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A bstract. We cons ider config urat ions which ass ign some element of
a fixed finite alphabet to eac h point of an sa-dimensional lat t ice. An
n-dimensional cellular automaton ma p ass igns a new configuration
a' :::: l ea) to each such configuration 8 , in a.translation invariant man ­
ner , and in such a way t hat the values of l ea) t hroughout any finite
subset of the la ttice dep end only on th e values of a t hroughout some
larger finite subset . If we iterate such a map f over and over , then
the comp lete histo ry of the result ing configur ations throughout t ime
call be described as a new con figurat ion over an (n + I )-dimensional
"space-t ime" lat tice. This note will describe t he dist ribut ion an d flow
of infor mation throughou t thi s (n + l j-dimensional la.ttice by int ro­
dueing an n-dimensional entropy function which meas ures the density
of informati on in very large finite sets.

1. Introduction

Let J( be some fixed finite alphabet with k ~ 2 elements, and let L be an
n-dime nsionel Jamce, that is, a free abelian group isomorphic to Z" . A func­
t ion a : L ---+ J( which assigns an alphabet element to each latt ice point is
called a configurat ion over L . For exam ple when n = 1 such a configurat ion
can be described as a doubly infinite sequence (or br iefly "bisequence"] of
symbols from J( , and when n = 2 it can be described as an infinite two­
dimensional array of symbols from IC We will use the notation J(L for the
space consist ing of all such configurations. Thi s space has a natural compact
topology, in which two configurat ions are close to each other whenever they
coincide throughout some large finite set. Note t hat the lat tice L acts nat­
urally as a group of cont inuous translat ions of J(L. This compact space J(L

toget.her wit h the group L of homeomorph isms is called t he n-dimensional
full k-shift .

D efin it ion . A cont inuous map f : J(L ---+ J( L which commutes with tran sla­
t ion by latt ice element s is called an n-dimensioua! cellular automaton map, or
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briefly CA -map. (In the terminology of Hedlund, f would be called an "en­
domorphism of the n-dimensional k-shift". ) Th e t riple {J(, L , f} consist ing
of alphabet I<, lattice L, and CA-map f is called a celJular au tomaton.

More explicitly , such a map f assigns to each configurat ion a E J( L a new
configuration a l = f (a) which can be com puted by some formula of the form

a' (i ) = <p (a (i + vd, ... , a(i + v,)) . (1.1)

Here <P : K X .. . x f( -+ J( is to be some fixed function of r variables , and
VI , " "VT are to be fixed vectors in the lat t ice. (See for example [19,6].) We
will call <P a local map or block map, and will call f the assoc ia ted CA-map.

In th e one-dimen sional case, the topological entropy ht op (f) , as defined
by Adler, Kon heim , and McAndrew, is an interest ing and usefu l numer ical
invar iant which measures "informat ion per unit t ime" . (Compare [4,9,10,
n], and see [18] as a general reference for top ological and measure-th eoret ic
ent ropy.) If we consider not only the entropy of f itself, but also the collect ion
of all entropies of compos it ions of f with lattice t ranslat ions, the n we obtain
a much richer structure ([13,17]). If we are also given a suitably invarian t
probability measure on J( L, then we can also consider corres pond ing measure­
t heoretic entropies (see [3,16,8)).

In th e higher-dimensional case, n > 1, the topological and measure­
theoret ic entropies are usuall y infinite. In order to get a useful t heory in
the a -dimens ional case , we must introduce a corres ponding th eory of Un·
dimensional entropy." It is hoped that this concept of n-dimensional ent ropy
will give a better picture of what is going on, even in the class ical case n = l.

Th e paper is organ ized as follows. Sect ion 2 describes the topological
or measure-theoret ic information conte nt H( S) associateJ wit h a finite set
S in the given la t t ice L or in the "space-ti me lat t ice" Z x L , for a given
CA-ma p f . Sect ion 3 const ructs the d-dim ensional ent ropy ~d(X) associated
with such an informat ion funct ion H , and also the d·d ime nsional d irectiona l
ent ropy hd ( V l A · ·· A V d)' Here d is an integer det erm ined by H , X is any
compact subset of the ambient vector space (Z x L) ® R , and Vb " " V d are
linearl y indep endent vectors in this space. Section 4 applies these construc­
t ions to cellular automaton lim it sets . T he las t three sect ions, which depend
heav ily on oral communications to the aut hor by Lind and Smilli e, st udy
the n-d imens ional entropy of complete histories in the (n + I)-dimensional
lattice Z x L. Section 5 studies "causal cones" associat ed to a cellular au­
tomaton , and Section 6 gives some one-dim ensional examp les. Section 7
d iscusses dir ecti onal ent ropies, making use of normal vectors and d ual cones,
an d makes a particular study of inver tible or "quasi-invert ible" CA-maps.
T he App endix generalizes some of these const ruct ions to comm uting maps
on an arbitrary compact metric space, and to commuting measure preserving
tr ansformations.

I am grate ful to Lym an Hur d and Kyewon Park for helpful suggest ions.
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2. The in for m at ion function S 0-+ H(S )

D efin ition. Let L be an n-dirnensional lat tice, and let S range over all finite
subsets of L . By an informat ion function H on L will he meant a function
S 0-+ H (S) which assigns a real number H(S ) to each sucb S , an d which is
monotone, subedditive, and translation-invar ian t; t hat is)

H(S ) :0: H (S' ) whenever S C S' , (2.1)
H(S U S') :0: H(S ) + H (S' ) for all Sand S', and (2.2)
H( S ) = H(S + v) for any vector v in the latt ice. (2.3)

It follows th at

0 :0: H (S) :0: n, lSI (2.4)

for every non-vacuous 5, where lSI denotes the nu mber of elements in 5 , and
where the constant Ho is defined to be t he value of H on a set {i} consisti ng
of a single la t t ice point. We may as well assume also that th e empty set 0
sat isfies H(0) = 0, so th at (2.4) will be sat isfied without exception .

Remar ks. We will refer to H(S ) as th e "information content" of the
set S (although th e te rm entropy of S would be closer to th e usual usage
in th e lit era ture). In practice, we will distinguish between topologi cal and
measure-theoret ic information. By definition, the "topological" information
associated with a choice between n alternatives is log(n ). If each alte rnat ive is
assigned a probabili ty Pi ;::: 0 with PI+.. '+Pn = 1, then the meas ure-t heoretic
information (or more properly the "expected information") associat ed wit h
such a choice is

- PI 10g(PI) - ... - Pn log(Pn)' (2.5)

Here Olog(O) = 0 by definit ion. Note that th e expression (2.5) at ta ins its
minimum zero when all but one of the probabilities is zero, and attains its
maximum of log(n) when PI = . .. = Pn = l In.

Exam ple 2.1. Top olog ical information for su bshifts . By definit ion,
a subshift of J(L is a closed set A C J(L which is invariant under lat tice
t rans lations. By a partial configuration over a finite set S C L will be
meant any mapping 0' : S -+ J<. Note th at a subshift A is completely
determined if we specify which partial configurations a can be ext ended to
full configurat ions a : L -+ J( be longing to A.

To each subshift A C J( L we associate the "top ological inform ation Iunc­
t ion" S 0-+ HA(S ), where HA(S ) is defined to be the logarithm of th e numb er
of disti nct pa rt ial configurations 0' : S -+ J( which can be extended to full
configurat ions belong ing to A. In ot her words, log" " HA(S ) is equa l to the
number of elements in the image of the rest riction map A C J(L -+ J(s. The
inequal it ies (2.1) th rough (2.3) are eas ily verified. Since th e number of pa r­
t ial configura tions over S is equal to klSI, t he inequal ity (2.4) can he replaced
by

0 :0: HA(S ) :0: ISl log(k). (2.6)
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Intuitively, HA(S ) can be described as the quantity of information about
an unknown configuration a E A which we would obtain by knowing its
restriction to S. As a matter of notational convenience , we will often move
the subscripts onto the main line, writing H(A; S) in place of HA( S) .

Note . Depending on taste, the reader may use natural logarithms through­
out , or logarithms to the base 2 so that information is measured in "bits",
or even logarithms to th e base k so tha t formula (2.6) takes the simpler form
o :s HA(S) :s lSI. Because of this ambiguity, we write log-t rather tha n exp
for the inverse transformation.

Every CA-map J : J(L --jo J(L gives rise to an descendin g sequence of
subshifts

J(L :::J f (J( L) :::J f ' (J( L) :::J f3(J( L) :::J • . . .

