Complex Systems 2 (1988) 305-320

Gain Variation in Recurrent Error Propagation
Networks

Steven J. Nowlan
Computer Science Department, University Of Toronto,*
10 Kings College Road, Toronto, Ontario M5S 1A4, Canada

Abstract. A global gain term is introduced into recurrent analog
networks. This gain term may be varied as a recurrent network set-
tles, similar to the way temperature is varied when “annealing” a
network of stochastic binary units. An error propagation algorithm
is presented which simultaneously optimizes the weights and the gain
schedule for a recurrent network. The performance of this algorithm
is compared to the standard back propagation algorithm on a difficult
constraint satisfaction problem. An order of magnitude improvement
in the number of learning trials required is observed with the new algo-
rithm. This improvement is obtained by allowing a much larger region
of weight space to satisfy the problem. The simultaneous optimization
of weights and gain schedule leads to a qualitatively different region of
weight space than that reached by optimization of the weights alone.

1. Introduction

Neural networks have received much attention recently as plausible mod-
els for studying the computational properties of massively parallel systems.
They have been applied to a variety of problems in signal processing, pat-
tern recognition, speech processing, and more traditional AT problems. These
models developed from earlier work in associative memories and models of
cooperative computation in early vision processing [3,5,19].

Learning algorithms have been developed [1,18] that enable these net-
works to learn internal representations, allowing them to represent complex
non-linear mappings. Two distinct types of networks have been studied quite
extensively. The first of these uses analog units with a sigmoidal I/O function
[8], and an error propagation algorithm for updating the weights to minimize
an error function [16,17]. Most of these studies have focused on strictly feed-
forward networks. The second type of network employs stochastic binary

“The author is currently visiting the University of Toronto, while completing a Ph.D.
at Carnegie-Mellon University. This research was supported by an NSERC Scholarship.

© 1988 Complex Systems Publications, Inc.

306 Steven J. Nowlan

units and symmetric connections. From an initial state these networks ap-
proach a low temperature equilibrium, in which low energy states have high
probability. The weights in such networks may be updated by examining the
difference in statistics between the equilibrium with the input and output
states clamped and the equilibrium with these states unclamped [1].

Recent work has shown some interesting relationships between these two
distinct models. Peterson and Anderson [13] have developed a continucus
approximation to the Boltzmann machine algorithm, in which the stochastic
binary units of the Boltzmann machine are replaced with analog units whose
states are mean field approximations to the average states of corresponding
stochastic binary units at equilibrium. They have shown significant speedup
in convergence and improved generalization for interesting problems [14].
Hopfield [9] has shown that for a certain class of statistical estimation prob-
lems, the statistical network and the analog network have very closely related
properties and learning algorithms. Provided that four conditions are met,
the error propagation update rule for the weights in an analog feedforward
network is a mean field approximation to the update rule for a statistical
network using the Boltzmann machine algorithm. These four conditions are:
the analog network must use an asymmetric divergence [6] rather than the
more common mean square error function; the statistical averaging in the
two state network is performed over the hidden and output units, but not
the input units; the two networks have a small number of outputs; and the
networks have only a single layer of non-interconnected hidden units.!

This work explores another parallel between statistical and analog net-
works. Recurrent analog networks often show better convergence if a global
gain term is introduced which may be varied over a single settling [7]. The re-
sult is a procedure similar to simulated annealing [11]. An error propagation
scheme is presented which allows an analog network to “learn” its own gain
schedule, and experimental results for a constraint satisfaction task show an
order of magnitude speedup in learning when this approach is used.

2. Error propagation in recurrent analog networks

The recurrent analog networks that are considered here use a synchronous
updating procedure, and place no restrictions on the nature of the connectiv-
ity matrix. The activation level of a unit j at time ¢t is a nonlinear function
of the input to the unit at time ¢:

Yie = g(x;¢) (21)

One possibility for g, used in our simulations, is the logistic function, g(z) =
1/(14+e7*). The input is a weighted sum of the states of units in the previous
time step:

Tt = Gzz WyiYit—1 (2-2)

'This allows hidden unit interactions to be ignored when using a first-order
approximation.

