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Abstract. We st udy the perfor mance of a neural network of the per­
cept ron typ e. We isolate two important set s of pa rameters which ren­
der t he network fault tolerant (existence of large basins of attraction)
in both hetero-associat ive and auto-associative systems and study t he
size of the bas ins of attraction (the maximal allowable noise level st ill
ensuring recognition ) for sets of random patterns. The relevance of
ou r result s to the pe rcept ron's ability to gene ralize are pointed out , as
is t he role of diagonal couplings in the fully connected Hopfield model.

1. I ntroduction

An important asp ect of the physicists' approach to the study of neur al net ­
works has been to concentrate on some standard situat ions which can be
described as probabi lity distribut ions of inst ances. For these one can then
obtain quant itati ve comparison of the performances of different networks for
large numbers of neurons and connections. A typical exam ple is Hopfield 's
model [IJ of associative memo ry. In order to quant ify its per formanc e, it
has been calculate d how many independent randomly chosen patterns can
be stored with such an architecture, in the "thermodynamic limit" where
the num ber N of neurons is large. For unbiased patterns the original Hebb
rule allows to store O.I4N patterns [2,3} , and more sophist icated , but st ill
perceptron-type, ru les [3-5) can reach the upp er storage limit 17,8) of 2N
pat terns.

While Hopfield 's model and variants of it have been studied thoroughly
{rom a statist ical physics point of view (for recent reviews see [9,IOJ) ,other
widely used models such as layered networks [11] have not been analyzed in
th is way so far .
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In this pap er we shal l deal with the simplest such network , namely the
percept ron, which consists of two layers (t he usual descript ion of a percep­
tron [12] contains an initi al layer which insur es some frozen precoding; in
this paper we will not consider this first stage). In particular, we study it s
associative propert ies, which arc interesting, even though the limitat ions of
the perce pt ron are well known [13]. A recent review of previous studies of
associat ive proper ties in other two layers network s can be found in [14].

Associat ivity is an important feature of neural networks as it allows for
th e correction of errors: even noisy input configurations can be mapped
close to the desired output in the sense of Hamming distance. Thi s is a
linearly separable problem, and therefore it can be solved by a perceptron,
in contrast to , e.g., t he parity and the connectivity problems, which fall into
a different class of comput at ional problems, where the correlat ions be tween
input configurat ions are not na turally related to the Hamming distance, and
where the definit ion of noise would not be ap propriate.

Hereafter we shall study the storage capacity of the perceptron, concen­
tr ating on the size of the basins of at t ract ion. Th e basic result is t hat the size
of the basin of attract ion of a pat tern depends primarily on its stability. (Th e
precise definition of "stability" is given in t he next sect ion. For the pat tern
to be recognizable by the network in the absence of noise, its stability has
to be positive.) For independent random patterns (which may be biased or
not) we then calculate the ty pical stabilities of th e pa t terns achieved by two
learning rules, the pseudoinverse rule [1 5,24] and the minim al overlap rule
(6) which can reach opti mal stability.

Besides fully determining the associat ive power , knowledge about the
stability achieved in the network gives us information about its capaci ty ; an
interesting outco me of our analysis is that the optimal capacity (defined as
the rat io of the number of stored patterns to the numb er of neuron s in the
input layer) tends to infinity when all the out put patterns coincide provided
t he input pat terns are correlated. This result can be interpreted as reflect ing
the perceptron' s ability to generalize: it is able to infer a simple rule from a
large enough number of examples.

When st udy ing the auto -associat ion in a perceptron (mapping the pat­
terns ~ and their nearby configurat ions - onto themselves) we shall see
that a second parameter becomes important in order to obtain large basins
of attract ion: the values of t he diagonal elements in the matrix of couplings,
which link the neurons to t hemselves and tend to freeze the configurations.
As the problem of auto-association can be regarded as one single par allel up­
date of a Hopfield network , we then emp hasize the relevance of these results
to the fully connected Hopfield mode L \Ve show by numerical simulations
that t he stability and the st rength of t he diagona l couplings are indeed two
important parameters for the dyn amics of the Hopfield net. T here exists an
optimal value of the diagonal couplings which maximizes the radi us of the
basins of attracti on.

The evolving simple picture - the stability of a percept ron governs its
stat ic proper ties (the storage capacity) as well as its dynamics (associat ivity)
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- becomes considerably more complicated as soon as one allows several
iterations of the perceptron's mapping. The correlations of the synaptic
strengths start to play an important role, especially the degree of sym met ry
of t he matrix, and it is no longer possible to make as general st atements as
for t he perceptron. Th ese quest ions have been stressed in another art icle [16]
which is complementary to the present one. Related work on the role of the
st ability can be found in [17,18J.

