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Abstract. We consider configurations which assign some element of
a fixed finite alphabet to each point of an n-dimensional lattice. An
n-dimensional cellular automaton map assigns a new configuration
a' = f(a) to each such configuration a, in a translation invariant man-
ner, and in such a way that the values of f(a) throughout any finite
subset of the lattice depend only on the values of a throughout some
larger finite subset. If we iterate such a map f over and over, then
the complete history of the resulting configurations throughout time
can be described as a new configuration over an (n + 1)-dimensional
“space-time” lattice. This note will describe the distribution and flow
of information throughout this (n + 1)-dimensional lattice by intro-
ducing an n-dimensional entropy function which measures the density
of information in very large finite sets.

1. Introduction

Let K be some fixed finite alphabet with k& > 2 elements, and let L be an
n-dimensional lattice, that is, a free abelian group isomorphic to Z". A func-
tion a : L — K which assigns an alphabet element to each lattice point is
called a configuration over L. For example when n = 1 such a configuration
can be described as a doubly infinite sequence (or briefly “bisequence”) of
symbols from K, and when n = 2 it can be described as an infinite two-
dimensional array of symbols from K. We will use the notation K% for the
space consisting of all such configurations. This space has a natural compact
topology, in which two configurations are close to each other whenever they
coincide throughout some large finite set. Note that the lattice L acts nat-
urally as a group of continuous translations of K*. This compact space KT
together with the group L of homeomorphisms is called the n-dimensional
full k-shift.

Definition. A continuous map f : K* — K¥ which commutes with transla-
tion by lattice elements is called an n-dimensional cellular automaton map, or
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briefly CA-map. (In the terminology of Hedlund, f would be called an “en-
domorphism of the n-dimensional k-shift”.) The triple {K, L, f} consisting
of alphabet K, lattice L, and CA-map f is called a cellular automaton.

More explicitly, such a map f assigns to each configuration a € K a new
configuration a’ = f(a) which can be computed by some formula of the form

a'(f) =d(a(l+vy),...,a(l+v,)). (1.1)

Here ® : K x --- x K — K is to be some fixed function of r variables, and
vy,..., v, are to be fixed vectors in the lattice. (See for example [19,6].) We
will call ® a local map or block map, and will call f the associated CA-map.

In the one-dimensional case, the topological entropy htop( f), as defined
by Adler, Konheim, and McAndrew, is an interesting and useful numerical
invariant which measures “information per unit time”. (Compare [4,9,10,
11], and see [18] as a general reference for topological and measure-theoretic
entropy.) If we consider not only the entropy of f itself, but also the collection
of all entropies of compositions of f with lattice translations, then we obtain
a much richer structure ([13,17]). If we are also given a suitably invariant
probability measure on KX, then we can also consider corresponding measure-
theoretic entropies (see [3,16,8]).

In the higher-dimensional case, n > 1, the topological and measure-
theoretic entropies are usually infinite. In order to get a useful theory in
the n-dimensional case, we must introduce a corresponding theory of “n-
dimensional entropy.” It is hoped that this concept of n-dimensional entropy
will give a better picture of what is going on, even in the classical case n = 1.

The paper is organized as follows. Section 2 describes the topological
or measure-theoretic information content H(S) associated with a finite set
S in the given lattice L or in the “space-time lattice” Z x L, for a given
CA-map f. Section 3 constructs the d-dimensional entropy 74(X) associated
with such an information function H, and also the d-dimensional directional
entropy hqa(vy A -+ Avy). Here d is an integer determined by H, X is any
compact subset of the ambient vector space (Z x L) ® R, and vy, ..., v, are
linearly independent vectors in this space. Section 4 applies these construc-
tions to cellular automaton limit sets. The last three sections, which depend
heavily on oral communications to the author by Lind and Smillie, study
the n-dimensional entropy of complete histories in the (n + 1)-dimensional
lattice Z x L. Section 5 studies “causal cones” associated to a cellular au-
tomaton, and Section 6 gives some one-dimensional examples. Section 7
discusses directional entropies, making use of normal vectors and dual cones,
and makes a particular study of invertible or “quasi-invertible” CA-maps.
The Appendix generalizes some of these constructions to commuting maps
on an arbitrary compact metric space, and to commuting measure preserving
transformations.

I am grateful to Lyman Hurd and Kyewon Park for helpful suggestions.



On the Entropy Geometry of Cellular Automata 359

2. The information function § — H(S)

Definition. Let L be an n-dimensional lattice, and let S range over all finite
subsets of L. By an information function H on L will be meant a function
S +— H(S) which assigns a real number H(S) to each such S, and which is
monotone, subadditive, and translation-invariant; that is,

H(S) < H(S") whenever 5 C 5, (2.1)
H(SUS) < H(S)+ H(S) for all S and 5, and (2.2)
H(S)=H(S +v) for any vector v in the lattice. (2.3)

It follows that
0 < H(S) < Hy |5 (2.4)

for every non-vacuous S, where |S| denotes the number of elements in .S, and
where the constant Hj is defined to be the value of H on a set {{} consisting
of a single lattice point. We may as well assume also that the empty set
satisfies H() = 0, so that (2.4) will be satisfied without exception.

Remarks. We will refer to H(S) as the “information content” of the
set S (although the term entropy of § would be closer to the usual usage
in the literature). In practice, we will distinguish between topological and
measure-theoretic information. By definition, the “topological” information
associated with a choice between n alternatives is log(n). If each alternative is
assigned a probability p; > 0 with p;+- - -4p, = 1, then the measure-theoretic
information (or more properly the “expected information”) associated with
such a choice is

—p1log(p1) = -+ — pulog(pa)- (2.5)

Here 0log(0) = 0 by definition. Note that the expression (2.5) atlains its
minimum zero when all but one of the probabilities is zero, and attains its
maximum of log(n) when p; =---=p, = 1/n.

Example 2.1. Topological information for subshifts. By definition,
a subshift of K is a closed set A C K which is invariant under lattice
translations. By a partial configuration over a finite set S C L will be
meant any mapping a : S — K. Note that a subshift A is completely
determined if we specify which partial configurations & can be extended to
full configurations a : L — K belonging to A.

To each subshift A C K~ we associate the “topological information func-
tion” S+ H4(S), where H,(S) is defined to be the logarithm of the number
of distinct partial configurations @ : S — K which can be extended to full
configurations belonging to A. In other words, log™ Hy(S) is equal to the
number of elements in the image of the restriction map A € K% — K%, The
inequalities (2.1) through (2.3) are easily verified. Since the number of par-
tial configurations over S is equal to k!, the inequality (2.4) can be replaced
by

0 < Ha(S5) < |S]log(k). (2.6)
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Intuitively, H4(S) can be described as the quantity of information about
an unknown configuration a € A which we would obtain by knowing its
restriction to §. As a matter of notational convenience, we will often move
the subscripts onto the main line, writing H(A; S) in place of H4(S5).

Note. Depending on taste, the reader may use natural logarithms through-
out, or logarithms to the base 2 so that information is measured in “bits”,
or even logarithms to the base k so that formula (2.6) takes the simpler form
0 < Hy(S) £ |S|. Because of this ambiguity, we write log™" rather than exp
for the inverse transformation.

Every CA-map f : K — KT gives rise to an descending sequence of
subshifts

KD f(K") D [HK") D A K" Do

Here f! stands for the ¢-fold composition fo- - o f. The intersection A = A(f)
of this sequence of successive images f{(K”) is another subshift which is
called the limit set or the eventual image of the cellular automaton. Thus a
configuration ag belongs to A if and only if it can be written as a t-fold image
a; — a;_q +> -+ a; - ag under f for every integer ¢ > 0. Associated with
this descending sequence of subshifts is a descending sequence of information
functions

H(KY; §) = |5|log(k) 2 H(F(KY); §) 2 H(f*(K");8) 2 -+

which clearly converges to the limit function H(A; §). In fact H(A; S) =
H(fY(KT); S) for t sufficiently large, depending on S.