Gain Variation in Recurrent Error Propagation Networks 307

Multiplicative
gain terms for
each iteration

Wz \“w‘4
w W,

A simple iterative net that
is run for three iterations An equivalent layered net

Figure 1: A recurrent network and the equivalent layered network.
Corresponding weights in layers must be identical (i.e. w; has the
same value in all layers), but the gain terms (G;) vary between layers.
Each layer corresponds to the state of the recurrent network at a
different point in time.

The term G, is a global gain term which premultiplies the input for every
unit. There are also two distinguished subsets of units; Z the set of input
units and @ the set of output units. The states of units in 7 are determined
by the environment.

The state vector for the recurrent network at time ¢ can be treated as the
vector of states of the ' layer in an equivalent layered network (figure 1).

The trajectory of the state vector for the recurrent network is then rep-
resented by the state vectors of successive layers in the equivalent network.
Since the weights in the recurrent network are fixed during the settling of
the network, the set of weights between successive layers in the layered rep-
resentation must be identical.

The dynamics for these networks can be expressed by finding the continu-
ous differential equations equivalent to the discrete difference equations (2.1)
and (2.2). This produces the following set of coupled differential equations:

dy;
=yt gla) + (23)

where

308 Steven J. Nowlan

B GZ WY (2.4)

1; is defined to be zero for all units not in Z, and the time constant 7 is
assumed to be normalized to one. Equation (2.3) is a simple transformation

of

dfu"j

B Z_wjig(m:') + K; (2.5)
This equation has been studied by both Amari [2] and Hopfield [7]. Amari
showed that in randomly connected networks with the dynamics of (2.5) the
attractors were either stable or bistable.

When the attractors are fixpoints, one can use such networks to perform
constraint satisfaction searches. The activities of units encode the values of
the parameters of a problem, and the weights on the connections encode the
constraints between the parameters. This approach has been used for classic
optimization problems [8] and for parsing [20]. Coding the constraints into
the weights by hand becomes a formidable task for large problems. This
raises the possibility of devising learning algorithms which will manipulate
the weights of a recurrent network to model the constraints of a specific
problem through some training procedure.

There are several ways in which to pose the problem of modifying the
weights. One approach would be to consider the fixpoint of the network for
a specific input, and compute some error measure based on the distance of
this fixpoint from a desired fixpoint. One could then use gradient descent to
modify the weights to minimize this error measure [15]. An alternative is to
consider not just the fixpoint, but the entire trajectory of the network. This
approach was first suggested by Rumelhart, Hinton, and Williams [18] and
is the approach taken here.

Consider a trajectory of length & for a recurrent network. There is an
equivalent layered representation of this trajectory which has & distinct layers
(figure 1). The standard back-propagation algorithm may be applied to this
layered representation, if we define an error measure E for the final states of
units in @. Using this approach we can derive partials for the weights:

o oL

3wﬁ = Z:: axj't th:,i—l (2-6)
Note that the back-propagation proceeds through the sequence of states in
the trajectory, and in particular that the partial of E with respect to wj; will
vary along that trajectory. Since the weights are fixed over the trajectory,
some form of time averaging is required. Equation (2.6) uses a uniform
time averaging, although versions which favor the terms near the end of the
trajectory could also be used.? Thus the weights are being updated based
on the average derivative over the trajectory. The disadvantage of using this

2The G, terms actually do weight the derivatives, so the time averaging is not truly
uniform.

Gain Variation in Recurrent Error Propagation Networks 309

approach to modifying the weights in the network is that it becomes necessary
to store the entire trajectory for the back propagation phase. However, the
advantage is that the network can be trained not just to have certain limit
behavior, but also to have certain behavior along the trajectory followed to
the limit. One obvious example is to force the network to learn fixpoints
as attractors, by penalizing bistable behavior during the last few states of
the trajectory. To allow control over the trajectory, the back propagation
procedure is modified slightly to allow directly observed error terms in time
steps other than the last to be added to the back propagated terms for units
in @. (This is equivalent to specifying desired states for intermediate layers
in a layered network.)

