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Classification of Semitotalistic Cellular Automata in
Three Dimensions

Carter Bays
University of South Carolina, Columbia SC 29208, USA

Abstract. This paper describes a mechanism by which three-dimen-
sional semitotalistic cellular automata (CA) may be classified. The
classification scheme is based upon the behavior of specific CA rules
when originally configured (a) as isolated forms and (b) as random
“primordial soup.” The classifications of the behavior under these two
separate schemes may then be orthogonally related.

Most of the simulations described herein were done in a universe
of dense-packed spheres, where each cell has 12 touching neighbors.
Results also apply to R®, with 26 neighbors touching each (cubic) cell.

1. Introduction and notation

In a three-dimensional universe of dense-packed spheres, the spatial rela-
tionship between neighbors can be illustrated by placing a cell at the center
of a cuboctahedron. The 12 corners then show the location of neighbor
cells (see figure 1A); these 12 corners form four intersecting hexagons (e.g.
(1,7,8,4,12,10), (6,10,11,3,8,9), etc.) which are parallel to four coordinate
planes.

Let © denote a universe of dense packed spheres; R® will be used to
refer to a three-dimensional Cartesian universe. For convenience, all of the
simulations illustrated in this paper are for rules in {); nevertheless, the
classification scheme herein described applies to rules in R* as well.

In general, a cell can have k states; in this paper, we will deal only with
k = 2 and will be concerned with the 12 touching neighbors. The next
generation state of a cell will be determined by the current state of the
cell and its neighbors. The two states of a cell are called living and dead,
which is also refered to as the quiescent or zero state, or as “space.” Define
environment, I/, as the number of living neighbors of a given living cell, ¢, so
that ¢ remains alive the next generation. Fertility, F, is the number of living
neighbors of a given dead cell so that the cell becomes alive next generation.

One way to describe rules governing the next generation state of a cell
is to specify a range, given as £, < £ < FE, and F; < I < F,. Then,
all rules, R, under consideration can be written as 4-tuples of the form R =
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(Ep, Ey, F1, F,). These rules are semi-totalistic [1] in that the next generation
outcome depends solely upon the current state of ¢ and the quantity of living
neighbors and not their relative positions. The special cases of totalistic rules
treat ¢ itself as a neighbor; e.g., rules of the form (z,y,z — 1,y — 1). Of
course, other semi-totalistic rules exist; these can be specified as follows. Let
E = (ey, e2,...) where e;, an environment state, specifies a number of living
neighbors such that ¢ remains alive next generation; and F = (fi, f2,...)
where f; is a similarly described fertility state. We now use the notation

B BB
[(61)621'"em)s(flsfla'-'fn)]a m20|n>0

(note that there might be no valid environment state). The upper limits for
m,n will depend upon the universe; for Q, m < 13, n < 12. For convenience,
we will also specify that ¢ < j <=> ¢ < ¢; and f; < f;. Note that we
eliminate as invalid all rules where f; = 0. Such rules violate the “quiescient
state” requirement [3]; that is, if all cells in a universe are zero, they must
remain zero. Throughout, we will use both notations, supplying whichever
is the most convenient for the purpose. Note that R is contained in R and
that, for example, (3,3,3,3) and [(3),(3)] are equivalent, as are (4,6,3,3)
and [(4,5,6),(3)]; and, of course, [(4,6,9),(3)] cannot be represented in the
former notation. We might also write [(), (z)] as (oo, oo, ,z). These nota-
tions seem more appropriate for three dimensions than Wolfram codes (3, p.
127].

Most of our empirical simulations have been done in 2. Computer ex-
perimentation required various finite universe sizes, occasionally wrapping
coordinates in order to simulate an infinite universe. Because of the method
of computer implementation, the finite values for  appear rhombohedric in
shape and may be considered as being composed of successive layers; the
number of such layers is referred to as the universe size. Figure 1B shows a
size-5 universe where all cells are alive.