Example 2.2. Complete histories. There is an important (n + 1)-
dimensional subshift associated with an n-dimensional cellular automaton, as
follows. By a complete history for the CA-map f will be meant a bisequence

serb3 A ag b a2 ag b

of configurations a, € K% satisfying the identity f(a,) = a,y for every
integer t € Z. Every such complete history can be considered as a function
(t,4) — a(t,€) = a,(€), or in other words as a configuration on the (n + 1)-
dimensional lattice Z x L, satisfying the equation

a(t+1,8) = ®(a(t, L+ v1),...,a(t, €+ v,)) (2.7)

for all ¢t and €. (Compare (1.1)). Thus we can identily the space of com-
plete histories for f with the subshift A = A(f) € K%*¥ consisting of all
configurations satisfying (2.7).

There is an associated topological information function S — H4(S),
where now § varies over finite subsets of the product lattice. Note that
this construction subsumes the previous one in the following sense. If we
restrict a complete history a € A to the n-dimensional sublattice 0 x L, then
evidently we obtain a configuration ap belonging to the limit set A(f), and
conversely it is not difficult to show that every configuration in A can be
obtained in this way. Hence H4(0 x .S) = Hy(S) for every finite set S C L.
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Example 2.3. Measure-theoretic information. Let g be a proba-
bility measure on KT, or more precisely on the o-ring of Borel subsets of
K%, which is invariant under lattice translations. Then g gives rise to an
information function S — H,(5) as follows. Define the probability p, of a
partial configuration « : § — K to be the measure of the open and closed
cylinder set F, consisting of all configurations a € K whose restriction to S
is equal to a. Thus the sum of the k¥l probabilities p, is equal to u(K%) = 1.
Set

H,(8) = H(p; S) =Y —palog(pa), (28)

to be summed over all partial configurations « : S — K, where as usual
0log(0) = 0. Then the inequalities (2.1), (2.2) and (2.3) are easily verified.
In fact (2.2) can be sharpened to

H,(SUS') < H,(S)+ Hu(S") — H, (SN S (2.9)

Equation (2.9) is equivalent to the statement that the “conditional entropy”

H(S/T)y=H(SUT)— H(T) is subadditive, or to the statement that
H(S/T) < H(S/Ty) whenever T D Ty. (2.10)

Proofs of these inequalities may be found in [18, p. 81].

The corresponding sharpened inequalities for topological information are
unfortunately false. As an example, consider the subshift A C {0,1,2}%
consisting of the constant zero configuration together with all possible con-
figurations of ones and twos. Then H4(S) = log(1 + 2!°!) for S non-vacuous,
and the inequality (2.9) is essentially never satisfied.

The relationship between measure-theoretic information and topological
information can be described as follows. Define the support |u| to be the
smallest closed subset of K7 which has measure 1. Thus the complement of
|£] can be described as the union of all cylinder sets E,, which have probability
w(E,) = 0; where now « is to vary over partial configurations which are
defined on arbitrarily large finite sets $ C L. Then |u| is a subshift of K,
and it is not difficult to check that 0 < H,(S) < H),(S5).

Example 2.4, (Z x L)-invariant measures. Given a CA-map f :
KL — KT, we are interested in probability measures uy which are not only
translation-invariant but also f-invariant, in the sense that

#o(f T (Eo)) = po( Es)

for every cylinder set £, and hence for every measurable set £ C KL, If pg
is such a doubly-invariant measure, then clearly the support || is contained
in the limit set A, so that 0 < H, (S) < H)u,((S) < Ha(S). We will show
that po gives rise to a unique translation-invariant measure  on K#*” with
support |p| contained in A(f).
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Lemma 1. If yo is an f-invariant and translation-invariant measure on K,
then there is one and only one translation-invariant measure p on KZ*L
which has support contained in A(f) and which satisfies the condition that
the p-probability of any partial configuration on a subset 0 x S C 0 x L is
equal to the uy-probability of this same partial configuration.

Evidently the associated information function S +— H,(.S) satisfies the
conditions that H,(S) < H),(S) < Ha(S) for S C Z x L, and that H,(0 x
S) = H,(S) for S C L.

Proof of Lemma 1. Every configuration on the hyperplane 0 x L gives rise
to a unique “forward history” on the half-space {{ > 0} x L. Hence, if we
are given jig, then we can assign a probability p, to any partial configuration
o which is defined over a finite subset of this half-space. These probabilities
are shift-invariant, and hence can be defined for partial configurations over
an arbitrary finite subset of Z x L. The extension to arbitrary measurable

subsets of K#* is now straightforward. H

3. The d-dimensional entropy set function ny(X)

It will be convenient to embed the n-dimensional lattice L into the n-dimensional
real vector space V = L ® R, which is spanned by any basis for L. It will
also be convenient to choose some Euclidean metric for this vector space V,

so that distances are defined.

Let S — H(S) be some fixed function satisfying the axioms (2.1) through
(2.3). In many interesting cases, it turns out that the quantity H(S) grows
roughly like the d-th power of the diameter of 5, for some integer 0 < d < n.
More precisely, let us define the growth degree of the function H to be the
smallest integer d such that

H(S) < ¢ diam (5)* (3.1)

for some constant ¢, independent of S, and for all S with at least two distinct
points. (We must exclude single point sets here.)

Note that H has growth degree d = 0 if and only if it is bounded. In this
case, we define the “0-dimensional entropy” 7y to be simply the supremum
of (S} as the finite set S C L becomes arbitrarily large.

To study the more interesting case d > 1, we first extend the function H
as follows. If B is an arbitrary bounded subset of the ambient vector space
V, then we define H(B) to be H(BN L), the value of H on the set of lattice
points in B.

Definition. Given any compact set X C V, the d-dimensional entropy
n4(X) is defined as follows. For any bounded set B C V and any large real
number ¢, consider the stretched and thickened set B + tX, consisting of all
sums b + ¢x with b € B and x € X. For each fixed B, form the lim sup of
the ratio H(B-+1X)/t? as t — co. Then form the supremum as the bounded
set B becomes arbitrarily large. That is, define

na(X) = supglim sup,_, . H(B + tX)/t". (3.2)



On the Entropy Geometry of Cellular Automata 363

We will prove the following.

Theorem 1. If H has growth degree d > 1, then ny(X) is defined and finite
for every compact set X C V, and satisfies

0 < a(X) < e diam (X)*. (3.3)

This function X + 54(X) is monotone, subadditive, and translation-invariant,
that is

0 < 74(X) < 7a(Y) for X CY,
(X UY) < (X)) + na(Y) for any compact X and Y, and
na(X +v) = na(X) for any vector v,

and furthermore

na(tX) = t49y(X) for any t > 0. (3.4)

Proof. This is almost completely straightforward. The only point which
may require comment is translation-invariance, since the information func-
tion B — H(B N L) is invariant only under translation by vectors in the
lattice L. To prove invariance under arbitrary translations, choose some ball
B, which is large enough so that every translate v+ By contains at least one
point of the lattice L. Then H(B + v) < H(B + By) for every bounded set
B and vector v, hence

lim sup,H(B + (X 4 v))/t* < lim sup,H((B + Bo) + tX)/t.

The rest of the argument will be left to the reader. B

Caution: It definitely is not stated that 7, is an additive set function, that
1a(—X) = 14(X), or that n4(X) depends continuously on X. (Compare §6.3)
Note that the function 5y can be of interest for only one value of d,
namely the growth degree for the given information function H. If we use
the corresponding definition with a larger (or smaller) value of d, then the
resulting entropy will be zero (or infinite).
Here is one immediate consequence of Theorem 1.

Corollary 1. The entropy 14(X) is less than or equal to some constant times
the d-dimensional Hausdorff measure of X. In particular, if X has Hausdorff
measure zero, then n4(X) = 0.

The proof is straightforward. For reasonable subsets of some d-dimen-
sional plane, we will see that 5, is just a constant multiple of Lebesgue or
Hausdorff measure. More precisely:
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Theorem 2. If H has growth degree d, then for compact polyhedral subsets
X of some fixed d-dimensional plane P C V the associated entropy 14(X) is
proportional to the d-dimensional Lebesgue measure of X. In other words
there is a proportionality constant Hy(P) > 0, which depends only on P, so
that

na(X) = Ha(P) volume(X)

for every compact polyhedral X C P. Furthermore, for such X, the “lim
sup” in the definition of 1y can be replaced by a “lim inf”, without changing
the value of ny(X).

