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Abstra ct . A global gain term is int rod uced into recurr ent ana log
networks. T his gain ter m may he varied as a. recurrent netwo rk set­
t les , similar to the way temperatu re is varied when "annealing" a
networ k of stochast ic binary unit s. An error propagation algor ithm
is presented which simultaneou sly opt imizes the weights and the gain
schedule for a. recurrent network. Th e performance of thi s algorithm
is compared to the sta nda rd back propagation algorit hm on a. difficult
const raint sa tisfact ion problem. An order of magnitude imp rovement
in t he numb er of learni ng t rials required is observed with t he new algo­
rithm. Thi s improvement is obtained by allowing a.much larger region
of weight space to sat isfy the problem. T he simultaneous opti mizat ion
of weights and gain schedule lead s to a qualitatively different region of
weight space t han t hat reached by optim izati on of the weights alone.

1. Int rod uct ion

Neural networks ha ve received much att ent ion recentl y as plausible mod­
els for st udying the computat ional propert ies of massively parallel systems .
Th ey have been app lied to a variety of problems in signal processing, pat­
tern recogniti on, speech processing, and more t raditional AI problems. T hese
models developed from earlier work in associat ive memo ries and models of
cooperat ive compu tat ion in early vision processing {3,5,19].

Learni ng algori thms have been developed [1 ,18] that ena ble th ese net­
works to learn internal rep resentatio ns, allowing t hem to represent complex
non-linear mappings. Two dist inct typ es of networks have been st udied quite
extensively. T he first of these uses analog units wit h a sigmoida l I/ O funct ion
[8], and an erro r propagat ion algorithm for upd at ing the weights to minimize
an error funct ion [16,17]. 1,,105t of these st udies have focused on st rict ly feed­
forward networks. The second type of network em ploys sto chast ic bina ry
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unit s and symmetric connections. From an ini ti al state these networks ap­
proach a low temperature equilib rium, in which low energy states have high
probability. The weights in such netwo rks may be updated by examining the
difference in statistics between th e equilibrium with the input and output
states clamped and the equilibrium with these states undamped [1].

Re cent work has shown some interesti ng relationships between t hese two
dist inct models. Peterson and Anderson [13] have developed a cont inuous
approximation to the Boltzmann machine algorit hm, in which the stoc hast ic
binary units of th e Bol tzmann machine a re repl aced with analog units whose
states are mean field ap prox imations to the average states of correspond ing
stochastic binary uni ts at equi libr ium . T hey have shown significant speedup
in convergence and improved generalization for interesting prob lems [14] .
Hopfield [9] has shown that [or a certain class of stat istical est imation prob­
lems, the statistical network and the an alog network have very close ly re lated
propert ies and learn ing algo rithms . Provided that four condit ions are met,
the er ror propagation update rule [or the weights in an analog feedforward
network is a mean field approximation to th e update rule for a stat ist ica l
network using the Boltzmann m achine algor it hm. T hese four condi tions are :
the analog network must use an asymmetric divergen ce [6] rather than th e
more common mea n square erro r fu ncti on; the statist ical averag ing in the
two state networ k is performe d over the hidden and ou tput un its, but not
the inpu t un its; t he two networks have a smal l num be r of ou tputs; and the
networks have on ly a sing le laye r of non-interconnected hidde n un it s.!

This work exp lores another par allel between statistical an d analog ne t­
works. Recurrent analog networ ks often show bet ter conve rgence if a global
gai n te rm is introd uced which m ay be varied over a sing le settling [7]. The re­
sult is a p roced ure sim ilar to simulated annealing [11]. An error propagation
scheme is presented which allows an an alog network to "learn" it s own gai n
schedule, and experimental resul t s for a constraint sat isfact ion task show an
order of m agnitude spee dup in learn ing when this app roach is used .