A form is a finite grouping of cells, Many rules yield forms called oscilla-
tors, that is they are periodic. An oscillator of period one is called a stable
form., An oscillator that translates through space is called a glider. A con-
vex hull, h, is the minimal convex polyhedron that can wrap a form. It will
include cells on the outer periphery of the form. An © hull is the minimal
wrapping octahedron that can be constructed with eight planes parallel to
the four coordinate planes; similarly, an B* hull wraps with a hexahedron
constructed with planes parallel to the three coordinate planes. Let D™ de-
note the minimal distance hetween the £ hulls of forms ¢ and 5. If D™ > 1,
then we say that forms ¢ and j are isolated. A similar definition may be
made for R3,

2. A general classification scheme

Although one might like to utilize the classification system of Wolfram [3, p.
111], it is perhaps not unexpected that three-dimensional cellular automata
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Figure 1: The twelve immediate neighbors in 2 can be depicted as the
numbered corners of a cuboctahedron, each being a neighbor of the
black spot in the center. The universe can be rhombohedric; an infi-
nite universe may be simulated by wrapping, along traditional axes,
the sides of a sufficiently large finite universe. (The size-5 universe in
B would be too small for a useful simulation.) In figures 2 through 13
all rules specified are in £ unless otherwise indicated.

behave somewhat differently than one- or two-dimensional systems. For one
thing, chaos seems to prevail more frequently; moreover, there are obvious
effects of cubic rather than linear growth. Nevertheless, it is possible to
classify, at least in the broad sense, the rules under consideration in a manner
somewhat similar to the types of Wolfram.

One should note that of the 25192 possible rules in (2, we are only classify-
ing the 2?7 totalistic and semi-totalistic rules. These classifications also apply
to similarly constructed rules in R3. (Note that the rules under consideration
in © are contained in the 22" rules of R3—but cannot be represented in R*
in the form [E, F]; that is, they are not in general totalistic or semi-totalistic
in R3).

With the above in mind, we can classify semi-totalistic CA in R® and
according to the behavior of (a) a universe consisting of one or more forms,
all of which are isolated, and (b) a universe consisting of primordial “soup.”
The two classification schemes may then be orthogonally related in order
better to describe the particular rule under consideration.
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2.1 Classification according to behavior of isolated forms

All rules fall into one of three classes given below depending upon how iso-
lated forms interact. For each, start at generation zero with a universe of
isolated forms.

Class B-Bounded (Isolated forms can never interact.)

Some forms may disappear; others may fill to all live cells, depending upon
the rule. All forms remain isolated and bounded in space by their original
hulls. In other words, given a universe where D% > 1 for all forms 1, j; the
forms will remain isolated (see figure 2).

Class I-Interacting (Isolated forms may interact.)

Depending upon the rule and the forms involved, isolated forms may merge
into single forms, or they may shrink and die; i.e., possibility exists for in-
teraction. Growth of individual forms in most cases is bounded (probability
= 1), but there may exist configurations which exhibit unbounded transla-
tion or growth {e.g. gliders, glider guns). This class somewhat resembles
Wolfram type 4, although the existence of gliders is not guaranteed. A single
finite primordial blob of appropriate density in an infinite universe will, with
probability = 1, shrink to zero or more (considerably) smaller forms. For the
rules examined, such starting configurations usually evolve into a (roughly)
spherical quivering form which gradually shrinks and eventually either dis-
appears or leaves one, two, or occasionally more small oscillators. To observe
this behavior, we should start with a form whose primordial density is near
the (relatively stable) density of the slowly contracting mass. Primordial
forms of other starting densities seem to coalesce into isolated forms, which
individually continue the shrinking process just described.

Class U-Unbounded (Isolated forms grow without bounds.)

Although some forms may shrink, most forms will grow and merge together.
Some rules seem to have a finite but rather fuzzy “critical mass”, M.. If a
finite isolated primordial blob is smaller than M., then it shrinks or meanders
in a manner similar to type I behavior. If the primordial blob is larger, it
grows without limit. The initial density of M, should be somewhere around
the final chaotic density. The size of M, varies from rule to rule and (some-
what) from configuration to configuration within a given rule.

Just a few examples of rules for each of the three classes are given in table
1. Figure 5 depicts typical growth patterns for the three classes.

