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A bstract . We deal in this paper wit h the di fficul ty of per for ming
opt imal or nearl y optimal forecasts of discrete symbol sequences gen­
erated by very simp le models . T hese are spatial sequences gene rated
by elementary one-dimensional cellular automata. after one time step ,
wit h com pletely ran dom input st rings . T hey have p ositi ve entropy
and t hus cannot be ent irely predict ed . Mak ing forecas ts which are
optimal wit hin th is Li mita t ion is proven to be sur prisingly difficult.
Scaling laws with new ano malous exponent s are found bot h for opt i­
mal forecast s and for forecasts which are nearly opti mal .

The same remark s hold not only for forecastin g but also for data.
compression.

1. Introduction

One of the basic aspects of th e theo ry of determinist ic chaos is the fact that
very simple systems can behave in a way which is situated between order
and chaos: while comp lete prediction of its behav ior is imp ossible, one can
improve forecasts by knowing sufficient ly well the system and its history.

A quanti ta tive meas ure of the impossibility of perfect forecasts is the
metric (Kolmogo rov-Sinai) entropy h [1]. Assum e we have obser ved a system
wit h some measuring device r (which has some finite resolut ion), at all ti mes
~ t. Then we cannot completely predict what the same device r will measure
at t + r r > O. Instead, there will be a gap :-:; lvr + 0(, ' ) between the
informatio n obtainable with r and the inform ation of the best forecast based
on measurements with r. If r is sufficiently fine that t hi s bound is indeed
saturat ed , it is called a generator [2].

Th e above argum ent does not te ll us at all how hard it actually might be
to perform th e op tim al forecast , i.e. t he forecast which leaves the minimal
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uncertai nty for any given r (t hat is, for any given discrete encod ing of the
t rajectory) . This difficulty can vary greatly from case to case, and it need
not at al l be related to h. Take, e.g., the quadrat ic map

Xn+ l = 2 - x~ (1.1)

Here, a measurement of the sign of x is a generator, and the opti mal forecast
for it is tr ivial : since all sequences of signs appear with equal probabil ity {3]'
a mere guess is already the opt imal forecas tin g. On the other side, conside r
the quad rati c map at the infinite bifur cati on point (Feigenbaum point [4]),

Xn+ l = 1.401155 - x~ (1.2)

Th ere, forecast ing th e sign of x can always he slightly improved by storing a
longer record of signs in memory. Thus, although th e entropy of thi s st ring
is zero, an optim al forecast is never possible [5] .

T he difficulty of performi ng some task is usually called its complexity [6].
Thus the Kolmogorov-Chaiti n [7,8J (or algorit hmic) complexity of a symbol
seque nce of length N is essentially the length of the shortest comp uter pro­
gram needed to generate the seque nce, divided by its length N. In cases
where the sequence is an encoding of t he trajectory of a dynamical system,
th is is just h : the difficulty of specify ing the ent ire sequence is just propor­
tional to the amo unt of information which has to be given in order to spec ify
ill and this is proportional to h for long times.

But specifying a long symbol sequence is not the typical tas k assoc iated
with a dynamical system. Apa rt from deducing the underlying equa t ions
of motion and its parameters, the ty pical task is forecasti ng. We prop ose
th erefore to call forecasti ng complexity of a dy namical sys tem th e difficulty
involved in forecasting it to the best possible extent. It was proposed in
reference [5] tha t this is closest to everyone's naive not ion of comp lexity of a
pat tern. More precisely, we have th e following comp utat ional mod el in mind:

'We first encode th e system by a discrete symbolic dynamics, i.e. we
will deal in the following only with symbol sequences S = 80, S lJ ...).

We then assume that we have had the opport unity to observe S up to
t ime n, and we are asked to forecast 8 n+I ' After having done thi s, we
are told the actual 8 n+ll and we go on forecasting 8 n+2, etc.

Analogous to the case of com plexity of computing funct ions, we could
dist inguish be tween space and time complexity [6L depending on whet her we
conside r limi tati ons in storage or in CPU time as more important . We shall
do neith er. Instead , we shal l take as our prim ary measure the average amount
of (Shann on) information about the past sequence which has to be kep t
at any part icular t ime n (see equat ion (3.8) below for a forma l definition ).
This was called "t rue measur e comp lexity" in reference [5]. Notice that this
is inbetween space and time complex ity : by concent rat ing on th e average
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inform ation instead of on the maximal storage needed , we are also sensitive
on how often thi s information is fetched into fast memory. T hus our measure
seems more appropriate t han the common worst -case measures, in situations
where one has cheap slow and expensive fast memory, and where one is
sharing resources in a computer or in a network of computers wit h other
tasks. In add it ion, we will however also deal wit h space com plexity in the
rest rict ed sense of the maximal (ins tead of ave rage) amount of (algorithmic)
information about t he past which has to be st ored for an opt imal forecast.

In the followin g, we sha ll employ th ese ideas in a class of extremely sim ple
models. In these models, the symbols are ju st bits, s; E {O, I} . T hey can be
understood as "outp uts" of the expanding map

(1 3)

with .s., de pending only on the signs of X n-4, Xn-l-t, and xn-z- t according
to some fixed rule. Alte rnatively, we can cons ide r (sn) as the spatia l st ring
of spins in a one-dimensional cellular automaton with 3-spin neighb orho od
(called "elementary" by S. 'Wolfram [9]) after one single iteratio n. T he initi al
configuration of the spins is assumed random .

T here a re 256 such models, and we sha ll use Wolfram's nomenclature for
them [91 . Some of them are completely tr ivial (like c.g. the identi ty ru le # 204
or the extinct ion rule # 0); others are more interesting, but all of them seem
fairly elementary indeed at first sight. All non-triv ial ru les lead to sequences
with positive ent ropy.

In striking contrast to th e simplicity of these models an d all its ot he r
aspect s, the com plexity of forecasts is in some of t hem extremely large (the
worst -case complex it ies are even infinite in many cases) . T his is related to t he
fact th at alt hough these seque nces are em itted by Markov sources, they are
th emselves not Ma rkov sequences . Indeed , it is well known that seq uences
which are not Markovian can be very ha rd to forecast . The vir t ue of our
models is tha t due to their simplicity many aspects can eit her be studied
exact ly or at least can be dealt with numerically to grea t precision . Thus,
we can make quant itative statements concerning th e difficu lties of optimal
or near-opt imal forecas ts . Vie be lieve that there are not many other systems
where this can an d/or has been done.