2. E r r or prop agation in recurrent a nalog ne t works

The rec urre nt analog networks that are considered here use a synchronous
up dating procedure, and place no restr ict ions on the nature of th e connectiv­
ity mat rix. The activation level of a unit j at time t is a non linear funct ion
of the inp ut to the un it at t ime t :

Vi,' = g(xi,') (2.1)

One possib ility for 9, used in our simulat ions, is the logist ic funct ion, g(x ) =
1/(1 +e- X

) . T he input is a weigh ted sum of the states of uni t s in the prev ious
t ime step:

Xj,t = Gt L WjiYi,t_l (2.2)

"This allows hidden un it interactions to be ignored when using a first-order
approximation.
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A simple iterative net that
is run for three iterations An equivalent layered net

Figure 1: A recurrent network and the equivalent layered netwo rk.
Corresponding weights in layers must be identical (i.e. WI has the
same value in all layers) , but t he gain terms (G j) vary between layers.
Each layer corresponds to the state of the recurrent network at a
different point in time.

The ter m Gt is a global gain term which premultiplies the inp ut for every
unit. There are also two distinguished subsets of units; I the set of input
uni ts and" the set of output units. The states of un its in I are determined
by the env ironment .

T he state vector for the recurrent network at t ime t can be treated as the
vector of states of the tth layer in an equ ivalent layered network (figure 1).

The trajectory of the state vector for the recurrent network is then rep­
resented by the state vectors of successive layers in th e equivalent network.
Since the weights in the recurrent network are fixed during the set tl ing of
the network , the set of weights between successive layers in the layered rep­
resen tat ion must be ident ical.

The dynamics for these networks can be expressed by finding the continu­
ous differential equat ions equivalent to the discrete difference equat ions (2.1)
and (2.2) . This pro duces the following set of coupled differential equations:

where

dy
-' = -y +g(x·) + Idt J J J

(2.3)
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(2.4)

Ij is defined to be zero for all uni ts not in L, and the t ime constant T is
assumed to be normalized to one. Equation (2.3) is a simple transformat ion
of

dx·- ' = -x· +" w·g(x·) +J(cit J ~ J. I J

•
(2.5)

This equation has been studied by both Amari [2J and Hop field [7J. Amari
showed that in randomly connected networks with the dynamics of (2.5) the
attractors were either stable or bistable.

When the attraetors are fixpoints, one can use such networks to perform
constraint sat isfact ion searches. The activities of units encode the values of
the parameters of a problem, and the weights on the connections encod e the
constraints between t he parameters. This approach has been used for classic
optimizat ion prob lems [8] and for parsing [20]. Cod ing the constra ints into
the weights by hand becomes a form idable task for lar ge problems . T his
raises the possibility of dev ising learning algorithms which will man ipulate
the weights of a recurrent network to model the constraints of a specific
problem through some training procedure.

T here are several ways in which to pose the problem of modify ing th e
weights. One ap proach would be to consi der the fixpo int of the networ k for
a specific inpu t , and com pute some error measure base d on the distance of
this fixpoin t from a desired fixpoint . One coul d then use gradient descent to
modify the weights to mi nimize this error measure [15]. An al tern ati ve is to
cons ider not just the fixpcint , but the entire trajectory of th e network. Th is
approach was first suggested by Rumelhart, Hinto n, and Willi am s [18] and
is the ap proach taken here.

Consider a trajectory of length k for a rec urrent network. There is an
eq uivalent laye red representation of this t rajectory which has k dist inct layer s
(figure 1). The standard back- propagation algorithm may be applied to this
layered repr esentat ion , if we de fine an error measure E for the final states of
un its in O . Using this ap proach we can der ive partials for the weights:

DE DE
-D = L -DG'Yi,'_ l

Wji t Xj,t
(2.6)

Note that the back-propagation proceeds through the sequence of states in
the trajectory, and in part icular that the partial of E wit h respect to W ji will
vary along that t rajectory. Since the weights are fixed over t he tr aj ect ory,
some form of t ime averaging is required . Equation (2.6) uses a uniform
time averaging, although versions which favor the te rms near the end of t he
trajectory could also be used." Thus the weights are being updated based
on the average derivat ive over the trajectory. T he disadvantage of using this

