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Abstract. A simple lattice gas model for solving the linear wave
equation is presented. In this model a photon representation is used.
Energy and momentum are shown to be conserved.

1. Introduction

The rapidly developing cellular automata (CA) theory, known also as the
lattice gas method, has recently generated wide interest for modeling many
different physical processes described generally by partial differential equa-
tions [1-5]. A lattice gas system consists of “particles” moving on a lattice
satisfying certain symmetry requirements. The updating of the system is
realized by designing microscopic rules for the moving and scattering of the
particles. The solution of the partial differential equation of interest is usu-
ally approximated in terms of the averaged behavior of a set of microscopic
quantities.

We can list three significant aspects of using the lattice gas method to
study physical systems. Tirst, since all particle interactions are local, this
method provides a way to utilize concurrent architectures [6]. The advent
of computers with 10° to 10° processors would allow computations to be
done at 10" to 107 times present speeds with slower and therefore more
reliable processors. Consequently, it is expected that the CA techniques will
become a very important computational tool for numerical modeling. Second,
because the CA operates with only integers and Boolean algebra, it requires
less computer storage so that the spatial and time resolution can be much
higher than other methods. For example 8 x 10° particles can be followed on
existing Cray Solid State Disks containing 512 megawords. Many realistic
physical processes can be simulated more accurately without roundofl or
instabilities. Third, this method may provide new insight in understanding
the relationship between the microscopic machanisms and the macroscopic
behavior for some many-body physical systems.
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The CA theory has been successful in modeling fluids [1,2,4], magnetoflu-
ids [3,5] and other systems [7]. It also appears in principle that most physi-
cal systems with diffusive macroscopic dynamics can be approximated by CA
models. The macroscopic behavior of some diffusive systems can be described
by the following parabolic equation:

BI8D _ pia,x; 1)+ DV £, ), (1.1)
where the macroscopic quantity f(x,t) represents, for example, the averaged
lattice particle density. The parameter D is the diffusivity. F(4,%; f) is
usually a nonlinear function of f.

It is of equal importance to investigate whether or not physical processes
described by the hyperbolic differential equations can be modeled within
CA framework [8]. An important process of this kind is wave propagation.
Wave propagation possesses several features which differ from the diffusion
process. In this report, we present a simple CA model which simulates wave
propagation and conserves energy and momentum.

2. The wave equation model

Wave propagation processes are described by many different types of equa-
tions. However, the basic mechanics contains a common feature which is
described by the simplest linear wave propagation process governed by the
following linear hypobolic equation:
u(x, ¢

% = 0*%%ulx, 1), (2.1)
where u is the wave amplitude and C' is the wave speed. A typical example
is electrodynamics described by the Maxwell equations. Written in terms
of the scalar potential ¢ and the vector potential A and using the Lorentz
gauge, the Maxwell equations without sources can be written as two linear
wave equations in the form of equation (2.1) for ¢ and A, plus the continuity
equation

d¢
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Comparing equation (2.1) with equation (1.1), one can see that the wave
equation has a second order time derivative, while the diffusion equation has
a first order time derivative. This is the major difference between a wave
propagation and diffusion.

Two physical quantities are conserved in a linear wave propagation pro-

cess: (a) the total wave energy, I, defined as:

B /dx{(%)2 + C*(Vu)?}, (2.2)

and (b) the total wave momentum P:
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P Q/clx{(%)Vu " uV(%)}. (2.3)

It is important that both of these conservation laws are satisfied in any CA
model for the wave equation.

The lattice gas model that we are presenting for the linear wave propa-
gation process consists of a number of “photons” propagating on a lattice.
The lattice is invariant under rotations with angles of 27/ B. (For the two-
dimensional square and triangular lattices, B equals 4 and 6, respectively.
While for the one-dimensional lattice, B is equal to 2.) The distance between
any two nearest neighbor sites of the lattice is ¢. A photon at a site of the
lattice moves at each time step to one of its B nearest neighbors with speed c,
if we set the time step equal to one time unit. Although we could in general
let photons have many different speeds or even perform a random walk [4,5],
only one speed is required for the linear wave.