Here I' stands for th e t-fold comp osit ion f o- . -«] , The intersection A = A(J)
of this sequence of success ive images tt U{L) is another subshift which is
called the }jmi t se t or the eventual im age of the cellular automaton. Thus a
configuration ao belongs to A if and only if it can be written as a t-fold image
a/ I--t a/_1 1----+ ••• I--t a1 I--t ao under f for every integer t > O. Associated with
this descending sequence of subshifts is a descending sequence of information
functions

H(J( L; S ) = ISllog(k) ::: H (J(J(L); S ) ::: H(J' (J(L); S) ::: ...

which clearly converges to the limit function H (A; S). In fact H(A; S ) =
H(J'(J(L); S) for t sufficient ly large, dep ending on S .

Example 2.2. Complete histories . There is an important (n + 1)­
dimensional subshift associated with an n-dimensional cellular automaton, as
follows. By a complete history for the CA-map f will be meant a bisequence

of configurations a t E f{L satisfying the identity f(a t) = a tH for every
integer t E Z. Every such complete history can be considered as a function
(t,i) >-> a(t,i ) = at(i), or in other words as a configuration on the (n + 1)­
dim ensional lat t ice Z x L, satisfying the equation

a(t + l, i ) = <Ii(a(t,i +vIl, .. . , a(t ,i+v,)) (2.7)

for all t and i . (Compare (1.1)). Thus we can ident ify t be space of com­
plete histo ries for f with the subshift A = A (J ) C J(z xL cons ist ing of all
configurati ons satisfying (2.7).

There is an associated topological information function S I--t HA(SL
where now S varies over finite subsets of the product latti ce. Note that
this construction subsumes the previous one in the following sense. If we
restrict a complete history a E A to the n-dimensional sublattice 0 x L, then
evidently we obtain a configuration ao belonging to the limit set A(!), and
conversely it is not difficult to show that every configuration in A can be
obtained in this way. Hence HAO x S ) = HA (S ) for every finite set S c L.



On the Entropy Geometrj- of Cellular Automata 361

Example 2.3 . Measure-theoretic information. Let J1 be a proba­
bility measure on u» , or more precisely on the c -ring of Borel subsets of
J( L, which is invariant under lattice translations . Then J1 gives rise to an
information funct ion S I-J> HIJ,( S ) as follows. Define the probability Po of a
partial configuration a : S ----4 J( to be the measure of the open and closed
cylinder set Eo consisting of all configurations a E J( L whose restriction to S
is equal to C<. Thus the sum of the kl51probabilities Po is equal to 1'(1(£) = 1.
Set

H.(S) = H(I'; S) = L:: r P« log(po) ' (2.8)

to be summed over all partial configurations 0: : S ---+ J( 1 where as usual
o10g(0) = o. Th en the inequalit ies (2.1), (2.2) and (2.3) are easily verified.
In fact (2.2) can be sharpened to

(2.9)

Equation (2.9) is equivalent to the statement that the "conditional entropy"
H (S/T) = H (S U T) - H(T) is subaddit ive, or to the statement that

H( S/T) ::; H(S/To) whenever T :::> To . (2.10)

Proofs of these inequalities may be found in [18, p. 81].
The corresponding sharpened inequaliti es for topological information are

unfort unately false. As an example , consider the subshift A C {a, 1, 2}L
consisting of the constant zero configuration toge ther with all possible con­
figurat ions of ones and twos. Then HA (S) = 10g(1+2151) for S non-vacuous ,
and the inequality (2 .9) is essent ially never satisfied.

The relationship between measure-theoretic informatio n and topological
informa tion can be describ ed as follows. Define the support Lui to be the
smallest closed subset of J(L which has measure 1. Thus the complement of
11'1can be describ ed as the union of all cylinder sets Eo which have probabili ty
J.L {Ea} = 0; where now a is to vary over partial configurat ions which are
defined on arb it rarily large finit e sets S C L. Then 11'1 is a subshift of J(L ,

and it is not difficult to check that 0 ::; H. (S) ::; Hlpl(S) .
Ex ample 2.4 . (Z x L)-invariant measures. Given a CA-map f :

J(L -j. J(L, we are interested in probability measu res J.Lo which are not only
translation-invariant but also I -invariant, in the sense that

for every cylinder set Ea , and hence for every measurable set E C J(L . If Jio
is such a doubly-invariant measure, then clearly the support lJ.Lol is contained
in the limit set A, so that 0 ::; H. ,(S) ::; HI. ,I(S) ::; HA(S). We will show
that Po gives rise to a unique translation-invariant measure J.L on J(ZX L, with
support 11'1 contained in AU)·
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Lemma 1. If flo is an J-invariant and translation-invariant measure on J(L,
tilen there is one and only one translation-invariant measure fl. on ](zxL

which has supp ort contained in A(J) and which sat isfies the condition that
the fl-probabiJjty of any partial configuration on a subset 0 x S c ox L is
equal to the /lo-probability of this same partial configuration.

Ev ident ly the associated information functi on S l---+ H~(S) satisfies the
conditions that H"(S) S HI"I(S) S HA(S) for S c Z x L, and that H"(Ox
S) = H",(S) for S c L.
Proof of Lemma 1. Every configuration on the hyperplane 0 X L gives rise
to a unique "forward history" on the half-space {t 2: O} x L. Hence, if we
are given !Lo, then we can assign a probability Pc> to any partial configuration
a which is defined over a finite subset of this half-space. These probabilities
are shift-invariant, and hence can be defined for partial configurations over
an arbitrary finite subset of Z X L. The extension to arbitrary measurable
subsets of J(zxL is now straightforward. •

3. The d-dimensional entropy set function ryd(X)

It will be convenient to embed the n-dimensional lattice L into the n-dimensional
real vector space V ~ L 0 R, which is spanned by any basis for L. It will
also be convenient to choose some Eucl idean metric for this vector space V,
so that distances are defined.

Let S >-> H(S) be some fixed function sat isfying the axioms (2.1) through
(2.3). In many interesting cases, it turns out that the quantity H(S) grows
roughly like the d-th power of the diameter of S , for some integer 0 :S d :S n .
More precisely, let us define the growth degree of the function H to be the
smallest integer d such that

H(S) S c diam (S)' (3.1)

for some constant c, independent of S, and [or all S with at least two distinct
points. (We must exclude single point sets here.)

Note that H has growth degree d = 0 if and only if it is hounded. In this
case, we define the "Il-dimensional entropy" TJo to be simp ly the supremum
of H(S) as the finite set S c L hecomes arb itrarily large.

To study the more interesting case d 2: 1, we first extend the functi on H
as follows . If B is an arbitrary bounded subset of the ambient vector space
V, then we define H(E) to be H(En L), the value of H on the set of lat t ice
point s in B.

Definition. Given any com pact set X C V, the d-dimensional entropy
ry,(X) is defined as follows. For any bounded set E C V and any large real
number t, consider the stretched and thickened set B + tX, consisting of all
sums b +tx with bEE and x E X. For each fixed E, form the lim sup of
the ratio H(E +tX)!t' as t --> 00. Then form the supre mum as the bounded
set B becomes arbitrar ily large. That is, define

(3.2)



On the Entropy Geomet ry of Cellular Autom ata

We will prove the following.
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T heorem 1. If H has growth degree d ~ 1, then ~d(X) is defined and rmite
for every compact set X C V, and satisfies

(3.3)

This function X 1-+ Tfd(X) is monotone, subadditive, and transfanon -invarian t,
that is

os ~d(X) ~ ~d(Y)

~d(X U Y) ~ ~d(X ) + ~d(Y)

~d(X + v ) =~d(X)

and furthermore

for X C Y,

for any compact X and Y, and

for any vector v ,

(3.4)

P r oof. Th is is almost completely st raight forward . Th e only poin t which
may require comment is t rans lat ion-invar iance , since t he information func­
tion B 1-+ H (B n L ) is invariant only under translation by vect ors in th e
lat tice L. To prove invari ance under arbi trary t rans lat ions, choose some ball
Bo which is large enough so that every translate v + Eo contains at leas t one
point of t he lattice L. Th en H(B +v) ~ H(B +Bo) for every bounded set
B and vector v , hence

lim sup,H(B + t(X + v) )/ td ~ lim sup,H((B + Bo)+ tX)/t"

T he rest of the argu ment will be left to th e rea der. •

Caution: It definitely is not st ated that TId is an additi ve set funct ion , tha t
~d (-X) = ~d (X) , or th at ~d(X) depends cont inuously on X. (Compare §6.3)

Note th at the function TId can be of interest for only one value of d,
namely th e growth degree for the given information function H . If we use
the corres ponding definit ion with a larger (or smaller) value of d, th en the
resulting entropy will be zero (or infinite).

Here is one imm ediat e consequence of T heorem 1.

C oro llary 1. The entropy TId (X) is less than or equal to som e constant times
the d-dimensional Hausdorff measure of X. In particular, if X has Hausdorff
measure zero, then TId (X) = o.

