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Abstract. We deal in this paper with the difficulty of performing
optimal or nearly optimal forecasts of discrete symbol sequences gen-
erated by very simple models. These are spatial sequences generated
by elementary one-dimensional cellular automata after one time step,
with completely random input strings. They have positive entropy
and thus cannot be entirely predicted. Making forecasts which are
optimal within this limitation is proven to be surprisingly difficult.
Scaling laws with new anomalous exponents are found both for opti-
mal forecasts and for forecasts which are nearly optimal.

The same remarks hold not only for forecasting but also for data
compression.

1. Introduction

One of the basic aspects of the theory of deterministic chaos is the fact that
very simple systems can behave in a way which is situated between order
and chaos: while complete prediction of its behavior is impossible, one can
improve forecasts by knowing sufficiently well the system and its history.

A quantitative measure of the impossibility of perfect forecasts is the
metric (Kolmogorov-Sinai) entropy h [1]. Assume we have observed a system
with some measuring device I' (which has some finite resolution), at all times
< . Then we cannot completely predict what the same device I" will measure
at t + 7, 7 > 0. Instead, there will be a gap < h7 + 0(7%) between the
information obtainable with I' and the information of the best forecast based
on measurements with I'. If " is sufficiently fine that this bound is indeed
saturated, it is called a generator [2].

The above argument does not tell us at all how hard it actually might be
to perform the optimal forecast, i.e. the forecast which leaves the minimal
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uncertainty for any given I' (that is, for any given discrete encoding of the
trajectory). This difficulty can vary greatly from case to case, and it need
not at all be related to h. Take, e.g., the quadratic map

:rr,,+l:2—:l:i (1‘1)

Here, a measurement of the sign of z is a generator, and the optimal forecast
for it is trivial: since all sequences of signs appear with equal probability [3],
a mere guess is already the optimal forecasting. On the other side, consider
the quadratic map at the infinite bifurcation point (Feigenbaum point [4]),

Tpp1 = 1401155 — 22 (1.2)

There, forecasting the sign of « can always be slightly improved by storing a
longer record of signs in memory. Thus, although the entropy of this string
is zero, an optimal forecast is never possible [5].

The difficulty of performing some task is usually called its complexity [6].
Thus the Kolmogorov-Chaitin [7,8] (or algorithmic) complexity of a symbol
sequence of length N is essentially the length of the shortest computer pro-
gram needed to generate the sequence, divided by its length N. In cases
where the sequence is an encoding of the trajectory of a dynamical system,
this is just h: the difficulty of specifying the entire sequence is just propor-
tional to the amount of information which has to be given in order to specify
it, and this is proportional to h for long times.

But specifying a long symbol sequence is not the typical task associated
with a dynamical system. Apart from deducing the underlying equations
of motion and its parameters, the typical task is forecasting. We propose
therefore to call forecasting complexity of a dynamical system the difficulty
involved in forecasting it to the best possible extent. It was proposed in
reference [3] that this is closest to everyone’s naive notion of complexity of a
pattern. More precisely, we have the following computational model in mind:

We first encode the system by a discrete symbolic dynamics, i.e. we
will deal in the following only with symbol sequences S = sg, 1,...).

We then assume that we have had the opportunity to observe S up to
time n, and we are asked to forecast s,,;. After having done this, we
are told the actual s,4,, and we go on forecasting s,4,, etc.

Analogous to the case of complexity of computing functions, we could
distinguish between space and time complexity [6], depending on whether we
consider limitations in storage or in CPU time as more important. We shall
do neither. Instead, we shall take as our primary measure the average amount
of (Shannon) information about the past sequence which has to be kept
at any particular time n (see equation (3.8) below for a formal definition).
This was called “true measure complexity” in reference [5]. Notice that this
is inbetween space and time complexity: by concentrating on the average
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information instead of on the maximal storage needed, we are also sensitive
on how often this information is fetched into fast memory. Thus our measure
seems more appropriate than the common worst-case measures, in situations
where one has cheap slow and expensive fast memory, and where one is
sharing resources in a computer or in a network of computers with other
tasks. In addition, we will however also deal with space complexity in the
restricted sense of the maximal (instead of average) amount of (algorithmic)
information about the past which has to be stored for an optimal forecast.

In the following, we shall employ these ideas in a class of extremely simple
models. In these models, the symbols are just bits, s, € {0,1}. They can be
understood as “outputs” of the expanding map

Lpg1 = 255‘.,1 mod 1 (1.3)

with s, depending only on the signs of 2, — %, Ty —%, and :cn_zué according
to some fixed rule. Alternatively, we can consider (s,) as the spatial string
of spins in a one-dimensional cellular automaton with 3-spin neighborhood
(called “elementary” by S. Wolfram [9]) after one single iteration. The initial
configuration of the spins is assumed random.

There are 256 such models, and we shall use Wolfram’s nomenclature for
them [9]. Some of them are completely trivial (like e.g. the identity rule #204
or the extinction rule #0); others are more interesting, but all of them seem
fairly elementary indeed at first sight. All non-trivial rules lead to sequences
with positive entropy.

In striking contrast to the simplicity of these models and all its other
aspects, the complexity of forecasts is in some of them extremely large (the
worst-case complexities are even infinite in many cases). This is related to the
fact that although these sequences are emitted by Markov sources, they are
themselves not Markov sequences. Indeed, it is well known that sequences
which are not Markovian can be very hard to forecast. The virtue of our
models is that due to their simplicity many aspects can either be studied
exactly or at least can be dealt with numerically to great precision. Thus,
we can make quantitative statements concerning the difficulties of optimal
or near-optimal forecasts. We believe that there are not many other systems
where this can and/or has been done.

