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A bstract . Various observables meas urin g the complexi ty of an en­
semble of pattern s are discussed , in par ticul ar statistical quantit ies
rela ted to the convergence of block entropies, an d comp utation t heo­
ret ical quanti ties related to a gram matical description of t he ensem ble.
T hese measures of com plexity are applied to one-dime nsio nal cellular
automata, by char acterizing the time evolution of the probability mea­
sure on configuration space in te rms of stochast ic finite automata. In
particular it is found th at t he effective measure comp lexity increases
linearly in time for an addit ive rule with a random initial state wit h
density p ::j:. 1/2. Some results on t he convergence of block entropies
for regular languages are shown, and context-free languages are also
discussed. These results are used in an attempt to interpret the cri t­
ical exponents observed by Grassberger in t he converge nce of block
entropies for certain chaotic cellular automaton rules.

1. Introduction

Many of the systems encountered in physics, biology, and oth er fields consist
of large numbers of fairly simple components that can produce very com­
plex behavior when act ing together. Even in simple model syste ms such
as cellular autom ata [1] and chaot ic low-dimensional dynamica l systems [2]
quite complex behav ior can be seen , both in the sense that the ind ividu al
pat terns or t ra jectories generated may be effect ively random , or may show
signs of comp licated structure in the form of long-range corr elati ons, and in
the sense that the ensemble of allowed pat terns may be very hard to de­
scribe. In general, for an observer facing a complex sit uation, whether it is a
physicist attempting to understand a new phenom enon, the brain confro nted
with maybe 109 bits of sensory data each second, a chi ld learning language,
or someone listening to Schonberg's woodwind quintet for the first t ime, a
reasonable st rategy would be to at te mpt, in one way or another, to model
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the situation. This involves extracting generic fea tures, and separating them
from the noise , or the specific informat ion cont ained in ind ividual patterns.
The resul t might be a grammar for the allowed pat te rns in the discrete case
[3], or an approximate model of the equations of motion in the cont inuous
case [4,5]. Sometimes the grammar need not be explicitly known, bu t may
rather be implicitly contained in a pattern recog nizing st ructure, such as a
parser.

In this art icle we shall consider a number of observab les that measure
either informat ion or complexity. In a sense this is far more t rivial than
the general problem of pattern recogn ition and ind uctive inference , but th e
problems are related, since some of the quantit ies we consider as me asures of
complexity are propert ies of a mo del , such as a gra mmar for a set of st rings .
Some of these observable, will in particular be applied to the spa tial patt erns
gene rated by simple cellu lar automaton ru les. Cellular au tomata have been
considered as simple models of extended dynamical systems, and hav e been
used both in attempts to exp la in phe nomena such as l / f noise [6], an d as tool s
for simulating physical systems [7]. Since they are disc rete systems, they are
naturally analyzed using methods and conce pts from com pu tati on theory,
such as formal languages ) and our main results will concern the relation
between the statist ical and computation theoret ical propert ies of the pat terns
gene rated in cellu lar automaton t ime evolut ion .

Before describing this in more detail, however, we would like to give a
short taxonomy of methods of measuring informat ion , or randomness, and
complexity.

1.1 Randomness

Sequences are com monly considere d random if no pattern can
be discer ned in them. But whether a pat tern is found dep end s
on how it is looked for. Stephen Wolfram

T he patterns which we shall mostly be concerne d with in th is ar ticle are
one-dimensional sequences of symbols, in par ticular sequences produced in
th e time evolut ion of one-dimensional cellular automata. One way of viewing
the concept of randomness [8] is to conside r a st ring of symbols random if no
procedure can detect any regul ari ty which could be used to give it a shorter
description . Various measures of randomness, or informat ion , can then be
though t of as asymptot ic degrees of compressibility of the st ring, given an
allowed class of algor ith ms to detect st ructure in it, and perhaps also some
amount of a priori given information, which could be restricted by a functi on
of st ring length (e .g. by allowing a cer tai n number of queries to an oracle
set). Some examples of quantities that measure random ness are: (our list
does not pretend to be exhaustive)