The plan of this article is as follows: In section 2 we define the network ,
its dynam ics, the notion of at t ract ion basins and the probability dist ribution
of the pat terns to be used for quanti tati ve analysis. In sect ion 3 we compute
the quality of retri eval for a noisy input for two genera l classes of coupling
matrices. Secti on 4 contains a detailed comparison of the associat ive prop­
ert ies of two specific learning rules: the pseudoinverse and the minimum
overlap rules. In section 5 the relevance of the resul ts to au to-association
in fully connected networks is discussed. Sect ion 6 shows how some of the
result s can be interpreted as the ability of generalization of t he percept ron.
Lastl y some concluding remarks are given in section 7.

2. D ynamics of a t wo-layer network

We st udy a network of the perceptron type which consists of two layers of neu­
rons. The neurons are Boolean un its which we write as (Ising-) spins taking
values ±1 . The input layer consists of Nspins q= { U j =±1,j= 1"",N}
and the output layer contains N' spins q' = {ui = ±1,i = I , . . . ,N'} . We
shall concent rate on the limiting case where the numbers of neurons Nand
N ' bot h go to infi nity.

T he coupling (synapse) between neuron CTj of the inpu t layer and the neu­
ron O'i of the output layer is denoted by Jij so that the coupling matrix (J jj )

is of size (N' x N ). T he output corresponding to a given input configurat ion
is given by a (zero-)t hreshold automaton rule

ui = Sign ( L: J ijUi ) ,
j = l,N

i = 1
"

, ., N' (2.1)

The network is taught (through the determination of the Ji j ) to map each
of the p = o N input patterns f" = {~i = ± I ,j = I , ... , N} onto a certain

out put pattern C'" = W" = ±I, i + I , . . . , N} . We shal l disti nguish between
two different cases: hetero-associat ion, in which input and output patterns
differ and auto-association; in which they are ident ical. In the lat ter case we
have N ' = N , and the coupling matrix is square. In this case a special role
will be played by the diagonal coupling matrix elements Jj j which connect
corresponding neurons (i) on the input and on the output layer.

Whenever we need to specialize to a specific distribut ion of patterns
(mostly in sect ion 4), we shall consider the case where the patterns are chosen
randomly following t he prescript ion
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(" _ { +l wit h probability (1 +m)/2 . _ 1 N
, - -1 with probability (1 - m)/2 J - , ... , (2.2)

The probabilities are adjusted so that the patterns carry a mean magnet i­
zation m == liN L:j ~j (the parameter m is related to th e act ivity of the
neuron). In t he case of hetero-association the output patterns are similarly
chosen randomly with magnetization m'. T his type of bias - an d its gen­
erali zation to more st ructured hierarchically corre lated patterns - has been
studied in the case of the Hopfield model [19-21J.

For associativity we need that configurat ions close to ~ also be mapped
close to ['p.. To give this notion a precise meaning we shall suppose that the
input configuration a is chosen randomly, but with a fixed overlap q:

q= l/NL~taj
j

(2.3)

with the pattern f under study. T his is achieved by the following choice:

._ { +~t with probability (1 +q)/2 . _ 1 N
a, - -~t with probability (1 - q)/2 J - , . .. ,

(2.4)

i.e. we assume the noise on different neu rons in the inp ut layer to be uncor­
related and of equal strength. T he average over the realizations of the noise
(2.4) will be denot ed by () .

The perceptron works as an associator, which means that configurations
if having a large overlap q with ~ shou ld also be mapped onto ('JJ . However
in the cases we consider this will be exactly true only if the input overlap q
is of the order q = 1 - 0(1/IN) . 1n contrast, the noise will be reduced for
a much larger number of configurat ions with an input overlap of the order of
q = 1 - 0(1). This means that the output overlap obtained from equation
(2.1),

q'=l/N' L: eto"~
i=l,N'

(2.5)

will be greater than q. In order to characterize t his noise red uction by a
number r (the "radius" of th e basin of at t raction), we will the refore choose
a cutoff q~ on the retrieval quality. A noisy input configuration will he said
to lie inside the basin of attraction of {JJ if q' 2: q~. As we will see in the next
section , this will .happen with probability 1 when q is larger than a critical
value '[c- T he radius of the basin of attraction is then defined as r = 1 - qc ·

3. Basins of attraction and stability

In order to calculate the basins of attraction of one pattern it turns out that
we need rather litt le informat ion on the elements of the synaptic matrix (J j j ) .