The plan of this paper is as follows: in section 2, we shall int roduce the
class of mod els we shall work with . In secti on 3, we then show how to perform
op timal forecasts for th em most efficient ly, and we study some propert ies of
the resulting algorithms. Those proper ties relevant to th e more com plex rules
are t reated in sect ion 4. In section 5, we demonst ra te that these methods
are a lso efficient for estimat ing entropies and forecast ing complexit ies. We
also discuss there how they are related to Markov approximations. Fi nally ,
in sect ion 6 we discuss ot her ways of making nearly opt im al forecasts and
present some scaling laws for the limi t when th e admitted errors tend to zero .

Vve should mentio n t hat we could have concentrated also on data com­
press ion (i.e. , on coding the inform atio n missing for the forecas t in the short ­
est way) instead of on forecast ing. It is obvious that the di ffi cul tie s there
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a re related to th e ones studied here: if one wants to compress a sequence
maximally, one has to use for each new symbol all information obtainable
from th e past , just as in forecasting. A relevant complexity measure would
th en be the average delay between the uncoded sequence and the sequence
encoded and then decoded back. Again , one could take the worst case (i.e. ,
th e maximum delay), bu t we would instead consider t he average delay as
more relevant for physics.

2. T he model s

Consider a random string of bits T = . .., tn_2, tn_ I, in l ' " with prob(t;
0) = prob(t, = I) = ~ for all i . Th e st ring S is then obtained as

(2.1)

where F(t , t f
, t il) is anyone of t he 28 possible Boolean functions of 3 argu­

ments. Wolfram 's [9] nota tion for these functions is based on wri ting the
input triples in descending order, (it't") = (I ll), (110), (101), ... (000), and
reading the str ing of 8 output bits as th e bin ary representation of a number
between 0 and 255.

It is known [10) tha t for each "rule" [i.e., for each function F ) the set
of all possible st rings S forms a regular language [6]. This means t hat for
each rule one can find a finite directed graph such that parsing the st ring
corresponds to walking on t he graph . The sizes A1 of these graphs [i.e., the
number of nodes) vary between I (for t rivial rules) and 15. Th e graph s for
rules 18, 76, and 22 are e.g. given in figures La, b, and c.

At any time, one has to remember just the number of the present node
if one wants to recognize grammatically wrong cont inuat ions as such. Th is
means that th e informat ion needed to exclu de wrong continuat ions of S is
represented at any ti me by a number j; Af , and can thus he stored in 1 +
Jog2 M bits . Th erefore, log, M is called the "regu lar language comp lexity"
(RLC) in reference [10).

In some cases (sec, e.g., figure 1b) t he graph contai ns a transient part .
After some init ia l phase (of unk nown length) the transient part is left and
not re-entered. Th e relevant graph is then only the non-transient. par t of th e
total graph, and the effective complexity is sma ller th an during th e t ransient
period. During th e latter, the ent ropy of the st ring S can be positive, as
illustr ated by figure lb .

Actually, one can also study the average Shannon information about the
past history which has to be stored at any t ime for a correct parsing. Call
PI the probability to be at some given tim e at node i. Thi s inform ation is
then equa l to - L: I PI log, PI. It is called th e "set complexity" (SC) of the
set I S} in reference [5). In cont ras t to t he RLC, it is not a purely algebraic
concept hu t depends also on a meas ure .

Vve should point out t hat we st ill get regular languages if we iterate
equat ion (2.1) J( t imes [10], S~+l = F(S~_ l l S~, S~+l) with s~ == i; and Sn ==
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Figure 1: Determinist ic gra phs specifying t he grammars of spatial
st rings generated by one iteration of cellular a utomat a 76 (panel a) ,
18 (panel b) , resp. 22 (panel c). Each link is labeled by a bit of the
ou tpu t st ring (from reference [10]).
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s;' . (T his is no longer true in general for the limit sets after an infinite
number of iterat ions [11]). But even after very few iteratio ns, the sizes of the
graphs get astronomically large for the more complex rules, preventing their
explicit construction and study. T his holds also t rue for th e investigations of
the present paper: while there would not occur anything new in principl e if
we would study iterates of equation (2.1), the pract ical difficult ies would be
prohibit ive already after one more iteration .

T he sequences obtained by eq uation (2.1) have pos itive entropy for most
rules. Except for the simp lest cases, exact values of h are not found in the
literature , but upper bo un ds are provided by topologica l ent rop ies. T hese
are known [or all rules 110J .

Also known are the lengths of the shortest excluded blocks [101 . Wh ile
some of the rules lead to finite complement languages, t his is not true in
gen eral. For rule 22, e.g., the shortest excluded block has length 8, and the
language is not of fini te complement type.

3 . Fo recast ing S

We corne finally to the prob lem of not on ly ver ifying the grammatical cor­
rectness of S but of actually foreca.st ing it.

Basically, we proceed as follows: at t ime n, we have some (part ial) knowl­
edge of the input string T up to tn' It allows us to make a conjecture abo ut
the 4 probabilit ies Pn(t, it) = prob(tn _ 1 = t , i; = tf), condition ed on the
output st ring 8, . . . 8 n_ l ' Using these, an d assu ming tn+1 to be random, we
can predict the condit iona.l pro ba bilities Pn(s) = prob[s., = s) as

1
p,,(s) = - L P,,(t, t')5[s - F(t, t', tn)]

2 t,t',t"

(3.1)

where E[i - k] is a Kronecker delt a.
After having forecasted thus Sn, we are shown its actual value, and we

can update our conjecture on T . T he new unb iased est imate is

P"+l (t', t") = [2p"(s,,W1 L P,,(t , t')5[s" - F(i, t', t")J
t

(3.2)

In this way we alternate between "conjectures" about the unobserved st ring
T and "forecasts" ab out the observed string S. The "conjectures" a re made
only for internal use and are only made as intermediate steps. The procedure
starts of course with the conjecture Pn=o(i, if) = ~ , if the series of observations
st arts at n = O.