The plan of this paper is as follows: in section 2, we shall introduce the
class of models we shall work with. In section 3, we then show how to perform
optimal forecasts for them most efficiently, and we study some properties of
the resulting algorithms. Those properties relevant to the more complex rules
are treated in section 4. In section 5, we demonstrate that these methods
are also efficient for estimating entropies and forecasting complexities. We
also discuss there how they are related to Markov approximations. Finally,
in section 6 we discuss other ways of making nearly optimal forecasts and
present some scaling laws for the limit when the admitted errors tend to zero.

We should mention that we could have concentrated also on data com-
pression (i.e., on coding the information missing for the forecast in the short-
est way) instead of on forecasting. It is obvious that the difficulties there
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are related to the ones studied here: if one wants to compress a sequence
maximally, one has to use for each new symbol all information obtainable
from the past, just as in forecasting. A relevant complexity measure would
then be the average delay between the uncoded sequence and the sequence
encoded and then decoded back. Again, one could take the worst case (i.e.,
the maximum delay), but we would instead consider the average delay as
more relevant for physics.

2. The models

Consider a random string of bits T = ..., {2,841, 14, ... with prob(f; =
0) = prob(t; = 1) = § for all i. The string S is then obtained as

Sy = F(tn_], in, tn+|) (2.1)

where F(t,,#") is any one of the 2% possible Boolean functions of 3 argu-
ments. Wolfram’s [9] notation for these functions is based on writing the
input triples in descending order, (¢t't") = (111), (110), (101), ...(000), and
reading the string of 8 output bits as the binary representation of a number
between 0 and 255.

It is known [10] that for each “rule” (i.e., for each function F') the set
of all possible strings S forms a regular language [6]. This means that for
each rule one can find a finite directed graph such that parsing the string
corresponds to walking on the graph. The sizes M of these graphs (i.e., the
number of nodes) vary between 1 (for trivial rules) and 15. The graphs for
rules 18, 76, and 22 are e.g. given in figures la, b, and <.

At any time, one has to remember just the number of the present node
if one wants to recognize grammatically wrong continuations as such. This
means that the information needed to exclude wrong continuations of & is
represented at any time by a number < M, and can thus be stored in 1 +
log, M bits. Therefore, log, M is called the “regular language complexity”
(RLC) in reference [10].

In some cases (see, e.g., figure 1b) the graph contains a transient part.
After some initial phase (of unknown length) the transient part is left and
not re-entered. The relevant graph is then only the non-transient part of the
total graph, and the effective complexity is smaller than during the transient
period. During the latter, the entropy of the string S can be positive, as
illustrated by figure 1b.

Actually, one can also study the average Shannon information about the
past history which has to be stored at any time for a correct parsing. Call
p1 the probability to be at some given time at node 7. This information is
then equal to — 3, p; log, py. It is called the “set complexity” (SC) of the
set {S} in reference [5]. In contrast to the RLC, it is not a purely algebraic
concept but depends also on a measure.

We should point out that we still get regular languages if we iterate
equation (2.1) K times [10], sb*! = F(sk_,, sk, sk, ) with & = ¢, and s, =
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Figure 1: Deterministic graphs specilying the grammars of spatial
strings generated by one iteration of cellular automata 76 (panel a),
18 (panel b), resp. 22 (panel c¢). Each link is labeled by a bit of the
output string (from reference [10]).
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sk, (This is no longer true in general for the limit sets after an infinite

number of iterations [11]). But even after very few iterations, the sizes of the
graphs get astronomically large for the more complex rules, preventing their
explicit construction and study. This holds also true for the investigations of
the present paper: while there would not occur anything new in principle if
we would study iterates of equation (2.1), the practical difficulties would be
prohibitive already after one more iteration.

The sequences obtained by equation (2.1) have positive entropy for most
rules. Except for the simplest cases, exact values of h are not found in the
literature, but upper bounds are provided by topological entropies. These
are known for all rules [10].

Also known are the lengths of the shortest excluded blocks [10]. While
some of the rules lead to finite complement languages, this is not true in
general. For rule 22, e.g., the shortest excluded block has length 8, and the
language is not of finite complement type.

3. Forecasting S

We come finally to the problem of not only verifying the grammatical cor-
rectness of S but of actually forecasting it.

Basically, we proceed as follows: at time n, we have some (partial) knowl-
edge of the input string T" up to ¢,,. It allows us to make a conjecture about
the 4 probabilities P,(1,4) = prob(t,.; = t,t, = t), conditioned on the
output string s;...8,_;. Using these, and assuming ¢,.1; to be random, we
can predict the conditional probabilities p,(s) = prob(s, = s) as

pals) = 3 3 Pulty)6ls — F(t, 1, 1) (3.1)

e

where 87 — k] is a Kronecker delta.
After having forecasted thus s,, we are shown its actual value, and we
can update our conjecture on T. The new unbiased estimate is

Poa(t',1") = [2pa(sa)] ™ 22 Pult, )85 — F(1,#,")] (3.2)

In this way we alternate between “conjectures” about the unobserved string
T and “forecasts” about the observed string S. The “conjectures” are made
only for internal use and are only made as intermediate steps. The procedure
starts of course with the conjecture P,_o(t,t") = i, if the series of observations
starts at n = 0.

Let us introduce now a new notation. We first write the 4 probabilities
P, (t,t") as elements of a four-dimensional vector,

P = (Pu(0,0), Pu(0,1), Po(1,0), Pa(1,1)) (3.3)

such that the start vector becomes B = 1/4(1,1,1,1). Then, equations
(3.1) and (3.2) can be written in matrix form as
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Pa(s) = QPg‘ALPm P = [2];“(3“)]_1 Mu P, (3.4)

where My and M, are the 4 x 4-matrices

M, = (3.5)
8[s — F(0,0,0)] 0 8[s— F(1,0,0)] 0
8[s — F(0,0,1)] 0 8[s — F(1,0,1)] 0

0 8[s — F(0,1,0)] 0 8[s — F(1,1,0)]

0 8[s — F(0,1,1)] 0 8[s — F£(1,1,1)]

with all elements either 0 or 1, and where p,(s) acts just as a normalizer. Up
to the latter, we find thus that each observation of an output bit corresponds
to multiplying the conjecture vector by the corresponding matrix. The tra-
jectories of these vectors are obtained by applying the two matrices My and
M; in the random sequence given by S.