We define two kinds of photons distinguished by a “spin” quantum num-
ber ¢. One kind of photon has the values ¢ = ¢ and another has —¢,
respectively. They could be considered as particles and anti-particles. More-
over, we define a cancellation process: at a given position when there is a ¢
photon and a —¢ photon, a cancellation occurs so that both of these photons
are destroyed. Therefore, after each cancellation only one kind photon is
left, namely the kind originally having the larger number of photons. This
macroscopic rule causes the total photon number to fluctuate. We let the
total o at a point in space represent the wave amplitude. The two different
kinds of photons have the same magnitude but they differ in sign. The wave
amplitude at a given location and time is defined to be the sum of the local
o. That is, if we define N7(x,t); (¢ =&, —€;a=1,..., B) to be the number
of photons with quantum o at a particular site x and time ¢ moving with
velocity &, (|é,| = ¢) in the direction @, then the microscopic wave amplitude

is defined by

Ux,t) = 3 aNJ(x,1).

For computational convenience, we further require that there are no more
than Ny photons with the same o at any site of x. This requirement causes
the photons to behave somewhat like Fermi particles instead of Bosons. Only
when Ny is infinity do these CA photons become bosons. However, if we
require Ny > (the total number of photons of either kind at any time), then
these photons can be approximately considered as Bosons.

In order to formulate a wave model, the microscopic updating rules must
be chosen. According to Huygen’s principle, any spatial point on a wave front
can be thought of as a new wave source. Hence, we consider at each site of the
lattice there is a wave source which emits photons as isotropically as possible.
The intensity of a source is defined as U(x, t). The number of photons emitted
at time ¢ from a source in direction ¢, is equal to m, x |U(x,t)| (m, = 0;a =
1,...,B). Using the wave amplitude definition above, we have
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Sl £) = U, 1).

The integer m, is dependent not only on the velocity state ¢, but also, in
general, on x and ¢. Only one type of photon, each with the same value of
o, is emitted from a lattice site. All photons emitted have the same sign
as their source U(x,?). Hence, oU > 0. After emitting photons, the source
decays obeying the following relationship

Ux,t+ 1)~ Ux, ) = -G(x,t+ 1),

where (7 is the decay rate of the source U/. The change of the decay rate
follows the relation

G(x,t+1) —G(x, 1) = o{NJ(x,1) — NJ(x + &,1)}
a,0
which is equal to the difference between the net photon ¢ emitted and the net
photon o absorbed at time ¢. It is straightforward to see that the combination
of the above two microscopic updating rules leads to a second order time
derivative for the evolution of the averaged source I/ in the continuous limit.
As soon_as the relationship between the photon number N7 and the wave
source U is determined by fixing the factor m,, the evolution of the wave
process will be completely determined. With different choices of m, we are
able to formulate different wave processes. In general, m, can be chosen to be
a function of U. However, the given wave equation becomes the linear wave
equation (2.1) when the integer m,; (a = 1,..., B) is a constant everywhere.

The boundary conditions for the wave CA systems are easy to imple-
ment. For example, the “fixed” boundary condition (U(xq) = 0) is realized
by reversing the normal component (with respect to the boundary) of the
velocity direction of the photons at the boundary while keeping the parallel
component unchanged. The photon ¢ on the boundary is changed into —o.
Similarly, the “free” boundary condition (VU(xg) = 0) can be realized by
leaving the photon spin value ¢ unchanged.