The proof will be given at the end of this section.
It follows from (3.3) that these constants H,(P), which measure informa-
tion per unit d-dimensional volume near P, are uniformly bounded:

0 < Hy(P) < constant

for all d-planes P C V. However, we will see in §6.3 that this bounded
function P — Hu(P) need not be continuous. The ratio Hy(P) = n4(X)/
volume(X') depends of course on the particular choice of Euclidean metric,
although the entropy 74(X) does not depend on the choice of metric. As long
as we consider only polyhedral subsets of some fixed d-plane, it follows that
the set function n, is strictly additive,

(X UY) =52(X) +92(Y) = a(X DY),

and symmetric, 74(—X) = n4(X). (Compare §6.2.)

Definition. In the case d = 1 the number k;(v) = ([0, 1]v) is called the
“directional entropy” in the direction v. Here the notation [0, 1]v stands for
the line segment from the origin to the vector v. More generally, for any d, we
will use the notation hy(vyA---Avy) for the value of 54 on the parallelepiped
[0,1]vy 4+ -+ [0, 1]v, which is spanned by the vectors vy, ..., v, (Compare
[13]). Note the identity

hd(ivl A---A Vd) = ItIhd(V] A---A Vd). (3-5)
Evidently the function P+ Hy(P) and the function
Vig.ooy Vg hd(vl A"'AVd)-

determine each other uniquely, and either one might reasonably be called
the “d-dimensional directional entropy”. (See also §7.) Presumably this
directional entropy could be identically zero even if 7, is not identically zero.
For example, in the n-dimensional case, n > 2, if we define H(S) to be |S|'/,
then 7;(X) is non-trivial, being equal to the n-th root of the n-dimensional
volume of X, and yet H; is identically zero. However, such examples don’t
seem to arise in practice.

In the application to cellular automata, the value of the one-dimensional
entropy hy(A; v) at a vector v = (¢,£) in the spacetime lattice Z x L can
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be identified with the topological entropy of the mapping f* composed with
a translation by the lattice element £. In particular, if v = (1,0) then we
obtain the topological entropy of the mapping f itself, as defined by Adler,
Konheim, and McAndrew. Similarly, if # is an invariant measure supported
by A, then hy(p; (1,0)) is the measure theoretic entropy of f, as defined
by Kolmogorov and Sinai. In the case of a one-dimensional CA-map, these
invariants are interesting and non-trivial. However, for higher-dimensional
CA-maps the one-dimensional entropy is usually infinite, except in trivial
cases where it is zero. In most cases, the appropriate tool for studying n-
dimensional cellular automata is rather the n-dimensional entropy in the
(n + 1)-dimensional vector space R x V. (See §§4-7.)

As a consequence of the last statement in Theorem 2, we have the follow-

ing.
Corollary 2. In the measure-theoretic case, the sharper inequality
1a(X UY) < a(X) +na(Y) —na(X NY) (3.6)

is valid whenever the intersection X NY is a polyhedral subset of a d-plane.
Similarly

14(X/Y) < na(X/Yo) (3.7)
whenever the subset Yy C Y is a polyhedral subset of a d-plane.

Proof (assuming Theorem 2). The inequality (3.7) can also be written as
(X UY) < 04(Y) + na(X U Y5) — 1a(Yo).

Since we are in the measure-theoretic case, we know by (2.10) that the cor-
responding inequality

H(B+HXUY))<H(B+1tY) + HB+HXUYy)) — H(B +tYp)

is indeed satisfied. Hence we can divide by 1%, pass to the lim sup as ¢ — oo,
and then take the supremum as the bounded set B becomes arbitrarily large.
Since the last term has a negative sign, we must use Theorem 2 to complete
the argument. The proof of (3.6) is similar. B

It would be interesting to know whether these inequalities (3.6) and (3.7)
are true also in the topological case, and if they are true without the special
hypothesis on X N'Y or Y; in the measure-theoretic case.

For the extreme case, d = n, the construction of h, simplifies somewhat.
Since there is only one n-plane, namely V itself, the n-dimensional entropy
can be described by a single real number H,, (V). In this case we will always
adopt the convention that our Euclidean metric is chosen so that a fundamen-
tal domain for the lattice L has unit n-dimensional volume, or equivalently
so that the quotient torus V/L satisfies

volume(V/L) = 1. (3.8)
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More explicitly, if by,...,b, is any basis for the lattice L, we assume that
the parallelepiped [0, 1]by 4 - - -+ [0, 1]b,, has Euclidean volume equal to one,
so that H,(V) coincides with the directional entropy h,(by A...Aby,). If we
identify the lattice L with Z”, then in order to compute the number H, (V)
it suffices to consider large “discrete cubes” of the form S, = {1,...,m} x
<o x {1,...,m} with |S,| = m™.

Lemma 2. The ratio H(S,,)/|Sm| converges to a limit H, as m — oo.
Furthermore H(S,,)/|Sm| = H, for every integer m > 1. If the Euclidean
metric is normalized so that (3.8) is satisfied, then this limit H, can be
identified with the ratio H,(V') of Theorem 2.

We will describe H,, as the average “information per lattice point” asso-
ciated with the information function H. Note that this construction is only
of interest when H has growth degree d equal to n. For if d < n, then the
n-dimensional entropy h, must be identically zero.

The proof of Lemma 2 can be sketched as follows. Fixing m, note that
an arbitrarily large discrete cube Sy can be covered by (1 + N/m)" copies
of S,,. Therefore

H(Sy) £ (1 + N/m)" H(Sn),

or in other words H(Sn)/|Sn| < H(Sm)/|Sm| + €, where it is not difficult to
check that € — 0 as N — co with m fixed. It follows that

limsup H(Sy)/|Sn| < infH(Sn)/|Sml-

But the inequality in the other direction is trivial, so equality must hold. B

To conclude this section, we must prove Theorem 2. Let us embed the
compact polyhedral set X € P in some large cube I* C P of edge length e,
and express I? as a union of N? subcubes of edge length e/, with N very
large. Since the entropy n4(I%) is precisely equal to the sum of the entropies
of these subcubes by (3.4), it follows from subadditivity that the entropy of
any partial union of subcubes is strictly proportional to their number. Since
the proportion of subcubes which meet the boundary of X tends to zero as
N — oo, the conclusion that

na(X)/na(I?) = volume(X)/volume(I%)

follows easily. More generally, this same argument works for any compact
subset of P whose boundary has d-dimensional Lebesgue measure equal to
zero. It may be conjectured that Theorem 2 remains true for arbitrary com-
pact subsets of a d-plane.

To prove the second half of Theorem 2, first consider the statement for
the cube . An argument similar to the proof of Lemma 2 shows that

n4(I?*) = supginf, H(B + tI%)/t*.

Now let Y be the closure of the complement of X in I, so that the volume of
1% is equal to the sum of the volumes of X and Y. If we divide the inequality



On the Entropy Geometry of Cellular Automata 367

H(B+1tX)> H(B+tI%)— H(B +1Y),

by t¢, take the lim inf as t — co, and then the supremum over bounded sets
B, we obtain the required inequality. B

4. Spatial entropies of CA-maps

We begin the discussion of entropies associated with CA-maps by discussing
the “information per lattice point” H, at some constant time. (Compare
Lemma 2.) First consider the image f(K*) of an n-dimensional CA-map.

Lemma 3. The topological entropy H, = H,(f(K")) satisfies 0 < H, <
log k. Here the maximum value of log k is attained if and only if the map f
is surjective, f(K*) = K*, and the minimum value of zero is attained if and
only if f(K") consists of a single constant configuration.

Proof. If f is not surjective, then there must exist some partial configu-
ration & : § — K which does not extend to any configuration in f(K7).
Choose some large discrete cube S’ € L which contains this set S. Then
H(f(K%); 8") < |5’|log(k). But it follows from Lemma 2 that H(f(K); S)/|S’|
is an upper bound for H,,(f(K*%)), which must therefore be strictly less than
log(k).