This construction of the set of P-vectors is reminiscent of the limit set of
“contraction maps” or “iterated function systems” [12]. The main difference
is that in contraction maps one considers all index sequences as allowed,
while in our case only those index sequences S are admitted which are output
sequences of the cellular automaton.

The difficulty of forecasting S is related to the algebraic properties of
the matrices M,. Forecasting would be easy if there exists a finite set of
N vectors P which is closed under allowed multiplications of M, and which
contains the start vector Pg. Then, there would exist only a finite number
of unbiased conjectures about the input string, and from these we would
obtain via equation (3.1) only a finite number of forecasts p(0) (remember
that (p(1) =1 — p(0)). The amount of information to be stored at any time
would be finite and at most equal to 1+ log, N bits. But in general, things
are much more complicated.

Let us study specific rules in somewhat more detail.

1. Rule 90. There we find
1140 =

N ﬁr’[] = (3.6)

OO O
[ B e B e
OO
OO
Ll == = I = ]
(=R — N
o -0 o

1
0
0
0

and we find MyPy = M;Py = Py. Thus, from no observation we can
ever learn anything about the input string, and correspondingly we
never can make a better forecast than a pure guess.

2. Besides rules with such completely random output strings, having the
trivial closed set {Py}, there are very few other rules with a finite closed
set. These are rule 35 and all rules obtained from it by conjugation and
reflection [10]. Here, one has
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Mo = (3.7)

fra T o e B o)
fen—
cooc o~
—_—— 0 O

Applying any grammatically correct sequence to Py one finds the set
of P-vectors shown in figure 2. The P’s form in this figure the nodes of
a directed graph, the links being labeled by the output variables s (i.e.,
by the indices of M). For convenience, we have multiplied each P in the
figure by the smallest integer which malkes its components integer. The
rational numbers written next to each node P are the forecasts p(1, P)
associated to P. It is easily checked that these forecasts cannot be
obtained from any simpler graph obtained from figure 2 by identifying
some groups of nodes. Thus figure 2 is indeed the smallest graph usable
for forecasting rule 35. Let us denote by )(P) the probability of visiting
node P at any given moment when reading in a random input string.
These probabilities are easily computed numerically (see also section
5). From them, we can compute the forecasting complexity C, defined
as the average Shannon information to be stored during a forecast of
the output of a random input string,

E Q(P) log, Q(P) (3.8)

Numerically, we find C' = 2.10846 bits.

As can be shown by going through all 256 rules, there does not exist
such a finite graph, corresponding to a finite closed set of P-vectors,
for any other rule not related to rule 35.

. A representative of the structurally next complex class is rule 76. Here,

one has

Mo = (3.9)

DO
(e B o R - )
f S S SR
[ i e I e g o

Applying all correct sequences of My and M, to Py, one finds the set of
P-vectors shown in figure 3. It forms the vertices of an infinite graph.
By construction, the graph is such that all paths on it have images in
figure 1b and vice versa. It is easily verified that there is not only an
infinite number of nodes in this graph, but that also the number of
different values of the forecasts p(s) is infinite. Therefore we find that
for this rule {which behaves simply in all other respects) an optimal
prediction would indeed need an infinite amount of information to be
stored in the worst case.
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1 (1/4)

Figure 2: Deterministic graph for forecasting the first iterate of rule
35, with random input strings. As in figure 1, each link is labelled by
an output bit. In addition, each node corresponds to one vector P,
the numbers in each node representing its components. The rational
numbers in brackets next to each link are the forecasted probabilities
p(s) to branch to this link and not to the other one leaving the same
node. The node (1111) is the start node,

Figure 3: Part of the infinite graph for forecasting the first iterate of
rule 76, with random input strings.
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Notice that the number of different values of p(0) is a lower limit to the
number of vertices of the simplest graph allowing an optimal forecast.
An improved lower limit on the size of a finite graph is obtained by a
minimization similar to that used in regular formal languages [6]: we
first divide the set {P} of nodes into sets such that within each class
all nodes have the same p(0, P). Then, we divide each subset further
such that within each sub-subset all daughters are in the same subset.
Finally, we repeat the last step until no further refinement is obtained.
For infinite graphs, a lower bound of the number of nodes a distance n
from the start node can be obtained. We just have to define the subsets
somewhat differently: in the first step, each subset contains all points
with distance n + 1, in addition to the points with definite p(0).

Although there is an infinite number of nodes in the graph for rule 76,
the graph has a rather simple structure and the values of the predic-
tions converge exponentially to a constant with the node number: for
distances d > 5 from the origin, there is only 1 node per distance. Thus
for each node P, the forecast p(0, P) and the probability Q(P) that it is
just visited at any given moment are again computable without much
effort. Also, the forecasting complexity C defined in equation (3.8) is
finite and computable. The result, obtained numerically by the method
of section 5, is given in table 1.

. The next complication is presented e.g. by rule 4. Applying here suc-

cessively My and A, to Py, we arrive at the graph shown in figure 4.
Again, what is shown there is only part of an infinite graph, but this
time it contains two branches extending to infinity. One of them is
visited again and again, the other is transient: it is only visited if from
the very beginning one observes a string of “0”. After the first time a
“1” is observed, the relevant graph consists of the lower part only. This
part is however very simple. Any application of M leads away from
the node P = (0,0,1,0), while any M, leads back to this node. This
allows one to compute easily all p(0, P) (they converge exponentially
fast to 0.122561) and all Q(P), and we obtain C' = 4.3462 bits.

