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Abstract. Various observables measuring the complexity of an en-
semble of patterns are discussed, in particular statistical quantities
related to the convergence of block entropies, and computation theo-
retical quantities related to a grammatical description of the ensemble.
These measures of complexity are applied to one-dimensional cellular
automata, by characterizing the time evolution of the probability mea-
sure on configuration space in terms of stochastic finite automata. In
particular it is found that the effective measure complexity increases
linearly in time for an additive rule with a random initial state with
density p # 1/2. Some results on the convergence of block entropies
for regular languages are shown, and context-free languages are also
discussed. These results are used in an attempt to interpret the crit-
ical exponents observed by Grassberger in the convergence of block
entropies for certain chaotic cellular automaton rules.

1. Introduction

Many of the systems encountered in physics, biology, and other fields consist
of large numbers of fairly simple components that can produce very com-
plex behavior when acting together. Even in simple model systems such
as cellular automata [1] and chaotic low-dimensional dynamical systems [2]
quite complex behavior can be seen, both in the sense that the individual
patterns or trajectories generated may be effectively random, or may show
signs of complicated structure in the form of long-range correlations, and in
the sense that the ensemble of allowed patterns may be very hard to de-
scribe. In general, for an observer facing a complex situation, whether it is a
physicist attempting to understand a new phenomenon, the brain confronted
with maybe 10° bits of sensory data each second, a child learning language,
or someone listening to Schénberg’s woodwind quintet for the first time, a
reasonable strategy would be to attempt, in one way or another, to model

© 1988 Complex Systems Publications, Inc.



410 Kristian Lindgren and Mats Nordahl

the situation. This involves extracting generic features, and separating them
from the noise, or the specific information contained in individual patterns.
The result might be a grammar for the allowed patterns in the discrete case
[3], or an approximate model of the equations of motion in the continuous
case [4,5]. Sometimes the grammar need not be explicitly known, but may
rather be implicitly contained in a pattern recognizing structure, such as a
parser.

In this article we shall consider a number of observables that measure
either information or complexity. In a sense this is far more trivial than
the general problem of pattern recognition and inductive inference, but the
problems are related, since some of the quantities we consider as measures of
complexity are properties of a model, such as a grammar for a set of strings.
Some of these observables will in particular be applied to the spatial patterns
generated by simple cellular automaton rules. Cellular automata have been
considered as simple models of extended dynamical systems, and have been
used both in attempts to explain phenomena such as 1/f noise [6], and as tools
for simulating physical systems [7]. Since they are discrete systems, they are
naturally analyzed using methods and concepts from computation theory,
such as formal languages, and our main results will concern the relation
between the statistical and computation theoretical properties of the patterns
generated in cellular automaton time evolution.

Before describing this in more detail, however, we would like to give a
short taxonomy of methods of measuring information, or randomness, and
complexity.

1.1 Randomness

Sequences are commonly considered random if no pattern can
be discerned in them. But whether a pattern is found depends
on how it is looked for. Stephen Wolfram

The patterns which we shall mostly be concerned with in this article are
one-dimensional sequences of symbols, in particular sequences produced in
the time evolution of one-dimensional cellular automata. One way of viewing
the concept of randomness [8] is to consider a string of symbols random if no
procedure can detect any regularity which could be used to give it a shorter
description. Various measures of randomness, or information, can then be
thought of as asymptotic degrees of compressibility of the string, given an
allowed class of algorithms to detect structure in it, and perhaps also some
amount of a priori given information, which could be restricted by a function
of string length (e.g. by allowing a certain number of queries to an oracle
set). Some examples of quantities that measure randomness are: (our list
does not pretend to be exhaustive)

(a) The various Rényi entropies s(a) [9] that can be calculated given
measurements of block frequencies. These include the topolog-
ical entropy (e = 0) and the measure entropy (o = 1) of the
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sequence. Among the Rényi entropies the measure entropy s, to
some extent plays a distinguished réle, since it has a straightfor-
ward interpretation in terms of how much an infinite sequence
can be compressed from the knowledge of all block frequencies.
In fact, universal coding algorithms exist which asymptotically
achieve this degree of data compression for any stationary ergodic
source without any advance knowledge of source probabilities [10~
12]. Many more sophisticated statistical definitions of randomness
also exist [13-15].

The Kolmogorov complexity [15,16-18] of a string z, which is the
size of a minimal program that generates z on a universal Turing
machine. Infinite strings of maximal Kolmogorov complexity pass
every conceivable statistical test for randomness [13], and they
in particular have measure entropy equal to one. Conversely, for
almost all infinite sequences produced by a stationary stochas-
tic source the Kolmogorov complexity is equal to the measure
entropy [19,20]. Of course, the Kolmogorov complexity is in gen-
eral an uncomputable quantity (though its average over a suitably
chosen ensemble of strings apparently can be deduced), and it is
thus an extreme case of allowing arbitrary a priori information in
the framework above. Time- and space-bounded versions of the
Kolmogorov complexity have also been proposed [21,22], where
one instead considers the minimal program generating z in poly-
nomial time, or using polynomial space on the worktape of the
Turing machine.

The notion of complexity relative to a class of sources (e.g. all
finite-state machine defined sources, which includes the measures
generated at finite times by cellular automata starting from ran-
dom initial states) recently introduced in coding theory by Rissa-
nen [23,24], which combines features from a) and b). This measure
of information is defined, for a finite string , as the minimum over
the class of sources of the difference between a source complexity
term and the logarithm of the probability of generating the string

Z.

The “effective information content” © of a sequence, which was
proposed by Wolfram [8]. Here the class of algorithms used to
detect structure in the string is reduced (in some unspecified way)
to a feasible, i.e. polynomial-time computation. Note that this
differs from the time-bounded Kolmogorov complexities; in that
case we are considering the shortest program running e.g. in poly-
nomial time, here we are concerned with the shortest specification
that can be found in polynomial time. This is similar in spirit
to the effective entropy for ensembles of finite strings introduced
by Yao [25], where one considers the minimal code, in terms of
average code length, that can be produced in polynomial time by
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a probabilistic Turing machine.

Even if these quantities tend to agree on large classes of sequences, they
are certainly not completely equivalent. This can for example be seen if we
attempt to use them as evolution criteria for infinite cellular automata. Then
all Rényi entropies decrease in time (or at least do not increase, at each time
step As(a) < 0, see section 3), and this is also the case for the Kolmogorov
complexity, since evolving the cellular automaton a finite number of steps
forward in time only requires a finite addition to the minimal program for
the initial state, which makes no difference in the limit of infinite strings.
For quantities of type d), where one is restricted to polynomial-time com-
putations, this need not necessarily be the case. Even if our limited class
of algorithms can detect some structure in the sequence at a certain time,
it might not be able to accomplish this at the next time step, since finding
a predecessor of a configuration one time step back can be an NP-complete
problem in two and more space dimensions [26]. Even in one dimension,
where a predecessor configuration a fixed number of time steps back cer-
tainly can be found in time polynomial in the length of the sequence (though
presumably exponential in the number of steps back in time) by explicitly
constructing the regular language of predecessors, the number of different
predecessor configurations in general increases exponentially with the length
of the sequence. Thus, if we need to find a particular predecessor with a short
description this might take exponential time, and it then seems plausible that
any polynomial-time regularized quantity in certain cases could increase in
the time evolution of cellular automata.

1.2 Complexity

Alors entre 'ordre et le désordre, régne un moment délicieux...
Paul Valéry

This section should begin with a remark on semantics, previously em-
phasized by Grassberger [27], Hubermann [28], and others. Several of the
quantities mentioned above went under the name of “complexity”, and the
word was then used as being synonymous to “information” or “randomness”.
Physicists generally seem to prefer to reserve the word “complex” for struc-
tures that are neither random nor regular, but (loosely speaking) show signs
of intricate, perhaps hierarchical organization. In the following we shall use
the word in this sense.

One way to make this notion of complexity more precise is to regard
complexity as a property of ensembles of patterns, rather than the individ-
ual configurations themselves [27]. A natural approach would then be to
define the complexity as the size of a minimal description of the ensemble of
patterns. As an example, in this way a random pattern could be associated
to the ensemble of all possible patterns, which has a very simple description,
at least in the case of strings considered here.
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Some examples of quantities that have been suggested as measures of
complexity are the following:

(a)

(d)

Various statistical quantities related to the convergence rate of the
finite length block entropies S, () rather than their actual values
[27,29,30], such as the effective measure complexity introduced by
Grassberger. These quantities essentially measure the amount of
long-range correlations contained in a pattern, or an ensemble of
patterns. We shall discuss these measures more extensively in
section 2.