Now suppose that f is not a constant map. The value of the configuration
f(a) at the origin depends on the values of a in some suitable discrete cube
S. Tiling L by copies of S, we see easily that H,(f(KT)) > log(2)/]S| > 0.
| |

If f: Kl — K% is any n-dimensional CA-map, then the sequence of
closed translation-invariant sets

K* > f(KY) > fA(KY) D
with intersection A gives rise to a sequence of n-dimensional entropies
log(k) > Ma(f(K")) 2 Ha(FH(K) 2 -+,

which clearly converges to the limit M, (A) > 0. This limit, which will play
a central role in our discussions, will be called the “spatial” entropy of the
limit set A, since it describes the distribution of information at some fixed
time ¢ = constant. (In other words, it involves only the spatial lattice L
and not the space-time lattice Z x L.) This spatial entropy is a very crude
invariant, since it will not change if we replace f by some iterate fo--.0 f,
or compose it with an arbitrary lattice translation. It follows from Lemma 3
that H,(A) = log(k) if and only if f is surjective. However, we will see that
‘H.(A) may well be zero even if the limit set A is infinite.

Remarks on computability. Unfortunately, it must be admitted that
this basic invariant H,(A) tends to be very difficult to compute, even in
the one-dimensional case. According to (7], there exists a one-dimensional
CA-map f : KZ — K% for which the collection of all finite substrings of
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bisequences from A(f) is not recursively enumerable. This means that there
can be no effective procedure for computing the integers log™" Hx(S). If
we work with some finitely iterated image fY(KT), then in principle any
H(f*(K"); §) can be computed in finite time. However, the length of this
computation tends to increase exponentially with the size of S (and with
"), so that the H,,(f{(K*)) may be difficult to compute, and H,(A) may be
impossible. We have seen that H,(f!(K)) is zero only if the t-fold image
YY) consists of a single constant configuration; however a decision as to
whether or not H, (A) = 0 seems very difficult. In the one-dimensional case,
it is at least possible to decide effectively whether or not any given CA-map
is surjective, so that H,(A) = log(k). (See for example [1].) However, in
higher dimensions it seems unlikely that any algorithm exists for deciding in
general whether [ is surjective.

If we are given a translation-invariant measure i on the limit set A, then
the numbers H(pg; S) can be effectively computed, but again it seems very
difficult to decide whether or not the entropy H,(uo) is zero. Furthermore,
in saying that pq is “given” we have avoided the major difficulty of cffectively
constructing interesting invariant measures on A.

A basic theorem of Dinaberg and Goodman asserts that the topologi-
cal entropy of any map on a compact metric space is the supremum of the
measure-theoretic entropies of its invariant measures. (Compare [18].) In the
case n = 1, we can apply this result to the shift map on A, and conclude that
H,.(A) is equal to the supremum of H,(uq) as po varies over all translation-
invariant measures supported by A. T don’t know whether the corresponding
statement is true for n > 1. Even in the one-dimensional case, if we insist
that our measures yg be not only translation-invariant but also f-invariant,
then I don’t know whether the supremum of H,,(jt0) is still H,(A). (Compare
§6.3.) Furthermore, [ don’t know whether this supremum is actually realized
by some particular pq.

One very special case is well understood. Definition: By the standard
measure o on ¥ is meant the measure for which each partial configuration
a: S — K has probability

Po = 0(Ea) = 1/kPL. (4.1)

Evidently this is the unique translation-invariant measure on K* with maxi-
mal spatial entropy H,(¢) = log k. A theorem which was proved by Blanken-
ship and Rothaus in the one-dimensional case and by Maruoka and Kimura in
the higher-dimensional case asserts that this standard measure is f-invariant
if and only if f is surjective. (See [6,12,1].) Thus, in the surjective case, there
is a unique measure which is both f-invariant and translation-invariant, and
which has maximal spatial entropy, equal to logk.

5. Causality

In this section we begin to study the dynamics of an n-dimensional CA-
map f : K¥ — KT, The presentation will be based on the following idea,
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suggested by Lind and Smillie. Recall that the “space-time” lattice Z x L
is embedded in a vector space R x V, and that A C K#*L is the (n + 1)-
dimensional subshift consisting of all complete histories for f.

Definition. By a causal cone for the subshift A ¢ K %*% will be meant
any convex polyhedral cone C C R x V which is spanned by some finite set
S C Z x L having the following two properties:

1. The value of a complete history a € 4 at the origin must be uniquely
determined by its values at the points of S. Hence the value of a at any
lattice point (¢, ¢) is determined by its values at the points of (¢, £) + 5.

2. 5 must lie strictly to one side of some hyperplane through the origin.
Thus, if § = {v1,...,V,}, then C consists of all linear combinations
tyvy 4+ -+ v, with ¢; > 0; and no such linear combination can be
equal to the zero vector unless t; = -+ =t, = 0.

Every CA-map has at least one causal cone. For if f(a,) = a;,;; is given
by

a(t+ 1,4) = ¢(a(t, £+ vy),...,a(t, L+ v.)),

as in (2.7), then evidently the value of a at the origin is determined by its
values at the points v; = (—1,v),...,v, = (=1,v,), which lie in the open
half-space ¢t < 0.

Let us assume that the function @ really depends on every one of its r
arguments, so that this collection of vectors {vy,...,v,} is uniquely deter-
mined.

Definition. With this hypothesis, the causal cone spanned by the vectors
V1,..., ¥, in the half-space t < 0 is called the 1-step backward cone or past
cone —F for the CA-map f. The opposite cone F}, spanned by the vectors
—Vi,...,—V,, is called the 1-step forward cone or future cone.

Note. In the trivial case of a constant function f, we adopt the conven-
tion that r = 0, and that F; consists only of the zero vector. In practice,
since this case is completely uninteresting, it will often be excluded.

Note also that F} can be characterized as the smallest convex cone in
R x V with the following property: If two initial configurations £ +— a(0,¢)
and £ +— b(0,£) on the spatial lattice 0 x L are identical except at the origin,
and if we define a(¢,£) and b(t,£) for t = 1,2,3,--- by (2.7), then the two
resulting configurations on the half-space ¢ > 0 must coincide everywhere
outside of the cone F.

More generally, let m be any positive integer. If we replace the CA-map
f by its m-fold composition with itself, then we are led to the following
construction. The m-step forward cone is defined to be the smallest convex
cone F,, C R x V such that, if two initial configurations a(0,£) and b(0, £)
coincide except at the origin, then the corresponding configurations a(m, ¢)
and b(m, £) at time m must coincide everywhere on m x L outside of the
intersection Fi, N (m x L).
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It follows from this definition that —F,, is a causal cone satisfying Iy D
F.,, and more generally Iy, D [I,,. Thus, we are led to define the limiting
forward cone F to be the intersection of the nested sequence

BOFERDFDF D .

(In fact, it is not difficult to check that the successive I, actually converge
to this limit cone F in the sense that for any open neighborhood U O F,
all but finitely many of the F,, intersected with the unit ball, lie inside U.)
This intersection F' is clearly a closed convex cone in the (n + 1)-dimensional
spacetime R x V. (I don’t know whether the negative —F' is necessarily a
causal cone, or even a polyhedral cone.)

One elementary but useful invariant is the dimension of this forward cone,
where 0 < dim(F) < n + 1. In the case of a one-dimensional CA-map, the
possible dimensions 0, 1, and 2 correspond very roughly to Wolfram’s cellular
automata of Class 1, 2, or 3. Thus if dim(F) = 0, then some iterated image
fHK?) consists of a single constant configuration, and there is nothing to
study. If dim(F) = 1, then the cone is a half-line consisting of pairs (¢, )
with ¢ > 0 and z = cf. Intuitively, the constant ¢ measures the speed at
which information travels. (Compare §6.) Finally, if dim(F') = 2, then I
consists of all (Z,z) with ¢ > 0 and ¢;t < z < eyt, so that in this case F is
described by an entire interval [¢;, ;] of speeds. In the n-dimensional case,
the ratios x/t with (t,x) € F range over some compact convex subset of
n-space.

We will say that a vector v € R x V is timelike, or belongs to the timelike
cone F' U (—F) if either v € F or —v € F. The remaining vectors, which do
not belong to /U (—F) are said to be spacelike. Note that non-zero vectors
in 0 x V are necessarily spacelike. However, depending on the particular CA-
map being studied, vectors along the time-axis R x 0 may be either timelike
or spacelike. In the one-dimensional case, the open set of spacelike vectors
splits into two components, hence we can further distinguish between “right
spacelike” and “left spacelike” vectors.