The pro of is st raight forward. For reasonable subsets of some d-di men­
sional plane, we will see that TId is j ust a constant mu ltiple of Lebesgue or
Hausdorff measu re. More precisely:
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T heorem 2 . If H has growth degree d, then for com pact polyhedral subsets
X of some fixed d-d imensional plane P C V the assoc iat ed entropy 1Jd(X ) is
propor tional to the d-dim ensional Leb esgue measure of X. In other words
there is a proportionality constant 'Hd(P) ;:: 0, which dep ends only on P, so
that

17.(X) = 'H. (P ) voJum<{X )

for every compact polyhedral X c P. Furthermore, {or sucb X , the "lim
sup" in the definit ion O{ 17d can be replaced by a. ((lim ini", without changing
the vaiue of '7.(X ).

The proof will be given at the end of this sectio n.
It follows from (3.3) that these constants 'H. (P ), which measure inform a­

t ion per unit d-dirnensional volume near P , are uniformly bounded:

os 'H. (P ) :s const ant

for all d-planes P C V. However, we will see in §6.3 that this bounded
function P ...... 'H. (P ) need not be cont inuous. The ratio 'H. (P ) = '7. (X )/
volume( X) depends of course on the particular choice of Euclidean metric,
although the ent ropy '7.(X) does not depend on the choice of metric. As long
as we consider only polyhedral subsets of some fixed d·plane, it follows that
the set funct ion 17d is strictly additive,

'7.(X U Y ) = ry. (X ) + '7. (Y) - ry. (X n Y ),

and symmet ric, 17. (-X) = ry. (X) . (Compare §6.2.)
Definition . In the case d = 1 t he number h,(v) = ry, ([O, I]v) is called the

"direct ional ent ropy" in the direction v . Here the notation [0, l] v stands for
the line segment from the origin to the vector v . More generally, for any d, we
will use the notation h. (v, A· .. Avs) for the value of ry. on the parallelepiped
[0, l]v, +...+ [0, I]v. which is spanned by the vectors vi ... , v•. (Compare
[13]). Note the identi ty

h.(tv , A . . . A v. ) = [t[h.(v, A · ·· A v. ). (3.5)

Evidently the funct ion P ...... 'H. (P ) and the funct ion

Vb ··· , v a l-+ hd(Vl /\ . . . /\ Va)

determine each other uniquely, and either one might reasonably be called
the Ild·dimensional directional entropy". (See also §7.) Presumably this
directional entropy could be identically zero even if 1Jd is not identically zero.
For example, in the n-dimensional case, n ::: 2, if we define H(S) to be Isp/n,
then 17 1( X) is non-trivial, being equal to the n-th root of the n-dimensional
volume of X, and yet 7-{1 is identically zero. However, such examples don't
seem to arise in practice.

In the application to cellular automata, the value of the one-dimensional
entropy hl(A; v ) at a vector v = (t,l) in the spacet ime lattice Z x L can
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be identified with t he topological ent ropy of the map ping i' composed with
a translation by the lattice element l . In part icular , if v = (1, 0) then we
obtain the topological ent ropy of the mappin g i itself, as defined by Adler ,
Konheim, an d McAndrew. Similarly, jf It is an invariant me asure supported
by A , t hen ht(p j (1,0)) is the measure th eoretic ent ropy of I , as defined
by Kolmogorov and Sinai. In the case of a one-dimensional CA-m ap , th ese
invar iants a re interest ing and non -tri vial. However, for highe r-dim ensional
CA-maps the one-dimensional ent ropy is usually infinite, except in t rivial
cases where it is zero . In most cases, th e appropriate tool for study ing n­
dimensional cellular automata is ra ther th e n-dime nsional ent ropy in the
(n + I )-dimensional vector space R x V. (See §§4-7.)

As a consequence of the last state ment in T heorem 2, we have t he follow­
ing.

Corollary 2 . In th e measure-theoreti c case, the sharper inequality

(3.6)

is valid whenever the in tersection X n Y is a polyhedral subset of a d-piene.
Similarly

~d( X/ Y) ~ ~d(X/Yo )

whenever the subset Yo C Y is a polyh edral subset of ad-plane.

(3.7)

P roof (ass uming Theorem 2). T he inequality (3.7) can also be written as

Since we are in the measure-theoretic case, we know by (2.10) th at the cor­
respondin g inequali ty

H(B + t(X U Y) ) s H(B + tV ) + H(B + t (X U Yo)) - H(B + tYo)

is indeed satisfied . Hence we can divide by ta, pass to the lim sup as l -t 00,

and then take t he supremum as the bou nded set B becomes arbit rarily large.
Since the last te rm has a negat ive sign, we must use T heorem 2 to com plete
the argument. The proof of (3.6) is similar.•

It would be interest ing to know wheth er these inequalities (3.6) and (3.7)
are true also in t he top ological case, and if th ey are t rue with out t he spec ial
hypo thesis on X n Y or Yo in the measure-theoretic case .

For t he extreme case, d = 11, the const ruct ion of ltd simplifies somewhat .
Since th ere is only one n-plane, namely V itself, the a- dimensiona l entropy
ca n be descr ibed by a single real number 1in (V). In this case we will a lways
adopt the convent ion that O Uf Euclidea n metric is chosen so t hat a fundamen­
tal domain for th e latt ice L has unit n-d imens iona l volume, or equivalent ly
so that t he quot ient torus VI L satisfies

volume( V/ L) = 1. (3 .8)
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More explicit ly, if bh . . . I b., is any basis for the lattice L, we assume that
the parallelepiped [0, 1Jb, + ... + [0, 1]b n has Eucl idean volume equal to one,
so that 'lt n{V ) coincides with the directional entropy hn{b1 A... Abn). If we
identify the la.ttice L with Z" I then in order to com pute the number lln (V )
it suffices to consider large "discrete cubes" of the form 8 m = {I", "m} X

.. . X p, . ..,m} with ISm[ = rn".

Lemma 2. Th e ra tio H{Sm)/I Sml converges to a limit H« as m -4 00.

Furth ermore H {Sm)/I Sml 2: 'ltn [or every in teger m 2: L If the Euclidean
metric is normalised so tba.t (3.8) is sat isfied, then this limit 1in can be
identi fied with the ratio 'ltn{V ) oi Th eorem 2.

We will descri be 1in as the average"informat ion per lattice point" asso­
ciated with the information funct ion Il. Note that this construction is only
of interest when ]{ has growth degree d equal to n , For if d < n, then the
n-d imensional entropy hn must be identically zero.

The proof of Lemma 2 can be sketched as follows. Fixing m, note that
an arbitrarily large discrete cube SN can be covered by (1 + NJm)'" copies
of 8m . Therefore

H{SN) ~ (1 + N/m)" H {Sm),

or in other words H {SN)/ISNI S H {Sm)/ ISml +e, where it is not difficult to
check that e -4 °as N -4 00 with m fixed. It follows that

lim sup H {SN)/ISNI s infH{Sm)/I Sml·

But the inequali ty in the other direction is trivial, so equality must hold.•
To conclude this sect ion, we must prove Theorem 2. Let us embed the

compact polyhedral set X C P in some large cube ] d C P of edge length e,
and express ] d as a union of N d subcubes of edge lengt h eJN, with N very
large. Since the entropy TJd(Id) is precisely equal to the sum of the entropies
of these suhcubes hy (3.4), it follows from subaddit ivity that the ent ropy of
any partial union of subcubes is strictly proportional to their number. Since
the proportion of subc ubes which meet the boundary of X tends to zero as
N -t 00, the conclusion that

~d{X)/~d(Id) = volume{X)/volume{ Id)

follows easily. More generally, this same argument works for any com pact
subset of P whose boundary has d-dimensional Lebesgue measure equal to
zero. It may be conjectured that Theorem 2 remains true for arbitrary com­
pact subsets of ad-plane.

To prove the second half of Theorem 2, first consider the statement for
the cube t «. An argument similar to the proof of Lemma 2 shows that

~d(Id) = sUPBinf, H(B + tId)/t"-

Now let Y be the closure of the complement of X in r ,so that the volume of
Id is equal to the sum of the volumes of X and Y. If we divide the inequality
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H(B + tX ) 2: H(B + tId) - H(B +tV),
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by td , take the lim inf as t -+ 00, and then the supremum over bounded sets
B, we obtai n the required inequality. •

4. Spatial ent ropies of CA-maps

We begin the discussion of entropies associated with CA-maps by discussing
the "information per latt ice point" ?in at some constant time. (Compare
Lemma 2.) Fir st consider the image f (J(L) of an n-dirnensional CA·map.