A still higher degree of complication is observed for rule 18. Here again
the non-transient part consists of one single branch, but the transient
part is now more complex, see figure 5: it has an infinite number of
branches. As we are most interested in average quantities (where tran-
sients do not contribute) we shall not consider it further. We just
mention that the weight Q(P(k)) of that node in the non-transient
branch which is a distance k away from the node P = (1,0,0,0) is
equal to F}/2%*2 where F), is the k" Fibonacci number Fy = F; = 1,
Fy =2,...). From this we get that p(0, P(k)) converges for k — oo to
(2g)7", where g = 0.618.. .. is the golden mean, and that C' = 3.59394
bits. The growth of the graph is somewhat unusual for rule 18; the
number of nodes with a distance < n from the start seems to grow
~ exp(const.n??).
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6. A representative of the most complex class is rule 22. Part of the infinite
graph obtained by applying all grammatically correct sequences of M-
matrices to Py is shown in figure 6. We have not been able to describe
its structure in simple terms. The number of nodes at a distance < NV
from the origin is found by exact enumeration to increase exponentially,
as e(0-386000)n  These data are shown in figure 7, together with the
analogous data for rule 76. Also shown in figure 7 are the numbers of
different forecasts. It seems numerically that they increase with the
same exponent, so that the graphs cannot be reduced substantially
(remember that we are primarily interested only in p(0), not in P).

A number of rules (e.g. rule 10) yield graphs which superficially look
similar to figure 6. However, in the graphs of these rules the number of
nodes increases only quadratically with the distance from the origin, instead
of exponentially. Thus, though having also an infinite number of branches
going off to infinity, these graphs are actually much simpler topologically than
figure 6. Essentially, they have a comb-like structure as revealed by drawing
only the links leading away from the start node. Moreover, the number
of different forecasts increases in these rules only linearly. Nevertheless, the
algorithm discussed in (3.c) shows that also these graphs cannot be simplified
essentially (the number of nodes of the minimized graphs has to increase
~n?/2, too).

A complete list of the asymptotic behavior of the node number for all
independent rules is given in table 1. Rules not appearing there are not
independent, see appendix of reference [13]. The graph sizes are always
those of the minimized graphs.

4. Forecasting complex rules

Let us study rule 22 in somewhat more detail. In figure 8 we show the average
number K{(N) of nodes visited during a forecast of a string of length N. It is
a measure of how fast we run into difficulties if we want to forecast optimally
a long but finite string. We see a power law,

K(N)~ N* (4.1)

with o = .837 £ .010. Again, we have no theoretical explanation for this nu-
merical resulf, which was obtained by analyzing ~ 200 random input strings.

During the same simulations, we also estimated the probabilities Q(P)
with which each P occurred, and estimated from this the complexity given
by equation (3.8). We found (see figure 9) that it converged only very slowly
with N, roughly like

C(N)=C+aN" (4.2)

with C' = 9.42 + .006, a = 3.7 x 10%, and 8 = 0.18 + .02. For such slow
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forecasting
rule # size entropy complexity remark
0 1 0 0.
1 n 43432 4.95
2 n 48517  3.892
3 n 69924  3.59394
4 2n 50765  4.3462
5 n?/4 69924 7.19
6 exp(.25m) .74259 6.98
7 2n .85184 2.90325
8 n 48517  3.892 same as #2
9 exp(.3ln) .73878 8.79
10 n’f4 BTT8T  5.42294
11 2n 19127  2.52508

12 n 67787 2.71147

13 n 79418 3.15290

14 2n .83893  3.37303

15 1 1. 0.

16 n 48517 3.892 same as #2
17 n 69924  3.59394 same as #3
18 exp(n®?®) .69924 3.59394

19 n 69924  3.59394

20 exp(.25n) .74259 6.59

21 2n 85184  2.90325 same as #7
22 exp(.39n) 8931 94

23 exp(.28n) .76253 8.58

24 n GTT8T  2.71147 same as ##12
25 exp(.30n) .88947 6.13

26 exp(.35n) .89026 8.36

27 29n/6 .86084  4.16365

28 n 84962  4.640

29 2n 86279  3.09285

30 1 1. 0. same as #15
32 2n 50765 4.3462 same as F£4
33 exp(.28n) .76253 7.57

34 n 67787  2.71147 same as #12
35 8 87500  2.10846

36 n 69924 3.59394 same as #3

8957 ~9-10
.83893 3.10573

[
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@
]
=
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forecasting

rule # size entropy complexity remark
40 exp(.25n) .74259  6.59 same as #20
41 exp(.32n) 89319 8.63
42 n .83893  3.10573
43 in 86279 4.09285
44 3n .83893  3.86839
45 1 1 0. same as #£15
46 n BT78T  2.71147
48 n BTT8T  2.71147 same as #12
49 9 87500  2.10846
50 n 84962 4.640 same as #28
51 1 1. 0. same as #15
52 3n 83893  3.86839 same as £44
53 dn 86084  3.64064
54 exp(.25m) 87127 6.865
56 n 84962  4.640 same as #28
57 3n 89157  3.98523
58 dn .86279  3.88603
60 1 1. 0. same as #15
61 exp(.3ln) .88947 6.80
62 exp(.27n) .89232 5.963
64 n 48517 3.892 same as #2
65 exp(.3lm) .73878 8.85
66 n BTT8T  2.71147 same as #12
68 n BTT8T  2.71147 same as #£12
69 3n 719418 3.49270
70 n 84962 4.640 same as F#28
72 exp(n®?) 69924 3.59394 same as #18
73 exp(.36n) .88649 9.14
74 exp(.36n) .89026 9.46
76 n 84962  4.640 same as #£28
T exp(.28n) .76253 8.58 same as #23
78 2n 86279 4.40794
81 2n 79127 2.52508 same as #11
82 exp(.36n) .89026 9.46 same as #7174
84 n 83893  3.10573 same as F#42
85 1 L. 0. same as #15
86 1 1. 0. same as #15
88 exp(.35m) .89026 8.36 same as #26
89 1 L. 0. same as F£15

