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Abstract. We study the performance of a neural network of the per-
ceptron type. We isolate two important sets of parameters which ren-
der the network fault tolerant (existence of large basins of attraction)
in both hetero-associative and auto-associative systems and study the
size of the basins of attraction (the maximal allowable noise level still
ensuring recognition) for sets of random patterns. The relevance of
our results to the perceptron’s ability to generalize are pointed out, as
is the role of diagonal couplings in the fully connected Hopfield model.

1. Introduction

An important aspect of the physicists’ approach to the study of neural net-
works has been to concentrate on some standard situations which can be
described as probability distributions of instances. For these one can then
obtain quantitative comparison of the performances of different networks for
large numbers of neurons and connections. A typical example is Hopfield’s
model [1] of associative memory. In order to quantify its performance, it
has been calculated how many independent randomly chosen patterns can
be stored with such an architecture, in the “thermodynamic limit” where
the number N of neurons is large. For unbiased patterns the original Hebb
rule allows to store 0.14NV patterns [2,3], and more sophisticated, but still
perceptron-type, rules [3-5] can reach the upper storage limit [7,8] of 2V
patterns.

While Hopfield’s model and variants of it have been studied thoroughly
from a statistical physics point of view (for recent reviews see [9,10]),other
widely used models such as layered networks [11] have not been analyzed in
this way so far.
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In this paper we shall deal with the simplest such network, namely the
perceptron, which consists of two layers (the usual description of a percep-
tron [12] contains an initial layer which insures some frozen precoding; in
this paper we will not consider this first stage). In particular, we study its
associative properties, which are interesting, even though the limitations of
the perceptron are well known [13]. A recent review of previous studies of
associative properties in other two layers networks can be found in [14].

Associativity is an important feature of neural networks as it allows for
the correction of errors: even noisy input configurations can be mapped
close to the desired output in the sense of Hamming distance. This is a
linearly separable problem, and therefore it can be solved by a perceptron,
in contrast to, e.g., the parity and the connectivity problems, which fall into
a different class of computational problems, where the correlations between
input configurations are not naturally related to the Hamming distance, and
where the definition of noise would not be appropriate.

Hereafter we shall study the storage capacity of the perceptron, concen-
trating on the size of the basins of attraction. The basic result is that the size
of the basin of attraction of a pattern depends primarily on its stability. (The
precise definition of “stability” is given in the next section. For the pattern
to be recognizable by the network in the absence of noise, its stability has
to be positive.) For independent random patterns (which may be biased or
not) we then calculate the typical stabilities of the patterns achieved by two
learning rules, the pseudoinverse rule [15,24] and the minimal overlap rule
[6] which can reach optimal stability.

Besides fully determining the associative power, knowledge about the
stability achieved in the network gives us information about its capacity; an
interesting outcome of our analysis is that the optimal capacity (defined as
the ratio of the number of stored patterns to the number of neurons in the
input layer) tends to infinity when all the output patterns coincide provided
the input patterns are correlated. This result can be interpreted as reflecting
the perceptron’s ability to generalize: it is able to infer a simple rule from a
large enough number of examples.

When studying the auto-association in a perceptron (mapping the pat-
terns — and their nearby configurations — onto themselves) we shall see
that a second parameter becomes important in order to obtain large basins
of attraction: the values of the diagonal elements in the matrix of couplings,
which link the neurons to themselves and tend to freeze the configurations.
As the problem of auto-association can be regarded as one single parallel up-
date of a Hopfield network, we then emphasize the relevance of these results
to the fully connected Hopfield model. We show by numerical simulations
that the stability and the strength of the diagonal couplings are indeed two
important parameters for the dynamics of the Hopfield net. There exists an
optimal value of the diagonal couplings which maximizes the radius of the
basins of attraction.

The evolving simple picture — the stability of a perceptron governs its
static properties (the storage capacity) as well as its dynamics (associativity)
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— becomes considerably more complicated as soon as one allows several
iterations of the perceptron’s mapping. The correlations of the synaptic
strengths start to play an important role, especially the degree of symmetry
of the matrix, and it is no longer possible to make as general statements as
for the perceptron. These questions have been stressed in another article [16]
which is complementary to the present one. Related work on the role of the
stability can be found in [17,18].