At least one quantity related to the Kolmogorov complexity has
been suggested, Bennett’s “logical depth” of a pattern [31], which
is the time required to produce it from the minimal program.
Clearly this quantity is small both for very regular patterns and
for completely random patterns, where the minimal program is es-
sentially a copy of the pattern. Even though it presumably shares
the property of uncomputability with the Kolmogorov complexity,
one might still hope that the generalized Kolmogorov complexity
classes mentioned above, such as the classes of all patterns pro-
duced from logarithmic size programs in polynomial or exponen-
tial time, could be characterized in alternative (e.g. statistical)
ways. This could have interesting implications for biological sys-
tems.

In the particular case when the pattern are trees rather than
strings, a measure of complexity has been introduced by Huber-
mann and Hogg [28]. Even in the case of a probability distribu-
tion on a set of strings this could be relevant, since the probability
distribution could be decomposed into pure states, and in some
cases these could show an approximately ultrametric hierarchical
organization [32]. The complexity of trees also turns out to be
measured by the rate of relaxation for ultradiffusion in the hier-
archical space described by the tree [33].

Another class of complexity measures are those related to a de-
scription of the ensemble of patterns. For sequences of symbols
this description could be a grammar of a formal language (e.g.
[34]), or a weighted grammar if a measure on the ensemble is
considered. Different classes of formal languages can be charac-
terized by their accepting automata, and the complexity could for
example be measured by the number of nodes in the automaton
[35], or by the entropy of a probability distribution on the nodes
[27]. We shall discuss this further in the next section. This ap-
proach requires that a grammatical description of the ensemble
is known. For one-dimensional cellular automata this description
can in principle be calculated at any finite time (though this might
not be computationally feasible), if the ensemble of initial states is
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known. In most physical situations one would however encounter
the difficult problem of inferring this description from data. Fur-
thermore these concepts are considerably less developed in higher
dimensions.

Finally one can note that this state of affairs leaves some room for further
developments. Most of these measures of complexity are of limited applicabil-
ity. The quantities mentioned in a) and d) might seem very general (at least
if appropriate generalizations to higher dimensions could be constructed),
but unfortunately they are all divergent in very complex environments, and
they are not easily computed in practice.

In the following section we first review, interpret, and in some cases
generalize the definitions of various statistical and computation theoretical
measures of complexity, and discuss the relations between them. We then
briefly discuss whether the computation theoretical quantities can be com-
puted when the grammar is not known from the outset, and finally we prove
some results on the generic form of the convergence of finite length block
entropies for measures corresponding to regular languages. The convergence
of block entropies for context-free languages is also discussed. Section 3 deals
with cellular automata at finite time, and starts with a characterization of
the exact time development of the measure on the space of infinite sequences
in terms of probabilistic finite automata. We then apply some of the concepts
from section 2 to the time evolution of cellular automata, in particular to an
additive cellular automaton rule starting from a random initial state, but with
a density of ones different from 1/2. It is shown that in this case the effective
measure complexity increases linearly in time. Section 4, finally, contains a
discussion of the attractors and limit sets of cellular automata. We attempt
to interpret the critical exponents observed numerically by Grassberger [36]
in the convergence of block entropies for certain chaotic cellular automaton
rules. These numerical results indicate that the attractor in these cases does
not correspond to a regular or an unambiguous context-free language.

2. Entropies and complexity measures

We shall now consider some of the quantities mentioned in the introduction
more in detail. Let us begin by defining the Rényi entropies. Suppose that
we have a finite alphabet of symbols ¥, and for each integer n a probability
distribution on the strings of length n in £* (£* denotes the set of all finite
strings over X). This could for example correspond to the block probabilities
of a single infinite string, or an ensemble of infinite strings. The Rényi entropy
of order « is then defined by [9]

) :mm_,m-%sm(a), (2.1)

where the block entropies S, (o) are given by
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Sm(@) =

— log > %( (2:2)

|lel=m

Here the sum is over all strings & of length m, and the base of the logarithm
is a, the number of symbols in ¥. For e = 0, (2.1) is the topological entropy,
and in the limit @ — 1 the measure entropy s,. Using a coding procedure,
the measure entropy can be interpreted as the minimal average code length
per symbol in the limit of infinite strings. This means that we are attempting
to minimize [ = ¥ p(o%) Nk, where Nj is the length of the code word that
corresponds to o, For a # 1, we are instead minimizing an average “code

length of order o” I,(«) [37], where

L(a) =

iogchm o) 2 Sa(er). (2.3)

For a < 1, this is equivalent to the minimization of a total cost, where an
exponential cost function has been associated to each code word.

The Rényi entropies measure the information content, or randomness,
of a sequence. A sequence with a certain entropy can still be more or less
complex, and one way of capturing this concept is to consider the convergence
rate of the block entropies S,,(a). For the moment we restrict ourselves to
the case @ = 1. The effective measure complexity (EMC) introduced by
Grassberger [27] is then defined as

n= lim (Sn —ms,), (2.4)

which can also be expressed as

= Z ﬂ1&23m+1, (25)

m=1

where AS,, = S, — Smu—1 = 0 and A2S, = AS, — AS,_1 < 0. The
total information contained in the correlations of a sequence can be divided
into independent contributions &, = —AZ2S, from block entropies of different
lengths n [38], which shows that  can be interpreted as the product of
an average correlation length /k.,,. and the total correlational information
keorr = Y ko The effective measure complexity can also be written as an
average Kullback information (relative information)

7= Jim Jim 3 p(6a) S olpn) tog Zee) fes il

N—00 M—00 ( ") (26)
where f3,, is a string of length m preceding o, in the sequence. This rep-
resents the average information gain when the distribution p(c) is replaced
by p(e|B), or equivalently the average information stored in a semi-infinite
sequence about its continuation. When n additional symbols &, are added
to a semi-infinite sequence , an average information n - 5, is gained. The
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remaining n(1 — s,) bits of information are contained in the structure of the
ensemble, and can be divided into one part which is the correlational infor-
mation contained in o,, and one part which (if convergent) is equal to 7 in
the limit of large n. The EMC is divergent if the block entropies converge
slower than 1/n, a phenomenon which can occur in more complex environ-
ments, since when strong long-range correlations are present, a semi-infinite
sequence could store an infinite amount of information about its continuation.
We show at the end of this section that in the less complex situation where
the ensemble of strings corresponds to a regular language, with a measure
generated by a finite automaton, the block entropies in many cases converge
as

lS,1 PO, B ] (2.7)
n n

In particular the EMC is always finite if the automaton has a non-zero sta-
tionary probability distribution on its nodes. If the block entropies S,, con-
verge as above, the differences AS,, converge exponentially. This rate of
convergence has been used as a measure of the complexity of trajectories in
dynamical systems by Gyorgyi and Szépfalusy [29,30] who defined a quantity

¥=-lim -:; log(AS,, — 5,)- (2.8)

These quantities can be generalized to arbitrary Rényi entropies; we can for
example define 7(a) in terms of the convergence rate of S,(a),

n(@) = Jim (Sm(a) = ms(a)), (2:9)

and similarly for y(a). One could also contemplate other definitions, not
necessarily equivalent to (2.9), that reduce to n when o — 1, such as a
correspondence of (2.6), where we form a weighted average of the relative
information of order e,

" 2 1 Pa(ﬂm) o —a
mle) = Jim Jim, oo 25 ey P el ()

(2.10)

We now turn to quantities that involve a grammatical description of the
ensemble of patterns. This description could be the grammar of a formal
language (given here as an accepting automaton) if only the set of allowed
sequences is considered, or a measure generated for example by a finite au-
tomaton. The reader wishing an introduction to formal languages and com-
putation theory could turn e.g. to [34], and to the article [35] for applications
to cellular automata. Languages with associated probability distributions
are for example encountered in the literature on syntactic pattern recogni-
tion (e.g. [39]). Very briefly, a formal language is any subset of £~, the set
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of finite strings over the symbol set ¥£. The Chomsky hierarchy of regular,
context-free, context-sensitive and unrestricted languages classifies (recur-
sive) languages according to the complexity of the automata needed for their
recognition.