2The Gt terms actually do weight the derivat ives , so th e t ime averag ing is not tru ly
un iform .
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approach to modifying t he weights in th e network is that it becomes necessary
to store th e ent ire tr ajectory for the back propagation phase. However , th e
advantage is that th e network can be t ra ined not just to have certain limit
behavior, but also to have certain behavior along th e trajectory followed to
the limit. One obvious example is to force the network to lea rn fixpoints
as attractors , by penalizing bistable behavior during the last few states of
the tr ajectory. To allow control over the trajectory, the back propagat ion
procedure is modified slightly to allow direc t ly observed error terms in t ime
steps other than the last to be add ed to th e back propagated terms for uni ts
in O. (This is equivalent to specifying desired states for inter med iat e layers
in a layered network.)

3. Va riab le gain in recurrent analog networks

The term Gt in equation (2.6) det ermines th e stee pness of the nonlinearity in
the recurrent network, and has been referred to as the system gain [8]. Thi s
term may be allowed to vary during the set t ling of the network. For example,
an increasing gain in a network with mutually inhibitory connect ions can
implement a winner-take-all network that converges quickly. Hopfield and
Tank [8] found th at increasing t he gain slowly as their analog network sett led
increased the quality of the solut ion found by th e network. They suggested
that increasing the gain in this fashion was analogous to following th e effective
field soluti on from a high temperature, resulting in a final state near the
thermo dynamic ground state of the syst em .

An energy function, a non-in creasing funct ion of t he state vector along
any trajectory of the system, is a very useful tool for understanding the
dynamic be havior of a recurrent analog network . For symmetric net works
with the dynamics defined by (2.3) , Hopfield [7] suggested an ene rgy func tion
of the form

E = -~ L, L, WjiYiYj - L, 1(,Yi +L, J9-1 (y;)dYi
J I I I

(3.1)

(3.2)

where K, = g-l(Ii) ' To show E is an energy function we note that ~~

L:i g~ ~ , so it is sufficient to show : :.~ s 0 for any i . Taki ng th e par tial
of (3.1) with respect to Yi and combining with (2.3) yields

DE dYi
DYi dt =

T he first parenthesized term in (3.2) is the difference between the curre nt
inpu t to un it i an d th e input required to produce the current state of i.
The second term is the difference between th e state produced by the curre nt
input to unit i and the actual state of unit i . Provided th at th e funct ion 9
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is monotonically increasing, the two parenthesized terms in (3.2) mu st be of
the same sign, so ~~ ~ :s 0 for any i . In add itio n to being monotonically
increasin g, 9 mu st also be invertible , and the inverse must be integrable.

T he logist ic function meets these condit ions, and in thi s case both g-1
and its integral have sim ple forms:

g- l( y) = ln y - In(1 - y)

Jg-1(y)dy = y In y - (1 - y) In(1 - y)

In the high gain limi t when Yi is 0 or 1, 9- 1 goes to zero and (3.1) is identical
to the energy funct ion for stochast ic net works proposed by I-Iopfield [10].

Although (3.1) has only been shown to be an energy funct ion for sym­
metri c networks, we have found th at it is also a strict ly decreas ing function
of the trajectory for a ll of the asy mmet ric net works we have simu lated . T his
may be becau se th ese asymmetri c networks tend to be very nearly symmetric
once the weigh ts have been learn ed.

Kirkpatrick [11] sugges ted th at "simulated annealing" in stochas ti c net­
works is effect ive because of two fea tures . Fi rst , it a llows a sys te m to occa­
siona lly take uphill st eps, to allow it to escape from local minima. Second ,
it has the effect of averaging many solut ions at high temper atures, which
tend s to smo oth th e ene rgy surface. If t he energy sur face is reasonabl y well
behaved , this smoothing can produ ce a mult iresolut ion search. At high tem­
perat ures regions with many energy m inima will ap pear as sm ooth va lleys ,
while loca l minima in regions of high ave rage energy will be smoothed out.
Ini tially t he system will head towards regions of low average energy, and as
the temperature is lowered will sett le into a local minima that is also close
to a global m inima.