We dist inguish two typ ica l situations.
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3.1 Equilibrated matr-ix of synaptic connections

A rather general case is that all the Jii are of the same order of magnitude
(i.e. 1/.,fFi). As we shall see explicitly in the study of the two learning
rules, th is is the typical situat ion for random patterns in hetero-associa tion,
or in auto-associat ion when the diagonal couplings are set to zero. If thi s
condit ion is fulfilled, the calculat ion of mom ents:

(~;"hi) = q~;" LJj~jl'
j

(W "hi - (~;"hi))') = (1 - q') I;J&
j

(W "hi - (Chi))') 3[(1 - q') I;Ji~I'(l + O(l /N ))
j

(3.1)

shows explicitly that ~thi, and therefore ~thi / VL.,i Ji~' are Gaussian random
variables with respect to th e realization of the input noise (2.4). It is thi s
latter quantity which we refer to as the stability of pattern J1 on site i:

(3.2)

It follows from equat ion (3.1) that th is Gaussian random variable has a width

equal to ) (1 - q'). From equations (2.1) and (2.5) we now find th at the
average output overlap q' on pat tern J1 is related to the input overlap by

(33)

where P{Ll) reflects the site to site fluctuations of the stability of the pattern
under st udy:

P(t>.) = 1/N'I;6(t>. - t>.rJ (3.4)

Equation (3.3) is the basic result of th is sect ion. It shows that the quali ty of
retrieval of one pat tern, as measured by the output overlap q', is t he better
the larger the stability parameters 6.f. The condition of perfect ret rieval
(q' = 1 when q goes to 1) is that almost all stabilit ies be non-negati ve.

Now, dep ending on the learning rule and the choice of patterns, the values
of 6.f may fluctuate from site to site, and thi s will affect the final result for
ql. Let us first suppose that the stability parameters are all equal in the
thermodynamic limit :

6.f = 6. i = 1, .. .,N' (3.5)

In t his case the radius of the basin of attractio n r = 1 - qc is a function of
one single parameter , the stability Ll, given impl icitly by
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Figure 1: The radius r = l - qc of the basins of attraction as a function
of the stability 6.. T he cutoff on t he output overlap is q~ = 0.9 (see
(3.6)) . Full curve : zero diagonal couplings Ju = OJ dashed curve:
optimal diagon al couplings (Jii = Jopd, in the case of au toassociatio n.

, f ( t.(l - r) )q = er
c J 2r(2 - 1)

(3.6)

Thi s function is plotted in figure 1 for q~ = 0.9 (i.e. less th an 5% wrong bits
in the out put) .

As a simp le example showing how site-to-site fluct uations of .6. can ruin
this result , let us consider t he case of Hebb's rule:

J,; = l i N L (;"(/
"

(3.7)

(3.8)

for unb iased random pat terns (m = m' = 0). Then a simple calculation
shows that the distribution of stabilit ies is Gaussian with mean 1/...fa and
width L Thus the fluctu ations and the mean value of the stability are of
the same order. In this special case of Hebb's rule, the fluct uation s over
configurat ions and fluctuations from site to site combine in such a way th at
2:; J,; (!" ( / is a Ga ussian with unit widt h (independent of q). Th e fina l
resulting noise on t he outp ut pat tern is independent of the input overlap :

, fa'/.jQ d f; -.'/2q = z - e
o Jr
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(4.1)

T he most impor tant qualitative difference between equation (3.8) and equa­
t ion (3.3) is that for q approaching 1 the output overlap q' does not tend to
1: the memori zed pattern differs slightly from the correct output pattern , as
in Hopfield' s model [1].

3.2 U nequi librated matrix of synaptic connections

In thi s sect ion we shall explore the case which is of importance for the percep­
t ron in auto-associative mode and for the Hopfield model. Th ere the diagonal
elements of th e matrix of couplings play a special role since ~t and ~t are
ident ical. It often happens that these diagonal elements are much larger than
the off-diagonal element s. This special role of Ju has been recognized also
by Ka nter and Somp olinsky [22J (see also [1 41and reference therein).