Regular languages correspond to finite automata, which have a finite
number of internal states (nodes in a transition graph) forming a set ¢}, and
a transition function 6 : @ x ¥ — €, which means that the arcs in the
transition graph are labelled by symbols in . A string o = 0y ...0y belongs
to the language L accepted by the automaton if there is a path labelled
by o;...0; from the start node S to a node in the set F' of allowed final
nodes. As long as no consideration is given to the measure, deterministic
finite automata, where a certain sequence can only be obtained in one way,
are equivalent to nondeterministic, where several arcs leaving a node may
carry the same symbol, since for any regular language L a unique minimal
deterministic automaton accepting L can be constructed. In general this
procedure cannot be performed when a probability distribution on L is taken
into account; the class of measures where the underlying finite automaton
is nondeterministic is larger than that where we only consider deterministic
automata. This yields two classes of measures generated by finite automata.
The semi-group measures investigated in [40] correspond to deterministic
automata with a unique start node, and since they can be written in terms
of a finite-dimensional transition matrix, they are in many ways similar to
Markov measures. In particular arbitrary Rényi entropies can be calculated
from the eigenvalues of the matrix obtained by raising each element of the
transition matrix to the power . Each such semi-group measure is the image
of a Markov chain under some cellular automaton rule (which is finite-to-one
on the space of infinite sequences) [40], but in general, even for additive rules,
the measures generated in cellular automaton time evolution belong to the
larger class we now describe.

A measure of this class is given by a finite automaton with transition prob-
abilities as well as symbols assigned to the state transitions, and equipped
with an initial probability distribution on its nodes. For each symbol oy,
k=1...a, we then have a transition matrix p(o}), and the matrix obtained
by summing over symbols, g = ¥ p(oy), is an ordinary stochastic transition
matrix with row sums equal to unity. This yields a probability distribution
on the strings of length n in L for any n; if the vector «; represents the initial
probability distribution, and we allow all nodes as final nodes, we have

ple=0y...0,) =a uloy)...u(c,)p, (2.11)

where # = (1,1,...,1). This set of probability distributions extends to a
unique shift-invariant measure on the set £ of bi-infinite strings over ¥ if
the Kolmogorov consistency conditions (e.g. [41,42]) are fulfilled. It can
easily be checked that this is the case if o; is an equilibrium probability
distribution on the automaton. Measures belonging to this larger class can
be classified according to the nature of the underlying finite automaton,
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which is either deterministic (but with an initial probability distribution on
nodes), for example in the case of the finite time measures for surjective rules,
or nondeterministic. In the first case the measure entropy can be calculated
exactly as

= o) - plol) og o (212)

oEL

(where p(7) is the equilibrium probability distribution on the nodes of the
automaton), while in the much more subtle second case, it appears that
entropies can only be calculated exactly in particular cases [43].

Context-free and higher languages can also be represented by transition
graphs, but the graphs are then infinite. Context-free languages are accepted
by pushdown automata, i.e. automata with a stack. The use of the stack
can be restricted to only push and pop operations (and no move) [34], which
means that one can represent this structure as an infinite self-similar tree
of finite automata, see figure 1. The nodes here represent all states with
a certain stack content, and their internal structure depends only on the
symbol at the top of the stack. The arrows thus summarize a number of
transitions in both directions, and the branching ratio of the tree depends
on the number of symbols in the stack alphabet (which need not equal I).
An acceptable word must terminate with the stack empty, i.e. at the top
node (or we could equivalently use acceptance by final state). This means
that the entropies of context-free languages should behave similarly to the
auto-correlation function for diffusion on a self-similar tree; we shall discuss
this further in section 4.

Similarly, an arbitrary Turing machine can be simulated by a two-counter
machine [34], which has two stacks where except for a start symbol at the
bottom of the stack, only one symbol is used. This structure could be drawn
as (one quadrant of) a two-dimensional array of finite automata, see figure
1. When arbitrary stack moves are allowed, the transitions become rather
complicated, and this representation is less useful.

Given a mechanism with internal states which describes our ensemble,
various quantities measuring the complexity of the ensemble can be intro-
duced [27,35]. These are essentially entropies of the equilibrium probability
distribution on the nodes, or internal states. We should distinguish two cases;
we could either consider automata that only reproduce the set of allowed se-
quences, or we could consider probabilistic automata that are required to
reproduce the measure. In the first case it suffices to consider determin-
istic automata (for regular languages) and one can define the algorithmic
complexity as the number of nodes in the minimal deterministic automaton
accepting the language [35],

v= il}lf log N(A), (2.13)

(A is the class of deterministic automata accepting the language). If there
is a measure on the ensemble of infinite strings, this induces a probability
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Figure 1: Accepting automata for (a) a regular language, (b) context-
free languages, (c) unrestricted languages.

distribution on the nodes of any automaton accepting the language, and
Grassberger defined the set complexity as the entropy of this distribution
[27],

1
e}, 2.14
p(j )) 0
This quantity may be finite for many infinite automata accepting context-free
and higher languages, but on the other hand, the restriction to deterministic
automata is not as meaningful in that case, since it excludes certain lan-
guages.

If we now consider the class A" of probabilistic automata that reproduce
a certain measure (and the underlying finite automata are now in general
nondeterministic, as mentioned above), one can define

o = inf(3" p(j) log

= igrflog N(A"), (2.15)

n = inf(3_p(j) log =), (216)

1
2(J)

(2.17)
==}

T2

inf(Zp(J logﬁ—gl_rggzp(an)zpblan)log G | R

inf( ZP(J Zp (0als) log (?"IJ)))

where v’ and 7y are the cases @ = 0 and a = 1 of the Rényi entropy 7(a) of
the probability distribution on nodes. The quantity 7 represents the aver-
age information contained in the state of the automaton; in 75, which is the
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true measure complexity (TMC) introduced by Grassberger [27], we have
subtracted a term which represents the amount of information that asymp-
totically remains in the automaton. This term vanishes if asymptotically one
for almost all sequences can uniquely determine at which node the sequence
started, which means that the probability distribution p(j|e,) singles out one
particular node. We conjecture that this is always the case when the under-
lying finite automaton is deterministic, while in the nondeterministic case
the number of paths that corresponds to a sequence increases with length,
and this statement need not be valid (counterexamples can easily be found,
e.g. some of the automata discussed in section 3). The quantity 7, can also
be written as an average Kullback information in analogy with (2.6). There
is an obvious inequality »' > 7 > 7, and it is also evident that the infor-
mation about the future sequence carried by the state of the automaton is
larger than or equal to the information the preceding part of the sequence
contains about its continuation, i.e. the effective measure complexity 7 [27].
One also can show more formally that m > #:

Using p(an) = 5 a(oali)p(3)s and p(@ali)p(§) = plilon)p(a) for any
node j, we can rewrite the block entropy S5, as

5. = azp(an)log@ (2.18)
= Ep J)ZP onli) log ——— e nl 5
+Zp log Zp O'n)ZP(JIUn )log ——— oG E =
= ZP(J ZP(%U log -2 |J)+T2-
Here the first term is smaller than or equal to n - s,,, since
0 < Jim So(a)  plenliptia) los 22, (2.19)

G ot P(0n|Bm)

n%g_l‘;io zp(ﬂm) Z 'P(o'nl)gm) log
—ZP .?)ZP gulilog—— (Jﬂm
= ZP(.? ZP anlj) O 71~ ( |)

p(o nlﬁm)

and thus 5, < n-s, + 75, which in turn implies that 7 > 5. The Kullback
information used in this derivation is always well-defined, since p(c,|8y) = 0
implies that p(o,|7)p(j|8n) = 0 for any j. We then have the following set of
inequalities:
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Ve>m>n 2. (2.20)

This in particular shows that the EMC is finite for any measure given by
a finite automaton, provided that it has a non-zero equilibrium probability
distribution. We have not been able to find a useful extension of (2.20) to
arbitrary Rényi entropies.