Lemma 3. The topological entropy 'Hn = 'Hn(f (I{ L)) sat isfies 0 :0; 'Hn :0;
log k. Here the maximum value of log k is attained if and only if the map f
is surjective, J(1( L) = I( L, and the minimum value of zero is attained if and
only if f(J(L) consists of a single constant configurat ion.

Proof. If f is not surject ive, then there must ex ist some partial configu­
ration c : S --j. J( which does not extend to any configuration in /(1(L).
Choose some large discrete cube Sf C L which contains this set S. Then
H(f(J( L);5') < 15 'llog(k). But it follows from Lemma 2 that H(f(f{ L);5')/15'1
is an upper boun d for 'Hn(l([(L )), which must therefore be strictly less than
log(k) .

Now suppose that f is not a constant map. The value of the configuration
f( a) at the origin depend s on the values of a in some suitable discrete cube
5 . T iling L by copies of 5 , we see easily that 'Hn(f(f(L )) > 10g(2)/15 1 > o.

• If f : J{L ---+ J( L is any n -dimen slonal CA-ma p, then the sequence of
closed translat ion-invariant sets

f(L ::> f( f( L) ::> f'([(L) ::> . . .

with intersect ion A gives rise to a sequence of n-dimensiona l entropies

log(k) 2: 'Hn(l(f( L)) 2: 'Hn(f'(I{L )) 2: . .. ,

which clearly converges to the limit 'Hn(A) 2: O. This limit, which will play
a central role in our discussions, will be called the "spat ial" entropy of the
limit set A, since it describes the distribution of information at some fixed
time t = constant . (In other words, it involves only the spatial lattice L
and not the space-t ime lattice Z x L.) This spatial entropy is a very crude
invariant , since it will not change if we replace f by some iterate f 0 . .. 0 [ ,

or comp ose it with an arbitrary latt ice translation. It follows from Lemma 3
that 'Hn(A) = log(k) if and only if f is surject ive. However, we will see that
?inCA) may well be zero even if the limit set A is infinite .

R emarks on computabil ity. Unfortunately, it must be admitted that
this basic invariant 1tn (A) tends to be very difficult to compute, even in
the one-dimensional case. According to [7J, there ex ists a one-dim ensional
CA-map f : f{ Z ---> f(Z for which lhe collect ion of all finite substrings of
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bisequences from I\. (f) is no t recur sively enumerable. Th is m eans that there
can be no effeci ive procedure for com pu ting the in tegers !og-l HA(S). If
we work with some fini tely iterated image f l(J( L), th en in principle any
H(J'(J(L) ; 5) can be computed in finite t ime. However, t he len gth of this
computation te nds to increase exponent ially with the size of S (and with
tn), so th at the 'Hn(J '(J(L)) may be difficul t to compute , and 'Hn(A ) may be
impossibl e. We have seen th at 'Hn(J'(I(L )) is zero only if t he t-fold image
P(J(L ) con sist s of a single consta nt configur at ion; however a decision as to
whether or not 'Hn(A) = 0 see ms very difficul t. In the on e-dimensional cas e,
it is a t least possible to decide effect ively whether or not any given CA-map
is sur je ct ive , so that 'Hn(A) = log(k). (See for example [1].) However, in
higher dimensions it seems unlikel y th at any algorithm exists for decidin g in
gener al whethe r f is sur ject ive .

If we are given a t ranslat ion-inva ria nt measure fl o on the limi t set A, then
th e numbers H(flo; S) can be effectively computed , bu t again it seems very
di fficult to decide whether or not the ent ropy 1tn ( fl o) is zero . Furthermore,
in say ing that {'o is "given" we have avoided the major difficulty of effect ively
const ruct ing interesting invarian t measures on A.

A basic theorem of Dinaberg and Goodman asserts that the topologi­
cal entropy of any m ap on a compact met ric space is the supremum of the
measure-theoretic ent ropies of it s invariant measures. (Compare [18].) In the
case n = 1, we can apply this result to the shift map on A, and conclude tha t
1tn (A) is equ al to the supremum of 1tn (po) as flo vari es over all translation­
invari ant measures supported by A. I don 't know whether th e corresp onding
statement is true for n > 1. Even in the one-dimensional case , if we insist
that our measures Po be not only t ranslat ion-invariant but also I -invariant ,
then I don 't know whether the supremum of 'Hn(/,o) is still 'Hn(A) . (Compare
§6.3.) Furthermore, I don't k now whet her thi s supremum is actually realized
by some particu lar flo-

One very special case is well understood. Definition: By th e standard
measure CT on J(L is m eant the measure for which each partial configuration
ex : 5 --> J( has prohabili ty

(4.1)

Ev idently th is is the unique translat ion-invariant measure on J(L wit h maxi­
mal spatial ent ropy 'Hn(i7 ) = log k. A th eorem which was proved by Blanken­
ship and Rothau s in the one -dimensional case and by Maruoka and Kimura in
the higher-dimens ional case asserts that t his standard measure is I-invariant
if and on ly if f is sur ject ive . (See [6,12,1].) Thu s, in the surjec tive case, there
is a unique measure which is both j-inverisnt and translation-invariant, and
which has m aximal spatial entropy, equal to log k.

5. Causality

In th is sect ion we begin to st udy the dyn am ics of an n-dimensiona l CA­
map f : J(L ---i' J( L . The presentat ion will be based on the following idea,
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suggested by Lind and Smillie. Recall that the "space- t ime" lat tice Z x L
is embedded in a vector space R x V, and th a t A c J{ Z x L is the (n + 1)­
dim ensional subshift consist ing of all complete histori es for f.

D efin it ion . By a causal cone for the subshift A c [(zx L will be meant
any convex po lyhedral cone C C R x V which is spanned by some finite set
S C Z x L having the following two properties:

1. The value of a complete history a E A at the origi n m ust be uniquely
determined by it s valu es at the points of S . Hence the valu e of a at any
lat tice point (I, e) is determined by its values at the points of (I, f) + S.

2. S must lie strictly to one side of some hyperplane through the origin.
Thus, if S = {VI, ' " J v .} , then C consists of all linear combinations
ttVt + .. .+ trvr with r. 2: 0; and no such linear comb inat ion can be
equal to the zero vector unless t , = ... = t, = O.

Every CA-map has at least one causal cone. For if J(at) = at+1 is given
by

a (1+ 1, e) ~ <I.>(a(l , e+ v.) , . . . , a(l, e+ v,)),

as in (2.7), then evident ly the value of a at the origin is determined by its
values at the poin ts VI = (- I,V I)" ", v r = (-I,vr ) , which lie in th e ope n
half-space 1 < O.

Let us assume that t he function <P really depends on every one of its r

arguments, so that this collection of vectors {VI" ' " v r} is uniquely deter­
mined.

Definition . With thi s hypothesis, the causal cone spann ed by th e vect ors
vr -. . . , v ; in the half-space t < 0 is called the s-s tep backward cone or past
cone -FI for the CA-map [. The opposite cone F1 , spanned by t he vectors
-VI, . . ' , - V n is called the I-step forward cone or fu ture cone,

Note. In t he t rivial case of a constant funct ion f , we adopt the conven­
tion that r = 0, and that F1 consists only of the zero vector. In pract ice,
since t his case is completely uninteresting, it will often be excluded.

Note also th at F I can be cha racterized as the sma llest convex cone in
R x V with th e following property : If two initial configurat ions f I-Jo a(O, f )
and f H b(O, f) on the spat ial lattice 0 x L are identica l except at the origin ,
and if we define a(l,f) and b(l,e) for 1 ~ 1,2,3,··· by (2.7), then the two
resu lt ing configurations on the hal f-space t 2: 0 must coincid e everyw here
outside of th e cone Ft.

More generally, let m be any positiv e integer. If we repl ace the CA-m ap
f by its m-fold composit ion with itself, then we are led to the following
construction. The m -step forward cone is defined to be the smallest convex
cone Fm C R x V such that, if two initial configurations a(D,f) and b(D, f)
coincide except at the origin, then th e corresponding configurat ions a (m, f)
and b(m, f) at time m must coincide everywhere on m x L outside of the
intersection Fm n (m xL) .
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It follows from th is definition that -Fm is a causal cone sat isfying F} J
Fm 1 and more generally Fm :> Fmop' T hus, we are led to define the 1imiting
forward cone F to be the intersection of the nested sequence

(In fact, it is not difficult to check that the successive Pm actually converge
to this limi t cone F in the sense t ha t for any open neighb orhood U ::> F,
all but finitely many of the Fm , intersected with the unit ball, lie inside U.)
T his intersection F is clearly a closed convex cone in the (n +1)-dimens ional
spacetime R x V . (I don't know whether th e negat ive -F is necessarily a
causal cone, or even a polyhedral cone.)