Let us int roduce now a ne w notation . \7I,'e first write the 4 probabilities
Pn(i, if) as elements of a four-d imensional vect or,

P~ = (P,,(O ,0), P,,(O, 1), P,,( I ,0), P,,(I, 1)) (3.3)

such that th e start vector becomes pl = 1/4{1, 1,1, 1). T hen, equations
(3.1) and (3.2) can be written in matrix form as



Complexity of Forecasting in a Class of Simple Mode ls 275

(34)

where Mo and M1 are the 4 x 4-matrices

M. =

(

6[8 - F(O,0, O)J
6[8 - F(O, 0, I)]

o
o

o
o

6[8 - F(O , I , O)J
6[8 - F (O , I , I)]

6[8 - F (I , 0, O)J
6[8 - F (I ,O, I)J

o
o

(3.5)

6[8 - Ft,I , 0)] )
6[8 - F (I , I, I)]

with all elements either 0 or 1, and where p,., (s ) acts just as a normalizer. Up
to the la t ter , we find thu s that each obser vatio n of an output bit corres ponds
to multiplying t he conject ure vector by th e corresponding matrix. The t ra­
jectories of th ese vectors are obtained by applying th e two ma tri ces Mo and
M1 in the random sequence given by S .

T his const ruct ion of the set of P -vectors is reminiscent of th e limit set of
"cont raction map s" or "iterated function syste ms" [12]. Th e main difference
is that in cont raction maps one considers all index sequences as a llowed ,
while in OUf case only those index sequences S are admi t ted which are output
sequences of th e cellular automaton.

Th e difficulty of forecast ing S is relat ed to the algebraic properties of
t he matrices M~. Forecast ing would be easy if the re exists a finite set of
N vecto rs P which is closed under allowed mult iplicati ons of M~ an d which
contains the start vector P o. T hen, t here would exist on ly a finite number
of unbi ased conjectures about the input st ring, and from these we would
obtai n via equa t ion (3.1) only a finite number of forecas ts p(O ) (reme mber
that (p(l ) = I - p(O)). Th e amount of information to be stored at any time
would be finite and at most equal to 1 + log2N bits. But in genera l, things
are much more com plicated.

Let us study specific ru les in somewhat more detail.

1. Rule 90. Th ere we find

(

1 0 0 0 )o 0 I 0
Mo = 0 I 0 0 '

000 I
(

0 0 1 0 )1 0 0 0
M, = 0 0 0 I

o I 0 0

(3.6)

and we find A1oPo = A1t P o = P o. Thus, from no observation we can
ever learn anything about t he inpu t st ring, and corres pondingly we
never can make a better forecast th an a pure guess.

2. Besides rules with such complete ly random out put st rings, having th e
t rivial closed set {Po} , there are very few other rules with a finite closed
set . T hese are rule 35 and all rules obtained from it by conjugat ion and
reflecti on [10]. Here, one has
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(3.7)

Applyi ng any grammatically correct sequence to Po one finds th e set
of Pvvecto rs shown in figure 2. T he P 's form in this figure the nodes of
a dire cted graph , the links being lab eled by the out put variables s (i.e.,
by the indices of !l1). For convenience, we have multiplied each P in the
figure by the smallest integer which makes its components integer. T he
rat ional numbers writ ten nex t to each nod e P are the forecasts p(l, P)
associated to P . It is easily checked t hat th ese forecas ts ca nnot be
obt ained from any simpler graph obtained from figure 2 by iden ti fying
some groups of nodes. Thus figure 2 is indeed the smallest graph usable
for forecast ing rule 35. Let us den ote by Q(P) the probabil ity of visi ting
nod e P at any given moment when reading in a random input st ring.
These probabiliti es are easily computed numerically (see also section
5). From them, we can compute the forecas ting complexity C , defined
as the average Shannon informat ion to be stored duri ng a forecast of
the output of a ran dom inpu t st ring,

c ~ - L Q(P) log, Q(P)
p

(3.8)

Numerically, we find C = 2.10846 bits.

As can be shown by going through all 256 rules, there does not exist
such a finite graph, corre sponding to a finite closed set of P cvectors,
for any other rule not related to rule 35.

3. A representative of the structurally next complex class is rule 76. Here,
one has

(3.9)

Apply ing all correct sequences of Mo and Ail to Po, one finds the set of
P -vectors shown in figure 3. It forms the vertices of an infinite graph.
By const ruct ion, the graph is such that all paths on it have images in
figure 1b and vice versa. It is easily verified that th ere is not only an
infinite number of nodes in t his graph , but that also the number of
different val ues of the forecasts p(s ) is infinite. Therefore we find that
for this ru le (which behaves simply in all ot her respects) an opt imal
pred ict ion would indeed need an infinite amount of information to be
stored in the worst case.
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Figure 2: Deterministic graph for forecas ting the first itera te of rule
35, with random input st rings. As in figure 1, each link is labelled by
an output bit . In addition, each node corres ponds to one vector P ,
the numb ers in each node representing its components. T he rational
numbers in brackets next to each link are the forecasted probab ilities
p(s) to branch to this link and not to the oth er one leaving t he same
node . Th e node (1111) is the start node.

o

o

o

o

o

8805

Figu re 3: Par t of the infinite graph for forecasting t he first iterat e of
rule 76, with rando m input st rings.
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Notice that the num ber of different values of p(O) is a lower limit to the
number of vertices of the simplest graph allowing an opti mal forecast.
An improved lower limit on the size of a finite graph is obtained by a
minimization similar to th at used in regular formal languages [6]: we
first divi de the set {P} of node s into sets such that within each class
all nodes have the same p(O, P) . T hen, we divide each sub set further
such that within each sub-subset al l daughters are in the same subset.
Finally, we rep eat the last step unt il no further refinement is obtained .
For infinite graphs, a lower bound of the number of nodes a distance n
from the start node can be obtained. We just have to define the subsets
some what differently: in the first step , each subs et contains all poin ts
wit h dis tance n + 1, in addition to the points with definite p(O).
Although th ere is an infini te number of nodes in the graph for rule 76,
the graph has a rather simple st ruct ure and the values of the predi c­
t ions converge expone nt ially to a cons tant with the node number: for
distances d 2: 5 from the origin, there is only 1 node pe r distance. T hus
for each node P, th e forecas t prO, P) and th e probability Q(P) that it is
just visited at any given moment are again computable with out much
effort. Also, the forecast ing complex ity C defined in equation (3.8) is
finite and computable. The result, obtained numerically by the method
of section 5, is given in tabl e 1.