3. Variable gain in recurrent analog networks

The term (, in equation (2.6) determines the steepness of the nonlinearity in
the recurrent network, and has been referred to as the system gain [8]. This
term may be allowed to vary during the settling of the network. For example,
an increasing gain in a network with mutually inhibitory connections can
implement a winner-take-all network that converges quickly. Hopfield and
Tank [8] found that increasing the gain slowly as their analog network settled
increased the quality of the solution found by the network. They suggested
that increasing the gain in this fashion was analogous to following the effective
field solution from a high temperature, resulting in a final state near the
thermodynamic ground state of the system.

An energy function, a non-increasing function of the state vector along
any trajectory of the system, is a very useful tool for understanding the
dynamic behavior of a recurrent analog network. For symmetric networks
with the dynamics defined by (2.3), Hopfield [7] suggested an energy function
of the form

1
1 i 1 7

where K; = ¢~1(1;). To show £ is an enelgy function we note that 9 =
B 8‘5 A% 56 it is sufficient to show —5 < 0 for any ¢. Taking the paltlal

; dt? Aui
of (3 1) with respect to y; and combmzng with {2.3) yields
9E dy;
g 2

- ([E wjiY; +g_](Ii):| —g_l(yf)) ([9(2 wjiy;) + L

.

The first parenthesized term in (3.2) is the difference between the current
input to unit ¢ and the input required to produce the current state of i.
The second term is the difference between the state produced by the current
input to unit ¢ and the actual state of unit 2. Provided that the function ¢

310 Steven J. Nowlan

is monotonically increasing, the two parenthesized terms in (3.2) must be of

the same sign, so -gﬁ-%’f < 0 for any 7. In addition to being monotonically

increasing, ¢ must also be invertible, and the inverse must be integrable.
The logistic function meets these conditions, and in this case both ¢!

and its integral have simple forms:

¢ (y) =Iny —In(1 —y)
fg’l(y)dy =ylny—(1-y)In(l —y)

In the high gain limit when y; is 0 or 1, ¢! goes to zero and (3.1) is identical
to the energy function for stochastic networks proposed by Hopfield [10].

Although (3.1) has only been shown to be an energy function for sym-
metric networks, we have found that it is also a strictly decreasing function
of the trajectory for all of the asymmetric networks we have simulated. This
may be because these asymmetric networks tend to be very nearly symmetric
once the weights have been learned.

Kirkpatrick [11] suggested that “simulated annealing” in stochastic net-
works is effective because of two features. First, it allows a system to occa-
sionally take uphill steps, to allow it to escape from local minima. Second,
it has the effect of averaging many solutions at high temperatures, which
tends to smooth the energy surface. If the energy surface is reasonably well
behaved, this smoothing can produce a multiresolution search. At high tem-
peratures regions with many energy minima will appear as smooth valleys,
while local minima in regions of high average energy will be smoothed out.
Initially the system will head towards regions of low average energy, and as
the temperature is lowered will settle into a local minima that is also close
to a global minima.

The state evolution of a recurrent analog network can be regarded as a
mean field approximation of the evolution of a stochastic network [8]. In
this approximation the gain takes the role of an inverse temperature, and
states of the analog network at low gain correspond to averages of states of
the stochastic network at high temperature. This suggests that the energy
surface of the analog network should be smoother with low gain and exhibit
more local minima as the gain is increased. This effect may be seen clearly
in figure 4 which shows the evolution of the energy surface for the 5 queens
problem?® as the system gain is increased from 0.5 to 1.1. A multiresolution
search can be carried out by the analog network by slowly increasing the
gain as the network settles. This should result in a fixpoint of relatively low
global energy.

Rather than determining a gain schedule in advance, an error propagation
scheme can be used to decide how G, should vary over the trajectory of
the network. (, is optimized by performing gradient descent in the error
measure:

3This problem is discussed in the next section, and this energy surface is discussed in
more detail.

Gain Variation in Recurrent Error Propagation Networks 311

dF IF
5G, = 22 g, it o
i i B

Once again averaging is necessary, in this case over all units in the network,
since (7; is a global premultiplier.

Equations (2.6) and (3.3) can be combined to produce an algorithm which
trains a network to exhibit desired trajectories by simultaneously modifying
the weights and gain schedule. The trajectories learned correspond to a
constraint satisfaction search via relaxation.