The plan of this article is as follows: In section 2 we define the network,
its dynamics, the notion of attraction basins and the probability distribution
of the patterns to be used for quantitative analysis. In section 3 we compute
the quality of retrieval for a noisy input for two general classes of coupling
matrices. Section 4 contains a detailed comparison of the associative prop-
erties of two specific learning rules: the pseudoinverse and the minimum
overlap rules. In section 5 the relevance of the results to auto-association
in fully connected networks is discussed. Section 6 shows how some of the
results can be interpreted as the ability of generalization of the perceptron.
Lastly some concluding remarks are given in section 7.

2. Dynamics of a two-layer network

We study a network of the perceptron type which consists of two layers of neu-
rons. The neurons are Boolean units which we write as (Ising-) spins taking
values 1. The input layer consists of N spins & = {¢; = +1,5=1,..., N}
and the output layer contains N’ spins ¢’ = {0} = £1,1 = 1,...,N'}. We
shall concentrate on the limiting case where the numbers of neurons N and
N' both go to infinity.

The coupling (synapse) between neuron o; of the input layer and the neu-
ron o} of the output layer is denoted by J;; so that the coupling matrix (J;)
is of size (N’ x N). The output corresponding to a given input configuration
is given by a (zero-)threshold automaton rule

o! = Sign ( E Ji50:), i=1,...,N' (2.1)
J=1,N

The network is taught (through the determination of the J;;) to map each
of the p = aN input patterns & = {§f = £1,j =1,...,N} onto a certain
output pattern £ = {* = £1,i+1,..., N}. We shall distinguish between
two different cases: hetero-association, in which input and output patterns
differ and auto-association, in which they are identical. In the latter case we
have N’ = N, and the coupling matrix is square. In this case a special role
will be played by the diagonal coupling matrix elements J; which connect
corresponding neurons (z) on the input and on the output layer.

Whenever we need to specialize to a specific distribution of patterns
(mostly in section 4), we shall consider the case where the patterns are chosen
randomly following the prescription
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oo {+1 with probability (14+m)/2 . _, (22)

7 —1 with probability (1 — )/2

The probabilities are adjusted so that the patterns carry a mean magneti-
zation m = 1/N ¥; £ (the parameter m is related to the activity of the
neuron). In the case of hetero-association the output patterns are similarly
chosen randomly with magnetization m'. This type of bias — and its gen-
eralization to more structured hierarchically correlated patterns — has been
studied in the case of the Hopfield model [19-21].

For associativity we need that configurations close to g“ also be mapped
close to &%, To give this notion a precise meaning we shall suppose that the
input configuration & is chosen randomly, but with a fixed overlap ¢:

g=1/N 3 oy (2.3)
i
with the pattern 5“‘“‘ under study. This is achieved by the following choice:

- { +¢f with probability (1+4)/2 . _, (2.4)

—¢4 with probability (1— q)/2

i.e. we assume the noise on different neurons in the input layer to be uncor-
related and of equal strength. The average over the realizations of the noise
(2.4) will be denoted by ().

The perceptron works as an a,ssocmtor, which means that conﬁguratlons
& having a large overlap ¢ with E” should also be mapped onto f”‘ However
in the cases we consider this will be exactly true only if the input overlap ¢
is of the order ¢ = 1 — O(1/+/N). In contrast, the noise will be reduced for
a much larger number of configurations with an input overlap of the order of

g =1—0(1). This means that the output overlap obtained from equation
(2.1),

=1/N'" Y &lo; (2.5)

t=1,N!

will be greater than ¢. In order to characterize this noise reduction by a
number r (the “radius” of the basin of attraction), we will therefore choose
a cutoff ¢ on the retrieval quality. A noisy input configuration will be said
to lie inside the basin of attraction of E” if ¢ > q!. As we will see in the next
section, this will happen with probability 1 when g is larger than a critical
value g.. The radius of the basin of attraction is then defined as r =1 — g..