4. T he next complicat ion is presented e.g. by rule 4. Ap plyin g here suc­
cessively AIo and M 1 to Po , we arrive at the graph shown in figure 4.
Again, what is shown there is only part of an infinite grap h, but th is
ti me it contains two branches extending to infinity. One of t hem is
visited again and aga in, the other is transient: it is only visit ed if from
the very beginning one observes a st ring of "0" . Aft er the first time a
"I " is obse rved, the relevan t graph consists of the lower part only. This
part is howe ver very sim ple. Any appl icat ion of Mo leads away from
the node P = (0,0,1 , 0), while any M1 leads back to this node. This
allows one to compute easily all p(O, P) (they conve rge ex ponentially
fast to 0.122561) and all Q(P), and we obtain C = 4.3462 bits.

5. A still higher degree of complica t ion is observed for rule 18. Here again
the non-t ransient part consist s of one single branch, but the t ransient
part is now more complex, see figure 5: it has an infinite number of
branches. As we ar e most int eres ted in average quant ities (where tr an ­
sients do not cont ribute) we shall not consider it further. \·Ve just
mention that the weight Q(P(k)) of that node in the non-transient
branch which is a distance k away from t he nod e P = (1, 0, 0, 0) is
equal to Fk/2

k+2 , where Fk is the klh Fibonacci number Fo = F, = 1,
1", = 2, . ..). From this we get that p(O,P(k)) converges for k -> 00 to
(2gt ' , where 9 = 0.618 . . is the golden mea n, and th at C = 3.59394
bits. The growth of th e graph is somewha t unusual for rule 18: the
number of nod es with a distance ~ n from the start seems to grow
~ exp (const.uv''}.
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6. A representative of the most complex class is rul e 22. Part of the infinite
graph obtained by applying all grammatica lly correct sequences of A1­
matrices to P o is shown in figure 6. We have not been able to describ e
its st ructure in simple terms. The number of nodes at a distance S N
from the or igin is foun d by exact enumeration to increase exponentially,
as e(O.386±.004)n. T hese data are shown in figure 7, together with the
analogous data for ru le 76. Also shown in figure 7 are the numbers of
different forecas ts. It seems numerically that they increase with the
same exp onent, so that the graphs can not be red uced substantially
(remember that we are primarily interested only in p{O), not in P).

A number of rules (e.g. rule 10) yield graphs which superficially look
similar to figure 6. However , in the graphs of these ru les the num ber of
nodes increases only quadrat ically wit h the distance from the origin, instead
of exponentia lly. T hus , though having also an infinite number of br anches
going off to infinity, these graphs are act ually much simpler topolog ical ly than
figur e 6. Essentially, they have a comb -like struct ure as revealed by draw ing
on ly the links lead ing away from the start node. Moreove r, the number
of different forecasts increases in these rules only linearly. Nevertheless, the
algorithm disc ussed in (3.c) shows that also these graphs cannot be simplified
essenti ally (the number of nod es of the minimized graphs has to increase
~ n'/2, too) .

A com plete list of the asymptotic behavior of t he node number for all
independent ru les is given in table 1. Rules not appearing there are not
independent , see ap pendix of reference [13]. The graph sizes are always
those of the minimi zed grap hs.

4 . For ecasting co m p lex r ul es

Let us study rule 22 in somewhat more detail. In figure 8 we show the average
numb er I«N) of nodes visited dur ing a forecast of a string of len gth N . It is
a measure of how fast we run into difficulties if we want to forecast optimally
a long but finite st ring . \IVe see a power law,

J((N) ~ N° (4.1 )

with e = .837 ± .010. Again, we have no th eoreti cal exp lanation for th is nu­
merical result , which was obtained by analyzing rv 200 random inpu t str ings .

Duri ng the sa me simulations, we also estimated the probabi lities Q(P)
with which each P occurred, and est imated from this the complexity give n
by equation (3.8) . We found (see figure 9) that it converge d only very slowly
with N, roughly like

C(N) = C + a.N-~

with C = 9.42 ± .006, a '" 3.7 x 10', and fJ = 0.18 ± .02. For such slow

(4.2)
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forecasting
ru le # size entropy complex ity remark

0 I 0 o.
I n .43432 4.95
2 n .48517 3.892
3 n .69924 3.59394
4 2n .50765 4.3462
5 n' / 4 .69924 7.19
6 exp{.25n) .74259 6.98
7 2n .85184 2.90325
8 n .48517 3.892 same as #2
9 exp{.31n) .73878 8.79

10 n'/4 .67787 5.42294
II 2n .79127 2.52508
12 n .67787 2.71147
13 n .79418 3.15290
14 2n .83893 3.37303
15 I I. O.
16 n .48517 3.892 same as #2
17 n .69924 3.59394 same as #3
18 exp{,,'!3) .69924 3.59394
19 n .69924 3.59394
20 exp{.25n) .74259 6.59
21 2n .85184 2.90325 sam e as # 7
22 exp(.39n) .8931 9.4
23 ex p{.28n ) .76253 8.58
24 n .67787 2.71147 same as # 12
25 exp{.30n ) .88947 6.13
26 exp( .35n ) .89026 8.36
27 29n/6 .86084 4.16365
28 n .84962 4.640
29 2n .86279 3.09285
30 I I. O. sam e as ;'/'15
32 2n .50765 4.3462 same as #4
33 exp(.28n ) .76253 7.57
34 n .67787 2.71147 sam e as # 12
35 8 .87500 2.10846
36 n .69924 3.59394 same as #3
37 exp{.35n) .8957 - 9- 10
38 2n .83893 310573
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forecast ing
ru le # size entropy complexity rem ark