2.2 Classification according to primordial evolution

For each case, we wish to determine the ultimate destiny of random primor-
dial soup configurations conducted in an infinite universe. Since we may
choose to start with initial soup at a variety of densities (< 1), we designate
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Class

Example rules

In O iff f] >3
In R*iff fi > 9 (see [2])

The games of life; e.g., the O rule (3,3,3,3) and the B® rules
(4,5,5,5) and (5,7,6,6). In general, 2 rules [(z), (3)], z > 2;
and R rules [(z1,22), (y)]; 21 > 4, 4 < y < 10. Others may
be determined by testing individually.

All rules in Q where f; < 3; all rules in R® where

fi <5 (see [2]). Certain rules in Q of the form (z,y,3,3);
for example, (4,7,3,3). Many rules in R of the form

[(ex- - em)s (i - fudli o > 4y fu < 9, em < % myn > 2.
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Figure 2: The Class B behavior of rule (4,9,4,9) is shown here.

RULE = (4,9,4.9)

At

generation 0, the two top forms are not isolated in that D7 =1, but
the two bottom ones are; i.e. DY = 2. At generation 4, the top
forms begin to interact. By generation 20, they have merged into
one form. The two bottom forms will never interact. Note that the
three resulting forms are now oscillators with period > 1. A slice at
generations 20 and 21 depicts the interior activity.
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that a sizable portion of our starting configurations yield the intended result
(i.e. probability p > 0; in some cases, p = 1). The five distinct groups are
given below.

Group 0 (All cells disappear.)

No matter what we use for the starting configuration, all cells die after finite
time.

Group 1 (Cells converge to isolated forms.)

Primordial soup contracts to isolated forms, at least some of which become
oscillators.

Group 2 (Cells remain in chaotic turmoil.)

All cells in the universe have the property that they change states an infinite
number of times. No stable forms or oscillators ever appear (see figure 6 for
an example).

Group 3 (Cells remain chaotic, but stationary.)

No isolated forms are produced, but after finite time, all (or most) cells
assume a state and remain there. Occasional attached oscillator pockets
may appear. Chaos is essentially “frozen” in space. One could visualize
Swiss cheese where from zero to all of the (not necessarily round) holes are
in constant turmoil.

Group 4 (All cells become alive after finite time.)

Starting primordial configurations yield all live cells after a finite time (see
figure 7).

Table two gives some examples. It is by no means complete, as many
other rules will probably require empirical verification to determine their
proper group.

Unfortunately, the group classification is not quite as clear-cut as the three
Class B, I, and U. We must concede that many primordial configurations may
yield debris similar to a lower group; that is, some primordial configurations
for a Group 3 rule might yield Group 1 type debris. However, the converse
will never be true; that is, the correct group is the highest numbered group
such that primordial soups yield said group behavior with probability > 0.

Stated more exactly: specify a rule, R; there exist densities dy,d, such
that primordial soup densities between d; and d, will yield Group z behavior
for R with probability one. For primordial densities outside this range, be-
havior is unpredictable in that residue may be similar to Group(s) y,y < z.
(An exception: Group 0 rules yield no residue for all configurations; here,
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Group | Examples

0 Rules in © where f; > 10, e; = 12.

1 R? life rules (5,7,6,6) and (4,5,5,5); many others.  rules
[(3)?(3)]; z > 3.

2 The Q life rule (3,3,3,3); most Q rules (z,y,z,9) 1 <2,y < T;

y —z < 4. The R® rule (6,7,6,7), etc.

3 Most  rules (Ey, E,, Iy, F,) where 3 < E; < 6; E, > E; + 5 and
F, > Ej; F, < Ey. The Q rules (0,12,2,12); z > 8. The
rule (5,10, 3,3), etc.

4 All © rules (0,12,2,12); = < 7. (This can be proved in a manner
similar to Classes B and Uj; see [2].)

dy = 0+; dy = 1—). For rules tested, y # 2 and is, in fact, usually 1 or 0 (if
anything at all). A few tested rules have so far yielded inconclusive behavior.

Some rules are obviously more predictable than others. For example, the
Group 2 0 Life rule [(3), (3)] follows Group 2 behavior as long as primordial
densities are in the vicinity of 20% to 30%. Low or high densities tend to
yield clumps, some of which stabilize into oscillators (see [1]).

