwise indicated.

behave somewhat differently than one- or two-dimensional systems . For one
th ing, chaos seems to preva il more frequently; moreover, there a re obvious
effects of cubic rather than linea r growth. Never theless, it is possib le to
class ify, at least in the broad sense, th e rules under conside ration in a man ner
somewhat similar to the types of Wolfram.

One should note that of th e 28192 possible ru les in 0, we are on ly class ify­
ing the 227 to talistic and semi-tota list ic rules. These classifica tion s a lso app ly
to similarly constructed ru les in R;3. (Note that the rules under conside rat ion
in n a re conta ined in the 2227 rules of R3_but cannot be rep resented in R3

in the form [E , F] ; tha t is, th ey are not in general totalistic or semi-totalist ic
in R:') .

With the above in mind, we can classify semi-totalist ic CA in R3 and n
acco rdi ng to the behavio r of (a) a uni verse consisting of one or more forms,
all of which a re isola ted , and (b) a uni verse consist ing of primor dial "soup."
T he two classification schemes may then be orthogon ally related in order
better to descr ibe the particu lar ru le under considera t ion.
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2.1 C lassification according to behavior of isolated for m s

All ru les fall into one of th ree classes given below dep ending upon how iso­
lated forms interact. For each, start at generation zero with a universe of
isolated form s.

C lass B-Bounded (Isolat ed forms can never interact. )

Some forms may disap pear; ot hers may fill to all live cells, depending upon
th e rule . All forms remain isolated and bounded in space by their orig inal
hulls. In other words, given a uni verse where ni j > 1 for all forms i,jj the
forms will remain isolated (see figure 2).

C lass I- I n t era ct ing (Isol a t ed forms m ay interact.)

Dependi ng upon th e rule and th e forms involved , isolated forms may merge
into single forms, or they may shrink and die; i.e., possibil ity exists for in­
teract ion . Growth of ind ividual forms in most cases is bounded (pro babil ity
= 1), but there may exist configurations which exhibit unbounded transla­
tion or growth (e.g. gliders , glider guns). Th is class somewhat resembles
Wolfram type 4, although the existence of gliders is not guaranteed. A single
finite primord ial blob of approp riate density in an infinite universe will, with
probability = 1, shrink to zero or more (considerably) smaller forms. For the
rules examined, such starting configura t ions usually evolve into a (roughly)
spherical quivering form which gradually shrinks and event ually eit her dis­
appears or leaves one, two, or occasiona lly more small oscillators. To observe
t his beh avior, we should start with a form whose primordial density is near
the (relat ively stable) density of the slowly contracting mass. Primord ial
forms of oth er starti ng densit ies seem to coalesce into isolated forms, which
individually cont inue the shr inking process just described.

C lass Ue-U nb ounded (Iso lated for ms grow without bou nds.)

Altho ugh some forms may shrink , most forms will grow and merge together.
Some rules seem to have a finite but rather fuzzy "crit ical mass", Me. If a
finite isolat ed primordial blob is smaller than Me, then it shrinks or mea nde rs
in a manner similar to type I behavior. If the pr imor dial blob is larger , it
grows with out limit. T he initi al density of Me should be somewhere around
the final chaotic density. The size of Me varies from rule to ru le an d (some­
what) from configuration to configuration within a given rule.

Just a few examples of ru les for each of the t hree classes are given in table
1. Figure 5 depicts typ ical growth patterns for the three classes.

2.2 C lassification according to primordial evolution

For each case, we wish to determi ne t he ulti mate destiny of ran dom primor­
dial soup configurat ions conducted in an infinite universe. Since we may
choose to start with init ial soup at a variety of dens it ies « 1), we designa te
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Class Example ru les
B In n iff I. > 3

In R 3 iff t. > 9 (see [2])

I The games of life; e.g., t he n rule (3,3,3,3) and the R3 rules
(4,5,5,5) and (5,7,6,6). In general , n rules [(x), (3)1 , x > 2;
and R3 rules [(Xl , X , ) , (y)l; XI > 4, 4 < Y < 10. Ot hers may
be determi ned by test ing individually.