One elementary but useful invariant is the dimension of this forwa rd cone,
wher e 0 ~ dim(F) ::; n + 1. In the case of a one-dimensional CA-map, the
possible dimensions 0,1, and 2 correspond very roughly to Wolfram's cellula r
automata of Class 1, 2, or 3. Thus if dim(F) = 0, then some iterated image
P (I(Z) consists of a sing le constant configurat ion, an d there is not hing to
study. If dim(F) = 1, the n the cone is a half-line consist ing of pairs (t,x)
with t 2: 0 and x = ct . Intuitively, the constant C measures the speed at
which information travels. (Compare §6.) Finally , if dim(F) = 2, then F
cons ists of all (t,x) with t 2:: 0 and CIt :S x ::; C2t, so that in this case F is
described by an enti re interval [Cl,C2] of speeds. In the n-dimensional case,
the ratio s xlt with (t, x) E F range over some compact convex subset of
n-space.

V\'e will say that a vector v E R x 11 is time1ike, or be longs to the timelike
cone F U (-F) if either v E F or ~v E F . T he remaining vectors, which do
not be long to F U (-F) are said to be space1ike. Note that non-ze ro vectors
in 0 x V a re necessarily spacelike. However, de pend ing on the pa rticular CA­
map being st udie d, vectors along the time-axis R x 0 may be either timelike
or spacelike . In the one-dimensional case, the open set of spacelike vectors
spl its into two com ponents, hence we can furthe r distinguish between "right
spacelike" and "left spacelike'' vectors.

Let us fix some ca usa l cone C (for example the m-step backwar d cone
-Fm ) ·

Definit ion . By the umbra. of a compact set X C R X 11 with respect
to C will be meant the closed set cons ist ing of all points x E R x V which
a re totally shadowed by X in t he following sense. Any piecewise smooth
path -r H p(r) which starts at the po int p(O) = x and has velocity vectors
dp(T)ldT in the cone C must eventually meet the set X . (Compare figure
L)

Let B be a ball , centered at the orig in , which is large enough so that
th e value of a com plete history a at the origin is uniq uely determined by its
values at the other lat t ice po ints in B n C.

Lem ma 4 . With C and B as above, for an arbitrary compact X, tile values
of a complete histoq a E A at all lat tice points x = (t, e) in the C -umbra
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Figu re 1.

of X are uniquely determin ed by the values of a at the lat tice points in the
neighb orhood X + B.

Proof. Since C - {OJ lies in an open half-space, we ca n choose a linear
function T : R x V --+ R which is st rictl y negative on C - {O} . After approx­
imating by a linear map wit h rational coefficients an d clearing denomina tors ,
we may assume that T takes integer values on the lat t ice Z x L. T he proof
will be by indu ction on the integer r ex). (In the spec ial case where C is
t he backward cone -F,rll we can of course simply take T = L) To beg in the
indu ction , the lemma is tri via lly true for r ex) near -00, since no such point
can lie in the umbra of X . For a given lattice poin t x in th is umbra t here
are two possibilit ies. If each lat t ice point x' E x + (B n C ) also lies in the
C~ umbra of X , th en by ind uct ion we can compute the value of a at th ese
point s, and hence at x. On the oth er hand, jf one of these point s x' is not
in the umbra of X , then the line segment from x to x' mu st cross X I and
th erefore x E X + B.•

As an immediate conseq uence of Lemma 4, we have the following.

Lemma 5. T he inform ation function H = H,A. associated wit h the subshift
of com plete histories for an n-dimensional cellula.r automa.ton has growth
degree at m ost n. Hence t he corresponding n-dimensionaJentropy function 'fJn

is defined and satisfies 0 ==; '1n(X ) ==; cdiam(X)" for any compact x c: R x V.

Proof. Apply Lemma 4 to t he boundary of a large cube t-». Clearl y t he
ent ire cube is in the umbra of its bou ndary fJ l n+ l. Since the number of lattice
point s in 8I n +l + B grows like the n-th power of the edge length, it follows
that H(In+l ) is less than some polynomial funct ion of degree n in the edge
length .•

It follows th at th e same statement is t rue for any subshift of A, or for
any t ranslation-invariant measure supported by A . More generally, the same
argume nt applies to any subshift or tr anslat ion-invariant measure which pos­
sesses a causal cone.

Here is ano ther consequence of Lemma 4.
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T heorem 3 . Let C be a ca.usal cone (or an n- dimensional cellu lar automa­
ton, and Jet X and Y be compact subsets of R x V with Y contained in the
C -umbra of X. Then ~n(Y) s ~n(X).

In particular, if the umbra of X is compact, it follows that ~n(Umbra(X))=
~n(X). The proof is straight forward. •

C or ollary 3_ If the spatial entropy 'Hn(A) of §4 is zero, then the n -dimen­
sianal ent ropy 7Jn(X ) is zero (or every compact set X C R x V. More
generally, j{1{n{P ) = 0 Eor a ny n-plane which intersects a. causal cone Conly
at the origin, then 7Jn is identi cally zero.

Proof. T he hyperplane P cut s the space R x V into two half-spaces, one of
which contains th e cone C . Let x be any poin t in the inte rior of the other half­
space H. Then the tra nslated cone x +C intersects H in a compact region
with non-vacuous interior which lies in the C-umbra of its intersection with
P. The hypothesis that 'Hn(P ) = 0 implies that the entropy of th is region is
zero. It follows easi ly that t he ent ropy of any compact set is zero.•

6 . Exa m ple s

This sect ion will descr ibe some explicit examples of one-dimensional cellular
automata.

Exam p le 6.1. The sim plest b lock maps . Supp ose that our alphabet
has only two elements, I< = {O, l} , and that f (a ) = a' with

a'(e) = <I\ (a(e -I),a(e)) , (6.1)

so that our block map ib is a function of just two variables. T hen there
are sixteen different possibilities for j, correspondi ng to the sixtee n dist inct
ma.ps from J( x J( to J(. Th ese sixt een CA~maps can be divided into six
groups, as ind icat ed in the following table.

Blnck map 'H, (A)/ log 2 Speed C las s

constant (2 cases) 0 I
Max or Min (2 cases) 0 [0, I] I

I - Max or I - Min (2 cases) .81137 1/2 2
i-l-j-l-conatant (mod 2) (2 cases) I [0, I] 3

funct ion of one variab le (4 cases) 1 0 or 1 2
other non-symmetric (4 cases) .69424 0 or I 2

Here the "speed" is the set of rat ios xlt in the forward cone F, and can be
described int uitive ly as the rate at which information is moved to the right
as we apply f. (Compare §5.) Tbe "class", loosely following Wolfram [191,
can be defined as 1 if the entropy is zero, 2 if information remains localized,
trave ling with constant speed, and 3 if informat ion spreads out linearly with
t ime, so as to affect a larger and larger region of t he lattice. (Compare §7.
\,Ve will not attemp t to discuss Wolfram's Class 4, which is beyond the scope
of this paper.]
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Suppose for example that iI>(i,j) = Max(i,j). Then the image J(J(Z)
consists of all bisequences which contain no string of the form 010 . Sim ilarly,
J2(J<Z) consists of al l bisequences which contain no 010 or auo 1 and so on .
The entropies 'H1(J m(J( Z))j log2 with m" 0 form a sequence

1 > .811 > .694 > .613 > .551 > .504 > .465 > .433 > ...

which converges very slowly to zero. The limit set A can be described as fol­
lows. A finite string of D's and l's can be embedded in a bisequence belonging
to A if and only if it has the form 1'" 0.... 1'", that is a string of Fs followed
by D's followed by 1'5 (where any of these t hree substrings may be empty).
Since the number of such str ings of lengt h m grows on ly quadratically with
m, i t follows that 1t1(A), the rate of exponential growth, is zero .

Next consider the block map iI> (i , j) = 1-Max(i, j) . In this case, it follows
immediately from the discussion above that the image J(I(z) consists of all
bisequences which contain no isolated zeros . Using a standard pro ced ure for
computing the entropy of a subshift of finite type, we see that 'HJ(J(I(z))
is equal to log(w) where w = 1.7548776662 is the real root of the equation
x3

- 2x 2 + x-I = 0 (see [9].) But in this case, inspection shows that the
second iterate J2 acts on th is image by a single shift to the right. For any
string of the form *1< is replaced by something of the form *00 unde r J, and
hence by * * 1 under J2

, and similarly each string of t he form 00* or *00
maps to * *0 under 1'. It follows that the lim it set A is equal to J(J(z).

The remaining cases are all straightforward. For exa mp le in the last
row of th e table the limit set is equal to J(I(z), and consists either of all
bisequences with no doub le L's or all bisequences with no dou ble D's, with
entropy equal to 10g((1 + ,J5)j2) .