It has been observed that rules with a large environment range surround-
ing a small fertility range tend to be Group 3; as the two ranges approach
equality, oscillating pockets begin to appear (see figure 8). On the other
hand, rules supporting mostly interconnected chaotic turmoil, with just a
few stationary configurations, have not yet been observed. That is, Group
2 behavior seems to be “pure,” involving all cells. Only the density of the
chaotic turmoil varies—this depends upon the rule in question.

Putting it more precisely, a rule R is a Group 3 rule only if there exists an
ng such that for all generations > ng some cells do not change state; whereas
R is a Group 2 rule if and only if no such np exists. Unfortunately, it is
possible that some Group 3 rules behave like Group 2 rules for long periods
before eventually settling down, and therefore may not yield easily to an
empirical investigation to determine ng.

2.3 Combining class and group

Since every rule has a class and a group, we may combine both schemes
orthogonally (when we are certain where the rule belongs). We will use a
subscript for the group. For example, The Q Life rule (3,3,3,3) is Class I,
and the R? Life rules are Class I; (see figures 3 and 4).

It is tempting to ask why two classification schemes are necessary. The
answer is that many rules behave in a manner indistinguishable in one of the
categories, but distinguishable in the other. For example, 2 rules [(3),(3)]
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NUMBER OF LIVE CELLS

200 293 468

Figure 3: The Class I and Group 2 behavior of Q rule (3,3,3,3) is
depicted. From generations 0 to 200 an “infinite” universe (size = 20)
was used. In this infinite universe, chaotic turmoil would have per-
sisted forever. At generation 200, the simulation was split into two
separate simulations. In A, we unwrapped all three axes, leaving
essentially an isolated blob. For simulation B, only one axis was un-
wrapped. The idea here was to emulate an exceedingly large, isolated
primordial blob in an attempt to determine whether (3,3,3,3) was
Class U or Class I. If primordial chaos had persisted for simulation
B (i.e. the form was trying to grow), one would have concluded that
(3,3,3,3) was a Class U rule requiring an extremely large “critical
mass” to initiate unbounded behavior. Since the form shrank (for all
experiments tried), one can conclude that (3,3,3,3) is Class L.
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MEAN DENSITY = .495
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o9 L]
LR L L] esee ee
GENERATICN 3 GEMNERATION 4

Figure 4: Here are the live cells at generation 200 (see figure 3). Sim-
ulation A: at generation 226, the blob had shrunk in all dimensions;
by generation 258, it had gotten quite small. The form disappeared
a short time later (generation 294). Simulation B: the form shrank
more slowly, and only along the unwrapped y-axis. By generation
393, the blob, still “infinite” in x and z directions, had gotten quite
thin. At generation 469, the form finally disappeared.
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GENERATION = 18
RULE = (2,8,4,6)

GENERATION = 6
RULE = (4,4,3,3)

GENERATION 6
RULE = (4,4,2,2)

Figure 5: Here we see the three classes. Start with two isolated blobs
(D% = 2). When we apply the Class B rule (2,8, 4, 6), the forms grow
into long period oscillators, but never interact, as they are bounded by
their { hulls. Class I rule (4,4, 3,3) shows the gradual confused merg-
ing (and shrinking) of the two forms. For the Class U rule (4,4,2,2),
if we start with a single smaller blob, it rapidly grows without bound.
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Figure 6: The chaotic turmoil of Group 2 rule (5,7,5,7) is depicted.
This rule is Class B, hence designated as Class B;. The successive
slices show that all cells are continually changing values. Here, the
universe was wrapped; the size was 16. The steady state density of
the chaos (upper left corner) was a relatively stable .495, which should
be no surprise.
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Figure 7: Here we see the typical rapid growth of a Class Uy rule. All
cells became live after 35 generations.
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Figure 8: The Group 3 (more specifically, Class B3) rule (5,10,6,9)
rule is shown. Initial primordial chaos at a density of about .6 was
seen to settle down ultimately into stable masses with pockets of small
oscillators (see graph, upper left). Upper right: the stable live cells
are shown. Visible are a few of the cells that oscillate; they are the
live cells containing bullseyes. Bottom: here the stable live cells have
been removed. The remaining cells oscillate forever with (in this case)
a period of two. The currently live ones contain bulls-eyes and the
currently dead ones are shown as just bulls-eyes.
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(Class 1), and [(2),(2)] (Class U) exhibit Group 2 behavior: random pri-
mordial soups (over certain initial density ranges) appear to exhibit chaotic
turmoil forever. As another example, the € rules (1,12,4,11) and (4,5,4,5)
are both Class B, but the former usually merges to all live cells (Group 4)
while the latter remains in chaotic turmoil (Group 2). Hence, the most pre-
cise way to indicate behavior is to specify both class and group. Figure 9
illustrates the various categories.