281



282

Domenico Zambella and Peter Grassherger
forecasting
rule # size entropy complexity remark

90 1 1, 0. same as #15
92 4n 86279  3.88603 same as #58
94 exp(.34n) 880  8.89

96 exp(.25m) 74259 6.93 same as ##6
97 exp(.33n) .89319 9.20

98 n .84962  4.640 same as #28
100 2n .83893  3.10573 same as #38
102 1 I 0. same as #15
104 exp(.39n) .8931 04 same as #22
105 1 1 0. same as #15
106 1 1, 0. same as #15
108 exp(.25n) .87127 6.865 same as #54
110 exp(.2Tn) .89232  5.96 same as #62
112 2 .83893  3.37303 same as #14
113 4dn 86279 4.09285 same as #43
114 2n 86279 4.40794 same as #78
116 n 67787 2.71147 same as #46
118 exp(.2Tn) .89232 5.96 same as #62
120 1 i 0. same as #15
122 exp(.34n)  .880  8.89 same as #94
124 exp(.27n) .89232 5.96 same as #62
126 n 69924 3.59394 same as #3
128 n 43432 4.95 same as #1
130 exp(.3lm) .73878 8.85 same as #65
132 exp(.28n) .76253 7.57 same as #33
134 exp(.33n) .89319 9.20 same as #97
136 n 69924 3.59394 same as #3
138 2n 79127 2.52508 same as #11
140 9 87500  2.10846 same as F##49
142 4n 86279  4.09285 same as #43
144 exp(.31n) .73878 8.77 same as #9
146 exp(.36n) .88649 9.14 same as #73
148 exp(.32n) .89319 8.63 same as #41
150 1 1. 0. same as #15
152 exp(.30n) .88947 6.13 same as #25
154 1 L. 0. same as #15
156 3n 89157  3.89523 same as #57
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forecasting
rule # size entropy complexity remark
160 n*/4 69924 7.19 same as #5
162 3n 79418  3.49270 same as #69
164 exp(.35m) 8957 ~ 9-10 same as #37
168 2n .85184 2.90325 same as F#7
170 1 1. 0. same as #15
172 4in 86084  3.64064 same as #53
176 n 79418 3.15290 same as #13
178 exp(.28n) .76253 8.58 same as #23
180 1 1. 0. same as #15
184 2n 86279 3.09285 same as #29
188 exp(.31n) .88947 6.80 same as #61
192 n 69924  3.59394 same as #3
196 8 87500  2.10846 same as #35
200 n 69924 3.59394 same as #19
204 1 1. 0. same as #15
208 2n 79127  2.52508 same as #11
212 4in 86279  4.09285 same as #43
216 29n /6 .86084 4.16365 same as #27
224 2n 85184  2.90325 same as #7
232 exp(.28n) .76253 8.58 same as #23
240 1 1. 0. same as #15

Table 1. Asymptotic behavior of forecasting graphs, metric entropy,

and forecasting complexity for elementary cellular automata after 1

iteration. The entropies and complexities depend on the input string
being completely random. Entropies and complexities are given in bits.

Rules not given in this list can be related to other rules which are in
the list by means of table 1 of the appendix of reference [13].

The quoted graph sizes and complexities are those after minimizing

as described in section 3c.

Notice that some of the entropies tabulated in the appendix of
reference [13] are slightly larger than the values given here.
Those values are wrong and should be replaced by the present ones.

By “size” we mean the number of nodes with (topological) distance

< n from the start node. Only the dominant asymptotic behavior is

given. Rules are quoted as “same” if entropies, complexities, and

minimal graph sizes are exactly (not only asymptotically) the same.

convergence it is, however, very hard to distinguish numerically between a
power and a logarithmic behavior. From the data shown in figure 9 alone,
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Figure 4: Part of the graph for rule 4.

Figure 5: Part of the graph for rule 18.
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Figure 6: Part of the infinite graph for forecasting rule 22. Notice the
much higher complexity compared to the previous graphs.
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Figure 7: Number of vertices (= different conjecture vectors P; open
circles) and of different forecasts (heavy dots) for rule 22 plotted ver-
sus their distance from the origin (node (1111)) in figure 5, and the
analogous result for rule 76.

we could not have excluded a behavior like C{N) = const + a log N. In the
latter case, C' would be infinite. Fortunately, we can rule this out by an
independent rigorous argument given below.

Once we have an infinite graph, it is, of course, very interesting to know
how fast the occupation probabilities decrease with the distance from the
origin. With the number of nodes increasing exponentially with distance,
it is obvious that the probability for the majority of nodes has to decrease
exponentially. We shall prove now the much stronger result that the sum of
all probabilities to be at any node a distance > d from the origin,

Q(d) = > Q(P) ©(d(P) — d) (4.3)
P

decreases exponentially with d for all rules. From this, it follows immediately
that C' is finite.

The proof follows from the existence of what we call “resetting strings”.
These are finite sequences which when observed in the output string lead
to some node P, irrespective {rom the previous node. More formally, let
R = (51...5,) be a resetting string of length m, and Mg = M™ ... M2 M}
be the product of M-matrices corresponding to it. Then all four columns of
Mp are multiples of P, such that

MpP = const P for all P. (4.4)

For rule 22, such a resetting string with P = Py) is
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Figure 8: Average number of nodes reached during a forecast of a
string of length N, obtained from a random input string (rule 22).
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bols since it will be needed for keeping further forecasts optimal (rule
22). On the abscissa is plotted N8, so that equation (4.2) with
/3 = 0.18 would give a straight line.
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R = 00001101000010000.