3. Basins of attraction and stability

In order to calculate the basins of attraction of one pattern it turns out that
we need rather little information on the elements of the synaptic matrix (J;;).
We distinguish two typical situations.
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3.1 Equilibrated matrix of synaptic connections

A rather general case is that all the J;; are of the same order of magnitude

(ie. 1/+/N). As we shall see explicitly in the study of the two learning
rules, this is the typical situation for random patterns in hetero-association,
or in auto-association when the diagonal couplings are set to zero. If this
condition is fulfilled, the calculation of moments:

(&'h:) = qEﬁ”ZJ;jﬁj,u (3.1)
(&R — (")) = (- qz)zu’fj
{(&"hi — (&"R:))") [(1-¢7) Z 1+ O0(1/N))

shows explicitly that £k, and therefore {{*h;//3; J3, are Gaussian random
variables with respect to the realization of the input noise (2.4). It is this
latter quantity which we refer to as the stability of pattern u on site i:

P = z J Erer/ Z JE (3.2)

It follows from equation (3.1) that this Gaussian random variable has a width

equal to /(1 —¢?). From equations (2.1) and (2.5) we now find that the
average output overlap ¢’ on pattern p is related to the input overlap by

Agq/r/1—q2 3
= / P(A)A ]0 e %e-z 2 (3.3)

where P(A) reflects the site to site fluctuations of the stability of the pattern
under study:

P(A) = 1/N'S-6(A - AY) (3.4)

Equation (3.3) is the basic result of this section. It shows that the quality of
retrieval of one pattern, as measured by the output overlap ¢, is the better
the larger the stability parameters A¥, The condition of perfect retrieval
(¢’ =1 when ¢ goes to 1) is that almost all stabilities be non-negative.

Now, depending on the learning rule and the choice of patterns, the values
of A¥ may fluctuate from site to site, and this will affect the final result for
¢'. Let us first suppose that the stability parameters are all equal in the
thermodynamic limit:

Af=A i=1,...,N' (3.5)

In this case the radius of the basin of attraction 1 = 1 — ¢, is a function of
one single parameter, the stability A, given implicitly by
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Figure 1: The radius r = 1—g¢. of the basins of attraction as a function
of the stability A. The cutoff on the output overlap is ¢, = 0.9 (see
(3.6)). Full curve: zero diagonal couplings Ji; = 0; dashed curve:
optimal diagonal couplings (Jii = Jope), in the case of autoassociation.

it (M) (3.6)
22— 1)

This function is plotted in figure 1 for ¢/ = 0.9 (i.e. less than 5% wrong bits
in the output).

As a simple example showing how site-to-site fluctuations of A can ruin
this result, let us consider the case of Hebb’s rule:

Ty =1/N 3 &gt (3.7)

for unbiased random patterns (m = m' = 0). Then a simple calculation
shows that the distribution of stabilities is Gaussian with mean 1//a and
width 1. Thus the fluctuations and the mean value of the stability are of
the same order. In this special case of Hebb’s rule, the fluctuations over
configurations and fluctuations from site to site combine in such a way that
¥, Jiséi"€" is a Gaussian with unit width (independent of ¢). The final
resulting noise on the output pattern is independent of the input overlap:

' ‘T/V’c_' \/E w22f2
q -—]0 dz it (3.8)
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The most important qualitative difference between equation (3.8) and equa-
tion (3.3) is that for ¢ approaching 1 the output overlap ¢’ does not tend to
1: the memorized pattern differs slightly from the correct output pattern, as
in Hopfield’s model [1].

3.2 Unequilibrated matrix of synaptic connections

In this section we shall explore the case which is of importance for the percep-
tron in auto-associative mode and for the Hopfield model. There the diagonal
elements of the matrix of couplings play a special role since &* and £/ are
identical. It often happens that these diagonal elements are much larger than
the off-diagonal elements. This special role of J; has been recognized also
by Kanter and Sompolinsky [22] (see also [14] and reference therein).