Several of the quantities mentioned above involved a grammatical descrip-
tion of the ensemble. If the initial ensemble is known, and the dynamics is
given for example by a cellular automaton rule, one could in principle evolve
the description of the initial state forward in time to obtain the grammar (or
measure) at any finite time. But this might not be computationally feasi-
ble, and in a more realistic physical situation one is confronted with a set of
patterns without any a priori knowledge of a grammatical description. The
problem of inferring the grammar of a formal language has been studied in
computer science (e.g. [3]); here we just intend to make some brief remarks
about the possibility of calculating quantities like (2.13).

Suppose that a sequence wy,ws, ... of strings from an unknown formal
language L is presented to us, and that we make a sequence of guesses
Gh(wy,. .., w,) about the grammar, assuming that L belongs to some class U
of languages. The class U is said to be identifiable in the limit [44] if there is
an inference method M such that for any acceptable presentation wy, ws,. ..
of a language in U (a minimal requirement is that the presentation includes
all strings in L at least once), the correct grammar is obtained after a finite
number of conjectures. This is a rather weak notion of convergence, since the
algorithm M need not know whether it has converged to the right answer.
In a similar way, we could call an integer-valued function f(wq,w,,...) of
an infinite sequence computable in the limit, if there is an algorithm with
finite subsequences wy, ..., w, as input which converges to the right value
for some finite n. It is known [44] that the class of regular languages is not
identifiable in the limit from positive presentations (i.e. when no examples
from the complement of L are given), and we have modified this argument
to show that the regular language algorithmic complexity (2.13) is not com-
putable in the limit in this case. But for ensembles of infinite strings this
is not really relevant, since the argument depends on the fact that all finite
languages are included among the regular languages as allowed hypotheses,
and a finite language cannot be the set of permitted n-blocks of an ensemble
of infinite strings. This indicates that a different space of hypotheses should
have been chosen. Furthermore, these difficulties are only encountered for a
negligible subset of all presentations; all context-free languages (and thus all
regular languages) are known to be identifiable in the limit with probability
1 [45].

In practice, one would need a computationally feasible procedure for es-
timating the grammar. Assuming that we are given both a positive sample
of strings from L, and a negative sample of strings not in L, a natural ap-
proach would be to find the minimal finite automaton (or regular expression)
compatible with the samples. This has been shown to be an NP-complete
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problem [46,47]. For the more difficult (and more relevant to us) problem of
only positive presentations, polynomial-time algorithms exist if one considers
certain subclasses of the regular languages, e.g. the k-reversible languages
[48]. In cases where the EMC can be calculated numerically, a lower bound
on the algorithmic complexity v’ of the automaton A’ giving the measure
is obtained from the inequality (2.20). This does not necessarily yield any
information about the algorithmic complexity n of the deterministic automa-
ton A corresponding to the set of sequences, since A is obtained from A’ by
a combination of a reduction (when transition probabilities are removed,
nodes may become equivalent), and a conversion from a nondeterministic to
a deterministic automaton. (It seems likely that a lower bound on n could
be obtained from (0), which measures the difference between the first and
second eigenvalue of the transition matrix of A.) Instead of the algorithmic
complexity, one could attempt to calculate the entropies o, 7 and 75, which
should behave significantly better when the grammar is approximated. The
set complexity has been calculated for the symbolic dynamics of iterated
one-dimensional maps by Grassberger [49].

We now turn to the question of the rate of convergence of finite length
block entropies for measures generated by finite automata. For the Rényi
entropies with @ = 0,2, 3,4, ... we can prove that generically the block en-
tropies converge as

lS,, ~s+Llice™ (2.21)
n n

for all measures generated by finite automata, for other values of & our results
are incomplete.

To prove the statement (2.21), let us first introduce some concepts from
the theory of formal power series in noncommuting variables, following the
book by Salomaa and Soittola [50]. A formal power series is a formal sum

8= E Ciw;, (222)
w,EM

where the coefficients ¢; in our case are real numbers (and in a more general
case belong to a semiring A), and the w; are the elements of a monoid M (a
monoid is an object that satisfies every axiom for a group except the existence
of an inverse for every element). The monoid that will actually enter here is
the free monoid generated by a finite set X, which is simply the set £* of all
finite strings of symbols in X. The product w; * w; of two strings w; and w,
in £* is formed by concatenation, wy * wy = wyw,.

We shall primarily be concerned with the important class of formal power
series called rational series, which are rational functions in noncommuting
variables, i.e. one component of the formal solution to a linear system of
equations in noncommuting variables. As we shall see, these series are closely
related to the regular languages. There are various operations that preserve
the rationality of formal power series, a less obvious one which we shall need
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later is the Hadamard product r @ r' of two series, which is defined by term-
wise multiplication of coefficients,

(X ews) © (3 diwy) = 3 (cidi)wi. (2.23)

An important theorem which characterizes the class of rational series
is the Representation Theorem of Schiitzenberger [50,51], which states the
following;:

Any rational series can be written as

r= Y (@ u(w)d)w, (2.24)

weM

and conversely any formal power series of the form above is rational.

Here p : M — A™*™ is a representation of the monoid M in terms
of m x m matrices with elements in the semiring of coefficients A. This
means that the matrices p(w) satisfy p(w;)p(we) = p(wiw,) for any wi,
wy in M. Furthermore o and B are constant vectors of length m. The
connection between rational series and regular languages is evident if we let
plw =oy...0,) = plor)...p(o.), where p(o) for ¢ € E are the transition
matrices given by a finite automaton accepting the regular language, and
we let the vectors @ and 3 be given by the start node and the allowed final
nodes (e.g. T =(1,0,...,0) and 8T = (1,1,...,1) if all nodes belong to the
set F' of final nodes). We can also see that Schiitzenberger’s Representation
Theorem applies to the measures defined by finite automata according to
(2.11); the series

g %:p(w)w (2.25)

is then a rational series, and taking the Hadamard product of s with itself n
times we find that

s = .zz'p”(w)w (2.26)

is a rational series for any integer n > 1 (or rather n > 0, if the coeflicient of w
is defined as 0 when w ¢ L). For a rational series r, the generating function
((z) obtained by replacing each symbol from ¥ in r by the commuting
variable z,

G(x)= (X elw))m, (2.27)

m Jw|=m

is an ordinary rational function, which means that

= Y p'w) (2.29)

lw|=m
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are the Taylor coefficients of a rational function. These necessarily satisfy a
linear difference equation [52], which means that they are of the form

() = Pi(m) + Po(m)g + -« -+ Py Wiy (2:29)

where the Pj(m) are polynomials in m. The matrices p™(w) that en-
ter if s(™ is written as in (2.24) are obtained by taking tensor products,
N w) = p(w) ®...® u(w), and have dimension (dim g(w))", which means
that the number of terms N (n) increases exponentially with n. For the Rényi
entropies with & = n (n 3 1) this implies that

1
B g T (2.30)
m m

in nondegenerate cases, where P; is a constant. In a degenerate case, the
corrections to S,,/m may behave as log(m)/m, and we can give a simple
example illustrating this for the topological entropy. The number of words
in the regular language L = 0*1* = {0™1? for arbitrary n, p > 0} clearly
increases linearly with length, which means that the topological entropy van-
ishes, since S, is proportional to logm. It has also been noted in [53] that
the growth function for a regular language, i.e. the number of words of length
m, asymptotically increases exponentially, polynomially, or approaches a con-
stant. Nonstationary ensembles of this kind may occur as cellular automaton
limit sets (see the examples of limit sets in [35] and [54]), but the automata
defining the ensemble then have transient parts, which are removed if a mea-
sure on the ensemble is introduced according to (2.11), since a stationary
probability distribution on nodes is needed to define the measure.

When the characteristic equation giving rise to (2.29) has complex roots,
oscillatory behavior could be seen in the convergence of block entropies, par-
ticularly in the topological case. This was observed in [55] for the topological
entropy AS,(0) in symbolic dynamics of the logistic equation.

The argument above does not extend to arbitrary Rényi entropies in its
present form, except in restricted cases. For the semi-group measures in [40]
there is a unique start node for each sequence, and entropies can be calculated
by raising each element of the transition matrix to the power . In this case
(2.3v) is valid for all . We also expect this to be the case for all measures
of the form (2.11) with a deterministic underlying finite automaton, since
the probability of a sequence of any length is then given by the sum of a
fixed number of terms (equal to the number of nodes), and asymptotically
this sum is dominated by its largest term for almost all sequences, which
asymptotically singles out a unique start node.

