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Abstract. A simple lattice gas model for solving the linear wave
equation is presented. In this model a photon representation is used.
Energy and momentum are shown to be conserved.

1. Introduction

The rapid ly developing cellular automata (CA) theory, known also as the
lattice gas method, has recently generated wide interest for modeling many
different phys ical processes described generally by partial differential equa­
tions [1- 5]. A lattice gas system consists of "particles" moving on a lattice
satisfying certain symmetry requ irements. The updating of the system is
realized by designing microscopic rules for the moving and scattering of the
particles. The solution of the part ial differential equation of interest is usu­
ally approximated in terms of the ave raged behavior of a set of microscopic
quantities.

We can list three significant aspects of using the lattice gas method to
study physical systems. First, since all particle interact ions are local, this
method provides a way to utilize concurrent architectures [6] . The advent
of computers with 106 to 109 processors would allow computations to be
done at 104 to 107 times present speeds with slower and therefore more
reliable processors . Consequently, it is expected that the CA techniques will
become a very important computational tool for numerical modeling. Second,
because the CA operates with on ly integers and Boolean algebra, it requires
less computer storage so that the spatial and time resolution can be much
higher than other methods. for example 8 x 109 particles can be followed on
existing Cray Solid State Disks containing 512 rnegawords. 'Many realistic
physical processes can be simulated more accurately without roundoff 01'

instabilities. Third, this method may provide new insight in understanding
the relationship between the microscopic machanisms and the macroscopic
behav ior for some many-body physical systems.
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The CA theory has been successful in modeling fluids [1,2,4]' magn etoflu­
ids [3,51 and other systems [71. It also appear s in principle that most physi­
cal systems with diffu sive macroscopic dynamics can be approximate d by CA
models. The macroscopic behavior of some diffusive systems can be described
by the following parabolic equation:

8f(x, t )
at F (t, x; J) + D'Il' J (x, t ), (Ll )

where the macroscopic quant ity J(x , t) represents, for exa mple, th e averaged
lat t ice particle density. The par ameter D is the diffusivity. F(t ,x ; f) is
usually a nonlinear fun ction of f.

It is of equa l importance to invest igate whether or not physical processes
described by the hyp erbolic different ial equat ions can be mod eled within
CA fram ework [8] . An im po rtan t process of this kind is wave propagation.
·Wave propagat ion possesses several features which differ from the diffusion
process . In this repor t , we presen t a simple CA mo del which sim ulates wave
prop agation and conserves ene rgy and moment um.

2. T he wav e eq uat ion model

Wave propagation processes are desc ribed by many different typ es of equa­
t ions . However, the basic mechanics contains a common feature which is
described by the sim plest linear wave propaga tion process governed by the
followi ng linear hypobolic equa t ion:

a' u(x , t ) = C'~, ( )
8t2 v U x, l , (2.1)

where u is the wave am plit ude and C is the wave speed . A typi cal example
is elect rody nam ics described by the Max well equat ions . Written in terms
of the scala r po tential 4> and the vector potential A and using t he Lorentz
gau ge, the Maxwell equations without sources can be written as two linear
wave equations in th e form of equat ion (2.1) for ¢ and A, plu s t he cont inuity
equat ion

Com paring equ atio n (2.1) with equat ion (1.1), one ca.n see that the wave
equation has a secon d order t ime deri vat ive , while the diffusion equa t ion has
a first order t ime deri vati ve. Thi s is the major difference between a wave
propagation and di ffusion .

Two physical quanti ties a re conser ved in a linear wave propagation pro ­
cess: (a) the total wave ene rgYI H I defi ned as:

(2.2)

and (b) the total wave moment um P:
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(2.3)

It is important that bo th of th ese conservat ion laws are sat isfied in any CA
model for the wave equation.

Th e lattice gas model that we are present ing for the linear wave propa­
gation process consists of a number of "photons" pro pagat ing on a lattice.
Th e lattice is invariant und er rot at ions with angles of 2Jr'jB. (For the two­
dimen sion al squa re and t riang ular lattices, B equa ls 4 an d 6, respect ively.
Whil e for the one-dimensional lattice, B is equal to 2.) The distance between
any two nearest neighbor sites of th e lat tice is c. A pho ton at a site of the
la ttice mov es at each t ime step to one of it s B nearest neigh bors with spee d c,
if we set th e t ime ste p equal to one time uni t. Although we could in gener al
let photons have many different speeds or eve n perform a random walk (4,5],
only one speed is required for the linear wave.