Let us fix some causal cone C (for example the m-step backward cone

m)-

Definition. By the umbra of a compact set X C R x V with respect
to C' will be meant the closed set consisting of all points x € R x V' which
are totally shadowed by X in the following sense. Any piecewise smooth
path 7 — p(7r) which starts at the point p(0) = x and has velocity vectors
dp(7)/dr in the cone C' must eventually meet the set X. (Compare figure
L)

Let B be a ball, centered at the origin, which is large enough so that
the value of a complete history a at the origin is uniquely determined by its
values at the other lattice points in BN C.

Lemma 4. With C and B as above, for an arbitrary compact X, the values
of a complete history a € A at all lattice points x = ({,{) in the C'-umbra
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Figure 1.

of X are uniquely determined by the values of a at the lattice points in the
neighborhood X + B.

Proof. Since C' — {0} lies in an open half-space, we can choose a linear
function 7 : R x V — R which is strictly negative on C' — {0}. After approx-
imating by a linear map with rational coefficients and clearing denominators,
we may assume that 7 takes integer values on the lattice Z x L. The proof
will be by induction on the integer 7(x). (In the special case where C is
the backward cone —F,,, we can of course simply take 7 = 1.) To begin the
induction, the lemma is trivially true for 7(x) near —oo, since no such point
can lie in the umbra of X. For a given lattice point x in this umbra there
are two possibilities. If each lattice point X’ € x + (BN C) also lies in the
C-umbra of X, then by induction we can compute the value of a at these
points, and hence at x. On the other hand, if one of these points x’ is not
in the umbra of X, then the line segment from x to x’ must cross X, and
therefore € X + B.

As an immediate consequence of Lemma 4, we have the following,.

Lemma 5. The information function H = H 4 associated with the subshift
of complete histories for an n-dimensional cellular automaton has growth
degree at most n. Hence the corresponding n-dimensional entropy function 7,
is defined and satisfies 0 < 7,,(X) < ediam(X)" for any compact X C Rx V.

Proof. Apply Lemma 4 to the boundary of a large cube I™*!. Clearly the
entire cube is in the umbra of its boundary 81"*!. Since the number of lattice
points in 1™ + B grows like the n-th power of the edge length, it follows
that H(I™*') is less than some polynomial function of degree n in the edge
length. B

It follows that the same statement is true for any subshift of A, or for
any translation-invariant measure supported by A. More generally, the same
argument applies to any subshift or translation-invariant measure which pos-
sesses a causal cone.

Here is another consequence of Lemma 4.
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Theorem 3. Let C' be a causal cone for an n-dimensional cellular automa-
ton, and let X and Y be compact subsets of R x V with Y contained in the
C-umbra of X. Then n,(Y) < 5.(X).

In particular, if the umbra of X is compact, it follows that 5,(Umbra(X)) =
Na.(X). The proof is straightforward. B

Corollary 3. If the spatial entropy H,(A) of §4 is zero, then the n-dimen-
sional entropy 7,(X) is zero for every compact set X C R x V. More
generally, if H,(P) = 0 for any n-plane which intersects a causal cone C' only
at the origin, then n, is identically zero.

Proof. The hyperplane P cuts the space R x V into two half-spaces, one of
which contains the cone C. Let x be any point in the interior of the other half-
space H. Then the translated cone x + C' intersects H in a compact region
with non-vacuous interior which lies in the C-umbra of its intersection with
P. The hypothesis that H,,(P) = 0 implies that the entropy of this region is
zero. It follows easily that the entropy of any compact set is zero. B

6. Examples

This section will describe some explicit examples of one-dimensional cellular
automata.

Example 6.1. The simplest block maps. Suppose that our alphabet
has only two elements, K = {0,1}, and that f(a) = a’ with

a'(€) = @(a(f — 1), a(¢)), (6.1)

so that our block map ® is a function of just two variables. Then there
are sixteen different possibilities for f, corresponding to the sixteen distinct
maps from K x K to K. These sixteen CA-maps can be divided into six
groups, as indicated in the following table.

Block map Hi(A)/log2 Speed Class
constant (2 cases) 0 — 1
Max or Min (2 cases) 0 [0,1] 1
1-Maxorl-Min (2 cases) .81137 1/2 2
i+j+constant (mod 2) (2 cases) 1 [0, 1] 3
function of one variable (4 cases) 1 Dorl 2
other non-symmetric (4 cases) 69424 Oorl 2

Here the “speed” is the set of ratios z/t in the forward cone F', and can be
described intuitively as the rate at which information is moved to the right
as we apply f. (Compare §5.) The “class”, loosely following Wolfram [19],
can be defined as 1 if the entropy is zero, 2 if information remains localized,
traveling with constant speed, and 3 if information spreads out linearly with
time, so as to affect a larger and larger region of the lattice. (Compare §7.
We will not attempt to discuss Wolfram’s Class 4, which is beyond the scope
of this paper.)
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Suppose for example that ®(i, ) = Max(i,j). Then the image f(K?%)
consists of all bisequences which contain no string of the form 010 . Similarly,
fQ(KZ) consists of all bisequences which contain no 010 or 0110 , and so on.
The entropies H; (f™(K?))/log2 with m > 0 form a sequence

1> .811 > .694 > .613 > .551 > .504 > 465 > 433 > -+

which converges very slowly to zero. The limit set A can be described as fol-
lows. A finite string of 0’s and 1’s can be embedded in a bisequence belonging
to A if and only if it has the form 1* 0* 1%, that is a string of 1’s followed
by 0’s followed by 1’s (where any of these three substrings may be empty).
Since the number of such strings of length m grows only quadratically with
m, it follows that H;(A), the rate of exponential growth, is zero.

Next consider the block map ©(37, j) = 1—Max(¢, 7). In this case, it follows
immediately from the discussion above that the image f(K?) consists of all
bisequences which contain no isolated zeros. Using a standard procedure for
computing the entropy of a subshift of finite type, we see that H;(f(K%))
is equal to log(w) where w = 1.7548776662 is the real root of the equation
% — 22 + 2 — 1 = 0 (see [9].) But in this case, inspection shows that the
second iterate f? acts on this image by a single shift to the right. For any
string of the form =1 is replaced by something of the form %00 under f, and
hence by # = 1 under f2, and similarly each string of the form 00% or *00
maps to ** 0 under f2. Tt follows that the limit set A is equal to f(K%).

The remaining cases are all straightforward. For example in the last
row of the table the limit set is equal to f(K?%), and consists either of all
bisequences with no double 1’s or all bisequences with no double (s, with
entropy equal to log((1 4+ v/5)/2).

In the four cases which are described as of Class 1, the entropy function
X +— ny(X) is of course zero. In the ten Class 2 examples, it is not difficult
to show that n;(X), for polyhedral X, is just the length of the image of X
under a suitable projection from R x V to the real line. The two Class 3
examples can be analyzed as follows.

Example 6.2. Left and right permutive block maps. Here is a
larger class of examples for which it is possible to almost completely compute
the function 7. Let f be the one-dimensional CA-map which is associated
with the block map

a(l) =e(a(t+p)all+p+1),...,a(l+q)), (6.2)

with p < ¢. By definition, such a map is left permutive if for every fixed
a(l+p+1),...,a(f + q) the correspondence

a(l+p)— da(l+p),all+p+1),...,a(l+q))

is a permutation of K. Every left permutive CA-map is surjective, f(K*) =
K", and hence has maximal spatial entropy H;(A) = logk. Right per-
mutivity is defined similarly. As an example, the block maps (i,7) —
i j -+ constant(mod2) of Example 6.1 are both left and right permutive. If ®
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is left permutive, then inspection shows that its space A of complete histories
admits not only the usual causal cone C' = —Fj, but also an additional causal
cone (', as shown in figure 2. Similarly, if @ is right permutive, then there
is an additional causal cone C". Thus if @ is both left and right permutive,
then any compact X C R x V has three distinct umbras. A straightforward
extension of Theorem 3 shows that the union X of these three umbras sat-
isfies 71(X) = 71 (X). But if X is connected, then it is not hard to see that
X is a triangle T, as illustrated in figure 2. Using (3.4), we see that n(X) is
proportional to the edge length of this triangle 7' = X.