For unambiguous context-free languages (CFLs), where each word has
a unique derivation, the argument above could be modified by replacing
rational by algebraic series [50]. But since we have not discussed what classes
of measures could be associated to CFLs, we shall here primarily restrict
ourselves to the topological entropy. In that case a classical theorem [56]
states that the structure generating function ((2.27) with ¢(w) =1if w € L,
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c(w) = 0 otherwise) of an unambiguous CFL is an algebraic function, and
from the asymptotic behavior of the Taylor coefficients of algebraic functions
it then follows that asymptotically the number of words in L increases as [57]

9(n) ~ en®y" (3 ewsf), (2.31)

where & is rational, 4 is an algebraic number, and in the oscillating factor,
¢; and w; are algebraic with |w;] = 1. The topological block entropies then
converge as log(m)/m. A simple example is given by the context-free lan-
guage of all finite strings consisting of an equal number of the symbols 0 and
1. Then (for n even)

g(n) = ( n72 ) ~ \/gzw O(n=3/%2"). (2.32)

The asymptotic behavior of the topological entropy for context-free languages
will be compared to the auto-correlation function for diffusion on a self-
similar tree in section 4, where we also briefly discuss measures corresponding
to context-free languages.

3. Cellular automata at finite time

Let us now apply some of these concepts to the generation of complexity in
the time evolution of infinite one-dimensional cellular automata. The cellular
automaton mapping on infinite sequences is induced by a local transformation
¢ : X7+ 4 ¥ where ¥ is a finite set of symbols, in our examples ¥ =
{0,1}, and r is the range of the transformation. Many cellular automata are
irreversible systems, and this is reflected in a decrease of spatial entropies
[58,59,20]. In fact all spatial Rényi entropies satisfy As(a) < 0 at each time
step; we can easily generalize the proof involving the measure entropy given
in [20]:

As(e) = T (Su(a,t+1) = —Sn(a,1) (3.1)
1
m—+ 2r

2r
m(m + ZT)S"'

= limpo ( (Sm(a,t+1) — Smyar(a,t))

+ (o, 2+ 1))

and

1
l1—«

1
l—-a

S, t+1) log( Y p(om,t+1)) (3.2)

lol=m

10g(| Z ( Z P(am-!-Zr’ t))a)

ol=m d{omier)=c

Il

103( Z Pn(am+2rvt))=3m+2f(asi)i

l-c |le|=m+2r
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which means that the first term in (3.1) is < 0, and since the second term
vanishes as m — oo, we obtain

As(a) <0. (3.3)

If the initial state has well-defined block probabilities and entropy, this will
be the case at every subsequent time as well, and (3.3) is then valid at every
time step.

The quantities defined as measures of complexity in the previous section
can also be used to characterize cellular automaton time evolution, but before
we can do this we need to discuss the time evolution of the probability mea-
sure on the space of sequences. Previous work on cellular automata has often
studied the generation of complexity by considering the set of all allowed se-
quences at time %, starting from arbitrary initial configurations. For finite
time ¢, this set corresponds to a regular language [35,60], which in principle
can be constructed explicitly. As was described above, one way to measure
the generated complexity is to count the number of nodes in the minimal
deterministic finite automaton accepting the language (finite time set) Q(¢).
In practice the algorithmic complexity of the finite time sets increases very
rapidly for chaotic rules, and cannot be calculated by explicit construction
of Q(t) except for the first few time steps. Furthermore, this way of mea-
suring complexity does not take statistical aspects of the time evolution into
account, and gives equal weight to common behavior and phenomena occur-
ring with vanishing probability. A treatment of the time evolution of the
measure would be a complement to this approach and show several phenom-
ena more clearly.

One example is given by class 2 rules, which by definition asymptotically
simulate a shift map for almost all initial states. The set of sequences on
which the rule simulates a shift map is a simple regular language, which can
easily be constructed from the cellular automaton rule [35], and it seems
reasonable to call this set an attractor. Even though the attractor is a sim-
ple regular language, and the individual patterns generated seem to become
less complex with time as transients disappear, the algorithmic complexity
in general increases polynomially, often linearly, in time for class 2 cellular
automata. One reason for this is that the limit set, which includes configu-
rations occurring with vanishing probability, may be more complicated than
the attractor [54]. This is illustrated even in the simple case of rule 128
discussed later in this section.

Another exampleis the case of surjective rules, where the set of all possible
sequences is a fixed point of the time evolution. Certain of these rules can still
show chaotic behavior, and if we instead measure the complexity generated
starting from restricted classes of sequences, or even from random sequences
with a density of ones p different from 1/2, the behavior will be more similar
to other chaotic rules. This is exemplified below for an additive rule, where
we show that the effective measure complexity increases linearly in time when
the initial state has p £ 1/2.
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The time evolution of the measure for cellular automata has been studied
by Gutowitz, Victor and Knight [42] in an approximation (“local structure
theory”) where the block probabilities above some length n are obtained by
Bayesian extension, which means that the length m correlational informa-
tions k,, vanish above that length. This approximation seems to work very
well in many cases. Here we shall instead consider the exact time evolution of
the measure, which in some cases will reveal phenomena, such as a diverging
effective measure complexity, that cannot be seen in a truncation to a fixed

block length.

If the ensemble of initial states is given by a probabilistic finite automaton
A in the way described in section 2, the measures at finite time can be calcu-
lated by a procedure very similar to that of applying the cellular automaton
mapping to an ordinary finite automaton described in [35]. For r» = 1 we
can label the nodes in the resulting automaton ¢(A) by connected pairs of
arcs in A, and the allowed transitions and transition probabilities in ¢(A) are
then given by the arc-to-arc transitions in the original automaton. To define
a measure, we also need an initial probability distribution on the nodes of
#(A). This distribution should in general be the equilibrium distribution for
the automaton to consistently define a measure on bi-infinite sequences, and
one can check by explicit calculation that an equilibrium distribution on A is
in fact mapped to an equilibrium distribution on ¢(A). If a node is labelled
by two arcs where the first starts at node ¢, the new initial probability dis-
tribution should be p(z) multiplied by the transition probabilities of the arcs
to give the correct measure, and this turns out to be exactly the equilibrium
distribution on the new automaton. For surjective rules, we obtain a measure
where the underlying finite automaton is deterministic, for other rules it is
in general nondeterministic. One can sometimes simplify the resulting mea-
sure by identifying equivalent nodes just as for ordinary finite automata [35]
(nodes are equivalent if they have identical transitions, i.e. with equal proba-
bilities and labelled by identical symbols, to all equivalence classes of nodes),
but we know of no general procedure to determine whether two measures of
this kind are equal. Let us now illustrate this by a few simple examples:

As a first example, let us consider rule 4 (we number CA rules according
to the convention of Wolfram [58]). This rule maps 010 to 1, and all other
length three blocks to 0, and thus it reaches a fixed point at ¢t = 1 for any
initial state, since ¢? = ¢. One can easily calculate the limit language and
the corresponding measure in this case; starting from an uncorrelated initial
state with a density of ones equal to p one obtains the automata shown in
figure 2.

This measure is an example of a nondeterministic automaton where an
exach expression for the measure entropy can be written down, since the oc-
currence of the symbol 1 in a sequence implies a unique state for the automa-
ton. The conditional probabilities p(10...0|1) satisfy (where the sequence is
read from right to left, and we define a, = p(10™|1))
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Figure 2: Probabilistic automata for rule 4, giving (a) the initial state,
(b) the limit set, (¢) the invariant measure.

n=1

an, = (1 B p)an—l o+ Z(l = P)Pknlan-k (34)

k=3

= ap— oy +p(1 = plan_y — p*(1 — p)an_s =0

and the measure entropy can be expressed in terms of the solution to this
difference equation as the following infinite series:

0 1
8, = %_ (3.5)
n=1 (n + 1)aﬂ

As another simple example we consider rule 128, which maps 111 to 1
and all other length three blocks to 0. In this case we have arbitrarily long
transients, and all block probabilities approach zero except for blocks con-
sisting only of zeroes. The measures at the first few time steps are shown in
figure 3 (the finite time sets can be found in [35]). At time ¢ the measure is
given by an automaton with 2¢+ 1 nodes, where the non-zero elements of the
transition matrices p(0) and p(1) are given by p(0);, =1 —pfors=1...
2t+1, ((0);i41 = p(0)2p411 = plori =2...2t, and p(1);; = p. These nonde-
terministic automata could be converted to infinite deterministic automata
of the form shown in figure 3(d), since once again the symbol 1 determines
the state of the automaton. An expression for the measure entropy could
in principle be given, since the transition probabilities obey a recursion rela-
tion p(10™[1) = p(10"~1|1) — p**+1(1 — p)p(10™~#*+2)|1), but numerical results
are more easily obtained directly from the block probabilities given by the
automaton.