The st ate evolut ion of a recurrent analog network can be regarded as a
mean field ap proximat ion of th e evolut ion of a stochastic network [8]. In
thi s approximation th e gain takes the role of an inverse tempera ture , and
states of t he analo g network at low gain correspond to averages of states of
the st ochast ic network at high temperature . Thi s sugges ts that th e ene rgy
sur face of the analog network sho uld be smooth er wit h low ga in and exhibit
more local minima as the gain is increased. T his effect may be seen clearl y
in figure 4 which shows the evolut ion of th e ene rgy surface for the 5 quee ns
problem" as th e system gain is increased from 0.5 to 1.1. A mu lti resolu tion
search can be carr ied out by t he analog network by slowly increasing the
ga in as the netw ork sett les. T his shou ld result in a fixpo int of relativ ely low
global energy.

Rather t han determ ining a gain schedu le in advance, an erro r pro pag at ion
scheme can be used to decide how Gt should vary over the trajectory of
the network. Gt is opt im ized by pe rform ing gradient descent in the error
measure:

3This problem is discussed in the next sect ion , and this energy surface is discussed in
more deta il.
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(3.3)

Once again averagin g is necessary, in thi s case over all units in the network)
since Gt is a global premul tiplier .

Equations (2.6) and (3.3) can be combined to produce an algorithm which
trains a network to exhibit desired trajectories by simultaneously modifying
the weights and gain schedule. The trajectories learned correspond to a
constr aint satisfaction search via relaxation .

4. P erformance on a constraint satisfaction problem

The author invest igated the performance of the gain var iation error propaga­
t ion algorithm through simulat ions on some small problems [16]. For simple
coding and sequencing tasks a network that learn s a variable gain schedule
learns to solve a problem several t imes faster than a similar network with
fixed gai n. In addition, the learned gain variation schedules outperformed
several hand designed sched ules on the same tasks. T hese tasks are all ex­
pressed in terms of I/O mappings; a prespecified output was required for
each input. T his makes the dy namics to be learned quite a bit easier. It
is pos sible for the network to learn a t ra ject ory from each input to the de­
sired output without construct ing a true attract or for that output :' A task
in which it is necessary to const ruct robust at.t ractors which represent th e
pro blem const raints pro vides a much richer domain in which to study the
performance of gain variation .

T he problem selected is the n queens problem. This is a classical con­
st raint satisfaction problem that was studied extensively by early AI re­
sea rchers [4,12]. The general problem is to place n queens on an n by n gr id
of squares, such that there is no vertical , horizontal, or diagonal line through
the grid t hat contains more than 1 queen. Th is problem is easily mapped into
a network: Each cell of the grid is represented by a unit in th e network , and
each unit is fully connected to every other unit including it self ." In addit ion,
each unit has an external input line to carry environmental input. In this
special case every unit is both an input and an output un it (I = 0) . One
nice feature of thi s pro blem is that it can be eas ily scaled for larger values of
n,

Given a random initial state vector , th e network is required to settle int o
a fina l state which rep resents a valid solut ion to the n queens pro blem. A
valid solut ion is one in which n units a re above the on level (0.9), and all
the rest a re below th e off lev el (0.1). In addition, no two on units can lie
on the same vert ical) horizontal , or diagonal line. To solve thi s problem)
t he network mu st const ruct stable at tractors for the va lid solut ions to the
pro blem and the set of at tr act ion basin s must span the ent ire input space .

4Add itional simulat ions showed that this was in fact the case for severa l of the experi­
ments discussed .

5The network must learn which of these connect ions are really needed to solve the tas k.
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Since this task differs [rom the typical I/O mapp ing tasks given to error
propagation algorithms, some ca re must be taken in deciding on an error
measure. Given a random initial input slate, there are in general many fina l
states which are equally acceptable as solut ions . One poss ibility is to measure
the distance of the act ual output from each of these final solutions, and take
the m inimum distance as the error to be propagated. Th is res ults in a form
of nearest neighb or error measure.