40 exp( .25n) .74259 6.59 same as #20
41 exp( .32n ) .89319 8.63
42 n .83893 3.10573
43 4n .86279 4.09285
44 3n .83893 3.86839
45 1 l. 0 same as # 15
46 n .67787 2.71147
48 n .67787 2.71147 same as #12
49 9 .87500 2.10846
50 n .84962 4.640 same as #28
51 1 l. o. same as #15
52 3n .83893 3.86839 same as #44
53 4n .86084 3.64064
54 exp( .25n) .87127 6.865
56 n .84962 4.640 same as #28
57 3n .89157 3.98523
58 4n .86279 3.88603
60 1 l. o. same as #15
61 exp( .31n) .88947 6.80
62 exp(.27n) .89232 5.963
64 n .48517 3.892 same as #2
65 exp( .31n) .73878 8.85
66 n .67787 2.71147 same as # 12
68 n .67787 2.71147 same as #12
69 3n .79418 3.49270
70 n .84962 4.640 sam e as #28
72 exp(n 2/ 3 ) .69924 3.59394 same as #18
73 exp( .36n) .88649 9.14
74 exp( .36n) .89026 9.46
76 n .84962 4.640 same as #28
77 exp(.28n) .76253 8.58 same as #23
78 2n .86279 4.40794
81 2n .79127 2.52508 same as # 11
82 exp( .36n) .89026 9.46 same as #74
84 n 83893 3.10573 same as #42
85 1 l. o. same as #15
86 1 l. o. sa m e as #15
88 exp( .35n) .89026 8.36 same as #26
89 1 l. o. same as #15
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forecasting
rule # stze entropy com plexi ty rem ark

90 1 1. O. same as #15
92 4n .86279 3.88603 same as # 58
94 exp(.34n) .880 8.89
96 exp( .25n) .74259 6.98 same as # 6
97 exp(.33n) .89319 9.20
98 n .84962 4.640 same as # 28

100 2n .83893 3.10573 same as # 38
102 1 1. O. same as # 15
104 exp(.39n) .8931 9.4 same as #22
105 1 1. O. same as # 15
106 1 1. O. same as # 15
108 exp(.25n) .87127 6.865 same as # 54
110 expp7n) .89232 5.96 same as # 62
112 2 .83893 3.37303 same as #14
113 4n .86279 4.09285 same as #43
114 2n .86279 4.40794 same as # 78
116 n .67787 2.71147 same as #46
118 exp(.27n) .89232 5.96 same as #62
120 1 1. O. sam e as # 15
122 exp( .34n) .880 8.89 same as # 94
124 exp(.27n) .89232 5.96 same as # 62
126 n 69924 3.59394 same as # 3
128 n 43432 4.95 same as # 1
130 exp(.31n) .73878 8.85 same as # 65
132 exp(.28n) .76253 7.57 same as #33
134 exp(.33n) .89319 9.20 same as #97
136 n .69924 3.59394 same as #3
138 2n .79127 2.52508 same as # 11
140 9 .87500 2.10846 same as # 49
142 4n .86279 4.09285 same as #43
144 exp( .31n) .73878 8.77 same as # 9
146 exp( .36n) .88649 9.14 same as #73
148 exp(.32n) .89319 8.63 same as # 41
150 1 1. O. same as #15
152 exp(.30n) .88947 6.13 sa m e as # 25
154 1 1. O. same as #15
156 3n .89157 3.89523 sa me as #57
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forecasting
rule # SIze entropy complexity remark

160 n /4 .69924 7.19 same as #5
162 3n .79418 3.49270 same as # 69
164 exp(.35n ) .8957 ~ 9-10 same as #37
168 2n .85184 2.90325 same as # 7
170 1 1. o. same as #15
172 4n .86084 3.64064 sam e as #53
176 n .79418 3.15290 same as #13
178 exp( .28n) .76253 8.58 same as #23
180 1 1. o. same as # 15
184 2n .86279 3.09285 same as #29
188 exp( .31n) .88947 6.80 same as #61
192 n .69924 3.59394 same as #3
196 8 .87500 2.10846 same as #35
200 n .69924 3.59394 same as #19
204 1 1. o. same as #15
208 2n .79127 2.52508 same as # 11
212 4n .86279 4.09285 same as #43
216 29n/6 .86084 4.16365 same as #27
224 2n .85184 2.90325 same as # 7
232 exp (.28n ) .76253 8.58 same as #23
240 1 1. o. sam e as #1 5

Tab le 1. Asymptotic behavior of forecast ing graphs, metric entropy,
and forecasting complexity for elementary cellular automata after 1
iteration. The entropies and complexities depend on the input string
being completely random. Entropies and complexities are given in bits .

Rules not given in this list can be related to other rules which are in
the list by means of table 1 of the ap pendix of reference [13J.

The quoted graph sizes and complexities are those after minim izing
as described in sectio n 3c.

Notice that some of the entropies tabulated in the appendix of
reference [13} are slightly larger than the values given here.
Those values are wrong and should be replaced by the present ones.

By "size" we mean the number of nodes with (topological) distance
::; n from the start node. Only the dominant asympt otic behavior is
given. Rules are quoted as "same" if entropies, complexit ies, and
minimal graph sizes are exactly (not only asymptotically) the same.

convergence it is, however, very hard to dist inguish numerically between a
power and a logarithmic behavior. From the data shown in figure 9 alone,
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Figure 4: Part of the graph for rule 4.

o o

Figure 5: Part of the graph for rule 18.
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Figure 6: Part of the infinite graph for forecasting rule 22. Notice the
much higher complexity compared to the previous graphs.
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Figure 7: Numbe r of vertices (= different conject ure vecto rs P ; open
circles) and of different forecasts (heavy dot s) for rule 22 plot ted ver­
sus t heir dist ance from the origin (node (1111)) in figure 5, and t he
analogous result for rule 76.

we could not have excl uded a behavior like C(N) = const + a log N . In the
la t ter case , C would be infinite. For tunately, we ca n rule thi s out by an
independent rigorous argument given below.

Once we have an infinite graph, it is, of course, very interes tin g to know
how fast t he occupati on probabilities decrease with the distance from the
ori gin . With t he number of nodes increasing exponential ly with dist ance,
it is ob vious that the probab ility for the majori ty of node s has to decr ease
expo nent ially. 'We shall pro ve now the much st ronger result tha t the sum of
all probabilit ies to be at any node a distance ~ d from the origin,

Q(d) = L Q(P) 0 (d(P) - d)
p

(4.3)

dec reases exponentially with d for all rules. From this, it follows immediately
that C is finite .

T he proof follows from the existence of what we call "resetti ng st rings" .
These are finite sequences which when observed in the output st ring lead
to some node .E, irr espective from th e previous node. More formally, let
R = (St .. . sm) be a resett ing st ring of length rn, an d M R = A1.m . . .M;M;
be the product of AI-matrices corres ponding to it. T hen all fou r columns of
}vI R are multiples of £., such that

MnP = const £. for all P. (4.4)

For rule 22, such a reset t ing st ring with E = Po) is
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R = 00001101000010000.