The choice of the microscopic rules for formulating a linear wave process
is not unique. Thus a criterion for chosing the best process is desired. Using
Huygen’s principle, we wish to require the photon sources to be as isotropic
as possible. We call this requirement the isotropic condition. This condi-
tion implies that we need to put m,B = m, (a = 1,...,B). Furthermore,
it should be emphasized that since we use photons as the only information
carriers from one place to another, any physical information cannot have a
transport speed greater than the photon speed. If we define the effective
photon speed in a given direction to be the distance between two neigh-
boring sites along this direction divided by the minimum number of time
steps require for a photon to go from one site another, then it can be seen
that this speed depends on direction. The effective photon speed depends
on the discrete velocity directions on a discrete lattice. A photon cannot
always travel in a straight line in an arbitrary direction, hence there is a
minimum effective photon speed ¢/v (< ¢) for cach model. For example,
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under the isotropic condition, v is equal to unity for one-dimensional lat-
tice. v = +/2 for two-dimensional square lattice associated with the diagonal
direction of a two-dimensional square lattice. Likewise, we have v = /3
for three-dimensional square lattice. As a result, any physically meaningful
wave propagation process should not have its wave speed C' exceed ¢/v. This
sets an upper bound on allowed speeds for any information transfer. This
condition can be violated if a wrong set of microscopic rules are selected. For
instance, if the photon source intensity is too high and its emitted photons
cannot attain enough speed to propagate away, cumulation will occur which
in turn leads to instability. We refer to this requirement as the minimum
speed condition, or the CA Courant condition. If both the isotropic con-
dition and the minimum speed condition are satisfied, the evolution of the
system obeys the following equation:

Ulx, t41)=2U(x, t)+U(x,t—1) = m{—é-ZU(erEa,t)fU(x, t)}(2.4)

Equation (2.4) defines a deterministic microscopic CA wave process with
discrete space and time. It happens to have the same form as a finite dif-
ference equation. However, unlike the usual finite difference approximation,
it contains no roundoff error and no numerical instability. With a particular
choice of m the CA system conserves the microscopic energy and momentum.
Moreover, in the limit that the lattice cell size is small compared with char-
acteristic lengths and the time step size is small compared with characteristic
times, the continuous linear wave equation (2.1) is recovered after making an
ensemble averaging ({U/(x,t)) = u(x, 1)) and a Taylor expansion in time and
space.

We have proved that the wave model conserves the following two global
quantities, if the microscopic wave equation (2.4), expressed in terms of in-
tegers, can be exactly satisfied:

H =Y [U(x,t)* - U(x,t+ 1) « U(x,t — 1)]

and

L Y D e {Ux,t+ 1) % U(x+ o t) + U(x, = 1) x U(x = &,1)
UGk, ) £ UG+ b+ 1)+ Ul — 0,1 — 1]},

It can be shown that above H and P reduce to the usual I and P for the
linear wave in the continuous space and time limit, as expressed in equations
(2.2) and (2.3). Therefore these correspond to the microscopic energy and
momentum for the CA wave system. The conservation of above two global
quantities is equivalent to H(t) = H(t + 1) and P(t) = P(¢ + 1). That is,
it can be shown that A and P expressed in terms of the quantities at time
t are unchanged when we replace all the quantities by those at time ¢ 4 1,
using the microscopic wave equation (2.4).
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Figure 1: Evolution of a one-dimensional lattice gas wave at different
time steps.

With the consideration of the CA Courant condition inequality, however,
we have found that the microscopic energy H is a positive-definite quantity
only when B/m = v? in equation (2.4). That is, the wave speed C' must equal
¢/v, the effective minimum photon speed. This leads to the conclusion that
only the one-dimensional wave lattice gas model can satisfy the microscopic
wave equation (2.4), since v = 1 in this case. Thus, it satisfies the microscopic
conservation laws exactly. In higher dimensions the above global quantities
H and P are conserved statistically. That is, we replace the microscopic
wave amplitude U by its ensemble averaged value w (= (U})).