Let us therefore assume that Jii = Jo(,jr:.;(#;) J1; ), while J;; = O(1 jVN)
(j i' i ). Then the term s J;, in equation (2.1) must be treated separately, and
the formula general izing equat ion (3.3) is

q' = JP(tl )dtl L 1 +qT { XS dz f!. e-" /2 (3.9)
T= ± l 2 0 V;

T he quality of ret rieval now depends both on the stability and the diagonal
coupling. A well chosen value of -lc can increase the basin of att raction.
Sup posing again that all the stabilit ies are equal to .6 , it is easy to see
that t he slope evaluated at q = 1 is zero if Jo < .6 , but it is equal to one
if Jo > .6 ; if the diagonal coupling is too large, the network cannot flow
towards the correct output pattern , even when started from a configurat ion
very close to the input pat tern, and its noise will not be reduced. For fixed
!::J. there exists an optimal value of the diagonal coupling, betw een 0 and ~ ,

which maxi mizes the basin of attraction. The plot of the optimal value as
a funct ion of ~ is given in figure 2, and the corresponding new value of the
radiu s of the basin of at t ract ion (evaluated for any ~ , and for Jo taken at
its optimal value) is given in figure 1.

4. Comparison of lea rn ing ru les: pseudoin verse and minimum
overlap

4.1 Definition of t he learning rules

Several learn ing rules have been prop osed to choose the J jj's which allow for
t he memori zati on of a given set of pat terns {{~ , fp. ,JL = I ;p] . A necessary
condition for perfect memorization is

et = Sign ( L Jij~/) , i = 1, .. . , N '
j= l,N

which is equivalent to having .6f > 0, i = 1, ... , N'.
One efficient learning rule, the pseudoinverse (P. I.), has been proposed

by Kohonen [15] in the context of linear networks. The idea is to look for a
matr ix (Jjj ) which is the solution of t he equat ion
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t ·, = t" " J ..t., - I - I . - I N '1 - ">i L.J I ) "» - , J.l - , . .. , p, t - , . . . ,
j = l ,N
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(4.2)

(or more generally the (J' j) which minimizes 2:,(1- t;')' , for each i) . When
the input patterns are linearly independent, which will always be the case in
the sit uat ions we study below) an explicit form of the matrix (J i j ) is

where Q~w is the matrix of overlaps of the input patterns:

Q" = liN L (j(;
j=l,N

(4.3)

(4.4)

(The most general solution of (4.2) contai ns an addit ional arbitrary proj ecto r
onto the subsp ace orthogonal to the input patterns. For definiteness we keep
to the case where this ter m vanishes).

Another important family of learning rules uses error correcting algo­
rithms to find iteratively a matrix (J sj ) such that all the stabilit ies are posi­
t ive, the convergence of these algorithms being assured (if a solut ion exists )
by the famou s perceptron convergence theorem [12]. Recent ly thi s has been
refined in order to obtain optimal stability parameters [6]. The corresponding
"minimal overlap" (M.D.) algorit hm finds a matrix of couplings (Jij ) which
guarantees that the smallest stability parameter is maximized:

K , = inf 6f is maximized, i = 1, ... , N ', (4.5)

We will now calcu late the values of the stability which can be reached with
these algorithms for sets of random patterns introduced in sect ion 2 (see
formu la (2.2)).

4.2 Hetero-association

We begin with the case of hetero-association , and with the minimal overlap
algorithm. There we follow [8]. For each output neuron i we calculate the
fract ion of. the volume of the N-dimensional space n of couplings such tha t
6f 2: J( for all the patterns J.l = 1, ... p = o N , Given ex there is a crit ical
value of K above which t his fraction of n has zero volume for N --+ 00 :
t his is the max imal value of J(, Kopt) which can possibly be reached by any
algorit hm , and which is reached by the M.D . algorithm. The calculation of
J(opt is a mild genera lizat ion of the work of Gardner [8J which we shall not
reproduce here. The result is that J(opt is related to a by the equation:

.!:. = " 1+ m'T f oo dz_l_ e-"/2 (]{op, - mMT + z)' (4.6)
ex L.J 2 -Kofl+ mM.. J2= ~

r =±l VI-m2 V L:Tr V 1 - m-

where M is an auxiliary parameter fixed by the condit ion that it should make
the above expression stationary:
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" ( ' ) j= d 1 _.,/, ([(opt- m M T ) _ ( )
L....J l+mT T -J<.,l>I+mAl.. z-J2;e ~ +z -04.7

T=±l Ji m2 7l" m

(4.8)

(4.9)

(4 .10)

The res ult ing de pendence of K op t as fun ct ion of 0', for var ious values of m
and m', is plotted in figure 3. The maximal storage capaci ty for this network
is p = QcN, where O'c is th e cr itical value for which one gets K opt = O.
T he M.a . algor it hm can in fact produce a cou pling matrix for whic h ~t is
strict ly larger than K opt for a few sites i and a few pattern s /-L . So the basins
of attraction will always be larger than (a nd almost equa l to) the values
ob tain ed under the assumption that P (t. ) = 8(t. - [(opt) . These values can
be taken from figur es 1 and 3 and the result is plotted in figure 4.