289

Furthermore, by working through the 4 possib le terminations of the input
string, it can be shown eas ily that R appears in any string with nonzero
probability (i.e., for each input string there exists a finite extension which
gene ra tes R as ou tpu t). Th us, there is a finite rate by which any walk on the
graph of figure 6 is lead back to th e origin , and any inform at ion on the input
st ring becomes useless for furt her forecas ts. Thi s rate sets a lower bound on
t he exponent ia l ra te by which Q(d) has to decay, QED.

For some ot her rules, even a systematic search did not yield any reset t ing
string in the above st rict sense . But in each of these cases we found a
finite number of str ings, each one reset ti ng part of the graph. Furthermore,
from each node one of these reset ti ng stri ngs could be reached with finite
probability. T his is enough to prove a finite forecasting complexity in all
e lementary CA ru les.

The existence of resetting strings has a number of further consequences.

As we had already shown in figure 7, the num ber of vertices in the graph
of figure 6 and of similar graphs for other ru les increases exponent ially with
d istance from t he origin. Th e set of vecto rs P E R4 correspond ing to these
vert ices is shown in figure 10 as a projecti on onto the (P(O, 0), P(O, 1))-p lane.
It obviously is a fract al set. Ind eed , by st ra ight forward box counting in
th ree-dimens iona l space (remember th at only three components of P are
independent) we find a box-counting C1fractaP') dimension DJ :::::: 2.2. Also,
quali tat ively similar pict ures are obt ained for othe r proj ections and (or differ­
ent rules. As an exa mple, we show in figure 11 a projecti on of th e ana logous
set for rule 148. Finally, the set of different predict ions p(l) seems to be a
fractally pop ula ted dense set as seen from figure 12.

Nevertheless, the Hausdorff-Besicovich dimensions (in contrast to the
box-counting d ime nsions) vanish . T his follows simply from the fact that
these sets are countable. T his might seem like a mathematical sophistry, but
it is not at all. Vie can consider the evolution of P n as a dynamical system,
and we can estimate the information dimension of the at.tractor by a gene r­
alized Pesin-type formula h = Li 'YiDi [1]. Here, the 'Yi are the Lyapunov ex­
ponents, and the D, are the partial dimensions. Due to the resetting st rings,
the Lyap unov exponents are all mi nus infinite: any difference SP n will vanish
afte r sufficiently ma ny iterations, th e num ber of which is independent of SP o.
The above Pesin-typ e formula gives thus that th e information dime nsion is
zero, in agreement with the vanishing of th e Hausdorff dimens ion.

Consequences of the positive ness of the box-counting dimension on one
hand , an d of th e vanishing of the information dimension on the other, will
be discussed in sect ion 6. But before thi s, we sha ll use th e graphs in figures
2 through 6 for computing entropies and forecast ing complexit ies.
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f igure 10: Projection of the set of vectors P E R4 onto the
(P( O, 0), P(O ,1))-plane.

5. C om pu t ing m etric entropies and for ecasting complexities; M arkov
chain a pp rox imat io n

It is obvious that figure 2 can he used to compute the entropy of rule 35. In
each node i we have the probab ilities Pi(O ) and Pi(l) for t he next link to be
labeled "0" or "1". Toget her with the random sequence S of output symbols,
this defines an ergodic Markov process. Its unique solution gives the node
probabilit ies Q(P;). Th e ent ropy is tben given by

h = - L Q(Pi){Pi(O ) )Og,(Pi(O) + p;(1) log,p;(1)}. (5.1)

Numerically, a straightforward calcu lation gives h = 0.875 bits for figure 2.
Rule 35 leads to a finite -order Markov process of order 3. Thu s, the abo ve

value of li could have been obtained also simply from the block entropies fIn.

They are defined in ter ms of the probabilities pIS,,} [or fi nding the substring
STI, of length n at any given place in the output st ring 5, by
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Figur e 11: Analogous to figure 10, but for rule 146.

H; = - Lp{Sn} log, p{Sn}.
s;

The entropy is equal to

h = lim hn ", lim (B n+, - B n).
n -c-cc n-co
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(5 2)

(5.3)

An nlh-order Markov process is defined as a process where hm = h for all
m > n, or equivalent ly by p{. , . . ·'nH } = p{. , .. · ' nHJ·p( snH I s, .. .sn+tl ·

In all ot her cases (except the tr ivial rules of subsect ion 3a), things are not
so easy. In these cases, though the source of the output st ring is a Markov
source, the st ring it self is non-Marko vian. In physics te rminology, the state
of the source [i.e. the number of the actual node) is a hidd en variable. It is
well known that hidden variables can make an analy sis very complicated.

In such cases, the hn converge to h from abo ve, in such a way that [5J

(5.4)
n
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Fi g . 12

F igure 12: Histogram of 3 X 105 forecasts p(l) for rule 22. The unit
int erval on th e abscissa is divided into 1000 bins. Th e height of each
bar is proportional to the number of forecasts in t he bin. Notice t hat
the spikes ar e at rational values of p(l) .

T his sum was called effec tive measure complexity in reference [5]. Equation
(5.4) is amply fulfilled in all cases tested in the present pap er.

Equation (5.1) can be used in some case s to compute h exactly, without
using blo ck ent ropies. This incl udes ru les like 76, 4, and 18, where the graph
conta ins at most one non -t ran sient branch extending towards infinity. Since
the t ra nsient parts can be neg lected , Q(P i ) and Pi(O) can be compute d there
exactly. Again, we shall not quote anything for rule 76, but we shall give the
result for rules 4 and 18. Straightforward calc ulati ons give h = 0.5076 bits
(rul e 4) resp. h = 0.6992 bits (ru le 18).

In both these cases, th e ent ropy could also have been computed from
equation (5.3). The most st ra ightforward computation of block ent ropies H n

is by exact enumeration . In orde r to obtain H n , one has th en to go through
all 271+2 different inpu t st rings of length n + 2. For large n (n larger than
'" 20) this becomes unpracticable. As this will also be of in terest for th e next
sect ion, we shall show now that the block entropies can be obt ained more
efficiently using oUI graphs and a slight modifi cation of equat ion (5.l).