Observe that not all possibilities are present. For example, no rule has
yet been discovered in the I; category. This is probably because the larger
environment range required for growth to all live cells tends to lead to Group
U rather than Group I behavior.

Class I5 rules, scarce in {2, are interesting in that they require rather high
primordial densities in order to observe the Group 3 behavior. Apparently,
the initial dense soup presents a hostile environment to Class I fertility rules,
which like lower densities, and lower starting densities tend to yield separate
clumps.

Not all orthogonally constructed classes make sense (e.g. Class Up). On
the other hand, if we consider other rules, it may turn out that some com-
binations that make no sense for totalistic rules do in fact cover others. For
example, consider Conway’s Life, which can be represented in R® as a certain
non-totalistic rule. One could reasonably place this rule in Class U,. That
is, one might observe that many Conway forms seem to exhibit expansive,
almost unbounded growth, but as the forms expand, they break apart into
small (contracting) isolated blobs, which then expand, interact, etc. It seems
there is a “tug of war” between the two classifications—Class U behavior and
Group 1 behavior-with Group 1 eventually winning out. Naturally, a purist
would argue that Conway’s Life falls into Class I;, but the tug of war concept
is rather romantic.

Some Class U, rules support gliders (for example, the R? rules Life.001
4544 and Life.110 4544 discussed in [2]) and therefore possible universal com-
putation. Here, forms must be constructed carefully, for if configurations are
too large, they will grow without limit. No glider supporting semi-totalistic
rule other than the Class I, rule (3,3, 3, 3) has yet been discovered in £2. This
author speculates that no “glider gun” will be found-and hopes to be proven
Wrong.

Certain Class U; rules appear to pulsate chaotically between two den-
sities, occasionally heading toward a relatively stable density for a time,
then resuming pulsating behavior (see figure 10). One of these, the € rule
(1,2,1,2), has been examined in some detail. In order to determine if this
behavior eventually quieted down, a universe in the shape of a long cylinder
was constructed. The cylinder was 15 by 15 cells across and 200 cells long,
and was wrapped on all axes to simulate a kind of infinite (albeit weird) uni-
verse. After selected generations, plots were produced which gave the number
of live cells in each slice of the long axis. Alternate generations showed little
variation in the short run, but gradually changed over a longer period. If we
were to make a movie composed of frames where each frame was a composite
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Figure 9: The classes and groups are depicted. Classes Up and U; do
not exist, and rules for Classes Iy and I4 have not been discovered.
In Q, Class U rules are most common (more than 3 x 2%?); next are
Class B rules (about 2?!). Class I rules are scarce, with fewer than
29, Class I is probably the rarest category; more than likely, there
are fewer than 100 such rules.

of, say, ten consecutive odd generation numbers, our movie would present a
profile of the surface of a choppy lake (see figure 11). Clearly, more study of
this unusual behavior is necessary.