In the four cases which are described as of Class 1, the entropy function
X I--lo 1'JI (X) is of course zero . In the ten Class 2 examples, it is not difficult
to show that ry l(X), for polyhedral X, is just the length of the image of X
under a su itable pro jection from R x V to the real line. The two Class 3
examples can be analyzed as follows.

Example 6.2. Left and right permutive block maps . Here is a
larger class of exa mples for which it is possible to almost completely compute
the funct ion 1'Jl ' Let J be the one-dimensional CA-map which is associated
with the block map

a'(e) = iI>(a(f + p), are + p + 1), . . . , are + q)), (6.2)

with p .::; q. By definit ion, such a map is left permutive if for every fixed
a (f + p + 1), . .. , a( f + q) the correspondence

a(e+p) >-+ iI>(a(f+ p),a(f+p+ 1), . .. ,a(e+ q))

is a permutat ion of J( . Every left permutive CA-rnap is surjective, J(J(L) =
J(L, and hence has maximal spatial entropy 'H1(A) = logk. Right per­
m uti vity is defined similarly. As an example, the block maps (i , j) I--lo

i+ j +constant(mod2) of Example 6.1 are both left and right permu ti ve. If <I>
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is left pe rmut ive, then inspection shows that its space A of complete histories
admits not only the usual causal cone C = -Fll but also an additional causal
cone C' , as shown in figure 2. Similarly, if <I> is right permutive, then there
is an additional causal cone C". Thus if <I> is both left and right permutive,
then any compact X C R x V bas three distinct umbras. A straightforward
extension of Theorem 3 shows that the union X of these three umbras sat­
isfies ~I(X) = ~I(X) , But if X is connected , then it is not hard to see that
X is a tr iangle T , as illustrated in figure 2. Using (3.'B, we see that ~I(X) is
proportional to the edge length of this triangle T = X .

As all examp le, let us compute the entropy of the reflected triangle -T.
Evident ly, (-T j has twice the edge length of T, so ~I(-T) = 2~I (T) . As
another example, note that the direct ional entropy hl(v) = ~I([O , l]v ) is
given by

hI (I , x)/ hl( O, 1) = Max(lx +pi !, Ix +qll , (q - p)jll) .

Thi s same formula is true whether we are working with topol ogical or measure­
theore tic entropy.

We will nex t desc ribe two examples, due to Lind and Smillie, to show
that the topo logical entropy h(v) need not depend continuously on v , and to
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show that topological entropy need not be t he supremum of measure-theoret ic
ent ropies if we insist on using shift-invar iant measures.

Exam ple 6.3. G liders an d W all s . Let n = 1, and let the alphabet
J( = {o, w, r,l} consist of the following Iour elements: There is a neutral
backgro un d state 0, and a sta t ionary particle w which neve r moves and which
forms an absorbing wall. Finally, there is a right-moving particl e r and a left­
moving particle I which travel with unit speed until they are absorb ed by a
wall or unt il two of them come together . A right and left particle which
approac h each other and arr ive at two sites which have dist ance two [or one]
are t ransformed, at the next time step, into a wall [or a pair of cont iguous
walls]. To be more precise, the associated block map <P : ](3 --+ ]( maps
triples of t he form *w * or rl * or r * 1 or * r l to w . It maps all
ot her triples or the form r * * to t- , and all ot her t riples of t he form * * 1 to
1. F inal ly, any triple not covered by these descript ions is mapped to o. We
will show that the topological directio nal entropy of the result ing space A is
given by

(ltl + [xl) log(2) for x 'I 0, but

2JtJlog(2).

(6.3)

(6.4)

Thus entropy is discontinuous as x --+ O. [11 fact the discontinuity as x --+ 0
is precisely the largest possible one. (Compare (7.5) .)

R emark. Accord ing to Lind and Smillie, the direct ional entropy is al­
ways conti nuous in spacelike directio ns. (See the Remark following Lemma
6.) I don' t know whether measure-theoret ic direct ional entropy is always
cont inuous. In the one-dimens ional case, Sinai proves that it converges to
a well-defined limit as we approximate any irrational direction by ration al
direct ions.

To prove (6.3) and (6.4), we start by describing the space A of complete
histories. Given a E A, suppose to fix our ideas that a involves particles of
all th ree kinds. Then it is not difficul t to check that the "wall" particles are
concentrated wit hin a vert ical st rip, with all right moving parti cles to the left
of it and all left moving particles to the right of it. From th is information , we
can compute the topological ent ropy ~, (A , X ) for any compact polyhedral
X as follows. Let So be an arbitrary closed verti cal strip, and let S_I and
S, be the closed half-planes to the left and right of So. For v equal to ±1 or
zero, let X lJ be the image of X n SlJ under the projection (t , x ) 1-+ X - vt . hen
111 (X )/ log 2 is equal to the supremum, over all such strips So, of the sum
lengt h(X_d + length(Xo) + length (X .). The proof is not difficult. App lying
this recipe to the case of a closed interval we obtain the required formulas
(6.3) and (6.4).•

Now let us look at meas ure-t heoretic entropies . If I' is any shift invariant
measure on the limit set A C J( L then we claim that I' can be writ ten as a
linear combination of thr ee measures ""- 1, fl o, and J.L l wit h the property that
each I'v admits only par t icles with speed u, with probability one. Fir st note
t hat, with I'-probability one, it is impossible for any two of the part icles 7', 1
and w to exist in the same bisequence. To see this, let s be any fi nite st ring
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in the given alphabet , of len gth m, which occurs with ,u-probability greater
th an lip. Th en it is not difficul t to show that any st ring of length greater
than pm mu st contain two disjoint cop ies of s with posi t ive J.L-probability.
Thus, if s con tains sayan r and an I, th en we obt ain a cont radict ion since
we cannot have any I to the left of an ; in any bisequence belonging to A. (I
am indebted to Hurd for thi s argument.) Now if T v is th e probability that a
bisequence a E A cont ains at least one par ticle with speed u, t hen it follows
easily tha t fL splits as

fL = 7 -1fl -1 + Tall o +TIPl + (1- 7 _1 - TO - rdll',

where J.l' admits only the background state 0, with probability one.
Every such measure It extends to a measure suppor ted by A. (Lemma

1.) It follows that the corresponding di rectional ent ropy has t he form

h,( I'; (t, x) ) = a _.Ix ~ t l+ aalxl +a.l x + tl,

where the coefficients o; 2: asatis fy CL I +00 +0'1:::; log 2. In pa rti cul ar, t he
measure- theo ret ic ent ropy in the timelike di rection (1, 0) is at most equa l to
log 2. No te that this is only half of the topological en tropy in th is direct ion,
as given by (6.4). (Of course, if we are willing to allow f-invar ian t mea­
sures which are not shift invar ian t , th en we can achieve 2 log 2 as a me asure­
theoret ic ent ropy.)

Example 6.4. J ust gli d ers. If we simplify this example so th at two
gliders simply annihilate each other when they meet, and the re are no walls,
then the analysis becomes more difficul t. Again any shift invarian t measure
on the limi t set A has the property that r's an d l's cannot coexist , so measure
th eore tic ent ropy has the form h,(t , x) = a_ .Ix - tl + a.lx + t l. But, in the
case of topologica l ent ro py in a t im elike dir ecti on, th ere is th e addit iona l
possibili ty tha t left and right mov ing par t icles ex ist in carefully ba lanced
proportio ns so as to an nihil ate each other precisely within a long narrow
st rip. T he conclus ion is that

but

h,( t, x) = (ItI+ Ixl) 10g(2) for Ixl/ltl 2: .546 ... ,

h,( t , x) = It + xl log( 12t/(t + x) l) + It - x llog(l2t / (t - x)l)
otherwise . (Co mpare [17].) In the late r case) topological entropy is st rict ly
larger than any (shift-invariant) measure-theoret ic ent ropy. In th is example,
topologica l entropy is continuous, but not sub ad di tiv e or piecewise-lin ear .

E xample 6.5. R eflect in g wa ll s . F irst consider an invertible cellular
automaton with alphabet K = {o, 7', I, b} consist ing of a neut ra l backgro und
state and two pa rticl es r and 1 which t ravel in opposit e dir ections with unit
spee d . W hen these two particles meet, t hey travel through each other with­
out interacting. Here t he symbol b stands for th e state in whi ch two opposite
parti cles lan d on the same latti ce p oin t at t he same time. The directiona l en­
tropy, ei th er topological or measure-theoretic based on the stan dard measure
a of (4 .1) , is eas ily com puted as
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h, (t,x )flog2 = It+xl+ It - xl·
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(6.5)

(T hus entropy is non-zero in all dir ections, even t hough this examp le is com­
pletely tri vial from a computational point of view.) Now suppose that we add
a fi ft h element w which is a sta t ionary reflecting wall. Thus a right moving
particle which reaches the lattice point to t.he left of w gets converted on the
next move to a left moving particle at th e same locati on. For t his enlarged
syst em, it is not difficult to check that the measure-t heoretic ent ropy, using
th e (k = 5) standard measu re, is

hI(t , x ) = Ixllog 5.