If one wants an exact measure of the radius one must ca lculate the dis­
tribution of stabilities P(t.) reached by the M.O. algor ithm. As has been
noted by Kepler and Abbott [18J this can be done using th e same kind of
repli ca formalism which has been used to de term ine the valu e of [(opt : of the
space of couplings such that ~r 2: J( for a ll the pat t ern s t here is a subspace
of volume Of such that th e stability of pattern 1 is ,6.~ = 6.. , Then

P (t. ) = lilJl (0'/0)
K-> Ropt

where the 0 means an average over the realizations of ran dom patterns. T his
is in tu rn calculated as

P(t.) = lim lim (0' On 1)
K-+Kopt n-+O

which allows a repli ca calculat ion analogous to the one of Gardner [8] . We
sha ll not rep roduce the details of this calc ulat ion here, hut just quote th e
results: for the M.O . algorithm, the distribution of stabilit ies is

_(ll._mMr)2

1 + m'T e 2(1_",2)

P( t. ) = 2: {ott. - [(oPtl'-;==;==",;,
T=±1 2 './2" (1 - m')

( )j = dz _"/'j+ fJ 6. - J(opt -J(opt +mM r -- e •

v' m' ..,fIi
where f{opt and M are related to th e capacity a by equations (4.6) and
(4.7) . T his form ula has been derived ind epend ently in reference [25J . Using
equations (4.10) an d (3.3) one can determine the rad ius of the basins of
attraction , which is plotted in figure 4 and differs very little from the one
obtain ed by putt ing P(t. ) = 8(t. - ](opt).

Let us now turn to the pseudoinv erse rule. As we have seen before this
lead s to a stability which is equal to one before norm alization , so that, in
order to calculate the param eters ~r it is necessary to calculate th e normal­
ization of th e couplings . From equat ion (4.3) we have:

2:J;~ = ~ 2: ~;"~r(Q-l)"" =:; A
J /-l,v=l,aN

(4.11)
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Figure 3: Lower bound on the stabilities, J( , as a function of the
number of sto red patterns per input neuron, Q' = pIN. a) Unbiased
input and output patterns (m = m' = 0). Full curve: J(opt , optimal
I( (M.O. algorithm); dashed curve: J( reached by the P.I. algorithm.
b) Biased inpu t (m = 0.4) and output (m' = 0.4 and 0.8) pat tern s.
Full curve: P.I. algorithm (m' = 0.8); dashed curve: P.I. algorithm
(m' = 0.4); dashed-dotted curve: M.O. algori thm (m' = 0.4); dotted
curve: M.O . algorit hm (m' = 0.8).
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Figure 4: Radius of the basins of attraction r as a function of the
number of stored patterns per input neuron, a = piN , in hetero­
assoc iation. Dashed curve: P.I. algorith m; full curve: theoretical
result which would be obtained in a network with fixed stabilities
(P(fi ) ; 6(fi - Ko p,»; dotted curve : result for t he M.O . algorit hm ,
taking into account the fluctuations of the stabilities above J(opt . a)
Unbiased input and output pattern s (m = m' = 0). The full curve
a.nd dotted curve are essentially indistinguishable on this scale . b)
Biased input (m = 0.4) and output (m' ;;; 0.8) patterns.



Basins of Attraction in a Perceptron-like Neural Network 399

where as before Q is the overlap matrix of the input pat terns. As the input
and output pa t terns are mu tually uncorrelated, it will not be surprising to
find that A self-averages to:

(4.12)

In order to prove this self averageness and to compute A we write

(4.13)

(4.14)

where we have introduced the parti t ion funct ion

Z(A) =JuP dxp e-t L:J' , ,, xJ'Qp. ,,x,,+~ L: p. xp.e;p.
.= I .,j2;

T he calculat ion of Z(A) and (Z('\)IZ(O)) can be done using standard tech­
niques from the statist ical physics of disordered systems. It is sketched in
appendix A. One finds t hat A is self averaging and