The Class I3  rule (5, 10, 3, 3) is very interesting. First of all, several tests
were necessary in order to determine that this rule was Class I and not Class
U. In an infinite universe, this rule, with appropriate starting primordial
densities (about .5 to .6), yields a large stable mass with small pockets of
oscillators (see figure 8, top plot of figure 12). However, the really unusual
behavior is observed when we unwrap one of the axes in order to see if
the mass begins to contract. If the prior mass has evolved to the stable
form already mentioned, then although shrinking starts immediately, there
is considerable resistance to the ultimate demise of the form-almost as if
a tough “outer skin” from time to time affords protection against further
decomposition (see figure 12, bottom plot). This possibility has not been
determined with certainty and needs to be further investigated; if true, it
might then just be possible for certain Class I rules to ward off their own
decomposition and even grow for a time-all this from large random primordial
forms.
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Figure 10: Unusual “pulsating” behavior exhibited by Class Uj rule
(1,2,1,2). Chaotic turmoil would stabilize (more or less) at a given
density, only to become unstable again, with successive generations
swinging wildly between two quite distinct values. This behavior
seems to go on endlessly. Here, a universe of size 15 was wrapped
in order to simulate infinite space. For this pulsating behavior, the
use of such a small size probably affected the outcome.

3. Conclusion: a comparison to the Wolfram types

There is no exact correspondence to the four Wolfram types, but one should
remember that his classification scheme included all CA in one dimension
and not just totalistic and semi-totalistic rules. Nevertheless, we can observe
that Wolfram type 1 corresponds to Class By, and type 2 matches Classes
B, Ba,and (somewhat) U, with infinite primordial configurations. Wolfram
type 3 is, naturally, similar to Class U, and Us. Although experiments have
not yet been performed, some non-totalistic rules undoubtedly exist in &
which could be categorized as Wolfram type 4. These would likely fall into
Classes I; and I,. It appears to be possible that the new classification scheme
just might cover all rules, whether totalistic or not. (Admittedly, things get
complicated when we allow our cells to have more than two states.)

There might be a temptation to say that we do not need another classi-
fication system; that any rule could be classified by one of the four Wolfram
types. For example, if we consider the two cell states (living and dead) as
equals, then one might argue that Classes By and Uj; are equivalent. How-
ever, note that in terms of growth behavior, B, is bounded but Uj is not. As
another example, we might say that any rule which supports gliders should
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NUMBER OF LIVE CELLS
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GENERATIONS 100, 102, 104, 106, 108, 110

200
GENERATIONS 101, 103, 105, 107, 109, 111

“— 200

GENERATIONS 171, 173, 175, 177, 179, 181

“— 200

Figure 11: The same behavior depicted in figure 10 is again illustrated
here, but in a different manner. Here, a 200 X 15 X 15 universe was
utilized. The plots show the number of live cells contained in the
200 successive slices along the long axis. Note that over short ranges
of generations the odd generations formed a pattern, and the even
generations formed a sort of complementary pattern. After a time,
the pattern tended to shift around. If we made a movie where each
frame was composed of successive groups of, say, ten consecutive odd
generations, the appearance would likely be that of a lake on a rough
day.
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Figure 12: The Q rule (5,10,3,3) is shown here to be a Class I3
rule. For the graph at the top, the (size 16) universe was wrapped;
the chaos eventually stabilized into frozen “swiss cheese” containing
small pockets of oscillators and /or empty space. When one dimension
was unwrapped (simulating an extremely large but finite primordial
form), the shrinking process began rapidly, but halted periodically.
Apparently a tough “outer skin” tended to protect the form from
demise-at least temporarily.
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Figure 13: The rule (5,10,3,3) was employed on a primordial size 12
wrapped universe at an initial density of .6. The snapshot at the top
shows the relatively stable “swiss cheese” at generation 102; we see
just the cells that are continually changing. The form stabilized with
between 1022-1055 cells alive at any given time. 42 cells were periodic
and 1018 remained alive without change. The other (1728 — 1060 =
668) cells remained dead. At the bottom, we can observe the effects
of unwrapping the y coordinate (creating an infinite “pancake™ that
was 12 cells thick). After 30 generations, the form had shrunk-note
that many of the cells on the top and bottom have begun to die or
oscillate. The spheres containing bulls-eyes are cells that have died
at least once but have come back to life. They will eventually die
permanently. The cells containing no spheres and only bulls-eyes are
cells that were once alive. The empty space in the middle is occupied
by mostly live cells that are not changing states; for clarity they have
not been shown.
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fall into Wolfram type 4. However, a characteristic of type 4 is that any
cell in the universe might be hit by a glider passing through space; In three-
dimensional space, even with several streams of gliders, the probability is
zero that any particular cell would be “hit” by one of them.
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