Furthermore, by working through the 4 possible terminations of the input
string, it can be shown easily that R appears in any string with nonzero
probability (i.e., for each input string there exists a finite extension which
generates 12 as output). Thus, there is a finite rate by which any walk on the
graph of figure 6 is lead back to the origin, and any information on the input
string becomes useless for further forecasts. This rate sets a lower bound on
the exponential rate by which ¢)(d) has to decay, QED.

For some other rules, even a systematic search did not yield any resetting
string in the above strict sense. But in each of these cases we found a
finite number of strings, each one resetting part of the graph. Furthermore,
from each node one of these resetting strings could be reached with finite
probability. This is enough to prove a finite forecasting complexity in all
elementary CA rules.

The existence of resetting strings has a number of further consequences.

As we had already shown in figure 7, the number of vertices in the graph
of figure 6 and of similar graphs for other rules increases exponentially with
distance from the origin. The set of vectors P € R* corresponding to these
vertices is shown in figure 10 as a projection onto the (P(0, 0), P(0, 1))-plane.
It obviously is a fractal set. Indeed, by straightforward box counting in
three-dimensional space (remember that only three components of P are
independent) we find a box-counting (“fractal”) dimension D; ~ 2.2, Also,
qualitatively similar pictures are obtained for other projections and for differ-
ent rules. As an example, we show in figure 11 a projection of the analogous
set for rule 148. Finally, the set of different predictions p(1) seems to be a
fractally populated dense set as seen from figure 12.

Nevertheless, the Hausdorfl-Besicovich dimensions (in contrast to the
box-counting dimensions) vanish. This follows simply from the fact that
these sets are countable. This might seem like a mathematical sophistry, but
it is not at all. We can consider the evolution of P,, as a dynamical system,
and we can estimate the information dimension of the attractor by a gener-
alized Pesin-type formula h = ¥°; 4;D; [1]. Here, the 7; are the Lyapunov ex-
ponents, and the D; are the partial dimensions. Due to the resetting strings,
the Lyapunov exponents are all minus infinite: any difference 6P,, will vanish
after sufficiently many iterations, the number of which is independent of §Py.
The above Pesin-type formula gives thus that the information dimension is
zero, in agreement with the vanishing of the Hausdor{f dimension.

Consequences of the positiveness of the box-counting dimension on one
hand, and of the vanishing of the information dimension on the other, will
be discussed in section 6. But before this, we shall use the graphs in figures
2 through 6 for computing entropies and forecasting complexities.
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\f‘ Rule 22

P(0,1)

Figure 10: Projection of the set of vectors P € R! onto the
(P(0,0), P(0,1))-plane.

5. Computing metric entropies and forecasting complexities; Markov

chain approximation

It is obvious that figure 2 can be used to compute the entropy of rule 35. In
each node ¢ we have the probabilities p;(0) and p;(1) for the next link to be
labeled “0” or “1”. Together with the random sequence S of output symbols,
this defines an ergodic Markov process. Its unique solution gives the node
probabilities @(P;). The entropy is then given by

h == Q(P:){p(0) log;(p:(0) + pi(1) log, pi(1)}. (5.1)

Numerically, a straightforward calculation gives h = 0.875 bits for figure 2.

Rule 35 leads to a finite-order Markov process of order 3. Thus, the above
value of A could have been obtained also simply from the block entropies H,,.
They are defined in terms of the probabhilities p{S,} for finding the substring
Sy of length n at any given place in the output string 5, by
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0 P( 0,0) 1

Tigure 11: Analogous to figure 10, but for rule 146.
H,=- ZP{SH} log, p{S'n}' (5'2)
Sn

The entropy is equal to
h = nllrro?‘J h, = T}ir&(Hn“ — H,). (5.3)

An n*"-order Markov process is defined as a process where h,, = h for all
m > n, or equivalently by p{si .. .sn42} = p{s1 .. Sug1}-P{Sns2 | S2-- - Snu1 }-
In all other cases (except the trivial rules of subsection 3a), things are not
so easy. In these cases, though the source of the output string is a Markov
source, the string itself is non-Markovian. In physics terminology, the state
of the source (i.e. the number of the actual node) is a hidden variable. Tt is
well known that hidden variables can make an analysis very complicated.
In such cases, the h, converge to h from above, in such a way that [5]

3 (k. —h)n < C. (5.4)
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Fig. 12

Iigure 12: Histogram of 3 x 10° forecasts p(1) for rule 22. The unit
interval on the abscissa is divided into 1000 bins. The height of each
bar is proportional to the number of forecasts in the bin. Notice that
the spikes are at rational values of p(1).

This sum was called effective measure complexity in reference [5]. Equation
(5.4) is amply fulfilled in all cases tested in the present paper.

Equation (5.1) can be used in some cases to compute h exactly, without
using block entropies. This includes rules like 76, 4, and 18, where the graph
contains at most one non-transient branch extending towards infinity. Since
the transient parts can be neglected, Q(P;) and p;(0) can be computed there
exactly. Again, we shall not quote anything for rule 76, but we shall give the
result for rules 4 and 18. Straightforward calculations give A = 0.5076 bits
(rule 4) resp. h = 0.6992 bits (rule 18).

In both these cases, the entropy could also have been computed from
equation (5.3). The most straightforward computation of block entropies H,,
is by exact enumeration. In order to obtain H,, one has then to go through
all 272 different input strings of length n + 2. For large n (n larger than
~ 20) this becomes unpracticable. As this will also be of interest for the next
section, we shall show now that the block entropies can be obtained more
elficiently using our graphs and a slight modification of equation (5.1).