Vlfe define two kind s of photons dis t inguished by a "spin" quantum num­
ber a . One kind of photon has the values a = { an d an ot her has - { ,
respectively. T hey could be considered as particles and anti- pa rt icles. More­
over, we define a cancellation process: at a given position when there is a ~

photon and a -~ photon , a cancellation occurs so that bo th of these photon s
are dest royed. Therefore, afte r each can cellation only one kind photon is
left, namely th e kind orig inally having th e larger number of photons. This
macroscopic rule causes th e total photon number to fluctuate. vVe let the
to tal a a t a point in space rep resent the wave amplitude. The two diffe rent
kinds of photons have the same magnitude but th ey differ in sign. The wave
amplitude at a given locat ion and t ime is defined to be the sum of th e local
a . That is, if we define N:(x, t); (a = ~ , -~; a = 1, . . . , B) to be th e number
of photons with quantum a at a par t icular site x and time t moving with
velocity ca (Ica l = c) in the direction a, t hen the microscopic wave amplitude
is defined by

U(X,t) = L,<7N:Cx, t ).

For computational con veni ence, we further require t ha t there are no more
th an No photons with the same a at any site of x . Th is requ irement cau ses
the photons to beh ave somewhat like Fermi pa rticles instead of Bosons . Only
when No is infini ty do th ese CA photons become bosons. However, if we
require No A> (the total number of pho tons of either kin d at any time), t hen
th ese photons can be approximately considered as Bosons.

In ord er to formu late a wave model, t he mi cros copi c updating ru les must
be chosen . According to Huy gen's pr inciple, any spat ia l point on a wave fron t
can be though t of as a new wave source . Hence, we consider at each site of th e
lattice there is a wave source which emits photons as isotropica. lly as possib le.
The intensity of a source is defined as U(x, t ). The number of photons emit te d
at time t from a source in direction c, is equa l to rna X IU(x , t)1 (rna 2: 0; a =
1, . .. , B ). Using the wave ampli tude defin ition above, we have



262

~m.U(x, t ) = U(x, t).
"
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T he integer rna is depende nt no t only on the velocity state ca. but also , in
general , on x and t . Only one typ e of photon, each with the same value of
o , is em itted from a lattice site . All photons emit ted have the same sign
as t heir source U(x,t ). Hence, crU 2: O. After emit ting photons, the source
decays obeying the following relationship

U(x, t +1) - U(x, t) = - G(x, t +1),

where G is the decay ra te of the source if. The change of th e decay rate
follows the relation

G(x, t + 1) - G(x, i ) = ~ cr( N: (x , t) - N: (x + c. ,I)}
.,a

wh ich is equ al to the difference between the net photon a em it ted and the net
photon a absorbed at Lime t . It is st raight forward to see that the combination
of th e ab ove two mi croscopic updatin g rule s lead s to a second order t ime
deri vativ e for the evolu t ion of the averaged source (; in t he con tinuous lim it .
As soo n as the relationship between the pho ton number N: and the wave
source (; is determined by fixin g the factor rna, the evol ution of the wave
process will be completely de termined. With different choices of rna we are
abl e to formulate different wave processes. In general , rna can be chosen to be
a fun ction of U. However, the given wave equa t ion becom es the linear wave
equatio n (2.1) when the in teger rna; (a = 1, .. . , E) is a constant everywhere.

The boundary conditions for the wave CA systems are easy to imple­
ment. For example, the "fixed" boundary condi tion (U(xo) = 0) is realized
by reversing the normal component (wi th respect to the boundary) of the
velo city direction of the photons at the boundary while keeping the parallel
com pon ent un chang ed . The pho ton (J on the boundary is changed into -cr.
Similarly, t he "free" bound a.ry condition (\7l.U(xo) = 0) can be realized by
leaving the photon spin valu e o unchanged.