An even more sophisticated t ra ining method, a form of shaping, may be
used to produce good results and reduce the train ing t ime. T he network is
first presented with noisy versions of solution vectors as input. A solution
is chosen at random, and then noise uniform ly distributed between 0 an d
17 (in itially 0.2) is added to units that are off and subtracted from units
that are on. This noisy vector is clamped to the inputs , and th e netw ork
allowed to settle for I cycles. Dur ing the last three cycles, t he mean square
distance between the out put vector and the solut ion vector used to generate
the input is calculated as the error measure. The error is taken over the last
three cycles to force the network to learn attractors which are fixpoints. T he
ne twork is trained in this fashion unt il it s average error (normalized by the
vector lengths) is less than 20 percent over the last 50 trials. At th is poi nt ,
t he same training regime is continued , exce pt that the input is presented
during the first cycl e only, ra ther than being clamped. During this second
phase 1} is gradually increased to 0.4. Once the average error over 50 trials is
less than 10 percent, a final training phase is performed in which initial st ates
are ra ndomly generated, and the nearest neighbo r error m easure is use d over
the last three trials. The first phase of train ing establishes the at t ractors,
the second phase stabilizes the at t ractors inde pendent of external input , and
the third phase ensures robustness of the attractors .

T he simula tion res ults are summarized in table 1. O ne ob viou s anomaly in
th e table is the difference between th e 5 queens and 6 queens problems. The
gain variation technique shows a clear advantage for the 5 queens probl em
(a n order of magnitude improvement ) , but the perform an ce with and wit hout
gain variat ion is nearly ident ical for the 6 queens problem . The answer
lies in the second column of the table. T here are on ly 4 solu t ions for the
6 queens problem, an d two of these solutions are simple mirror images of
the other two . It is quite easy for the network to set th e un it biases to
favor the small set of units wh ich appear in these li: soluti ons . T his "trick"
makes establishing stable attractors quite easy. On t he other hand for th e
5 queens proble m, and the larger problems, th ere a re sufficient solut ions so
that almost every unit is act ive in at least one solut ion, so the biases alo ne
cannot be used to give the network a head st art . Under these circ umstances,
the dynamical b ehavior of the network becomes much more import ant , an d
so a much st ronger advantage is shown by the gain variation algo rit hm .

The set of weights lea rned by the network for one example of the 5 queens
problem (figure 2) shows that in its solution the network has extracted th e
essential cons traints of the task. Each unit has lea rned to develop a posi­
t ive weigh t to it self, an d negat ive weights along all horizontal, vert ical an d
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Figur e 2: Weights learn ed for the 5 queens problem. Th e weight
display is recursive, each large grey square represen ts one unit . Within
each large grey square is a 5 by 5 grid of squares which represent
the weight of t he connect ion from tha.t unit to every other unit in
the network . Black squares represent negative weights, white squares
represent positive weights , and the size of the square represents the
magni tud e of t he weight. Weight decay was applied to drive all non­
essential weights to zero, to simplify the weight display.
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No Gain Variat ion Gain Variation
Phase Phase Phase Phase

n Solut ions 1 2 Total , 1 2 Total ",
4 2 115 420 677 0.1 70 232 350 1.0 x 10- 0

5 10 6371 11048 19820 0.01 371 1048 1540 1.0 x 10- 4

6 4 371 1048 1420 0.1 397 698 1242 1.0 x 10- 3

7 40 20600 57480 83200 0.01 1280 4160 6080 1.0 x 10-4

8 92 50000 - 50000 0.01 1960 12600 16200 1.0 x 10- 4

Table 1: Simulation result s for various sizes of the n queens problem.
e is th e size of the weight step; 'Y-£ is the size of the gai n upd at e.
The numbers under the columns Phase 1, Phase 2, and Total are
t he number of weight updates perform ed in each t rain ing phase (see
text) and in total . One update was performed aft er every 20 t raining
examp les. The resul ts for t he 4 queens problem are averaged over 50
runs, for th e 5 and 6 queens problems the averages are over 20 funs.
Only 2 run s ar e report ed for th e 7 queen s, and 1 run for the 8 queens.
The algor ithm wit h no gain variation was not able to meet the 20
percent err or cr iteria for phase 1 for the 8 queens problem and was
terminated aft er 50000 upd ates.