T hus ent ropy has increased along the a-axis, as com pared with (6.5), but has
decreased to zero along the the t-axis. In part icular, t he standard measu re
is not the measu re of greatest ent ropy in the t-directi on.

More general ly, if we assign probability p to the alphabet element wand
probabilit ies (1 - p)/4 to the otber four eleme nts , the values at different
points of the la t t ice L being independ ent random variables, th en one can
check that the measure-theoretic entropy hI(1, 0) is zero wheneve r p > 0,
bu t is log 4 when p = O. Thu s measure-theoreti c entropy does no t depend
continuously on the m easure.

Quite similar behavior occurs for th e k = 2 left permutive CA-ma p a t--+ a'
given by

a'(e) == ate) + (1 - ate + 1))a (e + 2) ( mod 2), (6 6)

as studied by Coven . If we consider on ly histories for which all odd lat t ice
sites are off, a (2l + 1) = 0, then t his red uces to the add it ive rule

a '(2C) == a(2C) + a(2e +2) (mod 2).

1·lence topologica l ent ropy is non-zero in all d irections. Yet for a- almost -every
initial configuratio n we have infinitely man y odd and even site s which are on,
and the be havior is rather different. Fixing some bisequence a, let us say t hat
the latt ice point eis "d ist inguished" if a(l ) = 1, and if the next lattice point
to th e right which is on, a (e') = 1, has odd d istan ce, e' - e== 1(m od2). T hen
it is not hard to check t hat eve ry dist inguished site will rem ain on forever,
and th at in th e inter val between two d ist inguished sites the configuration will
repeat periodically wit h per iod equal to the largest power of 2 which is less
tha n or equal to the interval length. Thus, as far as the measure-th eoret ic
ent ropy 1h(U; X) is conce rned, we are dealin g with a CA-ma p of Class 2.

7. D irectional e nt ropy and t he dual co n e

Now let us look at the n-dimensional entropie s associated with an n-dimcn­
sional CA-rnap . vVe will work either with th e topo logical entropy associ­
a ted with the space A C J( z xL of com plete histories, or with the measu re­
theoretic ent ropy associated with some translation invariant measure It sup­
ported by A. Thus, to each n- dimensional hyperplane PeR x V t here
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is associated an entropy 1tn(P), whic h measures inform at ion per un it n­
dimensional volume. If u is a unit vector orthogonal to P, t hen it will be
convenient to use the notation h(u) = 'Hn(P) . More generally, if p is any
non-zero vector orthogonal to P, we will set

(7.1)

where IIpll is the Euclidean norm. In the case n = 1, this amounts to setting
hlp) = h1(Jp), where J is a 900 rotation of the plane. For n > 1 it amounts
to setting It(vl x . .. x v n ) = hn(vJ A· . .Av .), using a suitably defined n-fold
cross product operation .

Now let C be any causal cone for the space A. By de finition, the dual
cone c cons ists of all vectors p with the property th at P :v :::; 0 for all vectors
v e C . T he geometric meaning of this construction is the following . A vector
p belongs to the interior of 0, or of - 6, if and only if every non-zero vector
in t he orthogonal complement p-l is spacel ike. In the trivial case dim( C) = 0,
note that 6 is the entire space R X V . In the case dim(C) = 1, clearly 6
is an entire closed half-space. In all other cases, 6 is st rictly smaller than a
half-space.

In the special case C = - F t here is one unit vector lio E - F of par t icular
interest, namely the unit normal vector to the spatial hyperplane 0 x V. Note
that Uo a lways lies in the interior of -F. By definition, h(uo) coincides with
the spatial ent ropy 11.n (0 x V ), as stu died in §4.

Clearly the n-d imensional ent ropy h(u) is always defined, and is boun ded
on unit vectors. In ot her words there is a finite constant c so that

(7.2)

for all vectors p . If the spatial entropy it(uo) is zero (or more gene ra lly if It
vanishes any whe re in the inte rior of any CL then it follows from Corollary 3
that the u-dimeusiona l entropy it is ident ically zero .

We will prove the following two basic results .

L emma 6 . If 6 is the dual of a causal cone, then the following inequalit ies
are valid:

h(p + q) ::;

Il(p + q) ::;

Il(p +q) ::;

h(p) + I,(q)

h(p) + 21,(q )

2h(p) +2h(q)

whenever p +q E 6,
whenever p E C,
in all cases.

(7.3)

(7.4)

(75)

Remark. As one im mediate consequence of (7.3), together with (7.2L we
see that the funct ion ;~ is cont inuous throughout any C. (Acco rd ing to §6.3,
the fu nction j~ is not always continuous everywhere.] In particu la r, t he di­
rect ional entropy Hn(P) [or equivalently hn(Vl 1 ' • • , v n)] as long as the plane
P spanned by the vectors Vh ' . . 1 v-, is spacelike . In the special case of a left
or right pe rmut ive block map (Example 6.2), Lind and Smillie point out t hat
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the dual cones ±C and ±C' cover the vect or space. Hence 'it is subadditive
and cont inuous everywhe re.

Here is an ot her useful conseque nce. Define the Dull space NcR x V
to be the set of all vectors n such tha t 7.(n) = o. T hen it follows from (7.5)
that N is a vector space. Furthermore, if p E 6, then it follows from (7.3)
and (7.4) that the ent ropy function k is cons tant throughout the plan e p + N
para llel to N . Note th at the orthogonal complement N~ can be described
as the intersection of all n- dime nsional planes W with entropy 'Hn(W ) = O.
If some cau sal cone C has dimension st r ict ly less than n + 1, we will prove
that N is non-t rivial.

Lemma 7. Ev ery n -dim ensiona,] plan e W which contains a causal cone C
has en tropy "Hn(W) = O. Hence 0 :0; dim(N~) :O; dim(C) .

The dimension of Nl. provides a very crude measure of t he complexity
of the syste m. Thus the CA-maps wit h dim(N~) = 0 have n-dime nsional
entropy ident ically zero , an d can perhaps be identified with Wolfram's cell­
ular automata "of Class 1". If dim(N .L ) = 1, then it is not difficult to show
that there is a unique entropy vector h E F wit h the property that

7.(p) = Ip · hi (7.6)

for every vecto r p . T his entropy vector is non-zero, and lies in the line N.L.
T hese cases, in which information remains localized and t rave ls with cons tant
speed, should perhaps be identi fied with Wolfram's cellu lar automa ta "of
Class 2" . (Compare Example 6.1.)
Proof of Lemma 6. In the case n = 1 the three different cases are illust ra ted
in figure 3. (The hypothesis that a vector p belongs to c means that th e
cone C lies completely to one side of the complementary hyperpl ane p .L. )
T he concl usion then follows from T heorem 3. But these same figures can be
used to illust rate th e n- dime nsional case: We need only form the cartesian
product of one of these figur es with a very large (n - l j-dimensional cube
I n - 1 which lies in th e or thogonal complement of this 2-plane . This yields all
possib le configurat ions described by Lemma 6, since any two vect ors in Rx V
lie in some two-dimens ional subspace. T here is an addit ional com plicat ion
in the higher-dim ensional case since we must add t he prod uct of the shaded
region R in the plane with the boundary 8In- l in order to comp let ely shade
the region R x ]"'1, - 1. However, the n-dim ensional volume of this boundary
becomes negligible in compar ison as the cube j n-l gets bigger . •

P ro of of Lem ma 7. T his follows immediately from T heorem 3, since any
polyhedron P which lies in a hyperplane W containing C is in the C- umbra
of its boundary 8F , which has dimension n - 1. •

Here are two furt her statements which can be proved by th e same meth od .

Le m ma 8. If v and w belong to c, then
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O:S h(v) :s h(v +w),

wit h st rict inequali ties j f it is not iden tically zero, and jf these vectors belong
to the interior of 6.

Finally, a sharper version of Corollary 3. Let u be any unit vector in the
interior of 6 and let

.p(v) = inf{t ~ 0 suchthat v + tu E C)

he the distance from v to 6 along lines par allel to u.

Le m ma 9 . Tli en i,(v) :s i,(u)(.p(v) +.p(- v) ).