Results of a one-dimensional CA wave computer simulation are shown in
figure 1 which describes the time evolution of a wave packet. This model is
an exact microscopic wave process. The wave amplitude at ¢ < 0 is set to
be zero everywhere, while at ¢t = 0 the amplitude is shown in the figure. As
expected, the single wave packet evolves into a right-traveling wave packet
and a left-traveling wave packet. Their shapes are preserved at all times.
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For higher dimensional lattices the conservation laws are not exactly sat-
isfied since v > 1, hence mU(x, ) may not always be evenly divided by B. It
is in general impossible for the total number of photons emitted (= m[}{x, 1))
to be distributed equally among all the B possible directions. In other words,
ma; (@ =1,..., B) can not be made exactly equal to m/B. Therefore equa-
tion (2.4) becomes only a statistical description of the wave CA for dimen-
sions higher than 1.

Based on numerical experience, it is desirable, that both the isotropic
condition and the CA Courant condition be satisfied as closely as possible
in order to minimize microscopic fluctuations. One way to realize such a
requirement in two-dimensional and three-dimensional, is first to distribute
the total mU(x,t) (m = 2) photons equally among all the B directions,
then put the possible remaining two photons into two anti-parallel directions.
These two directions are selected with equal probability among all B/2 pairs
of directions. In this way, it can be shown that the microscopic equation of
motion of the CA wave system is

Ux,t+1) —2U(x, 1) + U(x,1—1) ZmU oy t) — mU(x, 1)

where 7, m, = m and the ensemble averaged {m,) = m/B, (a =1,...,B).
Thus equation (2.4) becomes statistically valid and the two above conserva-
tion laws are satisfied if we replace U by its averaged value.

As a result, we can use the wave CA model to simulate light experiments.
For example, figure 2 gives the results of the two-dimensional wave CA sim-
ulation for the double-slit experiment at a given instant. In this simulation,
256 x 256 lattice cells are used. At 64 cells away from the left boundary a
wall with two holes each with width of 5 cells is inserted, so that photons
can go through the holes in order to go from left region into the right region.
Elsewhere on the wall, photons will be reflected back. Initially, we put a
plane sine-wave with amplitude of 16 |o| and wave length of 32 cells in the
left region. The right region is empty initially. A spatial averaging is used
with the average super-cell size of 4 x 4. As expected the wave amplitude
exhibits a spatial interference pattern.

It is easy to see that the microscopic fluctuations 60 (= U — {U)) in-
duced by the above method in two-dimensional and three-dimensional also
approximately follow equation (2.4) except that an additional white noise
source with maximum magnitude of |o| appears. Using standard mathemat-
ics it can be shown that the root mean square value of the fluctuation of a
individual Fourier mode at large time £ is

((6U(k,1))?) = |o/k|VE,

where the wave number k satisfies 27 /¢ > |k| > 2x/L, and L is the system
size. This indicates that the maximum spatial rms fluctuation /((6U/)?) is

approximately |o|v/%, and the maximum spatial correlation of the fluctuation
(BU(x)6U(x + 1)) (e £ |r| € L) is about a?ct/|r| for three-dimensional
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Figure 2: Spatial interference pattern of the wave amplitude in a two-
dimensional wave lattice gas double-slit experiment at a given instant.
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and o?ct log(|r|) for two-dimensional. Therefore, for a given number of time
steps, a sufficiently large number of CA cells such that L >> ¢ and the
mean wave amplitude || >> |o|, the noise is basically confined to small
spatial scale for three-dimensional case and large scale wave structures remain
undeformed. However, the fluctuation has stronger influence at large scales
for two-dimensional.

3. Conclusions

In this report, we have presented a CA wave model for the linear wave equa-
tion. It is a many photon lattice gas system. Since the wave CA system
conserves the macroscopic energy and momentum, its behavior follows a
Hamiltonian dynamics. This is an essential requirement in formulating a CA
wave process. It is foreseeable that more complicated wave processes may
be constructed involving possibly many different kinds of nonlinear inter-
actions. Since the CA provides a fast computational tool, many practical
physical problems involving complicated geometries can be simulated.
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