Let us therefore assume that Ji; = Jo(\/E ;) /&), while J;; = O(1/+/N)
(7 # ). Then the terms J;; in equation (2.1) must be treated separately, and
the formula generalizing equation (3.3) is

Agq+doT
d= f P(A)A Y 1T j = dz\/?— 12 (3.9)
= 2 Jo %
The quality of retrieval now depends both on the stability and the diagonal
coupling. A well chosen value of Jy can increase the basin of attraction.
Supposing again that all the stabilities are equal to A, it is easy to see
that the slope evaluated at ¢ = 1 is zero if Jy < A, but it is equal to one
if Jo > A; if the diagonal coupling is too large, the network cannot flow
towards the correct output pattern, even when started from a configuration
very close to the input pattern, and its noise will not be reduced. For fixed
A there exists an optimal value of the diagonal coupling, between 0 and A,
which maximizes the basin of attraction. The plot of the optimal value as
a function of A is given in figure 2, and the corresponding new value of the
radius of the basin of attraction (evaluated for any A, and for Jy taken at
its optimal value) is given in figure 1.

4. Comparison of learning rules: pseudoinverse and minimum
overlap

4.1 Definition of the learning rules

Several learning rules have been proposed to choose the J;;’s which allow for
the memorization of a given set of patterns {€*,¢", u = 1,p}. A necessary
condition for perfect memorization is
{:”=Slgﬂ( Z J,'j{j#), Z'zl,...,Nf (41)
=1,N

which is equivalent to having A¥ > 0,:=1,...,N"

One efficient learning rule, the pseudoinverse (P.I.), has been proposed
by Kohonen [15] in the context of linear networks. The idea is to look for a
matrix (J;;) which is the solution of the equation
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Figure 2: Value of the optimal diagonal couplings Ji; = Jop (for
autoassociation) as a function of the stabilities A.
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th=g" S Tt =1, p=1,...,p,i=1,..., N (4.2)
=1,N

(or more generally the (J;;) which minimizes 3, (1 — #})?, for each ¢). When
the input patterns are linearly independent, which will always be the case in
the situations we study below, an explicit form of the matrix (J;;) is

Jy = 1IN 3 Q)08 (4.3)

T

where (), is the matrix of overlaps of the input patterns:

Qu=1N T &y (44)

=T

(The most general solution of (4.2) contains an additional arbitrary projector
onto the subspace orthogonal to the input patterns. For definiteness we keep
to the case where this term vanishes).

Another important family of learning rules uses error correcting algo-
rithms to find iteratively a matrix (J;;) such that all the stabilities are posi-
tive, the convergence of these algorithms being assured (if a solution exists)
by the famous perceptron convergence theorem [12]. Recently this has been
refined in order to obtain optimal stability parameters [6]. The corresponding
“minimal overlap” (M.O.) algorithm finds a matrix of couplings (J;;) which
guarantees that the smallest stability parameter is maximized:

K; = ilif AY is maximized,i = 1,..., N’ (4.5)

We will now calculate the values of the stability which can be reached with
these algorithms for sets of random patterns introduced in section 2 (see
formula (2.2)).

4.2 Hetero-association

We begin with the case of hetero-association, and with the minimal overlap
algorithm. There we follow [8]. For each output neuron 7 we calculate the
fraction of the volume of the N-dimensional space {1 of couplings such that
Af > K for all the patterns g = 1,...p = alN. Given «a there is a critical
value of K above which this fraction of () has zero volume for N — oo:
this is the maximal value of K, Ky, which can possibly be reached by any
algorithm, and which is reached by the M.O. algorithm. The calculation of
K,y is a mild generalization of the work of Gardner [8] which we shall not
reproduce here. The result is that K, is related to a by the equation:

1 1+m"rf°° 1 2o [ Koy — mMr *
T d —2/2 op! + 4‘6
R Y Sl s SUKD

(o
1

where M is an auxiliary parameter fixed by the condition that it should make
the above expression stationary:
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S )T o € s gty { L =T
b tgriratr & o VI-m?

The resulting dependence of K, as function of e, for various values of m
and m’, is plotted in figure 3. The maximal storage capacity for this network
is p = a.N, where a, is the critical value for which one gets Ko = 0.
The M.O. algorithm can in fact produce a coupling matrix for which A;* is
strictly larger than K, for a few sites ¢ and a few patierns p. So the basins
of attraction will always be larger than (and almost equal to) the values
obtained under the assumption that P(A) = 6(A — K,p.). These values can
be taken from figures 1 and 3 and the result is plotted in figure 4.