Even though the algorithmic complexity v’ obviously diverges with ¢ in
this case, the entropy of the probability distribution on the nodes 7; re-
mains finite. If we calculate the equilibrium probability distribution on the
automaton giving the measure at time ¢, we find that
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Figure 3: Automata giving the measures for rule 128, (a) at t = 0,
(b) at t =1, (¢) at t = 2, (d) the structure of an equivalent infinite
deterministic automaton.
1—p* 1 1 1—p*

t) = log—+(1—=p)1 = ——s, (0 3.6

7i(t) l_p(pogp+( P)ogl_p) lmpsu(), (3.6)

which asymptotically approaches a constant. The inequality (2.20) then
shows that 7, and 7 also remain bounded, and since it cannot be uniquely
determined at which node a sequence with an initial segment of more than
one zero started, 7, is strictly smaller than 7 at every finite t. Class 2 rules
in general appear to be characterized by asymptotically finite 7, 7, and 7.
This seems reasonable, since for class 2 rules we expect that information in
general only spreads over a finite distance, and the EMC should then remain
finite.

If we now turn to the additive rule 90, where the value of a cell is given by
the sum modulo 2 of its neighbors at the preceding time step, then if p 5 1/2
the measures at finite time are given by the de Bruijn graphs shown for the
first few time steps in figure 4. Starting with p = 1/2 one clearly remains at
the invariant measure.

These graphs have 2% nodes at time t, and if each node is labeled by a
binary address aa;...as we have the following transitions:

@by . . .Gy — ay ... a4yl with probability p,
labeled by s = ¢'(ajaz. . .as1)

and
@1ty .. .05 — Qz...0%0 with probability 1 — p,
labeled by 1 — s = ¢*(ajas. . .az0),

where ¢ is now considered as a mapping ¢ : ©? — ! for arbitrary [.
One can show that there are no pairs of equivalent nodes in this graph. The
equilibrium probability distribution should satisfy
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Figure 4: Automata giving the measures for rule 90 at (a) ¢ = 0, (b)
t=1,and (c)t=2.

p(a ag) = P(P(Oal co@yr) +p(lag .. -Gzt—l)) if ag, =1
LEaiTa (1—p)(p(0ay ...a_ 1)+ p(lay...as-1)) if ay =0,

(3.1
which is solved by
P(Ch Cly) = pm(a] ---ﬂzr)(l - p)ﬂt-m (ﬂl---ﬂet), (3.8)

where the function n;(w) counts the number of ones in w. If we then calcu-
late the entropy of this distribution at time ¢, we find that the quantity =
introduced above increases linearly in time when p # 1/2,

1

T]_(O!, t) = T log( Z Pu(al Fod 'G‘Zt)) (3-9)
@024
1
2 o 1 —p)®
2t—log(p* + (1 - p))
= 2t s(a,0).

We have not yet shown that these automata actually minimize the entropy for
the probability distribution on nodes, but we shall now calculate the effective
measure complexity 7, which turns out to equal (3.9), and the inequality
(2.20) then shows that this is the minimum value. This means that we
should calculate the rate of convergence for the finite length block entropies
S, at arbitrary times. We first take a single step forward in time and consider
t = 1, and the calculation is done for rule 60 (where a;(t) = (a;—1(t — 1) +
a;(t — 1)) mod 2) instead of rule 90. Since an uncorrelated initial state is
used, the results for rule 90 can be obtained by considering two independent
copies of the time evolution of rule 60. For rule 60, each infinite sequence
has exactly two predecessors, and the block probabilities at ¢ = 1 are
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plo=o0y.. -o'm) = E Pm(a’)(l _ p)m+1—-ﬂi (01)’ (310)

o'ip(a’)=c
and the block entropies at ¢ = 1 are given by
Sm(a) =

1
l—a

m+1 X . : ;
gz 22 (™71 ) @ -9 (- pppeiy. )

Using Stirling’s formula, we find that the expression summed over has two
maxima (when a > 0 and p # 1/2) at

TR PR T ) RS
J_P"'"‘(I‘P)"‘( +1)+2p"’+(]_p)a+o(1/ )s (3.12)

and at the value of j obtained by interchanging p and (1 — p). The sum can
then be approximated by two Gaussian integrals, and after some amount of
calculation it is found that

= Sm(ast=1) = (1+ ) log(p + (1 = §)*) = (1 + =)s(a,t = 0)

(3.13)

to order 1/m. This can be extended to arbitrary times by first noting that
for ¢t = 2", where a;(t) = (@;—4(0) + a;(0)) mod 2, we can use (3.13) to obtain

(e, t=2") = 2"s{er, t=10): (3.14)

For the additive rules we are discussing, s(a) is constant in time, which
implies that the change in (e) in one time step satisfies

An(a) = Jim (Sp(et+1) — Snyar(e, t) + 2rs(a)) < s(a). (3.15)

This shows that the value of g(a) at ¢ = 2™ is the maximum value allowed,
and this value can only be reached if An(e) is maximal at every step in time.
At an arbitrary time ¢, we then have

n(e,t)= t-s(a,0) fora>0andp# -;— (3.16)

= 0 fora:(]orp:i.

For rule 90 we get
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Figure 5: The increase of the effective measure complexity in one time
step for rule 90, shown as a function of the density of the initial state.

2

2
1

= 0 fora:Oorp:i,

n(a,t)= 2t-s(a,0) for a>0and p# (3.17)

which equals (3.9), so that in particular ; = 7, = 5 at any ¢ in this case.
The dependence of An on the initial density p is illustrated in figure 5.

The discontinuity at p = 1/2 might seem peculiar at first, but it can be
understood in the following way. Suppose an infinite sequence ...01100101
given by the automaton is known up to a certain point. When p # 1/2, the
state of the automaton can always be determined with probability 1, but if
p is increased towards 1/2, a larger segment of the sequence is necessary to
estimate the state. This means that 5 increases as p approaches 1/2, since
the information is contained in longer blocks. When p is exactly 1/2, all
correlations disappear, the automaton collapses to a single node, and the
EMC changes discontinuously to zero.

If we finally consider the time evolution of an arbitrary cellular automaton
rule with s symbols per site and range r, starting from an uncorrelated initial
state, the nondeterministic automaton giving the measure at time ¢ has at
most %™ nodes, which means that

v' =log, N(A) < 2rt, (3.18)

and from (2.20) it then follows that the effective measure complexity is
bounded by

n < 2rt. (3.19)
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For rules with a positive sum of left and right Lyapunov exponents, we ex-
pect that asymptotically the EMC, which measures a product of average cor-
relation length and total correlational information, in general will increase
linearly.

4. Asymptotic behavior of cellular automata

For class 2 cellular automaton rules, some observations on the asymptotic
behavior were made in the previous section. In that case, the attractor [61],
the set of sequences that dominates the asymptotic behavior and represents
the behavior for typical initial states, is in general considerably simpler than
the limit set, i.e. the intersection of all finite time sets. This could conceivably
be the case for some chaotic cellular automaton rules as well, even though
the algorithmic complexity of their finite time sets grows very rapidly in
time, indicating that the limit set is more complicated in this case (limit
sets of cellular automata in general need not even correspond to recursively
enumerable sets [60]). If the attractor happened to correspond to a regular
or a context-free language, it might be possible to deduce its grammatical
structure from the results of simulations, using various inductive inference
methods [3].