diagonal lines which the unit lies 00. Th is means that all of the units have
a natural tendency to turn on, and along each line (in any orientation) a
winner-take-all network has formed, so that the stable states are those in
which only one unit on a particular line is on. T his is a very natural rep re­
sentation of the original problem const raints, which stipulated that no two
queen s could lie on t he same horizontal, verti cal or diagonal line.

T he dynamic behav ior of a 5 queens network can be seen in figure 3. In
the thi rd of the five examples we can see the network placing a queen in
the third row when the initial configuration contains no dominant unit in
this row. In the fifth example, we can see compet ition between two init ially
dominan t units in bo th th e first and second rows, and also the creation of
a dominant unit in the third row. Th e performance of the network is qu ite
robust , even on highly ambiguous inputs .

Th e energy surface for one simulat ion of the 5 queens problem (figure 4)
gives further insight into the nature of th e solution learned. A cross sect ion
of th e ene rgy surface for the states of two units (all other units are fixed at
a solution point) is shown for several different values of system gain. The
two units shown are adjacent units on the first row of the network. At this
particular solution point the re are no units yet "on" in the first row, so it
is desired that one of th ese two units shou ld turn on , but not both of them.
In terms of the problem constraints, the most desirable fixpoints are the
corners (0.0,1.0) or (1.0,0.0). The origin would also be acceptable, but the
corner (1.0 ,1.0) would violate a constraint . With this backg round, we can
now interpret figure 4. Consider first part (d) of the figure, the high gain
case. There are 4 attractors on this surface, represente d by the 4 major
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Figure 3: Display of the dynami cs of th e 5 queens problem for 5
different initial sta tes . Each column represents the sett ling of th e
network for one case . The large black squares cont ain the activity
levels of all 25 units in th e network, arranged in a 5 by 5 grid. The
size of t he whit e square in each grid pos ition is propor tional to th e
act ivity of the corresponding unit . In all cases the state reached at
the end of 6 cycles is a stable fixpoin t.
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(a) 5 Queens Energy Surface:

Gain 0.5

••...

(c) 5 Queens Energy Surface:
Gain 0.9
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...
(b) Queens Energy Surface:

Gain 0.7

,..

(d) 5 Queens Energy Surface:
Gain 1.1

Figure 4: A cross section of the energy surface of the 5 queens problem
for one set of weights and" different values of gain . T he e and z axes
arc the states of two units in the first row of the network, which range
from 0.0 to 1.0.
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valleys. (Th ere is also a partial valley between the third and fourth valleys ,
but this will spill into the thi rd valley, and is not an attracto r.) The second
and th ird valleys corres pond to at t ractors that are near the corners (0.0, 1.0)
or (1.0,0.0). The lowest points of these valleys are at t he two ends, when
one unit is fully off and the other is mostly on. The first valley represents an
att ractor near the origin ; since thi s solut ion is less preferred, this att ract or
is not as deep. Th e most interest ing featur e of thi s energy surface is the
fourt h valley. Th is is a st rong attraetor near the corner (1.0,1.0) . Thi s is
a spur ious attractor, which violates the const raints for the first row. The
system is able to avoid being trapped by this attractor because it does not
settle with constant gain. 'ATe can see in figure 4 (a) that at low gain the
energy surface slopes smoothly away (rom the corner (1.0 ,1.0). A network
started near thi s corner at low gain will move away (rom this corner, and will
be beyond the collectio n basin for this att ractor as it begins to form with
increasing gain (figure 4 b and c). The shape of the erro r surface, with its
spurious at tractor, suggests that the set of weights found in thi s simulat ion
would not be a solut ion if the networ k used a constant gain schedu le. The
expe riment s ment ioned in the discussion at the end of th is paper support
this observation.