+2) =041

If one wants an exact measure of the radius one must calculate the dis-
tribution of stabilities P(A) reached by the M.O. algorithm. As has been
noted by Kepler and Abbott [18] this can be done using the same kind of
replica formalism which has been used to determine the value of Kp: of the
space of couplings such that AY > K for all the patterns there is a subspace
of volume (' such that the stability of pattern 1 is Al = A. Then

PA)= lim (S¥/9 4.8
@)= tip T (18)

where the () means an average over the realizations of random patterns. This
is in turn calculated as

P(A) = hm lim (€ (3= o an-1) (4.9)

Kopt 70

which allows a replica calculation analogous to the one of Gardner [8]. We
shall not reproduce the details of this calculation here, but just quote the
results: for the M.O. algorithm, the distribution of stabilities is

1 + m'T e

i
PA) = Z {6(/_\ Kost)

r=1 \,/ (1 — m?)

+ 6(A—K,y) e ~z"/2}

-7?7-—

where K, and M are related to the capacity o by equations (4.6) and
(4.7). This formula has been derived independently in reference [25]. Using
equations (4.10) and (3.3) one can determine the radius of the basins of
attraction, which is plotted in figure 4 and differs very little from the one
obtained by putting P(A) = §(A — Kop).

Let us now turn to the pseudoinverse rule. As we have seen before this
leads to a stability which is equal to one before normalization, so that, in
order to calculate the parameters A} it is necessary to calculate the normal-
ization of the couplings. From equation (4.3) we have:

> Jg= %,- 2 §EQNw=4 (4.11)

wr=1aN

(4.10)
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Figure 3: Lower bound on the stabilities, K, as a function of the
number of stored patterns per input neuron, @ = p/N. a) Unbiased
input and output patterns (m = m’ = 0). Full curve: Ky, optimal
K (M.O. algorithm); dashed curve: K reached by the P.I. algorithm.
b) Biased input (m = 0.4) and output (m’ = 0.4 and 0.8) patterns.
Full curve: P.L algorithm (m’ = 0.8); dashed curve: P.I algorithm
(m' = 0.4); dashed-dotted curve: M.O. algorithm (m’ = 0.4); dotted

curve: M.O. algorithm (m' = 0.8).



398 Werner Krauth, Marc Mézard, and Jean-Pierre Nadal

Figure 4: Radius of the basins of attraction r as a function of the
number of stored patterns per input neuron, & = p/N, in hetero-
association. Dashed curve: P.I. algorithm; full curve: theoretical
result which would be obtained in a network with fixed stabilities
(P(A) = 6(A — Kopt)); dotted curve: result for the M.O. algorithm,
taking into account the fluctuations of the stabilities above K, opt- @)
Unbiased input and output patterns (m = m’ = 0). The full curve
and dotted curve are essentially indistinguishable on this scale. b)
Biased input (m = 0.4) and output (m’ = 0.8) patterns.
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where as before @) is the overlap matrix of the input patterns. As the input
and output patterns are mutually uncorrelated, it will not be surprising to
find that A self—avera.ges to:

A=— E @M.+ Z @ (4.12)

:ﬂﬁv

In order to prove this self averageness and to compute A we write

2a_ 2N
a_ 4.13
Z00) (4.13)
where we have introduced the partition function
z() = [nL, d,—“" ~H s uQmk G Lot (4.14)

The calculation of Z(A) and (Z())/Z(0)) can be done using standard tech-
niques from the statistical physics of disordered systems. It is sketched in
appendix A. One finds that A is self averaging and

(54

@ = G=ma=m (4.15)
p#FEV:(QTY), = {—_*“Tu_.,ﬁi’_m) if m 0

So, finally, the stability parameter for the P.L rule is

‘.l—a

API = ifm=20 (4.16)
API_../“'\/ =me Hm#0

(the crossover region which decides if m is close enough to zero is m <
1/4/N). The P.L rule realizes the case (3.5), where all stabilities are equal
in the thermo&ynamic limit.