(4.15)
a

(I - a )(1 - m')

= { O if m = 0
(1 oj(~ m l ) if m "# 0

(Q-l)•• =

So, finally, the stability parameter for the P.I. rule is

to. rt::aP.I. = Y o
to. - rt::a r=;"'P.I. - V 7 V ~r.l

if m = 0

if m i' 0
(4.16)

(the crossover region which decides if m is close enough to zero is m <
I I .,jN ). The P.I. rule realizes the case (3.5), where all stabilities are equal
in the thermodynam ic limit .

to. P.I. is plotted as a funct ion of a in figure 3. Formu las (3.6) and (4.16)
(or figures 1 and 3) allow one to obtain the radiu s of the basins of attraction
for a given number of stored pat terns. The result is plotted in figure 4.

4.3 Auto-associa ti on

T he case of auto-associat ion does not call for changes in the case of the
M.O. algorithm , the optimal stability is given exactly by equation (4.6),
with m = m'.

For the pseudoinverse rule one proceeds as in sect ion 4.2. Th is requires
now the calculat ion of

L. Ji~ = E - E'
i#

(4.I7)

where
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(4.18)

Using the same method as before (see app endi x B), we find that L ;(#;) J1;
is self averaging and that for any i it tends toward the limit 0 (1 - ex) when
N -+ 00. On the ot her hand the stability (3.2) (wit hout the contribution of
t he diagonal coupling) is

~
L'>P.l. = Y----;;-- 01- (4.19)

(5.1)

Th is formula coincides with (4.16) for m' = m. The refore the dependence of
6. as a function of ex can be read from figure 3.

It is interesting to notice that the M.O. algorithm (as any perceptron-type
algorithm) use s the correlations between patt erns to increase the storage
capacity, while the pseudoinverse meth od in some way orthogonalizes the
patterns, so that its capacity remains the same whatever the correlations
between patterns.

5. R elevance t o H opfi el d-ty pe models

The dynamics of the perceptron ill auto-association can be considered as
the evolution after one time-step of a Hopfield-type network for associative
memory (using parallel updatin g). So the value of q' is the overlap on the
pat tern at time t = 1. Unfortunately, the reasoning which led to equation
(3.3) cannot be reapplied to calculate ql+I as funct ion of ql(t ~ 1), because
in general the noise of the configuration will no longer be Gaussian, the spins
on various sites become correlated. Derrid a et al. [23] have invent ed a special
type of strongly diluted lattice , on which these correlat ions can be neglected,
to which our result s on auto-associat ion with Jii = 0 can be applied. Formula
(3.3) gives, for parallel updating , the evolution of q(t + I ) = f( q(t )):

J
r"q('l/ylt-q(t)' fi

q(t + I) = P(L'» dL'> Jo dzy ; . - ,' /2

and the generalizat ions to thermal noise and asynchronous updating are
straightforward. The radius of the basin of attraction is given by the un­
stable fixed point q* = f (q*). We have therefore found that the dyna mics
at all t imes on this strongly diluted lattice is govern ed only by the stab ility,
irrespecti ve of the spec ial learning rule used. The introduction of diagonal
coupling (Ji i :I 0) reintroduces correlat ions even on this latti ce.

Nevertheless, some of the conclusions of the previous section can be used
as hints for wha t happ ens in Hopfield's model. Th ere the importan ce of the
stability has been investigated in previous pap ers [16-18J even though the
connection between stability and the basins of att raction there depends also
on the correlations of the synaptic matrix (Jij), especially on the symmetry of
the matrix [16]. To test the role of diagonal couplings, we have performed nu­
merical simulat ions on the fully connected Hopfield net with 100 ~ N ~ 400
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Figure 5: Radius of the basins of att rac tion r as a funct ion of
i ;;;; Jid 2: j;i:i Jij{re;,in a fully connecte d Hopfield mod el. T he non­
diagonal couplings are obtain ed by the P.I. algorit hm. Full curve:
a;;;; 1/ 4; dashed curve: Cl' ;;;; 1/ 2; dot ted curve: 0' ;;;; 3/ 4.

and p = OiN( I /4 ~ Oi ~ 3/4) unbiased random pat terns. T he non-diagonal
couplings were chosen with the pseudo-inverse rule while the diagonal ones
were all taken to be equal -l« = iL.j;i:i Jij{ f { j. The results (radius r as
a funct ion of i) are present ed in figure 5. They show clearly th at varying
t he st rength of the diagonal couplings has a st rong effect on the convergence
propert ies of the fully connected net (cf. Kanter and Sompolinsky [22)) and
that the best choice of Ju may not be J.. = O. We find e.g that choosing
i ~ 0.15 instead of i = 0 can increase the radiu s of the basins of attraction
by abo ut 50%, for a = 1/ 2.)