As an example, let us compute the entropy of the reflected triangle —T'.
Evidently, (=T has twice the edge length of T', so n(—=1") = 2m (7). As
another example, note that the directional entropy Ai(v) = n:([0,1]v) is
given by

hai(t, 2)/hi(0,1) = Max(|z + pt], |z + qt|, (¢ — p)[t])-

This same formula is true whether we are working with topological or measure-
theoretic entropy.

We will next describe two examples, due to Lind and Smillie, to show
that the topological entropy h(v) need not depend continuously on v, and to
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show that topological entropy need not be the supremum of measure-theoretic
entropies if we insist on using shift-invariant measures.

Example 6.3. Gliders and Walls. Let n = 1, and let the alphabet
K = {o,w,r,1} consist of the following four elements: There is a neutral
background state o, and a stationary particle w which never moves and which
forms an absorbing wall. Finally, there is a right-moving particle r and a left-
moving particle [ which travel with unit speed until they are absorbed by a
wall or until two of them come together. A right and left particle which
approach each other and arrive at two sites which have distance two [or one]
are transformed, at the next time step, into a wall [or a pair of contiguous
walls]. To be more precise, the associated block map & : K* — K maps
triples of the form #w* or rl* or r#+! or x*rl tow. It maps all
other triples or the form r s * to r, and all other triples of the form * * [ to
I. Finally, any triple not covered by these descriptions is mapped to 0. We
will show that the topological directional entropy of the resulting space A is
given by

hi(t, z) (It] + |z|)log(2) for z#0, but (6.3)
hi(t,0) = 2|t|log(2). (6.4)

Thus entropy is discontinuous as z — 0. In fact the discontinuity as z — 0
is precisely the largest possible one. (Compare (7.5).)

Remark. According to Lind and Smillie, the directional entropy is al-
ways continuous in spacelike directions. (See the Remark following Lemma
6.) T don’t know whether measure-theoretic directional entropy is always
continuous. In the one-dimensional case, Sinai proves that it converges to
a well-defined limit as we approximate any irrational direction by rational
directions.

To prove (6.3) and (6.4), we start by describing the space A of complete
histories. Given a € A, suppose to fix our ideas that a involves particles of
all three kinds. Then it is not difficult to check that the “wall” particles are
concentrated within a vertical strip, with all right moving particles to the left
of it and all left moving particles to the right of it. From this information, we
can compute the topological entropy 7;(A, X) for any compact polyhedral
X as follows. Let S, be an arbitrary closed vertical strip, and let S_; and
S be the closed half-planes to the left and right of Sy. For v equal to 1 or
zero, let X, be the image of X N S, under the projection (¢,z) — = — vt. hen
m(X)/log?2 is equal to the supremum, over all such strips Sy, of the sum
length(X_;) + length(X,) + length(X;). The proof is not difficult. Applying
this recipe to the case of a closed interval we obtain the required formulas
(6.3) and (6.4). H

Now let us look at measure-theoretic entropies. If p is any shift invariant
measure on the limit set A € K then we claim that g can be written as a
linear combination of three measures p_y, o, and p; with the property that
each p, admits only particles with speed v, with probability one. First note
that, with p-probability one, it is impossible for any two of the particles r,
and w to exist in the same bisequence. To see this, let s be any finite string
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in the given alphabet, of length m, which occurs with p-probability greater
than 1/p. Then it is not difficult to show that any string of length greater
than pm must contain two disjoint copies of s with positive p-probability.
Thus, if s contains say an r and an [, then we obtain a contradiction since
we cannot have any [ to the left of an r in any bisequence belonging to A. (I
am indebted to Hurd for this argument.) Now if 7, is the probability that a
bisequence a € A contains at least one particle with speed v, then it follows
easily that g splits as

po=Toypoy + Toflo + T + (1 — 70y — 70 — )4,

where y' admits only the background state o, with probability one.
Every such measure p extends to a measure supported by A. (Lemma
1.) Tt follows that the corresponding directional entropy has the form

ha(p; (¢, @) = el — €] + aolz| + a2 + 1],

where the coefficients o, > 0 satisfy a_y +ap+ay <log2. In particular, the
measure-theoretic entropy in the timelike direction (1,0) is at most equal to
log 2. Note that this is only half of the topological entropy in this direction,
as given by (6.4). (Of course, if we are willing to allow f-invariant mea-
sures which are not shift invariant, then we can achieve 2log 2 as a measure-
theoretic entropy.)

Example 6.4. Just gliders. If we simplify this example so that two
gliders simply annihilate each other when they meet, and there are no walls,
then the analysis becomes more difficult. Again any shift invariant measure
on the limit set A has the property that r’s and I’s cannot coexist, so measure
theoretic entropy has the form hi(t,2) = a_i|o — t| + ay|z + {]. But, in the
case of topological entropy in a timelike direction, there is the additional
possibility that left and right moving particles exist in carefully balanced
proportions so as to annihilate each other precisely within a long narrow
strip. The conclusion is that

hi(t,z) = ([t| + |x[) log(2)  for  [a|/|t| = .546...,
but
hi(t, z) = [t + z|log([2¢/(t + 2)|) + [t — z|log(|2t/(t — 2)I)

otherwise. (Compare [17].) In the later case, topological entropy is strictly
larger than any (shift-invariant) measure-theoretic entropy. In this example,
topological entropy is continuous, but not subadditive or piecewise-linear.

Example 6.5. Reflecting walls. First consider an invertible cellular
automaton with alphabet K = {o,r,[,b} consisting of a neutral background
state and two particles r and [ which travel in opposite directions with unit
speed. When these two particles meet, they travel through each other with-
out interacting. Here the symbol b stands for the state in which two opposite
particles land on the same lattice point at the same time. The directional en-
tropy, either topological or measure-theoretic based on the standard measure
o of (4.1), is easily computed as
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hy(t,z)/log2 = |t + z| + |t — z|. (6.5)

(Thus entropy is non-zero in all directions, even though this example is com-
pletely trivial from a computational point of view.) Now suppose that we add
a fifth element w which is a stationary reflecting wall. Thus a right moving
particle which reaches the lattice point to the left of w gets converted on the
next move to a left moving particle at the same location. For this enlarged
system, it is not difficult to check that the measure-theoretic entropy, using
the (k = 5) standard measure, is

hi(t,z) = |a|log5.

Thus entropy has increased along the z-axis, as compared with (6.5), but has
decreased to zero along the the t-axis. In particular, the standard measure
is not the measure of greatest entropy in the ¢-direction.

More generally, if we assign probability p to the alphabet element w and
probabilities (1 — p)/4 to the other four elements, the values at different
points of the lattice L being independent random variables, then one can
check that the measure-theoretic entropy hy(1,0) is zero whenever p > 0,
but is log4 when p = 0. Thus measure-theoretic entropy does not depend
continuously on the measure.

Quite similar behavior occurs for the k = 2 left permutive CA-map a — a’
given by

a(l)=all) + (1 —a(l+1))a(l+2) (mod?2), (6.6)

as studied by Coven. If we consider only histories for which all odd lattice
sites are off, a(2{ 4 1) = 0, then this reduces to the additive rule

a'(20) = a(2!) + a(20 + 2) (mod 2).

Hence topological entropy is non-zero in all directions. Yet for o-almost-every
initial configuration we have infinitely many odd and even sites which are on,
and the behavior is rather different. Fixing some bisequence a, let us say that
the lattice point £ is “distinguished” if a(£) = 1, and if the next lattice point
to the right which is on, a({') = 1, has odd distance, # — £ = 1(mod2). Then
it is not hard to check that every distinguished site will remain on forever,
and that in the interval between two distinguished sites the configuration will
repeat periodically with period equal to the largest power of 2 which is less
than or equal to the interval length. Thus, as far as the measure-theoretic
entropy m (o3 X) is concerned, we are dealing with a CA-map of Class 2.