Some general conclusions on the structure of the attractor (invariant mea-
sure) can be drawn from numerical data such as Fourier spectra [61] or finite
length block entropies. Here we shall discuss what can be learned about the
structure of the attractor from numerical data for the block entropies of rule
22. This cellular automaton rule, which maps 100, 010 and 001 to 1, and
other length 3 blocks to 0, has been extensively studied as an example of a
rule showing chaotic behavior, both by direct simulations [36,62], and in the
local structure theory approximation [42]. These results indicate that this
rule is strongly mixing, and that there is rapid convergence to an invariant
measure. The space-time patterns generated contain significant long-range
correlations; in [36], algebraic decay towards zero was found for the finite
length block entropies AS, (i.e. for a = 1),

AS, ~c-nf! (4.1)

both for spatial and temporal block entropies, with different critical expo-
nents 8 < 1. Figure 6 shows the finite length spatial block entropies S5,(«)
for @« = 0, 1 and 2 up to length n = 18 obtained in a fairly small scale
simulation of rule 22. Periodic boundary conditions were used on a lattice of
length 50 000 (the data shown were taken at ¢ = 10000). The data for « =1
and « = 2 are well fitted by

S.(a) = e(a) - nP (4.2)

with 8 = 0.954:0.01, which is in agreement with the results in [36] for @ = 1.
The critical exponent 3 does not appear to depend significantly on « in this
regime. A more extensive numerical investigation of this phenomenon is in
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Figure 6: Finite length block entropies Sp,(a) for rule 22, where (+)
stands for & = 0, (o) for @ = 1, and (e) for a = 2.

progress. At any finite time, the block entropies AS, decay exponentially if
n is sufficiently large, but assuming that the behavior in (4.2) characterizes
the attractor, we can immediately conclude from (2.30) that the attractor
cannot correspond to a regular language. More precisely, this means that
finitely generated measures (corresponding to regular languages) of the form
discussed in section 2 are excluded. If more complicated measures, possi-
bly without finite specification, on a regular language L are considered, any
allowed behavior for the block entropies could be reproduced, since the mea-
sure could be (approximately) concentrated to a subset of L corresponding
to a non-regular language.

Our remarks on context-free languages are more speculative. For un-
ambiguous context-free languages, we know from (2.31) that in the topo-
logical case, finite length topological block entropies generically converge as
log(m)/m. The topological entropy both converges more slowly and is more
sensitive to finite size effects than the measure entropy (as is evident in fig-
ure 6), and our numerical data do not admit any firm conclusions in this
case. It is still of interest to understand the scaling behavior (2.31) better,
in particular since one may expect that the simplest measures associated to
CFLs should show qualitatively similar behavior for & = 0 and & = 1. This
would be the case for any measure given by a stochastic push-down automa-
ton with a unique start node (and such measures could then be excluded by
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the results for @ = 1 and o« = 2). Probability distributions on CFLs have
been constructed in this way [39], but to define a measure on infinite strings
one should impose Kolmogorov’s consistency conditions, which gives rise to
strong restrictions. In fact, for a deterministic CFL (the deterministic CFLs
form a subset of the unambiguous CFLs where the accepting push-down au-
tomaton is deterministic, i.e. two transitions from a node cannot be labeled
by identical symbols), no string in L can be a prefix of any other, and it
is thus impossible to define a measure on infinite strings in this case. Mea-
sures corresponding to context-free and higher languages should be further
investigated.

A qualitative understanding of the context-free language growth function
(2.31) can be obtained by considering diffusion on the tree of finite automata
drawn in figure 1(b) as a representation of a push-down automaton. We
first consider a case with a fixed number of allowed transitions from each
state, and with an unambiguous (but not necessarily deterministic) CFL, so
that each path beginning with the start symbol S on the stack, and ending
with empty stack, i.e. at the absorbing top node ¢, gives a unique word
in the language. If the k allowed transitions at each node are given equal
probabilities, the probability that a diffusing particle, initially located at the
start node with S on the stack, is absorbed at the top node at discrete time
t = n is equal to

p(S — ¢, n) = gg:)a (43)

where g(n) is the number of words of length n in the language. In a rough
approximation we could neglect the internal structure of the finite automata
in the tree and instead introduce effective transition probabilities, obtained
by averaging over L, from an automaton to itself and those connected to it.
The transition probabilities from a node (automaton) then only depend on
the top element of the stack at that node, so the tree is self-similar.
Diffusion on the backbone of a tree (as opposed to diffusion among the
leaves at a certain level as in [33]) has been treated by several authors [63-
65], e.g. in connection with chaotic transport in Hamiltonian systems. The
Markov tree model in [65] of transport across cantori (see also [66] for a dis-
cussion of 1/f noise in this context) is in fact almost identical to our model of
a push-down automaton accepting a context-free language; we only need to
modify the transition probabilities. The self-similarity of the tree can then
be used (as in [65]) to derive a system of algebraic equations for the Laplace
transforms of the transition probabilities p(a — ¢)(¢), (where nodes are la-
beled by stack content, so that @ is a node with a single symbol « from the
stack alphabet on the stack, and ¢ is the absorbing top node). The time de-
pendence found by transforming the solution of this system back generically
corresponds to asymptotic power law relaxation (possibly multiplied by an
exponential factor) on the tree, which in turn corresponds to the form (2.31)
for the CIF'L growth function. For a more general automaton, where the num-
ber of transitions at a node is not necessarily constant, this approximation
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can be modified by including an absorption probability at each node with
fewer transitions than the maximum, so that all words of equal length still
have the same weight. When diffusion on the tree is considered, an effective
absorption probability at each node can be included without changing the
functional form of the solution.

If, on the contrary, the scaling behavior of (4.1) and (4.2) was found for
the topological entropy, this would give a growth function

g(n) = ce™ (4.4)

with 8 < 1 (for entropy different from zero this would be multiplied by an
exponential factor). This correspond to Kohlrausch relaxation on the tree.
It does not appear to be known whether a context-free language can have
a growth function with asymptotic behavior of the form given by (4.4) [57].
This could only happen for an inherently ambiguous language, where several
paths in the tree correspond to the same word.

In any case, block entropies vanishing according to (4.1) appear not to be
characteristic of unambiguous context-free languages, but it should then be
noted that our understanding of measures associated with context-free and
higher languages is very limited.

References

[1] S. Wolfram, ed., Theory and Applications of Cellular Automata, (World
Scientific, Singapore, 1986).

[2] P. Cvitanovié, ed., Universality in Chaos, (Adam Hilger, Bristol, 1984).

[3] D. Angluin and C. H. Smith, “Inductive Inference: Theory and Methods”,
ACM Computing Surveys, 15 (1983) 237-269.

[4] J. P. Crutchfield and B. S. McNamara, “Equation of Motion from a Data
Series”, Complex Systems, 1 (1987) 417-452.

[5] J. D. Farmer and J. J. Sidorowich, “Predicting Chaotic Time Series”, Phys-
icar Review Letters, 59 (1987) 845-848.

[6] P. Bak, C. Tang, and K. Wiesenfeld, “Self-Organized Criticality: An Expla-
nation of 1/f Noise”, Physical Review Letters, 59 (1987) 381-384.

[7] T. Toffoli and N. Margolus, Cellular Automata Machines, (MIT Press, Cam-
bridge MA, 1987).

[8] S. Wolfram, “Origins of Randomness in Physical Systems”, Physical Review
Letters, 55 (1985) 449-452.

[9] A. Rényi, “On Measures of Entropy and Information”, in Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability,
(University of California Press, Berkeley-Los Angeles, 1961) 547-561.



Complexity Measures and Cellular Automata 437

[10] J. Ziv and A. Lempel, “Compression of Individual Sequences via Variable-
Rate Encoding”, IEEE Transactions on Information Theory, IT-24 (1978)
530-536.

[11] J. Rissanen, “A Universal Data Compression System”, IEEE Transactions
on Information Theory, IT-29 (1983) 656-664.

[12] P. Grassberger, “Estimating the Information Content of Symbol Sequences
and Efficient Codes”, University of Wuppertal preprint WU B 87-11 (1987).

[13] P. Martin-Lof, “The Definition of Random Sequences”, Information and
Control, 9 (1966) 602-619.

[14] D. E. Knuth, The Art of Computer Programming, vol. 2, (Addison-Wesley,
Reading MA, 1981).

[15] G. J. Chaitin, Algorithmic Information Theory, (Cambridge University
Press, 1987).

[16] R. J. Solomonoff, “A Formal Theory of Inductive Inference”, Information
and Control, T (1964) 1-22.

[17] A. N. Kolmogorov, “Three Approaches to the Definition of the Concept
‘Quantity of Information’, Problemy Peredachii Informatsii, 1 (1965) 3-11,
(in Russian).

[18] G. J. Chaitin, “On the Length of Programs for Computing Finite Binary
Sequences”, Journal of the Association for Computing Machinery, 13 (1966)
547-569.