4. Performance on a constraint satisfaction problem

The author investigated the performance of the gain variation error propaga-
tion algorithm through simulations on some small problems [16]. For simple
coding and sequencing tasks a network that learns a variable gain schedule
learns to solve a problem several times faster than a similar network with
fixed gain. In addition, the learned gain variation schedules outperformed
several hand designed schedules on the same tasks. These tasks are all ex-
pressed in terms of I/Q mappings; a prespecified output was required for
each input. This makes the dynamics to be learned quite a bit easier. It
is possible for the network to learn a trajectory from each input to the de-
sired output without constructing a true attractor for that output.* A task
in which it is necessary to construct robust attractors which represent the
problem constraints provides a much richer domain in which to study the
performance of gain variation.

The problem selected is the n queens problem. This is a classical con-
straint satisfaction problem that was studied extensively by early Al re-
searchers [4,12]. The general problem is to place n queens on an n by n grid
of squares, such that there is no vertical, horizontal, or diagonal line through
the grid that contains more than 1 queen. This problem is easily mapped into
a network: Each cell of the grid is represented by a unit in the network, and
each unit is fully connected to every other unit including itself.” In addition,
each unit has an external input line to carry environmental input. In this
special case every unit is both an input and an output unit (Z = @). One
nice feature of this problem is that it can be easily scaled for larger values of
n.

Given a random initial state vector, the network is required to settle into
a final state which represents a valid solution to the n queens problem. A
valid solution is one in which n units are above the on level (0.9), and all
the rest are below the off level (0.1). In addition, no two on units can lie
on the same vertical, horizontal, or diagonal line. To solve this problem,
the network must construct stable attractors for the valid solutions to the
problem and the set of attraction basins must span the entire input space.

*Additional simulations showed that this was in fact the case for several of the experi-
ments discussed.
5The network must learn which of these connections are really needed to solve the task.

312 Steven J. Nowlan

Since this task differs from the typical I/O mapping tasks given to error
propagation algorithms, some care must be taken in deciding on an error
measure. Given a random initial input state, there are in general many final
states which are equally acceptable as solutions. One possibility is to measure
the distance of the actual output from each of these final solutions, and take
the minimum distance as the error to be propagated. This results in a form
of nearest neighbor error measure.

An even more sophisticated training method, a form of shaping, may be
used to produce good results and reduce the training time. The network is
first presented with noisy versions of solution vectors as input. A solution
is chosen at random, and then noise uniformly distributed between 0 and
7 (initially 0.2) is added to units that are off and subtracted from units
that are on. This noisy vector is clamped to the inputs, and the network
allowed to settle for v cycles. During the last three cycles, the mean square
distance between the output vector and the solution vector used to generate
the input is calculated as the error measure. The error is taken over the last
three cycles to force the network to learn attractors which are fixpoints. The
network is trained in this fashion until its average error (normalized by the
vector lengths) is less than 20 percent over the last 50 trials. At this point,
the same training regime is continued, except that the input is presented
during the first cycle only, rather than being clamped. During this second
phase n is gradually increased to 0.4. Once the average error over 50 trials is
less than 10 percent, a final training phase is performed in which initial states
are randomly generated, and the nearest neighbor error measure is used over
the last three trials. The first phase of training establishes the attractors,
the second phase stabilizes the attractors independent of external input, and
the third phase ensures robustness of the attractors.

The simulation results are summarized in table 1. One obvious anomaly in
the table is the difference between the 5 queens and 6 queens problems. The
gain variation technique shows a clear advantage for the 5 queens problem
(an order of magnitude improvement), but the performance with and without
gain variation is nearly identical for the 6 queens problem. The answer
lies in the second column of the table. There are only 4 solutions for the
6 queens problem, and two of these solutions are simple mirror images of
the other two. It is quite easy for the network to set the unit biases to
favor the small set of units which appear in these 4 solutions. This “trick”
makes establishing stable attractors quite easy. On the other hand for the
5 queens problem, and the larger problems, there are sufficient solutions so
that almost every unit is active in al least one solution, so the biases alone
cannot be used to give the network a head start. Under these circumstances,
the dynamical behavior of the network becomes much more important, and
so a much stronger advantage is shown by the gain variation algorithm.