7. Directional entropy and the dual cone

Now let us look at the n-dimensional entropies associated with an n-dimen-
sional CA-map. We will work either with the topological entropy associ-
ated with the space A C K%*L of complete histories, or with the measure-
theoretic entropy associated with some translation invariant measure p sup-
ported by A. Thus, to each n-dimensional hyperplane P € R x V there
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is associated an entropy H,(P), which measures information per unit n-
dimensional volume. If u is a unit vector orthogonal to P, then it will be
convenient to use the notation h(u) = H.(P). More generaliy, if p is any
non-zero vector orthogonal to P, we will set

h(p) = IpHna(P) = lIplHa(pb), (7.1)

where ||pl| is the Euclidean norm. In the case n = 1, this amounts to setting
iz(p) = hy(Jp), where J is a 90° rotation of the plane. For n > 1 it amounts
to setting fz(vl X xXV,) = hp(viA---Av,), using a suitably defined n-fold
cross product operation.

Now let C be any causal cone for the space A. By definition, the dual
cone ' consists of all vectors p with the property that p-v < 0 for all vectors
v € C. The geometric meaning of this construction is the following. A vector
p belongs to the interior of @, or of —C, if and only if every non-zero vector
in the orthogonal complement p* is spacelike. In the trivial case dim(C) = 0,
note that €' is the entire space R x V. In the case dim(C) = 1, clearly ¢
is an entire closed half-space. In all other cases, C is strictly smaller than a
half-space. X

In the special case C' = —F there is one unit vector ug € —F of particular
interest, namely the unit normal vector to the spatial hyperplane 0x V. Note
that ug a,lways lies in the interior of — . By definition, h(uo) coincides with
the spatial entropy H,(0 x V'), as studied in §4.

Clearly the n-dimensional entropy h(u) is always defined, and is bounded
on unit vectors. In other words there is a finite constant ¢ so that

0 < h(p) < cllp|l (7.2)

for all vectors p. If the spatial entropy fz(uo) is zero (or more generally if h
vanishes anywhere in the interior of any C’), then it follows from Corollary 3
that the n-dimensional entropy h is identically zero.

We will prove the following two basic results.

Lemma 6. If C is the dual of a causal cone, then the following inequalities
are valid:

fa(p +q) < fz(p) 5 fz(q) whenever p +q € (!, (7.3)
f;(p +q) < h (p} + 2?1( ) whenever p € a (7.4)
f;{p +q)< 2k ( )+ 2}1( ) in all cases. (7.5)

Remark. As one immediate consequence of (7.3), together with (7.2), we
see that the function % is continuous throughout any . (According to §6.3,
the function f is not always continuous everywhere.) In particular, the di-
rectional entropy H,(P) [or equivalently &, (vy,...,v,)] as long as the plane
P spanned by the vectors vy, ..., v, is spacelike. In the special case of a left
or right permutive block map (Example 6.2), Lind and Smillie point out that
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the dual cones £C and +C” cover the vector space. Hence h is subadditive
and continuous everywhere.

Here is another useful consequence. Define the null space N C R x V
to be the set of all vectors n such that i(n) = 0. Then it follows from (7.5)
that N is a vector space. Furthermore, if p € C, then it follows from (7.3)
and (7.4) that the entropy function h is constant throughout the plane p+ N
parallel to V. Note that the orthogonal complement N* can be described
as the intersection of all n-dimensional planes W with entropy H,(W) = 0.
If some causal cone C has dimension strictly less than n 4 1, we will prove
that N is non-trivial.

Lemma 7. Every n-dimensional plane W which contains a causal cone C
has entropy H,(W) = 0. Hence 0 < dim(N+) < dim(C).

The dimension of N* provides a very crude measure of the complexity
of the system. Thus the CA-maps with dim(N*) = 0 have n-dimensional
entropy identically zero, and can perhaps be identified with Wolfram’s cell-
ular automata “of Class 17. If dim(N+) = 1, then it is not difficult to show

that there is a unique entropy vector h € I with the property that
h(p) = [p - hl (7.6)

for every vector p. This entropy vector is non-zero, and lies in the line N+,
These cases, in which information remains localized and travels with constant
speed, should perhaps be identified with Wolfram’s cellular automata “of
Class 2”. (Compare Example 6.1.)

Proof of Lemmma 6. In the case n = 1 the three different cases are illustrated
in figure 3. (The hypothesis that a vector p belongs to €' means that the
cone C lies completely to one side of the complementary hyperplane p*.)
The conclusion then follows from Theorem 3. But these same figures can be
used to illustrate the n-dimensional case: We need only form the cartesian
product of one of these figures with a very large (n — 1)-dimensional cube
I™=1 which lies in the orthogonal complement of this 2-plane. This yields all
possible configurations described by Lemma 6, since any two vectors in R x 1/
lie in some two-dimensional subspace. There is an additional complication
in the higher-dimensional case since we must add the product of the shaded
region R in the plane with the boundary d7™"~! in order to completely shade
the region R x I"~!. Ilowever, the n-dimensional volume of this boundary
becomes negligible in comparison as the cube "' gets bigger. B

Proof of Lemma 7. This follows immediately from Theorem 3, since any
polyhedron P which lies in a hyperplane W containing C' is in the C-umbra
of its boundary dP, which has dimension n — 1. B

Here are two further statements which can be proved by the same method.

Lemma 8. If v and w belong to C, then



380 John Milnor

Figure 3.

0 < h(v) < h(v +w),

with strict inequalities if h is not identically zero, and if these vectors belong
to the interior of C.

Finally, a sharper version of Corollary 3. Let u be any unit vector in the
interior of C' and let

P(v)=inf{t >0 suchthat v+tue C}
be the distance from v to C' along lines parallel to u.
Lemma 9. Then h(v) < h(u)(s(v) + %(—v)).

The proof, in each case, is an application of Theorem 3, together with an
appropriate two-dimensional diagram. Details will be left to the reader.

Let f : KX — K* be a CA-map which is bijective, or in other words has
a well defined inverse CA-map. Then clearly in addition to the usual causal
cone C' = —F C R x V for the set of complete histories under f, which lies
in the half-space ¢ < 0, there will be an addition causal cone C' which is
contained in the half-space ¢t > 0. Note that both cones have only the zero
vector in common with the hyperplane ¢t = 0.

More generally, it will be convenient to say that a CA-map is “quasi-
invertible” if it ts space of histories has two distinct causal cones C and C’
which are strictly separated by some hyperplane. In other words, they lie in
opposite half-spaces, and each one has only the zero vector in the common
boundary hyperplane. An equivalent condition is that the dual cones C and
~(" have a common interior point. In this case, evidently all of the Assertions
of §5 are valid not only for the dual cone C' but also for the dual cone (.
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As an example, in the one-dimensional case, clearly every block map which
is left or right permutive gives rise to a quasi-invertible CA-map,

We will prove that the entropy function h is linear on C Nn(— o ), at least
in the measure-theoretic case. (Compare Boyle and Krieger [3].) Intultwely,
this means that the function W - H, (W) is “linear” on the set of separating
hyperplanes. Suppose that we are given some fixed (Z x L)-invariant measure
1 supported by A.

Theorem 4. With C and C' as above, the measure-theoretic entropyiz = fzﬂ
is linear throughout the intersection C' N (—C” ). More precisely, there exists
an “entropy vector” h € C'N (—C") with the property that IAz(v) =h.v for
every v € C n(-— C) Further

M) = [h-vi
for every vector v.

In particular, it follows that the intersection C' N (—C") is non-trivial.
It follows also that the entropy ﬁ(v) is strictly positive except possibly in
directions orthogonal to h.
Proof of Theorem 4. I'irst consider the one-dimensional case. Consider a
triangle whose edges are all “spacelike”, in the sense that they are parallel to
lines strictly separating C' from C". As illustrated in figure 4, we will assume
that the edge Fs is in the C-umbra of the union E; U Fy of the other two
edges, and where both E; and FE, are in the C'-umbra of E;. Then clearly
m(Es) = n(E; U E;) by Theorem 3. We will show that n,(F, U E;) =
mi(F1) + 71 (), and hence that

1 (Es) = n1(Er) + m1(Es). (7.7)

More generally, for any two compact sets X and Y, let us define the
“entropy-correlation” to be the difference

n(X) +m(Y) - m(XUY) =n(X) -n(X/Y) =20 (7.8)

Since we are working with measure-theoretic entropy, we know by Corollary
2 that this number can only decrease if we replace either X or ¥ by a subset
which is closed line segment. In particular, if the entropy-correlation between
X and Y is zero, then the same is true for any subsets of X and Y which are
closed line segments.