6. Usin g a perceptron to ge neralize : A simp le case

The formulas we have found in sect ion 4.2 show that , for the two algor ithms,
t he size of the basins of attraction increases with the correlations in the
output state, i.e. with the value of m', but only if the input correlation
m is nonzero. Any perceptron-type algorit hm can even achie ve an' infinite
capacity in the limit m' --+ 1(lim",'_ t a = 00), provided m # O. This is
an interest ing result which sheds some light on the perceptron's ab ility to
genera lize. If m' -+ 1 t here is an unique out put state, whatever the input
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state. Let us suppose, e. g., that the input cor relation is m > O. T hen the
memorizat ion of p input pa t terns can be considered from a totally d ifferent
point of view: the network must send all inputs with posit ive magnetization
towar ds the uniqu e out put stale which has been given to it (and by symmetry
the inpu t configurat ion with negat ive magnet ization must he sent to th e
reversed output state). It is taught to learn this tas k through the presentation
of p examples (the pattern s). In this context the fact that the capacity is
infinite simply means that th e M.O. algorithm is able to learn this task [25J:
in fact it is clea r th at for p ~ N the set of coup ling constants reached by the
syste m is stable: each (magnet ized) new pat ter n is auto mat ical ly memorized,
so th at it does not lead to a change in th e couplings.

This ability to gen eralize is a nice property. We have pointed it ou t here
as a simple consequence of th e results of the previous sect ion, its detailed
study is, however, beyond the scope of th e present pap er .

Let us however point out the relation ship with the usua l language of
data analysis. The problem considered here is a simple case of classification:
all patterns are dist ributed into two classes, depending on the sign of the
magnetizati on. In classificatio n tasks one usually looks for some distance
criterium such that pattern s be longing to a same class are group ed into a
cluster of nearby elements , and pat terns of different classes are as far apart as
possible (see for example [26]). In the comm only used Discriminant Analysis
method, one looks for axes (in state space) such t hat the project ion on these
axes opt imally distributes t he patterns into clusters. In the neural network
language, the direct ions of the N ' axes are given by the lines of t he coupling
matrix of a Perceptron with N ' output un its [27].

On one given axis i, that is for one given out put unit i , the distances
between the patterns are in fact directly given by the stabilit ies as defined in
(3.2). Indeed , on axis i defined by th e vector J; = (J;i )i:l ,N, th e abscissa Xt
of the proj ectio n of a patt ern J-l is plus or minu s its stability At - dep end ing
on th e class it be longs to : in the above example, XiIJ = t:J. i IJ for a posit ive
magnetization and X/I = - t:J.t for a negati ve magnetizat ion. The choice
of th e Pseudo-Inverse rule corresponds to a typical choice in Discriminant
Analysis meth od , which result in the minimizati on of the dispersion within
classes [27). Indeed, we have seen that all the pat tern s have th e same stability
t:J. P.I.. On th e axis, th e two clusters are reduced to two points , distant of
2 D..P.I .. The choice of th e M.D. algorithm corresponds to the maximization of
the dis tance between the two cluster s: the distan ce between any two patterns
belonging to different classes is at least equal to 2K ; (see (4.5)) . But now
the elements wit hin a cluster are dist ribu ted accord ing to the dist ribut ion
(4.10).

7. Conclus ion

We have calculated the storage capacity and the size of th e basins of at­
t raction for a perceptron-type network storing random pattern. In th e case
of het ero-association the imp ortant parameter which determines this size is
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t he stability which is maximized by the M.O. algorithm. When one consid­
ers auto-association) another parameter allows to improve the performance
of the network: the diagonal couplings. This is also a useful parameter in
Hopfield 's network.

The dynamics which has been studied in this article is one-step (as the net
is feed-forward and consists of two layers). It would be very useful to under­
stand how this may be exte nded to the dynamics at several time steps, ei ther
in fully connected models, or in a multilayered feed forward architect ure.
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Appendix A.