[19] A. K. Zhvonkin and L. A. Levin, “The Complexity of Finite Objects and
the Development of the Concepts of Information and Randomness by Means
of the Theory of Algorithms”, Russian Mathematical Surveys, 25 (1970)
83-124.

[20] K. Lindgren, “Correlations and Random Information in Cellular Automata”,
Complex Systems, 1 (1987) 529-543.

[21] J. Hartmanis, “Generalized Kolmogorov Complexity and the Structure of
Feasible Computations”, Proceedings of the 24th IEEE Symposium on the
Foundations of Computer Science, (1983) 439-445.

[22] M. Sipser, “A Complexity Theoretic Approach to Randomness”, Proceedings
of the 15th ACM Symposium on the Theory of Computing (1983), 330-335.

[23] J. Rissanen, “Universal Coding, Information, Prediction, and Estimation”,
IEEE Transactions on Information Theory, IT-30 (1984) 629-636.

[24] J. Rissanen, “Complexity of Strings in the Class of Markov Sources”, IEEE
Transactions on Information Theory, IT-32 (1986) 526-532.



438 Kristian Lindgren and Mats Nordahl

[25] A. C. Yao, “Theory and Applications of Trapdoor Functions”, Proceedings of
the 23rd IEEE Symposium on the Foundations of Computer Science, (1982)
80-91.

[26] N. H. Packard and S. Wolfram, “Two-Dimensional Cellular Automata”,
Journal of Statistical Physics, 38 (1985) 126-171.

[27] P. Grassberger, “Towards a Quantitative Theory of Self-Generated Com-
plexity”, International Journal of Theoretical Physics, 25 (1986) 907-938.

[28] B. A. Hubermann and T. Hogg, “Complexity and Adaptation”, Physica,
22D (1986) 376-384.

[29] G. Gyorgyi and P. Szépfalusy, “Calculation of the Entropy in Chaotic Sys-
tems”, Physical Review A31 (1985) 3477-3479.

[30] P. Szépfalusy and G. Gyorgyi, “Entropy Decay as a Measure of Stochasticity
in Chaotic Systems”, Physical Review A33 (1986) 2852-2855.

[31] C. H. Bennett, “On the Nature and Origin of Complexity in Discrete, Ho-
mogeneous, Locally-Interacting Systems”, Foundations of Physics, 16 (1986)
5856-592.

[32] G. Parisi, “Facing Complexity”, Physica Scripta, 35 (1987) 123-124.

[33] C. P. Bachas and B. A. Hubermann, “Complexity and Ultradiffusion”, Jour-
nal of Physics A: Mathematical and General, 20 (1987) 4995-5014.

[34] J. Hoperoft and J. D. Ullman, Introduction to Automata Theory, Formal
Languages, and Computation, (Addison-Wesley, Reading MA, 1979).

[35] S. Wolfram, “Computation Theory of Cellular Automata”, Communications
in Mathematical Physics, 96 (1984) 15-57.

[36] P. Grassberger, “Long-Range Effects in an Elementary Cellular Automaton”,
Journal of Statistical Physics, 45 (1986) 27-39.

[37] L. L. Campbell, “A Coding Theorem and Rényi’s Entropy”, Information and
Control, 8 (1965) 423-429.

[38] K.-E. Eriksson, K. Lindgren and B. A. Mansson, Structure, Context, Com-
plexity, Organization, (World Scientific, Singapore, 1987).

[39] K. S. Fu, Syntactic Pattern Recognition and Applications, (Prentice-Hall,
Englewood Cliffs NJ, 1982)

[40] B. Kitchens and S. Tuncel, “Finitary Measures for Subshifts of Finite Type
and Sofic Systems”, Memoirs of the American Mathematical Society, 58
(1985) no. 338.

[41] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact
Spaces, Lecture Notes in Mathematics 527, (Springer-Verlag, Berlin Heidel-
berg, 1976).



Complexity Measures and Cellular Automata 439

[42] H. A. Gutowitz, J. D. Victor and B. W. Knight, “Local Structure Theory
for Cellular Automata”, Physica, 28D (1987) 18-48.

[43] B. Marcus, K. Petersen and 5. Williams, “Transmission Rates and Factors of
Markov Chains”, in Conference in Modern Analysis and Probability, Con-
temporary Mathematics 26, (American Mathematical Society, Providence
RI, 1984), 279-293.

[44] E. M. Gold, “Identification in the Limit”, Information and Control, 10
(1967) 447-474.

[45] J. J. Horning, “A Study of Grammatical Inference”, Ph.D. dissertation,
Computer Science Dept., Stanford University, 1969.

[46] E. M. Gold, “Complexity of Automaton Identification from Given Data”,
Information and Control, 37 (1978) 302-320.

[47] D. Angluin, “On the Complexity of Minimum Inference of Regular Sets”,
Information and Control, 39 (1978) 337-350.

[48] D. Angluin, “Inference of Reversible Languages”, Journal of the Association
for Computing Machinery, 29 (1982) 741-765.

[49] P. Grassberger, “On Symbolic Dynamics of One-Humped Maps of the Inter-
val”, University of Wuppertal preprint WU B 87-3 (1987).

[50] A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power
Series, (Springer-Verlag, New York, 1978).

[51] M. P. Schiitzenberger, “On a Theorem of R. Jungen”, Proceedings of the
American Mathematical Society, 13 (1962) 885-890.

[52] K. Mahler, “On the Taylor Coefficients of Rational Functions”, Proceedings
of the Cambridge Philosophical Society, 52 (1956) 39-48.

[53] O. H. Ibarra and B. Ravikumar, “On Sparseness, Ambiguity and other De-
cision Problems for Acceptors and Transducers” in STACS 86, 3rd Annual
Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Computer Science 210, (Springer-Verlag, Berlin Heidelberg, 1986), 171-179.

[54] M. G. Nordahl, “Limit Sets and Attractors of Class Two Cellular Automata”,
Institute of Theoretical Physics, Gdteborg, preprint (1988).

[55] J. P. Crutchfield and N. H. Packard, “Symbolic Dynamics of One-
Dimensional Maps: Entropies, Finite Precision, and Noise”, International
Journal of Theoretical Physics, 21 (1982) 433-466.

[56] N. Chomsky and M. P. Schiitzenberger, “The Algebraic Theory of Context-
Free Languages”, in Computer Programming and Formal Systems, (North-
Holland, Amsterdam, 1963) 118-161.



440 Kristian Lindgren and Mats Nordahl

[57] P. Flajolet, “Ambiguity and Transcendence” in ICALP 85, Proceedings of
the International Collogium on Automata, Languages and Programming,
Lecture Notes in Computer Science 194 (Springer-Verlag, Berlin Heidelberg,
1985) 179-188.

[58] S. Wolfram, “Statistical Mechanics of Cellular Automata”, Reviews of Mod-
ern Physics, 55 (1983) 601-644.

[59] D. A. Lind, “Applications of Ergodic Theory and Sofic Systems to Cellular
Automata”, Physica, 10D (1984) 36-44.

[60] L. P. Hurd, “Formal Language Characterizations of Cellular Automaton
Limit Sets”, Complex Systems, 1 (1987) 69-80.

[61] W. Li, “Power Spectra of Regular Languages and Cellular Automata”, Com-
plex Systems, 1 (1987) 107-130.

[62] P. Grassberger, “Some More Exact Enumeration Results for 1D Cellular
Automata”, Journal of Physics A: Mathematical and General, 20 (1987)
4039-4046.

[63] S. Grossmann, F. Wegner and K. H. Hoffmann, “Anomalous Diffusion on a
Self-Similar Hierarchical Structure”, Journal de Physique Lettres, 46 (1985)
L575-L583.

[64] A.Erzan, S. Grossmann and A. Herndndez-Machado, “Diffusion on Random
Hierarchical Structures”, Journal of Physics A: Mathematical and General,
20 (1987) 3913-3934.

[65] J.D. Meiss and E. Ott, “Markov Tree Model of Transport in Area-Preserving
Maps”, Physica, 20D (1986) 387-402.

[66] T. Geisel, A. Zacherl and G. Radons, “Generic 1/f Noise in Chaotic Hamil-
tonian Dynamics”, Physical Review Letters, 59 (1987) 2503-2506.