For a given rule, let us consider only that part of the graph which is a
distan ce :S n from the origin . We claim that we can use this part for making
approximat e forecasts which essent ially are equ ivalent to approxim ating t he
sequence S by an n th-order Mark ov chain. Th e reason is simp ly tha t for each
Sn t he probabilit ies p{Sn} can be read off the graph. We have just to start at
the orig in, take th e first link according to th e first symbol 8 1, th e next from
there accord ing to 8 2, etc . The prob ability p{S'll } is then simply ob tained by
mult iplying the branching probabilit ies Pi(8i) read off a t th e i t h node.
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Working through all Sn would involve exact ly the same amount of work
as direct exact enume ration . An im portant sim plification is obtained by re­
alizing that instead of the probabilities p{Sn} a ll one needs a re the quanti ties

(5.5)

where the pri me on th e summation means that it runs over all sequences
ending on node i. For n --j. 00, Q(n)(Pi ) will te nd towards Q(Pi ) . Obviously,
the Q(n)(p; ) sa t isfy a Markov equat ion

Q(n) (p;) = LPj(sn) Q(n- l )(Pj )
j

(5.6)

where the sum runs over all nodes from which there is a link leading to Pi.
Combining all this, we en d up with

hn = - L Q(n- l)(p;j L p;(s) log,p;( s) .
$=0,1

(57)

Since in all case s the number of nodes increases m uch slower t han Z", it
is m uch easier to compute the Q(n)(Pd iter ati vely via equa t ions (5.6) and
(5 .7) th an by the direct enumera t ion. In add it ion, for th e simple r rules the
Q(n) (p ) a re very good approximation s to the Q(P) needed to com pute C via
equat ion (3.8). Most of the entri es in table 1 are obtained in this way.

Each Markov chain can be represented by a fini te gra ph . T he construction
of the mini mal gra ph corresponding to the n th-orde r Markov chain approxi­
mat ion is st ra ightforward . First we build a binary t ree of heigh t n such that
each allowed st ring S = Sa ' " Sn is represented by a pat h leading up from
the root. For each allowed st r ing 8 1 .. . 8 n+ l of length n + I , we add then one
link connecting the node reached by S to the nod e reached by 82 · .. s n+t .

The graph obtain ed in thi s way is then m inimized by iden t ifyin g equivalent
nodes as describ ed in sect ion Sc.

As an example , let us give the second order Markov app roximatio n {or
rule 18, T he part of figure 5 relevant for the block probabilities p{8, S2 S3 } is
redrawn for convenience in figure 13, In this figur e, we have also indi cated
the forecasts Pi(O ), Th e Marko v graph according to th e above descr ipt ion is
given in figure 14a,

The careful read er will have realized th at figure 13 contains indeed more
information than utili zed figure 14a. From figure 13, we cannot only obtain
the probabil it ies p{S,S,S3}, bu t we can also read off e.g. p{1011} = 1/64.
It is a tri vial exerci se to verify th at the second- order Ma rkov approximat ion
embodied in figure 14a would give a different result , p{10l}.p{1 101} = 1/48.

Thus,finite parts of our graphs contain in general more information than
that usable in a Markov chain approximation, suggest ing th a t bet ter ap­
proximate treatments should be possible, Different versions of altern ati ve
approximat ions will be discussed in th e next section .
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112191

0{2131

Figure 13: Enlarged part of the graph for rule 18 (figure 5). The
rational numbers at the links indicate the forecasting probabilities
PiCS).
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b)

Figure 14: a) Graph for the Markov chain approximation based on
figure 13; b) Gra.ph obtained by trunca.t ing as explained in section 6.
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6. N early optimal forecasting

We have seen ab ove t hat in most cases we can not practically perform optimal
forecasts . Thus we have to take recourse to some kind of approximat ion . In
addit ion to treating th e out put st ring S like a Markov chain (as in th e las t
section), t here are a nu mber of other poss ible ap proxim at ions:

(a) T he first possibility is to simply truncate the graph. Links to nodes
outside the retained part must t hen be replaced by links to some other
nodes. T he most natural way to do this is t he following: when an alyzing
an ou tput st r ing S, we start at t he origin and follow t he link s until we
reach the first link (leaving form node P , say) that would leave t he
truncated graph. Assu me this happens at the kth symbol of S. At t his
mom ent , we dr op the first symbol of S, and st art again at t he origin
with the second sym bol. It might happen t hat t he new pa th leav es
the truncated graph al rea dy at k' :s k. In that case we drop also the
secon d symbol, and start a new path with the t hird symbol. This is
repeated un til we get a path for which symbol Sk leads to a node (say
node Q) in th e truncated gr aph . We now conne ct nod e P to Q and
continue with symbol S k+ l (leavi ng from nod e Q), un til t he path leaves
the graph again. At this point , we repeat the whole process .

In t he example of rul e 18, and with th e truncated graph containing
all nodes wit h distance < 3 from t he or igin , it is eas ily seen that this
am ounts in rep lacing figure 13 by figure 14b .

In this repl acemen t we keep th e Pi(S) unchanged. Th is im plies th at
in general the fore cas ted block probab ilities pis }, P{Sl S2}, '" are no
longer equal to the exact ones obtain abl e from th e trunca ted gra ph .
T his is in contrast to the Markov approxima tion t reated in t he last
sect ion . It is the biggest dr awback of this method, in pa r ti cular for
small truncated graphs. However, if th e t runcatio n involves onl y nodes
far from the or igin an d with small weight , th en this is mu ch less of a
problem, and the t ru ncat ion method is very efficient .

While t he approximat ion of section 5 effect ively assumes that the out­
p ut sequence is Markovian, t he t runcation approximat ion essentially
assumes th at t his sequence is non-Markov but ori ginates from a Markov
source.

One might hope that it should always be possible to modify the Pi(S)
such that t he forecasted block entrop ies agree with those from the t run­
cated gra ph . That t his is not so is seen by a cou nte r exa m ple: for rule
76, one finds that the par t of th e grap h which has distance < 8 from
the origin specifies all block ent ropies (of any length) complet ely. Thus,
no finit e gra ph can incorporate all constra ints implied by a t ru nca tion
at any distan ce 2. 7, and sti ll give the correct block prob abili ti es.

Among ot hers, we can apply t runcat ion in th e following three ways:

(al) by retaining only nod es with distances < n from the ori gin.
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(a2) by cut t ing off the tr ansient par ts. Consider c.g. the figures 4 and
5. In bot h cases, th e transient parts are cut ofT by replacing the
links leaving the start node by figure 15.