Ap . is plotted as a function of « in figure 3. Formulas (3.6) and (4.16)
(or figures 1 and 3) allow one to obtain the radius of the basins of attraction
for a given number of stored patterns. The result is plotted in figure 4.

4.3 Auto-association

The case of auto-association does not call for changes in the case of the
M.O. algorithm, the optimal stability is given exactly by equation (4.6),
with m = m'.

For the pseudoinverse rule one proceeds as in section 4.2. This requires
now the calculation of

;-L-f.- =B — B? (4.17)
pE=

where
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1 1 -1 v
B= 5T @t (418)

Using the same method as before (see appendix B), we find that ;4 JZ
is self averaging and that for any 7 it tends toward the limit (1 — a) when
N — co. On the other hand the stability (3.2) (without the contribution of
the diagonal coupling) is

l—a

Apy = (4.19)

(a4

This formula coincides with (4.16) for m’ = m. Therefore the dependence of
A as a function of « can be read from figure 3.

It is interesting to notice that the M.O. algorithm (as any perceptron-type
algorithm) uses the correlations between patterns to increase the storage
capacity, while the pseudoinverse method in some way orthogonalizes the
patterns, so that its capacity remains the same whatever the correlations
between patterns.

5. Relevance to Hopfield-type models

The dynamics of the perceptron in auto-association can be considered as
the evolution after one time-step of a Hopfield-type network for associative
memory (using parallel updating). So the value of ¢' is the overlap on the
pattern at time ¢ = 1. Unfortunately, the reasoning which led to equation
(3.3) cannot be reapplied to calculate g, as function of ¢,(¢ > 1), because
in general the noise of the configuration will no longer be Gaussian, the spins
on various sites become correlated. Derrida et al. [23] have invented a special
type of strongly diluted lattice, on which these correlations can be neglected,
to which our results on auto-association with J;; = 0 can be applied. Formula
(3.3) gives, for parallel updating, the evolution of ¢(t + 1) = f(q(¢)):

Aq(t)/+/1-q(t)?
q(t+l)=/P(A)dAjU ki dz.\/geﬂ’ﬁ (5.1)

and the generalizations to thermal noise and asynchronous updating are
straightforward. The radius of the basin of attraction is given by the un-
stable fixed point ¢* = f(q*). We have therefore found that the dynamics
at all times on this strongly diluted lattice is governed only by the stability,
irrespective of the special learning rule used. The introduction of diagonal
coupling (J;; # 0) reintroduces correlations even on this lattice.
Nevertheless, some of the conclusions of the previous section can be used
as hints for what happens in Hopfield’s model. There the importance of the
stability has been investigated in previous papers [16-18] even though the
connection between stability and the basins of attraction there depends also
on the correlations of the synaptic matrix (J;;), especially on the symmetry of
the matrix [16]. To test the role of diagonal couplings, we have performed nu-
merical simulations on the fully connected Hopfield net with 100 < N < 400
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Figure 5: Radius of the basins of attraction » as a function of
Y = Jii] Tz Jii€F€), in a fully connected Hopfield model. The non-
diagonal couplings are obtained by the P.I. algorithm. Full curve:
a = 1/4; dashed curve: & = 1/2; dotted curve: o = 3/4.

and p = aN(1/4 < @ < 3/4) unbiased random patterns. The non-diagonal
couplings were chosen with the pseudo-inverse rule while the diagonal ones
were all taken to be equal Ji; = v¥ ;x4 Ji;El'€S. The results (radius r as
a function of ) are presented in figure 5. They show clearly that varying
the strength of the diagonal couplings has a strong effect on the convergence
properties of the fully connected net (cf. Kanter and Sompolinsky [22]) and
that the best choice of J; may not be J; = 0. We find e.g that choosing
7 = 0.15 instead of 4 = 0 can increase the radius of the basins of attraction
by about 50%, for @ = 1/2.)