We first calculate the average over the choices of random patterns of the
partition function Z(A) defined in equation (4.14). Using the definition (4.4)
of the matrix Q, we have

() J p d»; N dt;
Z A = II. =, ,j2irII;=1,j2ir

(A.I )

The average with respect to the input pattern is

(A.2)

Writ ing X = 1/N Lp x~ and enforcing this constraint through an auxiliary
parameter X, we have after integrating over the t;:

exp { ~X (NX - 2:>~) - N log(l + X( I _ m' ))_ • 2
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m' I ("')''x '" 'p }
2 I +X(I-m') L,;-xp + VNL,;-( ,xp (A 3)

The integral over the xIJ is Gaussian with a quadratic form

where
,

M = X6 + m
P," P," I +X( I - m')

Perfo rming the integration s over x,..' 5 we find

The determinant and the inverse of Mare

det M = X P-l [x+p m' ]
1+ X(I - m')

(M-1 ) _ 2. [6 _ m' ]
P" - X P" pm' + X(I + X( I - m'll

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

For p and N going to infinity with fixed capacity Q' = piN, one can perform
the integrals over X and X by saddle point. It is easy to see from equation
(A.8) th at th e last term in equat ion (A.6) does not contri bute to the saddle
point. The solution to the saddle point equations are

x= ~= 0'
X (l - a )(l- m'l

so that finally

Z(,X) = Z(O)e4 ,~. ';:.'::,~
- - --,'.
Z(A) = Z(O)eT =

if m ,£0

if m = 0

(A.9)

(A.IO)

This is not yet enough to prove the announced result since we have computed
so far Z(,X )jZ(O) instead of Z('x)jZ(O) . In orde r to comp ute this last quant ity
we could use the replica met hod (see e.g. Meeard et al. [10))

( Z('x ) ) = lim Z('x)z (o)n I
Z(O ) n - O

(A.Il)
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Z(>.)Z(0 )"-1 being calculated by the introduction of n copies of the var iables
Xw

However, in the present case, this is not even necessary, because Z (>.)
turns out to be self averaging: we can directly calculate Z2(>. ) using the
same techniques as before. We introduce two types of x-variables x J..I and x~

and write

x = l/N'£x; ,X' = l/N'£ x" ", Q = l/N ,£ x"x~ ,

" " "
toget her with the auxiliary parameters X, j(' , Q. Then

where D is a notation for the determinant

D = {I + X(l - m' )){ l + X'(l _ m')) _ Q'(l _ m' )' (A.15)

The Gaussian integrals over x /-l and x~ lead as before to a determinant of the
corresponding quadratic form. Let us begin with>' = O. We obtain

Z'(O) = JdX dX dX dX ' dQdQ
21l" 21l" 21l"

x exp ~ {XX + X'X' + 2QQ - logD - a log(XX' _ (2)} (A.16)

A careful examination of the saddle point equations of this integral shows
that the dominant saddle point is always at

Q

X

so that

Q= O

X = (1 - a )(l - m 2 ) ;

(A.l?)
X' = ..!;- = Q'

X' (1 - a) (l- m' )
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(A.18)

As the term in X in equat ion (A.12) is not of the leading order in N l it
cannot change the saddle point and one finds

(A.19)

This shows that , for any A, the fluctuations of Z(A} can be neglected; there­
fore we obtain from equation (A.lO)

which is the announced result.

},2 <l t _ m t2
e T j":':'Q t_m2

" .eT~

if m ' l' 0

if rn' = 0
(A.20)

Appendix B.

We calculate the stability parameters for the P.I. rule in the case of auto­
associat ion . From equation (4.18) we need to calculate

B = ~ t ~r~i(Q-l )"V
J.I,v=l

, --
As in appendix A we write e1-B = (~) , with

(B.1)

Z(>.) =

x

(B.2)

We proceed as in append ix A: we first average over the e; (j =f i), then
integrate over the t; (j l' i) and finally integrate over the x", with X = liN
LJ,I x~, fixed by an auxiliary parameter X. The result is

1 . (XX Q • 1 )Z (>. )= dXdXexpN - 2- - 2 LnX - 2Ln[1 + X (1 - m' )] X

[1dt, ( ti 1 "'( 1) ( )' " ]X ,,;r; exp - 2 + 2N ~ M- "V >. + it, ~,~i (B .3)

where M and M-1 are given in equations (A .5-8) . As before it is easily seen
that the last term does not affect the saddle point (A.9) on X and X, so that

(BA)
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The self ave rageness of Z(A) de rived in appendix A also applies here , so that

(
Z ('\ ) ) N_oo e;-- ~ e'
Z(O)

Hence B self averages to

and

L J;~ = a( l- a)
j(;';)
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