For a given rule, let us consider only that part of the graph which is a
distance < n from the origin. We claim that we can use this part for making
approximate forecasts which essentially are equivalent to approximating the
sequence S by an n'"-order Markov chain. The reason is simply that for each
S, the probabilities p{ 5, } can be read off the graph. We have just to start at
the origin, take the first link according to the first symbol sy, the next from
there according to s,, etc. The probability p{S,} is then simply obtained by
multiplying the branching probabilities p;(s;) read off at the :*" node.
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Working through all S, would involve exactly the same amount of work
as direct exact enumeration. An important simplification is obtained by re-
alizing that instead of the probabilities p{S, } all one needs are the quantities

QU(P) =3 ' p{Sa} (5.5)

where the prime on the summation means that it runs over all sequences
ending on node i. For n — oo, Q™ (P;) will tend towards Q(P;). Obviously,
the Q™ (P,) satisfy a Markov equation

Q(P) = 2_Pi(sn) QU(P)) (5.6)

where the sum runs over all nodes from which there is a link leading to 7.
Combining all this, we end up with

ho==3 Q"R) 3 pils) logapils). (5.7)

s=0,1

Since in all cases the number of nodes increases much slower than 27, it
is much easier to compute the Q™ (P;) iteratively via equations (5.6) and
(5.7) than by the direct enumeration. In addition, for the simpler rules the
Q" P) are very good approximations to the Q(P) needed to compute C via
equation (3.8). Most of the entries in table 1 are obtained in this way.

Each Markov chain can be represented by a finite graph. The construction
of the minimal graph corresponding to the n'"-order Markov chain approxi-
mation is straightforward. First we build a binary tree of height n such that
each allowed string S = s,...s, is represented by a path leading up from
the root. For each allowed string s;...8,4; of length n+1, we add then one
link connecting the node reached by S to the node reached by s3...5,41.
The graph obtained in this way is then minimized by identifying equivalent
nodes as described in section 3c.

As an example, let us give the second order Markov approximation for
rule 18. The part of figure 5 relevant for the block probabilities p{s;sys3} is
redrawn for convenience in figure 13. In this figure, we have also indicated
the forecasts p;(0). The Markov graph according to the above description is
given in figure 14a.

The careful reader will have realized that figure 13 contains indeed more
information than utilized figure 14a. From figure 13, we cannot only obtain
the probabilities p{sisys3}, but we can also read off e.g. p{1011} = 1/64.
It is a trivial exercise to verily that the second-order Markov approximation
embodied in figure 14a would give a different result, p{101}.p{1|01} = 1/48.

Thus, finite parts of our graphs contain in general more information than
that usable in a Markov chain approximation, suggesting that better ap-
proximate treatments should be possible. Different versions of alternative
approximations will be discussed in the next section.
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Figure 13: Enlarged part of the graph for rule 18 (figure 5). The
rational numbers at the links indicate the forecasting probabilities

pi(s).
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0(7/9)
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Figure 14: a) Graph for the Markov chain approximation based on
figure 13; b) Graph obtained by truncating as explained in section 6.
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6. MNearly optimal forecasting

We have seen above that in most cases we cannot practically perform optimal
forecasts. Thus we have to take recourse to some kind of approximation. In
addition to treating the output string S like a Markov chain (as in the last
section), there are a number of other possible approximations:

(a) The first possibility is to simply truncate the graph. Links to nodes
outside the retained part must then be replaced by links to some other
nodes. The most natural way to do this is the following: when analyzing
an output string S, we start at the origin and follow the links until we
reach the first link (leaving form node P, say) that would leave the
truncated graph. Assume this happens at the k* symbol of S. At this
moment, we drop the first symbol of S, and start again at the origin
with the second symbol. It might happen that the new path leaves
the truncated graph already at &' < k. In that case we drop also the
second symbol, and start a new path with the third symbol. This is
repeated until we get a path for which symbol s; leads to a node (say
node Q) in the truncated graph. We now connect node P to Q and
continue with symbol s;44 (leaving from node Q), until the path leaves
the graph again. At this point, we repeat the whole process.

In the example of rule 18, and with the truncated graph containing
all nodes with distance < 3 from the origin, it is easily scen that this
amounts in replacing figure 13 by figure 14b.

In this replacement we keep the p;(s) unchanged. This implies that
in general the forecasted block probabilities p{s}, p{s;s2},... are no
longer equal to the exact ones obtainable from the truncated graph.
This is in contrast to the Markov approximation treated in the last
section. It is the biggest drawback of this method, in particular for
small truncated graphs. However, if the truncation involves only nodes
far from the origin and with small weight, then this is much less of a
problem, and the truncation method is very efficient.

While the approximation of section 5 effectively assumes that the out-
put sequence is Markovian, the truncation approximation essentially
assumes that this sequence is non-Markov but originates from a Markov
source,

One might hope that it should always be possible to modify the p;(s)
such that the forecasted block entropies agree with those from the trun-
cated graph. That this is not so is seen by a counter example: for rule
76, one finds that the part of the graph which has distance < 8 from
the origin specifies all block entropies (of any length) completely. Thus,
no finite graph can incorporate all constraints implied by a truncation
at any distance > 7, and still give the correct block probahilities.

Among others, we can apply truncation in the following three ways:

(al) by retaining only nodes with distances < n from the origin.
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(a2) by cutting off the transient parts. Consider e.g. the figures 4 and
5. In both cases, the transient parts are cut off by replacing the
links leaving the start node by figure 15.