The set of weights learned by the network for one example of the 5 queens
problem (figure 2) shows that in its solution the network has extracted the
essential constraints of the task. Fach unit has learned to develop a posi-
tive weight to itself, and negative weights along all horizontal, vertical and

Gain Variation in Recurrent Error Propagation Networks 313

Figure 2: Weights learned for the 5 queens problem. The weight
display is recursive, each large grey square represents one unit. Within
each large grey square is a 5 by 5 grid of squares which represent
the weight of the connection from that unit to every other unit in
the network. Black squares represent negative weights, white squares
represent positive weights, and the size of the square represents the
magnitude of the weight. Weight decay was applied to drive all non-
essential weights to zero, to simplify the weight display.

314 Steven J. Nowlan
No Gain Variation Gain Variation
Phase Phase Phase Phase
n | Solutions 3| 2 Total | ¢ 1 2 Total v-€
4 2 115 420 6771 0.1 70 232 350 [1.0 x 1073
5 10 6371 11048 19820 | 0.01 371 1048 1540 | 1.0 x 10~*
6 4 371 1048 1420 | 0.1 397 6938 1242 | 1.0 x 1073
T 40 20600 57480 83200 | 0.01 1280 4160 6080 | 1.0 x 10~*
8 92 50000 — 50000 | 0.01 | 1960 12600 16200 | 1.0 x 10~*

Table 1: Simulation results for various sizes of the n queens problem.
¢ is the size of the weight step; v-¢ is the size of the gain update.
The numbers under the columns Phase 1, Phase 2, and Total are
the number of weight updates performed in each training phase (see
text) and in total. One update was performed after every 20 training
examples. The results for the 4 queens problem are averaged over 50
runs, for the 5 and 6 queens problems the averages are over 20 runs.
Only 2 runs are reported for the 7 queens, and 1 run for the 8 queens.
The algorithm with no gain variation was not able to meet the 20
percent error criteria for phase 1 for the 8 queens problem and was
terminated after 50000 updates.

diagonal lines which the unit lies on. This means that all of the units have
a natural tendency to turn on, and along each line (in any orientation) a
winner-take-all network has formed, so that the stable states are those in
which only one unit on a particular line is on. This is a very natural repre-
sentation of the original problem constraints, which stipulated that no two
queens could lie on the same horizontal, vertical or diagonal line.

The dynamic behavior of a 5 queens network can be seen in figure 3. In
the third of the five examples we can see the network placing a queen in
the third row when the initial configuration contains no dominant unit in
this row. In the fifth example, we can see competition between two initially
dominant units in both the first and second rows, and also the creation of
a dominant unit in the third row. The performance of the network is quite
robust, even on highly ambiguous inputs.

The energy surface for one simulation of the 5 queens problem (figure 4)
gives further insight into the nature of the solution learned. A cross section
of the energy surface for the states of two units (all other units are fixed at
a solution point) is shown for several different values of system gain. The
two units shown are adjacent units on the first row of the network. At this
particular solution point there are no units yet “on” in the first row, so it
is desired that one of these two units should turn on, but not both of them.
In terms of the problem constraints, the most desirable fixpoints are the
corners (0.0,1.0) or (1.0,0.0). The origin would also be acceptable, but the
corner (1.0,1.0) would violate a constraint. With this background, we can
now interpret figure 4. Consider first part (d) of the figure, the high gain
case. There are 4 attractors on this surface, represented by the 4 major

Gain Variation in Recurrent Error Propagation Networks 315

Figure 3: Display of the dynamics of the 5 queens problem for 5
different initial states. Each column represents the séttling of the
network for one case. The large black squares contain the activity
levels of all 25 units in the network, arranged in a 5 by 5 grid. The
size of the white square in each grid position is proportional to the
activity of the corresponding unit. In all cases the state reached at
the end of 6 cycles is a stable fixpoint.

Steven J. Nowlan

316

~d g
s B P ~L | bg
<
~a \{'

(a) 5 Queens Energy Surface: (b) Queens Energy Surface:
Gain 0.5 Gain 0.7

g

LALLLLLk y,

(d) 5 Queens Energy Surface:
Gain 1.1

(c) 5 Queens Energy Surface:
Gain 0.9

Figure 4: A cross section of the energy surface of the 5 queens problem
for one set of weights and 4 different values of gain. The x and z axes
are the states of two units in the first row of the network, which range

from 0.0 to 1.0.