6. Using a perceptron to generalize: A simple case

The formulas we have found in section 4.2 show that, for the two algorithms,
the size of the basins of attraction increases with the correlations in the
output state, i.e. with the value of m’, but only if the input correlation
m is nonzero. Any perceptron-type algorithm can even achieve an infinite
capacity in the limit m’ — 1(limp,/ . @ = co), provided m # 0. This is
an interesting result which sheds some light on the perceptron’s ability to
generalize. If m’ — 1 there is an unique output state, whatever the input
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state. Let us suppose, e. g., that the input correlation is m > 0. Then the
memorization of p input patterns can be considered from a totally different
point of view: the network must send all inputs with positive magnetization
towards the unique output state which has been given to it (and by symmetry
the input configuration with negative magnetization must be sent to the
reversed output state). It is taught to learn this task through the presentation
of p examples (the patterns). In this context the fact that the capacity is
infinite simply means that the M.O. algorithm is able to learn this task [25]:
in fact it is clear that for p 3> N the set of coupling constants reached by the
system is stable: each (magnetized) new pattern is automatically memorized,
so that it does not lead to a change in the couplings.

This ability to generalize is a nice property. We have pointed it out here
as a simple consequence of the results of the previous section, its detailed
study is, however, beyond the scope of the present paper.

Let us however point out the relationship with the usual language of
data analysis. The problem considered here is a simple case of classification:
all patterns are distributed into two classes, depending on the sign of the
magnetization. In classification tasks one usually looks for some distance
criterium such that patterns belonging to a same class are grouped into a
cluster of nearby elements, and patterns of different classes are as far apart as
possible (see for example [26]). In the commonly used Discriminant Analysis
method, one looks for axes (in state space) such that the projection on these
axes optimally distributes the patterns into clusters. In the neural network
language, the directions of the N axes are given by the lines of the coupling
matrix of a Perceptron with N’ output units [27].

On one given axis 7, that is for one given output unit 7, the distances
between the patterns are in fact directly given by the stabilities as defined in
(3.2). Indeed, on axis i defined by the vector J; = (J;;);j=1,5, the abscissa X;*
of the projection of a pattern p is plus or minus its stability A;* — depending
on the class it belongs to: in the above example, X;* = A/* for a positive
magnetization and X;* = —A;” for a negative magnetization. The choice
of the Pseudo-Inverse rule corresponds to a typical choice in Discriminant
Analysis method, which result in the minimization of the dispersion within
classes [27]. Indeed, we have seen that all the patterns have the same stability
Apy. On the axis, the two clusters are reduced to two points, distant of
2 Ap1. The choice of the M.O. algorithm corresponds to the maximization of
the distance between the two clusters: the distance between any two patterns
belonging to different classes is at least equal to 2K; (see (4.5)). But now
the elements within a cluster are distributed according to the distribution

(4.10).

7. Conclusion

We have calculated the storage capacity and the size of the basins of at-
traction for a perceptron-type network storing random pattern. In the case
of hetero-association the important parameter which determines this size is
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the stability which is maximized by the M.O. algorithm. When one consid-
ers auto-association, another parameter allows to improve the performance
of the network: the diagonal couplings. This is also a useful parameter in
Hopfield’s network.

The dynamics which has been studied in this article is one-step (as the net
is feed-forward and consists of two layers). It would be very useful to under-
stand how this may be extended to the dynamics at several time steps, either
in fully connected models, or in a multilayered feed forward architecture.
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Appendix A.

We first calculate the average over the choices of random patterns of the
partition function Z(A) defined in equation (4.14). Using the definition (4.4)
of the matrix @), we have

dz dt;
/\) fnf*l\/ivr ﬁ:l 2

A '
exp(— it tilie, + —=> &re,) (A.1)
3T+ T St oS,
The average with respect to the input pattern is

dz dt; 1 i
Z() = fHu—l\/i ?'—1\/—- exp (“ng?'FﬁmZtizru
7 7 B

1 2 2 2 A 1

Writing X = 1/N 30, 2% and enforcing this constraint through an auxiliary
parameter X, we have after integrating over the ¢;:

m=jd _'m 2x /H 192,

.l

R(NX = 5e2) - 5 log(1 + X(1 = m?)

oo =
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m? i

2 '\ I
—7m(¥%) +W¥§ s%} (A.3)

The integral over the z, is Gaussian with a quadratic form

e_% Ep,u ZuMuyzy (A.4)
where
Ar T]’]'2
M#,,, = AS“', + m (A5)