(a3) by truncat ing all nodes whose est imated weight Q(P) is below
some threshold value. While this would be the most preferable,
we have not found a practical way to do this for complex rules such
as ru le 22. The reason is t hat the Q(P ) can only be est imated
t here by analyzing very long sequences, using much larger graphs
than one wants to retain at the end.

(b) The above t runcations do not use t he fact that the nodes are vecto rs in
3-space, and that the result ing forecasts are real num bers. Assume we
make an approximate graph by lumping together two nodes. T hen, the
error made will depend on the dist ance in IR3 between nodes resp. the
dist ance in m. bet ween forecasts. A pr iori one might t hink of specifying
t he maximal tolerated err or or specifying th e average tolerated error,
or of specifying t he probab ility with which a certain error may ap pear .

We found t hat th e first possibility (not tolerating any forecast which is
wrong by an error larger than some prescr ibed bound e) is unfeasible
for t he more interest ing cases like ru le 22. T he reason is that alt hough
t he average Lyapunov exp onents are all -00 as explained in sect ion 4,
there arc part icular st rings with positive forecast ing Lyap unov expo­
nent. T hus we cann ot gua rantee that any small error will not blow up
arb it rar ily.

We did not study t he last possibility (to lera ting large errors only with
a certain frequency) either. What we st udied extensively instead were
some variants of the second case:

{b I ) 'Ne put a three-dimensional grid in P -space of lat tice const ant
e and replaced any vector P by the central point of its box. Vie
applied the map (3.4) then to this central point . We call this the
"lat t ice approximation" in the following.

(b2) In contrast to the above, we did not rep lace th e point P by the
cente r of the box. Instead , if two points PI an d P 2 fell into the
same box , we replaced them by t he point for which the str ing
leading to it from the start node was shorte r. If bot h lengths were
the same, we retained the point wit h the lexicographically sm aller
str ing.

In the following, we shall present only results from ap proaches (a l) and
(bl ).

From the results of sect ion 4 it should be clea r that t he forecast ing com­
plexity as defined in equat ion (3.8) stays finite in the limit of zero errors
(n --+ 00 resp. c --+ 0). T his is in contr ast to ot her complexity measures. All
non-op tim al forecast ing algorit hms discussed ab ove can be represented by
finite graphs, and have thus a finite regular language complexity in the sense
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Figure 15: Modification of the start node for rules 4 (part a) and rule
18 (part b), cutting off the transient part .
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Figure 16: Average differences between exact and approximate fore­
casts of th e probability p(O ) to obser ve "0"", for rule 22, versus th e
size of the needed graph (whose logar ithm is the regular langu age
complexity).

of reference [10) as long as n resp . e are fi nite . But in the limit of optimal
forecast s, it diverges wit h the following asymptot ic behavior (figure 16):

(16p(0) I) = k. C;P (6.1)

where C, is the regula r language complexity as estimated from the truncated
graphs without minimalizing them . St rictl y, this is somewhat larger than
the exact regular language complexity, since that is defined via the minimal
graphs which accept the same langu age. But we believe that the difference
is rather small. For tru ncati on at fixed n we found k = 0.72 and fJ = 0.82,
while for the lat t ice ap proximation we obtain ed k = 0.36 and fJ = 0.58.

For both approaches we computed the forecast ing complexit ies and the
average errors committed in the forecasts p(O) when parsing a random st ring
of length 105 . At equal complexities, we foun d that the omit ted errors were
comparab le in bot h both approaches (a) and (b) (see figure 17).

For the method (a) we found that the average error scales wit h the max­
imal allowed distance n from the start accord ing to the law (figure 18):

(I 6p(O) I) = k . • - Pn (6.2)

where k = 0.20±0.02 and fJ = 0.32±0.02. In case (b) we found an analogous
scaling of the average error with the mesh size (lattice constant ) e (figure 19):
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(1I'>p(O) I) = k . c P

where k = 0.26 ± 0.02 and fJ = 1.17 ± 0.1.

7. C on cl usio n s

(6.3)

In dynamical systems one often encounters symbol sequences which are nei­
ther det erministic nor ent irely random. Also, th ey are in general not Markov
chains even if th ey are emit ted by Markov sources. In such cases it can be
non-t rivial to ut ilize th e known struct ure for making optimal forecasts, even
if the system might seem very simple.

We have presented in this paper a rather detai led study of th e com plica­
lions one is dr iven into during such an enterprise. 'vVe studied only a class
of extremely simple toy models which at first sight might have seemed wit h­
out any interest . Our original mot ivation was that these models are simple
enough to allow a rather detailed analysis (t hough not math ematically rigor­
ous on many places). This was justi fied later by the richness of the st ruct ures
found .

Our hope is of course t hat studying such simple mo dels might be useful
finally in understandin g the difficult ies in performing actual forecasts in prac­
t ice. Lit tle work has been devoted to th is problem theoretical ly, comp ared
to th e large amount of work on the theoret ical limitatio ns to the possibility
(not to be confused with the difficulty) of forecasts. We st ress again that
the difficulty of mak ing an optimal forecast is not related to the Shan non en­
tro py, metric entropy, or Kolmogo rov complexity of the sequence . It is ra ther
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similar to a grammat ical complexity of a formal language, bu t couched in a
probabilist ic setting.

It is clear th at there is a rather close ana logy between symbol sequences
without a superimposed measure (formal languages) and such with a measure
(discrete stochastic processes). In particular, Markov chains correspond to
finite complement languages. In bot h, all features of the process can be
read off from finite length trajectories. Chains emitted from Markov sources
(i.e. functions of Ma rkov processes, depending on "b idden variables") are
analogous to regular languages, since in both cases the source has only a
fi nite memory. Are there similar analogies between higher level languages
(context free, context sensit ive, recursively enumerable sets) and classes of
stochast ic processes? We do not know. It seems t hat not much work has
been done on classifying non-Markovian stochast ic processes.

We have seen th at the concept of an infinite graph associated to a stochas­
tic process is very useful. Similar infinite graphs have been used for logisti c
maps in reference [14]. The var iability of the topology of these gra phs was
amaz ing. Also, the forecast ing complexity of the model was often closely
refl ected in the comp lexity of the topology. Is it possible to characterize also
the Chomsky hierarchy of formal languages by the topology of associated in­
finite graphs? It has been shown [15] that context-free grammars correspond
to graphs which are essentially t ree-like, bu t beyond that not much seems to
be known in general.
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