U All rules in n where I, < 3i a ll rules in R}J where
f l < 5 (see [2]) . Certain rules in n of the form (x , y, 3, 3);
for example, (4,7,3,3). Many rules in R3 of the form
riel ... em), if , .'. .fn i]; I, > 4, L. < 9, em < 9; m, n > 2.
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Figure 2: The Class B beha.vior of rule (4,9,4, 9) is shown here. At
genera.tio n 0, the two top forms are not isolated in that nij = 1, but
th e two bottom ones are; i.e. D ij = 2. At generat ion -1 , t he top
forms begin to interact . By generation 20, they have merged into
one form. T he two bottom forms will never interact. Note t hat the
three resulting forms are now oscillators with per iod> 1. A slice at
generations 20 and 21 depicts the interior activity.
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that a sizable portion of OUf starting configurations yield th e intended result
(i.e. proba bility p > OJ in some cases, P = 1). T he five dist inct groups are
given below.

G roup 0 (All cells disappear.)

No matter what we use for th e st arting configurat ion, all cells die after finite
t ime.

Group 1 (C ells co nver ge to isola t ed forme .)

P rimordia l soup contrac ts to isola ted forms , at least some of which become
oscillat ors.

G rou p 2 (C ells remain in chaotic turmoil.)

All cells in the universe have the property that they change states an infinite
nu mber of times. No stable form s or osc illators ever appear (see figure 6 for
an example).

G rou p 3 (Cells remain chaotic, but stationary. )

No isolat ed form s are produced, but after finite t ime, all (or most ) cells
assu me a st ate and remain there. Occasional attached oscillator pockets
may appear. Chaos is essent ia lly "frozen" in space. One could visualize
Swiss cheese where from zero to all of the (not necessarily round) holes are
in cons tant tu rmoil.

G rou p 4 (All cells become alive a ft er finite t ime.)

Start ing primord ial configurat ions yield all live cells after a finite t ime (see
figure 7).

Table two gives some examples . It is by no means complete, as many
other ru les will probab ly requ ire empirical ver ification to determine their
pro per group.

Unfort un ately, the group classification is not quite as clear-cu t as the t hree
Class B, I, and U. We must concede that many primordia l configurations may
yield deb ris similar to a lower group; that is, some pr imordia l configu rations
for a Group 3 rule might yield Group 1 type debris. However, th e converse
will never be t rue; that is, t he correct group is the highest numbered group
such t hat pri mordi al soups yield sa id group behavior wit h probability> O.

Stated more exactly: specify a ru le, R; t here exist densities d1 , d2 such
th at primo rdia l soup densiti es between d1 and d2 will yield Group x behav ior
for R with pro bability one. For primo rdial densities outside th is range, be­
havior is unpredict able in that residue may be similar to Group(s) y, y ::; x .
(An exception : Gr oup 0 rules yield no residue for a ll configu rat ions; here,
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Group Examples

° Rules in !l where II > 10, e i - 12.

1 R3 life rules (5,7 ,6,6) and (4,5,5,5) ; many others. nrules
[(x),(3)); x > 3.

2 The n life ru le (3,3,3 )3); most n rules (x , y, x , y) 1 ~ z , y ~ 7;
Y- x < 4. Th e R3 rule (6,7,6 ,7) , etc.

3 Most!l rules (E"E.,R,F.) where 3 < E, < 6; E. > E, +5 a nd
F, > E,; F. < Eu- The n rules (0,12 , z , 12); x :2: 8. T he !l
rule (5, 10,3, 3), etc .

4 All n ru les (0, 12)x, 12); x < 7. (This can be proved in a manner
similar to Classes Band U; see [21.)

d, = 0+ ; d, = 1-). For rules tested, y # 2 and is, in fact , usually 1 or 0 (if
anyt hing at all). A few tested rules have so far yielded inconclusive behavior.

Some rules are obviously more predictable than others. For example, the
Group 2 !l Life ru le [(3), (3)) follows Group 2 behavior as long as pri mordial
densities are in the vicinity of 20% to 30%. Low or high densit ies tend to
yield clumps, some of which stabilize into oscillators (see [1 1).

It has been observed that ru les with a large environment ra nge s urround­
ing a small fer t ility range tend to be Grou p 3; as t he two ran ges approach
equality, oscillating pockets begin to appear (see figure 8) . On t he other
han d, rules support ing mostly interconnected chaotic tu rmoil, with just a
few st ationary configurat ions, have not yet been observed. Th at is) Group
2 behavior seems to be "pure," involving all cells. Only the density of the
chaot ic turmoil varies-this depends upon the rule in question.