Performing the integrations over z,’ s we find

)\) de./_ dX N{-———TlogdetM—-log(1+x(1_m2))}

100 27
¢ 635 Lo €M)l (A.6)

The determinant and the inverse of M are

detM = Xp_l [X + Pﬁ_—‘mﬂ] (AT)
(M), =+ [6 - m ] (A)
XY pm24+X(1+ X1 —m?)) '

For p and N going to infinity with fixed capacity o = p/N, one can perform
the integrals over X and £ by saddle point. It is easy to see from equation
(A.8) that the last term in equation (A.6) does not contribute to the saddle
point. The solution to the saddle point equations are

fa o

=X Tan-m Vit

so that finally

a 1

-
T ifm#£0

T-a ifm=20

Z(N) = Z(0)e
Z(\) = Z(0)e

(A.10)

A
F]
22
F

This is not yet enough to prove the announced result since we have computed
so far Z(X)/Z(0) instead of Z(A)/Z(0). In order to compute this last quantity
we could use the replica method (see e.g. Mézard et al. [10])

ZN)Y _ i ZO0Z00T
( (0)) = lim Z(VZ(0) (A.11)
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Z(N)Z(0)™! being calculated by the introduction of n copies of the variables
T,

However, in the present case, this is not even necessary, because Z(\)
turns out to be self averaging: we can directly calculate Z2()) using the
same techniques as before. We introduce two types of z-variables z, and z,
and write

X=1/NY 22, X'=1/NY 2",Q=1/N> z.2,
K B I

together with the auxiliary parameters X, X', ). Then

7 = de—dX' dQ Q fél%% (A.12)
X exp{ (NX - Zm )‘ (NX'— Zm'2
+Q(NQ - Zﬂj x,_,:vL)} (A.13)
X exp{—%lgD—ﬁMiﬁw (3,
_”;21+X(]1)—m2)(§m;)2} (A14)
< o {nq! (e + e e+ 21

where D is a notation for the determinant
D={1+X(1-m)H1+ X'(1 -m?)} - Q*(1 —m?)? (A.15)

The Gaussian integrals over z, and ), lead as before to a determinant of the
corresponding quadratic form. Let us begin with A = 0. We obtain

I
[ dX—dXﬁ-dQ Q

><exp%{XX+X'X'+2QQ—10gD—alog()A(X'—QQ)} (A.16)

A careful examination of the saddle point equations of this integral shows
that the dominant saddle point is always at

Q = Q=0 (A.17)
B S ey M I e ()

so that
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Z70) V= Z(0) (A.18)

As the term in A in equation (A.12) is not of the leading order in N, it
cannot change the saddle point and one finds

2

720 T 2N (A.19)

This shows that, for any A, the fluctuations of Z(A) can be neglected; there-
fore we obtain from equation (A.10)

e 2 o rm?
(Z(/\)) 2 (elfl."’_,q N—co 6:21:“1—’“ if m’7é0 (A?O)
Z(0) eT TR iftm =0

which is the announced result.

Appendix B.

We calculate the stability parameters for the P.I. rule in the case of auto-
association. From equation (4.18) we need to calculate

= Z =23 (Q_l)w (B.1)

u'U——l

2
As in appendix A we write eTB = (@), with

fnﬁ_lfi N_ljt_ —%Zt?)x (B.2)

1 A
x |exp|—=> &2, +—=> &z
 Flage
We proceed as in appendix A: we first average over the £ (j # ), then
integrate over the t; (j 5 i) and finally integrate over the z,, with X =1/N
3, fixed by an auxiliary parameter X. The result is
Z()) = ]dXdX exp N (% = %Lnf( = %Ln[l 4 Xl ~ m2)]) X

( %y ziv Z(M DA+ i) eler } (B.3)

where M and M ™! are given in equations (A.5-8). As before it is easily seen
that the last term does not affect the saddle point (A.9) on X and X, so that

o J d;r e A0, .
Z0) [t % drRWP i (BA)
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The self averageness of Z()) derived in appendix A also applies here, so that

(7)== * .

Hence B self averages to

1\;2}03 =qa (B.6)
and
> Ji=o(l-a) (B.7)
i(#)
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