T he choice of the mi cros copic rul es for formulating a linear wave process
is not unique. Thus a criterion for chas ing the bes t process is des ired. Using
Hu ygen's pr in ciple, we wish to require the pho ton sources to be as isotropic
as possib le. We call thi s requi rement the isotropic condition. This condi­
t ion im plies that we need to put maE = rn, (a = 1, .. . , E) . Furthermo re ,
it should be emphasized that since we use photons as th e only information
carri er s from one place to ano th er, any physical information can not have a
t ranspor t speed gre ater than th e pho ton speed . If we define the effect ive
pho ton speed in a given dir ection to be the distance between two neigh­
boring sites along thi s direction divided by the minimum number of time
steps require for a photon to go from one site another , t hen it can be seen
th at thi s speed depends on di rection. The effect ive photon speed dep ends
on the discrete velocity dir ections on a discre te lattice. A photon cannot
always travel in a straight line in an arbitrary direction, hence there is a
minimum effect ive photon speed c/v (:s: c) for each model. For example,
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under the isot ropic cond ition , v is equal to unity for one-dimension al lat­
tice . v = .j2 for two-dimensiona l squ are lattice associated with th e diagonal
direct ion of a two-dimensional square lattice . Likewi se , we have /) = J3
for three-dimensional square lattice . As a result , any physically meaningful
wave propagation p rocess should not have its wave speed C exceed el l) . This
sets an upper bound on allowed speeds for any information transfer. This
cond it ion can be violated if a wrong set of microscopic rules are selected . POl'
ins tance, if the photon source int ensity is too high and its emitted photons
cannot attain enough speed to propagate away, cumulation will occur which
in turn leads to instability. vVe refer to this requirement as the minimum
speed condit ion, or t he CA Courant condition . If both the isot rop ic con­
dit ion and the minimum speed condit ion are satisfied, the evol ution of the
system obeys the following equation:

U(x, t +1) -2U(x , t)+ U(x, t -l) = m{~ :L U(x+C" t) - U(x, t )}(2.4)
a

Equat ion (2.4) defines a de terministic microscopic CA wave process with
discrete space and t ime. It happens to have the same form as a finite dif­
ference eq uat ion. However, un like th e usual finite difference approximation,
it contains no roundoff error and no numerical instability. Wi th a particular
choice of m the CA system conserves th e microscopic energy and mo men tum .
Moreover, in t he limit that the lattice cell size is small compared with char­
acterist ic lengths and the t ime step size is sm al l compared with character istic
t imes, the continuous linear wave equat ion (2.1) is recove red aft er making an
ens emble averag ing ((U(x , t) ) = u(x, t)) and a Taylor expansion in time and
space.

We have proved that the wave model conser ves the following two global
quanti ties, if the microscopic wave equation (2.4), expressed in terms of in­
teger s, can be exactly satisfied:

H = 2) U(x , L)' - U(x, t + 1) * U(x, t - 1)1
x

and

P

0\- L:L CO {U(x, t + 1) *U(x +Co , t) +U(x, t - 1) * U(x - Co, t)
x a

U(x , t) * [U(x + Co, t +1) + U(x - Co, t - 1)J].

It can be shown tha t ab ove H and P red uce to the usual Hand P [or the
linear wave in the continuous space and t ime lim it , as expressed in equations
(2.2) and (2.3) . Therefore these correspond to the m icroscopic ene rgy and
momentum for the CA wave system. The conservat ion of above two global
quantities is equ ivale nt to H(t) = H(t + 1) and P(t) = P(t + 1). That is,
it can be shown that Hand P ex pressed in terms of the quant ities at time
t are unc hanged when we replace all the quantities by those at time t + 1,
using the m icroscopic wave equat ion (2.4) .
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Figure 1: Evolution of a one-dim ensional lattice gas wave at different
t ime steps .

Wi th t he consid eration of the CA Courant condit ion inequality, however ,
we have found th at the microscopi c ene rgy H is a positive-definite quant ity
only when B [m = v2 in eq uat ion (2.4). T hat is, t he wave speed C mu st equ al
c]», t he effect ive minimum pho ton speed. T his lead s to the conclusion that
only the one-dimensional wave la ttice gas model can satisfy the microscopic
wave equat ion (2.4), since II = 1 in this case. T hus, it sat isfies the microscopi c
conservat ion laws exactly. In higher dimensions the above global quantities
H and P are conser ved st at istically. That is, we repl ace t he microscopi c
wave ampli tu de V by its ensemble averaged value u (= (V)).