Our experiment s with t.he simple I/ O map ping network s showed a ten ­
denc y for the learned gain schedules to be "annealing" schedules, start ing at
a low gain and increasing it as the network set tled [16]. This same effect. is
observed in the simulat ions for the n queens prob lem (figure 5). Here there
is also anot.her effect. The gain increases stead ily unt il the network reaches
its fixpoint (after fi ve t ime steps in the figure) and then declines slightly.

5 . Discu ssion

Varying the gain for a recurrent network as it settles has been suggeste d
elsewhere (8,15), as has an ana logy between gain in recurrent analog networks,
and temperature in statistical networks [2,15J. The unique aspect of this
work is the use of an error propagation scheme to sim ultaneously optimize
the weights and gain schedule for a recurrent network. Th e empirical results
presented here show that for constraint sat isfact ion problems in which a
complex at t.ractor structure must be developed, the parallel optimizat ion of
the weights and gain schedule can pro duce an order of magnitude speed -up in
the convergence of the opti mization. What is not clear is whether this speed­
up is obtained by following a shorte r path to the same weight region t hat
would be reached by optimizing the weights alone, or whet her a qualit ati vely
different region of weight space is reached by the combined optimizat ion.

Some simple simulat ions tend to support the latter hypothesis. If an n
queens network that has been trained with gain variat ion has its gain sched­
ule modified 50 that the gain is a constan t value [for example, the mean
of the gain schedule), qualitatively different behavior is observed (rom the
network. Addit ional stable states are observed , which do not correspond to
solutions to the n queens problem, and which are not stable when the net -
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Figure 5: Graph of the gain schedule learn ed for one run of t he 5
queens problem. Quali tatively t he graphs for all other f uns were iden­
tical , exhibiting an initial sect ion of steady increase, and a slight drop
of ga in after 5 or 6 tim e ste ps.

work is allowed to set tle using the gain schedu le. This behavior is expected.
Annealing t he analog network wit h the gain schedule will force th e network
into states nearer t he th ermod ynamic ground st ate, and away from higher
energy fixpoints. It would appear that the use of gain variat ion allows the
network to find a set of weights that have an attractor st ructure with many
high energy spurious at.tractors, in addi tion to the low energy at t ractors t hat
correspond to solutions to the tas k. It is apparently much easier to find a
set of weight s with an attractor structure of thi s form, rathe r than attractor s
which correspond only to tas k solut ion points. Thi s leads to the hyp othesis
that the speed -up in convergence is obtained by allowing a much larger region
of weight space to satisfy the problem, and that the combined optimization
leads to a qualitatively different region of weight space than by optimization
of the weights alone.

There is an addit ional factor which may account for some of the speed-up
in learning observed with the parallel opt imizat ion of t he weights and gain
schedule." Th e error surface for many problems that back propagat ion is
applied to is characterized by ravines with steep sides in most direct ions,
but a shallow descent in one direction. Once the weight vecto r is aligned
wit h the floor of the ravine, one can move quite rapidly along thi s floor by
simply adjust ing a global gain te rm. To exam ine this effect, several of the
5 queens simulat ions were repeated with a gain term that was learned by

6T his was suggested by GeofT Hinton and Mike Mozer, personal comm unication.
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error prop agation, but was const rained to be constant during a set tling (as
the weights were const rained) . The average total number of weight updates
(see table 1) over 15 runs was 8371, com pared to 1540 [or the variable ga in
algorit hm, and 19820 for the algorithm with no gain. Similar t rends app eared
in the 6 and 7 queens problems. Th e fixed gain algorit hm is a factor of two to
three faste r than the simple back-propagation algorithm, but st ill five to six
times slower than the parallel optimi zation of the weights and gain schedule,
suggest ing that the ability to scale all of the weights accounte d for a small
part of t he speed-up observed in the n queens problem. Nevert heless, the
speed-up was signifi cant enough to suggest using a similar scale facto r in
layered net works.
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