P utt ing it more precisely, a rule R is a Group 3 rule only if there exists an
no such that. for all generations> no some cells do not change state; whereas
R is a Group 2 rule if and only if no such no exist s. Unfort unately, it is
possible that some Group 3 rules behave like Group 2 rules for long periods
before eventually set tling down, and therefore may not yield easily to an
empirical invest igation to determine no.

2.3 Combining class and group

Since every rule has a class and a group, we may combine both schemes
orthogonally (when we are certain where the rule belongs). We will use a
subscript for the group. For example, T he n Life rule (3, 3, 3,3) is Class 1'2
and the R' Life rules are Class I, (see figures 3 and 4) .

It is tempting to ask why two classification schemes are necessary. The
answer is that many rules behave in a manner indist inguishable in one of t he
categories, but distin guisba ble in the ot her. For exampl e, !l rules [(3), (3)1
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200 293 468

Figure 3: T he Class I and Group 2 beh avio r of n ru le (3, 3, 3, 3) is
depicted. From generation s 0 to 200 an "infinite" universe (size = 20)
was used . In this infinite universe, chaot ic t urmoil would have per­
sisted forever. At generation 200, the simulation was split into two
sepa rate simulat ions. In A, we unwrap ped all t hree axes, leaving
essentially an isola ted blob. For simulation 8 , only one axis was un­
wrapped. Th e idea here was to emulate an exceedingly large, isolated
primordial blob in an attempt to det ermin e whether (3, 3,3, 3) was
Class U or Class 1. If pri mordi al chaos had pers isted for simula tion
B (I.e. th e form was t rying to grow) , one would have concl uded that
(3,3,3,3) was a Class U rule requiring an extremely large "crit ical
mass" to initiate unbounded behavior. Since the form shrank (for all
experiments tried) , one can conclude that (3 ,3,3,3) is Class L
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Figure 4: Here are the live cells at gene ration 200 (see figure 3) . Sim­
ulation A: at generation 226, the blob had shrunk in all dimensions;
by generation 258, it had gotten quite small. T he form disappeared
a short time later (genera tion 294) . Simulation B: the form shrank
more slowly, and only along the unwrapped y-axis. By generat ion
393, the blob, st ill "infinite" in x and z directions, had gotten quite
thin. At generat ion 469, the form finally disappeared.
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o

GENERATION:: 18
RULE:: (2 ,8,4,6)

GENERATIO N :: 6
RULE:: (4,4,3,3)

GENERATION 6
RULE :: (4,4,2 ,2)

Figure 5: Here we see t he th ree classes. Start with two isolated blobs
(D'; = 2). When we app ly the Class B rule (2,8,4 ,6), t he forms grow
into long period oscillators, but never inter act , as they are bound ed by
their n hulls. Class I rule (4,4, 3, 3) shows t he grad ual confused merg­
iog (an d shrinking) of t he two forms. For the Class U rule (4,4, 2, 2),
i f we start with a single smaller blob, it rapidly grows withou t boun d.
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Figure 6: T he chaotic t urmoil of Group 2 rule (5,7,5 ,7) is dep icte d.
T his rule is Class B, hence designated as Class B2 . T he successive
slices show that all cells are cont inually changing values. Here, the
universe was wrapped; the size was 16. The steady state density of
th e chaos (upper left corner) was a relatively st able .495, which should
be no surprise.
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/ NUMBER OF 1I VE CELLS

.'

RULE =
(0, 12,5, 12 )

35
GENERATIONS

Figure 7: Here we see the typical rapid growth of a.Class U4 rule. All
cells became live after 35 generations.
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Fig ure 8: The Gro up 3 (more specifically, Class B3) rule (5, 10,6,9)
rule is shown. Initi al primordial chaos at a density of about .6 was
seen to set tle down ultimat ely into stable masses with pockets of smal l
oscillators (see gra ph, upp er left ). Upper right: the stable live cells
are shown. Visible are a few of t he cells that oscillate; they are the
live cells contain ing bullseyes. Bottom: here the stable live cells have
been removed. Th e remaining cells oscillate forever with (in this case )
a period of two. The currentl y live ones contain bulls-eyes and th e
currently dead ones are shown as ju st bulls-eyes.
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(Class I), and [(2), (2)) (Class D) exhibi t Group 2 behavior: random pri­
mordial soups (over certain initial dens ity ranges) appear to exhibit chaotic
turmoil forever. As another example, the n rules (1,12,4,11) and (4, 5, 4,5 )
are both Class B, but the former usually merges to all live cells (Group 4)
while the latter rema.ins in chaot ic t urmoil (Group 2). Hence, the most pre­
cise way to indicate behavior is to specify both class and group. Figure 9
illust rates the various categories.