Gain Variation in Recurrent Error Propagation Networks 317

valleys. (There is also a partial valley between the third and fourth valleys,
but this will spill into the third valley, and is not an attractor.) The second
and third valleys correspond to attractors that are near the corners (0.0,1.0)
or (1.0,0.0). The lowest points of these valleys are at the two ends, when
one unit is fully off and the other is mostly on. The first valley represents an
attractor near the origin; since this solution is less preferred, this attractor
is not as deep. The most interesting feature of this energy surface is the
fourth valley. This is a strong attractor near the corner (1.0,1.0). This is
a spurious attractor, which violates the constraints for the first row. The
system is able to avoid being trapped by this attractor because it does not
settle with constant gain. We can see in figure 4 (a) that at low gain the
energy surface slopes smoothly away from the corner (1.0,1.0). A network
started near this corner at low gain will move away from this corner, and will
be beyond the collection basin for this attractor as it begins to form with
increasing gain (figure 4 b and ¢). The shape of the error surface, with its
spurious attractor, suggests that the set of weights found in this simulation
would not be a solution if the network used a constant gain schedule. The
experiments mentioned in the discussion at the end of this paper support
this observation.

Qur experiments with the simple I/O mapping networks showed a ten-
dency for the learned gain schedules to be “annealing” schedules, starting at
a low gain and increasing it as the network settled [16]. This same effect is
observed in the simulations for the n queens problem (figure 5). Here there
is also another effect. The gain increases steadily until the network reaches
its fixpoint (after five time steps in the figure) and then declines slightly.

5. Discussion

Varying the gain for a recurrent network as it settles has been suggested
elsewhere [8,15], as has an analogy between gain in recurrent analog networks,
and temperature in statistical networks [2,15]. The unique aspect of this
work is the use of an error propagation scheme to simultaneously optimize
the weights and gain schedule for a recurrent network. The empirical results
presented here show that for constraint satisfaction problems in which a
complex attractor structure must be developed, the parallel optimization of
the weights and gain schedule can produce an order of magnitude speed-up in
the convergence of the optimization. What is not clear is whether this speed-
up is obtained by following a shorter path to the same weight region that
would be reached by optimizing the weights alone, or whether a qualitatively
different region of weight space is reached by the combined optimization.
Some simple simulations tend to support the latter hypothesis. If an n
queens network that has been trained with gain variation has its gain sched-
ule modified so that the gain is a constant value (for example, the mean
of the gain schedule), qualitatively different behavior is observed from the
network. Additional stable states are observed, which do not correspond to
solutions to the n queens problem, and which are not stable when the net-

318 Steven J. Nowlan

Gain

5 Tine Step L2

Figure 5: Graph of the gain schedule learned for one run of the 5
queens problem. Qualitatively the graphs for all other runs were iden-
tical, exhibiting an initial section of steady increase, and a slight drop
of gain after 5 or 6 time steps.

work is allowed to settle using the gain schedule. This behavior is expected.
Annealing the analog network with the gain schedule will force the network
into states nearer the thermodynamic ground state, and away from higher
energy fixpoints. It would appear that the use of gain variation allows the
network to find a set of weights that have an atiractor structure with many
high energy spurious attractors, in addition to the low energy attractors that
correspond to solutions to the task. It is apparently much easier to find a
set of weights with an attractor structure of this form, rather than attractors
which correspond only to task solution points. This leads to the hypothesis
that the speed-up in convergence is obtained by allowing a much larger region
of weight space to satisfy the problem, and that the combined optimization
leads to a qualitatively different region of weight space than by optimization
of the weights alone.

There is an additional factor which may account for some of the speed-up
in learning observed with the parallel optimization of the weights and gain
schedule.® The error surface for many problems that back propagation is
applied to is characterized by ravines with steep sides in most directions,
but a shallow descent in one direction. Once the weight vector is aligned
with the floor of the ravine, one can move quite rapidly along this floor by
simply adjusting a global gain term. To examine this effect, several of the
5 queens simulations were repeated with a gain term that was learned by

5This was suggested by Geoff Hinton and Mike Mozer, personal communication.