Consider the situation of figure 5. Here we have two collinear edges Ej
and E} which shadow the regions R; and T, respectively (taking the union of
the C-umbra and the C'- umbla) Let us assume that E; C R, and E, C Rs.
Then n (£ U E5) = 91(£7) + n1(EY) since ; is a measure within each line,
and m7,(E7) = m(Ra), m(EL) = ni(R,) by a umbra argument, hence the
entropy-correlation

Mm(R1) +m(Rz) — m(Ra URy)
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is zero. Replacing R, and R, by their subsets E; and FE,, it follows that
the entropy-correlation n;(E;) + n1(E2) — m(Ey U Ey) is also zero, which
completes the proof of linearity in the one-dimensional case. Passing to the
dual notation, it follows that fL(v) =h-vforallve CU (_C‘!)’ and for some
fixed vector h. This vector must lie in C, for otherwise we could choose a
vector w in the interior of ¢ orthogonal to h. The equation fz(erew) = fz(v)
for all v in the interior of C'N (—C" ) and all small € would then contradict
Lemma 8. Finally, the inequality ﬁz(v) > |h - v| for every vector v follows
using (7.3). In fact, if we express v as the sum of a vector p which belongs
say to ' and a vector q orthogonal to h, then we have

h(p+ev) = (1+ c)h(p) < h(p) + h(ev)

for small ¢, and the required inequality follows.

Just as in the proof of Lemma 6, this one-dimensional proof extends easily
to higher-dimensional cases. B

The case in which f is actually an invertible CA-map is of particular
interest. We can then use the standard invariant measure o of (4.1), and
the “entropy vector” will have the form h = (¢,x) with { = logk > 0. The
ratio x/t € V can then be described as the “mean shift” associated with
the invertible CA-map. In the one-dimensional case, Boyle and Krieger [3]
show that the mean shift function f — x/t is a homomorphism from the
group Aut(K%) of all invertible CA-maps to the additive group of the (one-
dimensional) ambient vector space V' = L x R. In particular, it follows that
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Figure 5.

the kernel of this homomorphism forms a subgroup of Aut(K%), which they
call the group of “shiftless” automorphisms. I have no idea whether these
conclusions remain true in the higher-dimensional case.

I also do not know whether the assertion of Theorem 4 remains true for
topological entropy. In one special case the proof does go through. If the CA-
map [ is actually invertible, and if C' and C' are the causal cones associated
with f and its inverse, then Theorem 4 is true in the topological case also.
For in this case we can choose Ry and R, so that the information-correlation

H(tRy) + H((tR2) — H(tRy UtR,)

is not just asymptotically small, but is precisely zero. Hence it remains zero
when we pass to appropriate subsets. H

Appendix A. Commuting maps

The constructions of §2 and §3 extend naturally to a more general case of a
space Y and a collection of commuting maps fi,..., f, from Y to itself.
First suppose that Y is a compact metric space, with distance function
d(z,y), and suppose that the f; are commuting continuous maps from Y
to itsell. Let L be the lattice Z™ with standard basis {ey,...,e,}, and let
A C YT be the space of “complete histories” for the collection of maps f;,
that is the space of functions a : L — Y satisfying the identity fi(a(f)) =
a({+e;). Given a finite subset § C L, define the S-distance ds(a, b) between
two complete histories as the maximum of d(a(s), b(s)) as s varies over 5.
Then for each ¢ > 0 we can define the information content H(e; S) to be
the logarithm of the minimum number of sets with ds-diameter less than
¢ which are needed to cover A. The axioms of §2 are easily checked. If
these information functions S — H(e 5) all have growth degree at most
d, then the d-dimensional entropy n4(¢; X) is defined for every ¢ > 0 and
every compact X C L ® R. Passing to the limit as ¢ — 0, we obtain a
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topologically invariant d-dimensional entropy function 0 < 74(A4, X) < oo
(where this limit can be infinite).

As an example, if we have two commuting d-dimensional CA-maps, say
f and g mapping Y = K to itself, then these two maps together with
the lattice translations give us d + 2 commuting maps on a the compact
space Y. The associated d-dimensional entropy function X + 54(X), for
X C(ZxZxL')®R, is always well defined and finite.

Similarly, if we are given n commuting measure preserving transforma-
tions from a probability measure space Y to itself, then measure-theoretic
entropies are defined. Choose a finite partition of ¥, or equivalently a mea-
surable map P from Y onto a finite set K. Then every complete history in
A C Y* corresponds under P to a configuration in K%, Each partial config-
uration L O 8§ — K has an associated probability, so the measure-theoretic
information content [(P; S) is defined. Again, if this information function
has growth degree at most d, it follows that the associated d-dimensional
entropy n4(P; X) is defined and finite. Passing to the limit as the parti-
tion becomes arbitrarily fine, we obtain an invariant d-dimensional entropy
function ng(g; X).

References

[1] S. Amoroso and Y. N. Patt, “Decision procedures for surjectivity and in-
jectivity of parallel maps for tessellation structures”, J. Comp. Syst. Sci., 6
(1972) 448-464.

[2] R. Bowen, “Topological entropy and axiom A”, Global Analysis, Proc. Symp.
Pure Math. 14, AMS 1970, 23-41; R. Bowen and O. Lanford, “Zeta functions
of restrictions of the shift transformation”, Global Analysis, Proc. Symp.
Pure Math. 14, AMS 1970, 43-49.

[3] M. Boyle and W. Krieger, “Periodic points and automorphisms of the shift”,
Trans. A.M.S., 302 (1987) 125-149.

[4] E. M. Coven, “Topological Entropy of Block Maps,” Proc. A.M.S., 78 (1980)
590-594.

[5] L. W. Goodwyn, “Some Counter-examples in Topological Entropy”, Topol-
ogy, 11 (1972) 377-385.

[6] G. A. Hedlund, “Transformations commuting with the shift”, in Topological
Dynamics, J. Auslander and W. G. Gottschalk, eds. (Benjamin 1968) 259-
289; “Endomorphisms and automorphisms of the shift dynamical system”,
Math. Syst. Theor., 3 (1969) 320-375.

[7] L. Hurd, “Formal language characterizations of cellular automaton limit
sets”, Complex Systems, 1 (1987) G9-80. (See also: “The application of
formal language theory to the dynamical behavior of cellular automata”, in
preparation.)

[8] B. Kitchens and K. Schmidt, in preparation.



On the Entropy Geometry of Cellular Automata 385

(9]

(10]

(11]

(12]

[13]

[14]

(15]

[16]

(17]

[18]
[19]

D. Lind, “Applications of ergodic theory and sofic systems to cellular au-
tomata”, Physica, 10D (1984) 36-44.

D. Lind, “The entropy of topological Markov shifts and a related class of
algebraic integers”, BErg. Th. and Dyn. Sys., 4 (1984) 283-300.

D. Lind, “Entropies of automorphisms of a topological Markov shift”, Proc.
A.M.S., 99 (1987) 589-595.

A. Maruoka and M. Kimura, “Conditions for injectivity of global maps for
tessellation automata”, Info. and Control, 32 (1976) 158-162.

J. Milnor, “Directional entropies of cellular automaton-maps”, of Disordered
Systems and Biological Organization, E. Bienenstock et al., (Springer, 1986)
113-115.

N. Packard, “Complexity of growing patterns in cellular automata”, in Dy-
namical Systems and Cellular Automata, J. Demongeot, E. Goles, and M.
Tcheunte, eds. (Academic Press, 1985).

C. Shannon and W. Weaver, The Mathematical Theory of Communication,
(U. 1. Press 1949, 1963).

Ya. Sinai, “An answer to a question of J. Milnor”, Comment. Math. Helv.,
60 (1985) 173-178

J. Smillie, “Properties of the directional entropy function for cellular au-
tomata”, to appear.

P. Walters, An Introduction to Ergodic Theory, (Springer 1982).

5. Wolfram, “Universality and complexity in cellular automata®”, Physica,
10D (1984) 1-35. (Reprinted in Theory and Applications of Cellular Au-
tomata (World Scientific, 1986). See also: “Cellular automata as models of
complexity”, Nature, 311 (1984) 419-424.)