Observe tha.t not all possibilities are present. For example, no rule has
yet been discovered in the 14 category. This is pro bably because the larger
env ironment range required for growth to all live cells lends to lead to Gro up
U rather than Group I behavior.

Class 13 ru les, scarce in 11, are interest ing in that they require rath er high
primord ial densit ies in order to observe the Group 3 behavior. Apparent ly,
th e init ial dense soup presents a host ile environment to Class I fert ility ru les,
which like lower densit ies, and lower starting densit ies tend to yield separate
clumps.

Not all orthogonall y const ructed classes make sense (e.g. Class Do). On
the ot her hand, if we consider other rules, it may turn out that some com­
binations tha t make no sense for totalist ic rules do in fact cover others . For
example, consider Conway's Life, which can be represented in RJ as a certain
non-totalist ic ru le. One could reasonably place this rule in Class U}. Th at
is, one might observe tha t many Conway forms seem to exhibit expansive,
almost unbounded growth, but as th e forms expa nd, they break apa rt into
small (contracting) isolated blobs, which th en expa nd, inte ract ) etc. It seems
there is a "tug of war" between th e two classification s-Class U behavior and
Group 1 behavior-with Group 1 eventually winn ing out. Naturally, a puri st
would argue that Conway's Life falls into Class 111 but the tug of war concept
is rath er romantic.

Some Class D, ru les support gliders (for example, the R3 rules Life.OO I
4544 and Life.I IO4544 discussed in [2]) and therefore possible universal com­
putation. Here, forms must be const ructed carefu lly, for if configurat ions are
too large, they will grow without limit . No glider suppo rt ing semi-totalist ic
ru le other than the Class I, ru le (3,3 ,3,3) has yet been discovered in n. This
aut hor speculates th at no "glider gun" will be found- and hopes to be proven
wrong.

Certain Class D, rules appear to pulsat e chaot ically between two den­
sit ies, occas ionally head ing toward a relati vely stable density for a time,
th en resuming pulsating behavior (see figure 10). One of these, the n rule
(1,2, 1, 2), has been examined in some detail. In order to determine if thi s
behav ior eventu ally quieted down, a universe in th e shape of a long cylinder
was cons t ructed. Th e cylinder was 15 by 15 cells across and 200 cells long,
and was wrapped on all axes to simulate a kind of infinite (albeit weird) uni­
verse. After selected generat ions, plots were produced which gave th e number
of live cells in each slice of the long axis. Alternate generations showed lit tle
variation in the short rUD, hut gradually changed over a longer period . If we
were to make a movie composed of frames where each frame was a compos ite
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CLASS u .. .. ..
GROWTH OF .. .. ..ISOLATEO

FORMS
B .. .. .. .. ..

0 2 3 4

GROUP
PRIMOROI AL GROWTH

Figure 9: The classes and groups are depicted. Classes Uo and U1 do
not exist, and rules for Classes 10 and 14 have not been discovered.
In S1 , Class U rules are most common (more than 3 x 222

) ; nextare
Class B rules (about 221) . Class I rules are scarce, with fewer than
29 • Class 1J is probably the rarest category; more than likely, there
are fewer than 100 such rules.
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of, say, ten consec utive odd genera t ion numbers, our movie would pr esent a
profile of the surface of a choppy lake (see figure 11). Clearly, more st udy of
t his unusual behavior is necessary.