Gain Variation in Recurrent Error Propagation Networks 319

error propagation, but was constrained to be constant during a settling (as
the weights were constrained). The average total number of weight updates
(see table 1) over 15 runs was 8371, compared to 1540 for the variable gain
algorithm, and 19820 for the algorithm with no gain. Similar trends appeared
in the 6 and 7 queens problems. The fixed gain algorithm is a factor of two te
three faster than the simple back-propagation algorithm, but still five to six
times slower than the parallel optimization of the weights and gain schedule,
suggesting that the ability to scale all of the weights accounted for a small
part of the speed-up observed in the n queens problem. Nevertheless, the
speed-up was significant enough to suggest using a similar scale factor in
layered networks.

References

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for
Boltzmann machines,” Cognitive Science, 9 (1985) 147-169.

[2] Shun-Ichi Amari, “Characteristics of random nets of analog neurons,” IEEE
Transactions on Systems, Man, and Cybernetics, 2(5) (1972) 643-657.

[3] J. A. Anderson and G. E. Hinton, “Models of information processing in the
brain” in Parallel models of associative memory, J. A. Anderson and G. E.
Hinton, eds. (Erlbaum, Hillsdale, NJ, 1981).

[4] Edward A. Feigenbaum and Avron Barr, eds., The Handbook of Artificial
Intelligence, 1 (Pitman, London, 1981).

[5] J. A. Feldman and D. H. Ballard, “Connectionist models and their proper-
ties,” Cognitive Science, 6 (1982) 205-254.

[6] Geoffrey E. Hinton, Connectionist Learning Procedures, Department of
Computer Science CMU-CS-87-115, Carnegie-Mellon University, Pittsburgh,
PA, June 1987.

7] J. J. Hopfield, “Neurons with graded response have collective computational
P
properties like those of two-state neurons,” Proceedings of the National
Academy of Sciences U.S.A., Bio., 81 (1984) 3088-3092.

[8] J. J. Hopfield and D. W. Tank, “‘Neural’ computation of decisions in opti-
mization problems,” Biological Cybernetics, 52 (1985) 141-152.

[9] J. J. Hopfield, “Learning algorithms and probability distributions in feed-
forward and feed-back networks,” PNAS, 84 (1987) 8429-8433.

[10] J. J. Hopfield, “Neural networks and physical systems with emergent col-
lective computational abilities,” Proceedings of the National Academy of
Sciences U.S.A., 79 (1982) 2554-2558.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, 220 (1983) 671-680.

320

[12]

(13]

[14]

(18]

[16]

(17]

(18]

(19]

[20]

Steven J. Nowlan

Nils J. Nilsson, Principles of Artificial Intelligence, (Tioga, Palo Alto, CA,
1980).

C. Peterson and J. R. Anderson, A Mean Iield Theory Learning Algorithm
for Neural Networks, MCC Technical Report EI-253-87, Microelectronics
and Computer Technology Corporation, Austin, TX, August 1987.

C. Peterson and J. R. Anderson, Neural Networks and NP-complete Opti-
mization Problems: A Performance Study on the Graph Bisection Problem,
Technical Report MCC-EI-287-87, Microelectronics and Computer Technol-
ogy Corporation, Austin, TX December 1987.

F. J. Pineda, “Generalization of back propagation to recurrent and higher
order neural networks” in Proceedings of IEEE, Conference on Neural Infor-
mation Processing Systems, IEEE, Denver, CO, November 1987.

D. C. Plaut, S. J. Nowlan, and G. E. Hinton, Experiments on Learning
by Back Propagation, Department of Computer Science CMU-CS-86-126,
Carnegie-Mellon University, Pittsburgh, PA 1986.

D. C. Plaut and G. E. Hinton, “Learning sets of filters using back-
propagation,” Computer Speech and Language, (1987).

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by back-propagating errors, Nature, 323 (1986) 533-536.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds.
Parallel Distributed Processing: Explorations in the Microstructure of Cog-
nition, Volume I (MIT Press, Cambridge, MA, 1986).

B. Selman and G. Hirst, “Parsing as an energy minimization problem” in
Genetic Algorithms and Simulated Annealing, Lawrence Davis, ed. (Pitman,
London, 1987) 155-168.