(a3) by truncating all nodes whose estimated weight Q(P) is below
some threshold value. While this would be the most preferable,
we have not found a practical way to do this for complex rules such
as rule 22. The reason is that the @(P) can only be estimated
there by analyzing very long sequences, using much larger graphs
than one wants to retain at the end.

(b) The above truncations do not use the fact that the nodes are vectors in
3-space, and that the resulting forecasts are real numbers. Assume we
make an approximate graph by lumping together two nodes. Then, the
error made will depend on the distance in IR* between nodes resp. the
distance in IR between forecasts. A priori one might think of specifying
the maximal tolerated error or specifying the average tolerated error,
or of specifying the probability with which a certain error may appear.

We found that the first possibility (not tolerating any forecast which is
wrong by an error larger than some prescribed bound ¢) is unfeasible
for the more interesting cases like rule 22. The reason is that although
the average Lyapunov exponents are all —oco as explained in section 4,
there are particular strings with positive forecasting Lyapunov expo-
nent. Thus we cannot guarantee that any small error will not blow up
arbitrarily.

We did not study the last possibility (tolerating large errors only with
a certain frequency) either. What we studied extensively instead were
some variants of the second case:

(b1) We put a three-dimensional grid in P-space of latlice constant
e and replaced any vector P by the central point of its box. We
applied the map (3.4) then to this central point. We call this the
“lattice approximation” in the following.

(b2) In contrast to the above, we did not replace the point P by the
center of the box. Instead, if two points Py and P, fell into the
same box, we replaced them by the point for which the string
leading to it from the start node was shorter. If both lengths were
the same, we retained the point with the lexicographically smaller
string.

In the following, we shall present only results from approaches (al) and
(b1).

From the results of section 4 it should be clear that the forecasting com-
plexity as defined in equation (3.8) stays finite in the limit of zero errors
(n — oo resp. € — 0). This is in contrast to other complexity measures. All
non-optimal forecasting algorithms discussed above can be represented by
finite graphs, and have thus a finite regular language complexity in the sense
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a)

Figure 15: Modification of the start node for rules 4 (part a) and rule
18 (part b), cutting off the transient part.
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Figure 16: Average differences between exact and approximate fore-
casts of the probability p(0) to observe “07, for rule 22, versus the
size of the needed graph (whose logarithm is the regular language
complexity).

of reference [10] as long as n resp. € are finite. But in the limit of optimal
forecasts, it diverges with the following asymptotic behavior (figure 16):

{| Ap(0) |y = k. C;P (6.1)

where C, is the regular language complexity as estimated from the truncated
graphs without minimalizing them. Strictly, this is somewhat larger than
the exact regular language complexity, since that is defined via the minimal
graphs which accept the same language. But we believe that the difference
is rather small. For truncation at fixed n we found k£ = 0.72 and g = 0.82,
while for the lattice approximation we obtained & = 0.36 and 8 = 0.58.

For both approaches we computed the forecasting complexities and the
average errors committed in the forecasts p(0) when parsing a random string
of length 10°. At equal complexities, we found that the omitted errors were
comparable in both both approaches (a) and (b) (see figure 17).

For the method (a) we found that the average error scales with the max-
imal allowed distance n from the start according to the law (figure 18):

{1 Ap(0) [y = k. (6.2)

where k = 0.20£0.02 and 8 = 0.324+0.02. In case (b) we found an analogous
scaling of the average error with the mesh size (lattice constant) ¢ (figure 19):
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Figure 17: As in figure 16 but versus the forecasting complexity in
bits.

(1 Ap(0) [y = k.e* (6.3)
where £ =0.26 +0.02 and 8 =1.17T%0.1.

7. Conclusions

In dynamical systems one often encounters symbol sequences which are nei-
ther deterministic nor entirely random. Also, they are in general not Markov
chains even if they are emitted by Markov sources. In such cases it can be
non-trivial to utilize the known structure for making optimal forecasts, even
if the system might seem very simple.

We have presented in this paper a rather detailed study of the complica-
tions one is driven into during such an enterprise. We studied only a class
of extremely simple toy models which at first sight might have seemed with-
out any interest. Our original motivation was that these models are simple
enough to allow a rather detailed analysis (though not mathematically rigor-
ous on many places). This was justified later by the richness of the structures
found.

Our hope is of course that studying such simple models might be useful
finally in understanding the difficulties in performing actual forecasts in prac-
tice. Little work has been devoted to this problem theoretically, compared
to the large amount of work on the theoretical limitations to the possibility
(not to be confused with the difficulty) of forecasts. We stress again that
the difficulty of making an optimal forecast is not related to the Shannon en-
tropy, metric entropy, or Kolmogorov complexity of the sequence. It is rather
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similar to a grammatical complexity of a formal language, but couched in a
probabilistic setting.

It is clear that there is a rather close analogy between symbol sequences
without a superimposed measure (formal languages) and such with a measure
(discrete stochastic processes). In particular, Markov chains correspond to
finite complement languages. In both, all features of the process can be
read off from finite length trajectories. Chains emitted from Markov sources
(i.e. functions of Markov processes, depending on “hidden variables”) are
analogous to regular languages, since in both cases the source has only a
finite memory. Are there similar analogies between higher level languages
(context free, context sensitive, recursively enumerable sets) and classes of
stochastic processes? We do not know. It seems that not much work has
been done on classifying non-Markovian stochastic processes.

We have seen that the concept of an infinite graph associated to a stochas-
tic process is very useful. Similar infinite graphs have been used for logistic
maps in reference [14]. The variability of the topology of these graphs was
amazing. Also, the forecasting complexity of the model was often closely
reflected in the complexity of the topology. Is it possible to characterize also
the Chomsky hierarchy of formal languages by the topology of associated in-
finite graphs? It has been shown [15] that context-free grammars correspond
to graphs which are essentially tree-like, but beyond that not much seems to
be known in general.
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