The Class I, n rule (5, 10,3 ,3) is very interesting. First of all, several tests
were necessary in order to determine that this rule was Class I an d not Class
U. In an infin ite uni verse, thi s rule, wit h appropriate starting primordial
densities (abo ut .5 to .6), yields a large stable mass with small pockets of
oscillators (see figu re 8, top plot of figure 12). However , the reall y un usual
behavior is obser ved when we unwrap one of the axes in order to see if
the mass begins to contract . If th e prior mass has evolved to the stable
form already ment ioned , then although shrinking starts immediately, th ere
is consid erable resistance to the ultimate demi se of th e form- almost as if
a tough "o ute r skin" from time to t ime affords protection against further
decomposition (see figure 12, bottom plot ). This possibility has not been
determined with certainty and need s to be fur ther investigated; if true, it
might th en just be possible for certai n Class I rules to ward off their own
decomposit ion and even grow for a time-all this from large random primord ial
form s.
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Figure 10: Unusual "pulsati ng" behavior exhi bite d by Class U2 rule
(1,2,1,2) . Chaotic turmoil would stabilize (mo re or less) at a given
density, only to becom e unstable again , with success ive generations
swinging wildly between two quite distinct values. Th is behavior
seems to go on endlessly. Here , a universe of size 15 was wrapped
in order to simulate infinite space. For this pulsa ting behavior , the
use of such a small size probably affecte d th e outcome.

3 . Conclusio n : a comparison to the Wolfram types

There is no exact correspondence to the four Wolfram types, but one should
remember th at his classificat ion scheme includ ed all CA in one dimension
and not just totalist ic and semi-totalistic rules. Nevertheless, we can observe
tha t Wolfram type 1 corresponds to Class Bo, and ty pe 2 matches Classes
Bl , B3,and (somewhat) U3 with infinite primord ial configurat ions. Wolfram
type 3 is, naturally, similar to Class U2 and U3 . Although experiments have
not yet been performed, some non-to talistic rules undoubte dly exist in fl
which could be categorized as Wolfram type 4. These would likely fall into
Classes 11 and 12 . It appears to be possible that the new classification scheme
just might cover all rules, whether totalistic or not . (Admittedly, things get
compl icated when we allow our cells to have more t han two states.)

There might be a temptation to say t hat we do not need another classi­
ficat ion syste m; t hat any rule could be classified by one of the four Wolfram
types. For example, if we consider the two cell states (living and dead) as
equals, then one might argue tha t Classes B1 an d U3 are equivalent . How­
ever, note tha t in ter ms of growth behavior, B1 is bounded but U3 is not . As
another exa mple, we might say that any ru le which supports gliders should
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Figur e 11: T he same behavior depicted in figure 10 is again illust ra.ted
here, bu t in a different manner . Here, a. 200 x 15 x 15 universe was
uti lized . Th e plot s show the num ber of live cells contained in the
200 successive slices along the long a.x.is. Note that over short ranges
of generations th e odd generations formed a pattern , and the even
genera tions formed a sort of complementary pattern. After a tim e,
th e pattern tended to shirt around . If we made a movie where each
fram e was composed of successive groups of, say, ten consecutive odd
generations, the ap pea rance would likely be that of a lake on a. rough
day,
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Figur e 12: T he n r ule (5, 10, 3, 3) is shown here to be a Class Ia
rule. For t he gra ph at the top, the (size 16) unive rse was wrapped ;
th e chaos eventually sta bil ized into frozen "s wiss cheese" contai ning
small pocket s of oscillat ors and /or empty space . When one dim ension
was unwrapped (simulat ing an ex treme ly large but finite primordial
form) , t he shrinking process began rapi dly, but hal ted periodic ally.
Appa re nt ly a tou gh "ou te r skin" tended to protect the form from
demise-at leas t temporarily.
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Fig ure 13: The rule (5, 10, 3,3 ) was employed on a primordial size 12
wrapped universe at an initial density of .6. The snaps hot at the top
shows the relat ively stable "swiss cheese" at generation J02; we see
just the cells that ar e continually changing. The form stabilized with
between 1022-1055 cells alive at any given time. 42 cells were period ic
and 1018 remained alive without change. The other (1728 - 1060 =
668) cells remained dead . At t he bottom, we can observe the effects
of unwr apping the y coordinat e (creating an infinite "pancake" that
was 12 cells thick). After 30 gene rations, the form had shrunk-note
that many of the cells on the top and bottom have begun to die or
oscillat e. Th e spheres containing bulls-eyes are cells th at have died
at least once but have come back to life. They will eventu ally die
permanently. The cells containing no spheres and only bulls-eyes are
cells t hat were once alive. The empty space in the middle is occupied
by most ly live cells that are not changing states; for clarity they have
not been shown.
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fall into Wolfram type 4. However, a characterist ic of typ e 4 is that any
cell in the universe might be hit by a glider passing t hroug h space; In t hree­
dimensional space, even with several st reams of gliders, the probability is
zero tha t any particular cell would be "hit" by one of th em.
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