Resul ts of a one-dimensional CA wave computer sim ulation are shown in
figure 1 which describes the time evolut ion of a wave packet. This model is
an exact microscopi c wave process. The wave amplitude at t < 0 is set to
be zero every where, while at t = 0 the am plitude is shown in the figure. As
expected, th e single wave 'packet evolves into a right-traveling wave packet
and a left -traveling wave packet. Their shapes are preserved at all times.
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For higher dimensional lattices t he conse rvation laws are not exact ly sat­
isfied since u > 1, hen ce mU(x , t ) may not always be evenly divided by B. It
is in general impossible for the total number of photons em it te d (= mU(x, t ))
to be distribu ted equa lly among all t he B possible direct ions . In other word s,
rna; (a = I , .. . I B ) can not be made exact ly equal to mJ B. Therefore equa­
t ion (2.4) becomes only a stat ist ical descript ion of the wave CA for dim en­
sions high er than 1.

Based on numerical experience, i t is desirable, that both the isot ropi c
condition and the CA Couran t cond itio n be satisfied as close ly as possible
in order to minimize microscopic fluctuati ons. One way to realize such a
req uirement in two-dimensional and three-dimensional , is firs t to distribute
the total mU(x , t ) (m = 2) photons equally am ong all the B dir ections,
then put the possible remaining two photons int o two ant i-parallel dir ections.
T hese two directions are selected with equal probability amo ng all B/2 pairs
of directions . In this way, it can be shown that the microscopic equation of
mo tion of the CA wave system is

U(x, t + 1) - 2U(x, t) + U(x, t - 1) = 2:m,U(x + co, t) - mU(x, t)
n

where L:arna = m and the ensemble aver aged (rna) = rn/ B , (a = 1, . . . , B ).
T hus equation (2 .4) becomes statist ically valid and the two above conserva­
tion laws are satisfied if we replace U by its averaged value .

As a result, we can use th e wave CA mod el to simula te light exper ime nts .
For example , figure 2 gives the results of the two-dimensional wave CA sim­
ulation for the double-slit experim ent at a given instant. In this sim ulat ion,
256 X 256 lattice cells are used . At 64 cells away from th e left boundary a
wall with two holes each with width of 5 cells is inserted, so that photons
can go through the holes in order to go from left region into the righ t region .
Elsewhe re on the wall, photons will be reflected back. Initially, we pu t a
plane sine-wave with amplitude of 16 [c-] and wave leng th of 32 cells in the
left region . The right region is em pty initially. A spat ial ave raging is used
with the average super-cell size of 4 x 4. As expected the wave amplitude
exhibits a spa tial interference pat tern .

It is easy to see that the microscopi c fluctuations 6U (= U - (U)) in­
duc ed by th e above method in two-d imensional and three-dimensi on al also
approximately follow equation (2.4) except that an addi tional white noise
source wit h max imum mag nit ude of [c ] appears . Using standard math em at ­
ics it can be shown that th e root mean square value of the fluctuation of a
individual Fourier mode at large time t is

"j((8U(k , t ))' ) = 1" /kIVt,

where the wave number k sat isfies 21[ /c 2: [k] 2: 21[/L, an d L is the system

size. This indicates that th e maximum spat ial rrns fluct uation )((6U)2) is

approximately ler lVtland th e maximum spa t ial correlat ion of the fluctuation
(oU(x)oU(x + e)) (c :s lei :s L) is ab ou t ,,'ct/ lel [or three-dimension al
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Figure 2: Spatial interference pattern of the wave amplitude in a two­
dimensional wave latti ce gas double-slit experiment at a.given instant.
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and a 2ct log(lr l) for two-dimensional. Th erefore, for a. given number of t ime
ste ps , a sufficiently la rge number of CA cells suc h that L >> c and the
mean wave ampli tude lUI » luI, t he noise is basicall y con fined to sma ll
spatial scale [or three-d imensional case an d la rge scale wave structures remain
undeformed. However, the fluctuation has st ronge r influence at lar ge sca les
for two-dimensional.

3 . Concl usions

In this rep ort , we have presented a CA wave mo del for t he linear wave equa­
t ion . It is a m any photon latti ce gas sys tem . Since t he wave CA system
conserves the mac roscopic energy and momentum, its beh avior follows a
Hamiltonian dynamics. Thi s is an essential requirement in formulat ing a CA
wave process. It is foreseeable tha t more comp licated wave processes may
be cons t ruct ed involving possib ly man y d ifferent kinds of nonlinear inter­
actions. Since th e CA provides a fas t com putat ional tool, many pract ica l
physical problem s involving complicated geometries can be simulated.
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