The proof, in each case, is an app lication of T heorem 3, together with an
app rop riate two-d imensional diagram. Detai ls will he left to the reader.•

Let J : J( L ---+ J( L be a CA-map which is biject ive, or in othe r words has
a well defined inverse CA-map. T hen clearly in addit ion to the usual causal
cone C = - F c R x V for the set of complete histories under I , which lies
in the half-space t ::; 0, the re will be an addit ion causal cone C1 which is
contained in the half-space t ~ O. Note that both cones have only the zero
vector in common with the hyperplane t = O.

More generally, it will he convenient to say that a CA-map is "quas i­
invert ible" if it ts space of histori es has two distinct causal cones C an d C1

which a re st r ict ly separated by some hyperplane. In other words, they lie in
oppos ite half-spaces, and each one has only the zero vector in th e com mon
boundary hyperplane. An equivalent condi tio n is that the dual cones C and
-C' have a common inter ior point. In this case , evident ly all of th e Assertions
of §5 are valid not only for the dual cone C bu t also for the dual cone C'.
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As an example, in the one-d imensional case, clearly every block map which
is left or right permut ive gives rise to a quasi-inv er ti ble CA- map.

We will prove tha t the entropy fun ct ion h is linear on 6 n (-6'), a t least
in th e measure-theoreti c case . (Com pare Boyle and Krieger [3].) Intuitively,
t his means t hat the funct ion ltV I--t 1t ,.l\tV ) is "linear" on the set of separat ing
hyperplanes. Suppo se that we are given some fixed (Z x L)- invariant me asure
f1 su pp or ted by A.

Theorem 4 . With C and C' as a bove, the m easure-th eoretic entropy 11, = i~ J1.

is lineer throughout the int ersection c n (-6'). More precisely, there exists
an "ent ropy vec tor" h E e n (- C' ) wit h the property th at it(v) = h · v [01'

every v E 6 n (- 6'). Furt her

h(v) 2: [h . vi

(or every vec tor v .

In particular, it follows that the intersection C n (-C/) is non-t riv ia l.
It follows al so t hat the entropy j~(v ) is str ict ly pos itive except poss ibly in
di rections or th ogon al to h .
P roof of Theo r em 4. Fi rst cons ider t he one-d imensional case. Consider a
t riangle whose edges a re all "spacelike" , in the sense that th ey ar e parallel to
lines strictl y sepa ra t ing C from CI

. As illust rated in figure 4, we will assume
that the edge E 3 is in t he C- um bra of the un ion E 1 U E 2 of the other two
edges, and where bo th E 1 and E 2 are in the C I-um bra of E3 . Then clearly
ry ,(E3 ) = ry,(E, U E, ) by T heorem 3. We will show that ry , (E, U E,) =
ry,(Er) + ry,(E,) , and he nce that

(7.7)

More generally, for any two compact sets X and Y, let us defin e the
"entropy-correlat ion" to be the difference

ry , (X) + ry , (Y ) - ry ,(X U Y) = ry ,(X) - ry ,(X/Y ) 2: o. (7.8)

Since we are worki ng with measure-theoret ic ent ropy, we know by Cor olla ry
2 th at t his nu mb er can only decrease if we repl ace eit her X or Y by a subset
whi ch is closed line segment. In part icular, if the entropy -correlation be tween
X and Y is zero, then the sam e is true {or any subsets of X and Y which are
closed line segments.

Consider the situation of figu re 5. Here we have two collin ear edges E~

and E~ which shadow th e regions n 1 and 1(,2 respectively (t aki ng the union of
the C -umbra and the C I-umbra ). Let us assume that E1 C 1(,1 and E2 C 1(,2 '

Then 7h (E~ U E~) = 7lt (E~ ) + 7]l(E~) since 7]1 is a measure within each line,
and ry,(ED = ry,(Rr), ry,(E;) = ry,(R,) by a umbra argument , hence the
entropy-correlation

ry,(R,) + ry,(R,) - ry,(R, U R,)
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is zero . Replacing R t and R2 by their subsets E1 and E2 l it follows that
the ent ropy-correlation ~I(E,) + ~,(E,) - ~l ( EI U E,) is also zero, which
comp letes the proof of linea rity in the one-dimensional case. Passing to the
dual notat ion, it follows that h(v) = h .v for all v E 6 U(-6'), and for some
fixed vector h . This vector must lie in C 1 for otherwise we could choose a
vector w in the interior of 6 ort hogonal to h . T he equation h(Y +ew] = i~(v)

for all v in the interior of 6 n (-6') and all small to would then cont rad ict
Lemma 8. Finally, the inequality h(v) ::: [h . vi for every vect or v follows
usin g (7.3). In fact , if we express v as t he sum of a vector p which belongs
say to 6 and a vector q orthogonal to h , then we have

for small E, and the requ ired inequality follows.

J ust as in the proof of Lem ma 6, this one-dimensional proof extends eas ily
to higher-dimensional cases.•

The case in which J is actually an invert ible CA-map is of particula r
interest . We can th en use the standard invariant measure o of (4.1) , and
the "ent ropy vecto r" will have the form h = (t , x) with t = log k > O. The
ratio x]: E V can then be described as th e "mean shift" associated wit h
the inverti ble CA-map. In th e one-dimens ional case, Boyle and Krieger [3]
show that the mean shift funct ion f 1---+ x]: is a homomorphism from the
group Aut(J( L) of all invert ible CA-maps to the addit ive group of the (one­
dimensional) ambient vector space V = L X R . In part icular, it follows that
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t he kernel of this homomorphism forms a subgroup of Aut (I{L) , which they
call the group of "shift less" automorphism s. I have no idea whether these
conclu sions remain t rue in the higher-dimensional case.

I also do not know whe ther the assertion of Theorem 4 remains true for
topological entropy. In one specia l case t he proof does go throug h. If the CA ­
map I is actu al1y invertible, and if C and C' are the causal cones associated
witlz I and i ts inverse, then Theorem 4 is true in the topological case also.
For in thi s case we can choose 'R1 and 'R2 so that the information-correlation

H(tR,) +H((tR, ) - H(tR, U tR, )

is not ju st asymptotically small , but is precisely zero. Hen ce it remains zero
when we pass to appropriate sub sets. •

Appendix A . C o m m u t in g lnaps

The constructions of §2 and §3 exte nd naturally to a more gene ra l case of a
space Y and a collection of commuting maps I ll' .. , In from Y to it self.

First sup pose that Y is a compact me t ric space, with distance functi on
d(x,y), and suppose that the Ii a re com muting cont inuous maps from Y
to it self. Let L be the la ttice z n with standard basis {el '" . ,en}, and let
ACyL be th e space of "com plete histor ies" for th e collection of maps Ii,
that is the space of fun ctio ns a : L ~ Y sat isfying the ide nt it y J;(a(e)) =
a (e + eJ Given a finite subset S c L , define the S-distance ds(a , b) between
two complete histories as the maximum of d(a(s), b (s )) as s var ies over S .
Then for eac h c: > 0 we can define the informatio n content H(e; S) to be
the logari th m of the minimum number of sets with ds-diameter less than
e which are needed to cover A. The axioms of §2 are eas ily checke d . If
th ese information fun cti ons S f-+ H (c; S) all have growth degree at most
d, then th e d-dimensional ent ropy 7Jd( e; X ) is defined for every c: > 0 and
every compact X C L 0 R. Passing to the limi t as c: ---t 0, we ob tain a
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topologically invari ant d-dimensional ent ropy functi on 0 ~ 7]d(A , X ) $: 00

(where this limit can be infinite).
As an example, if we have two commut ing d-d imensional CA-maps, say

f and 9 mapping Y = J( L' to itself, t hen these two maps toget he r with
the lat ti ce t ranslat ions give us d + 2 commut ing maps on a the com pact
space Y. The associated d-d imensional ent ropy functi on X 1-+ 1Jd(X ), for
X C (Z x Z x L') ® R , is al ways well defined an d finite.

Sim ilarly, if we are given n commut ing measure preserving t ra nsforma­
t ions from a probabil ity measure space Y to itself, t hen meas ure-th eoret ic
ent ropies are defined. Choose a finite par ti tion of Y , or equivalentl y a mea­
surable map P from Y onto a finite set J(. T hen every complete history in
A C yI. corres ponds under P to a configuration in J{L. Each partial config­
uration L ::> S -j. I< has an associated probability, so the measure-th eoretic
informati on content H (P ; S) is defined. Again , if thi s informat ion function
has growth degree at most d, it follows t hat the associated d-dim ensional
ent ropy 1]d ('P; X) is defined and finite. Passing to t he limit as th e par ti­
t ion becomes arbitrarily fine, we obtai n an invari ant d-dim ensional ent ropy
function ~d (" ; X ).
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