(a) The various Renyi ent ropies s(a) [9] that can be calculated given
measurements of block frequencies. These include the topolog­
ical entropy (a = 0) and the measure entropy (a = 1) of the
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sequence. Amo ng the Renyi entropies the measure entropy s~ to
some extent plays a dist inguished role, since it has a straightfor­
ward interpretat ion in terms of how much an infinite sequence
can be compressed from the knowledge of all block frequencies.
In fact, universal coding algorithms exist which asymptotically
achieve this degree of data compression for any stationary ergodic
source wit hout any advance knowledge of source probabilities [10­
12]. Many more sophisticated statist ical definitions of ran dom ness
also exist [13-151 .

(b) The Kolmogorov complexity [15,16-18] of a string x, which is the
size of a m inimal program that gene rates x on a universal Turing
machine. Infinite strings of max imal Kolmogorov complexity pass
every conceivable statistical test for randomness [13] , and th ey
in part icular have measure entropy equal to one. Conversely, for
almost all infinite seque nces produced by a stationary stochas­
t ic source the Kolmogorov complexity is equal to the measure
ent ropy [19,20]. Of course, the Kolmogorov complexity is in gen­
eral an uncomputable quantity (though its average over a suitably
chosen ensemble of strings ap parently can be deduced), and it is
thus an extreme case of allowing arbitrary a priori information in
t he framework above. T ime- and space-bounded versions of the
Kclmogorov complexity have also been proposed [21,22]' where
one instead considers the minimal program generating x in poly­
nomial time, or using polynom ial space on the worktape of the
Turing mac hine.

(c) The notion of complexity relative to a class of sources (e.g. all
finite-state mach ine defined sources, which includes the measures
generated at finite t imes by cellular automata start ing from ran­
dom ini ti al states) recently introduced in coding theory by Rissa­
nen [23,24], which combines features from a) and b) . This measure
of information is defined, for a finite string x, as the minimum over
the class of sources of the difference between a source complexity
term and th e logarithm of th e probability of generating the string
x.

(d) The "effective information content" e of a sequence, which was
proposed by Wolfram [8] . Here the class of algorit hms used to
detect st ructure in the string is reduced (in some unspecified way)
to a feasible, i.e. polynomial-time computation. Note that th is
differs from the t ime-bounded Kolmogorov complexities; in that
case we are consider ing the shortest program running e.g. in poly­
nom ial time, here we are concerned with the shortest specification
that can be found in polynomial t ime. This is similar in spirit
to the effective entropy for ensembles of fini te st rings int roduced
by Yao [25], where one considers the minimal code, in te rms of
average code length, that can be produced in polynomial time by
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a probabilist ic Turing machin e.

Eve n if these quantities ten d to agree on large classes of sequences , th ey
are certainly not completely equivalent. This can for exam ple be seen if we
attempt to use them as evolution criteria.for infinite cellular automata. T hen
all Reny i ent ropies decrease in t ime (or at least do not increase, at each time
step f!..s(a) ::; 0, see sect ion 3), and this is also the case for the Kolmogorov
complexity, since evolving the cellular automaton a finit e number of steps
forward in t ime only requires a finit e ad dit ion to the minimal program for
the initial state , which makes no difference in the limi t of infinite st r ings .
For quant it ies of type d), where one is rest ricted to polynomi al-ti me com­
putations, thi s need not necessarily be the case. Even if our limited class
of algorit hms can detect some structure in the sequence at a certain t ime,
it might not be able to accomplish this at the next t ime step, since finding
a predecessor of a configurat ion one t ime step back can be an NP-complete
problem in two and more space dimensions [26]. Even in one dimension,
where a predecessor configuration a fixed number of t ime steps back cer­
tainly can be foun d in time polynomial in t he length of the sequence (though
presumab ly exponential in the number of steps back in time) by explicitly
constructing the regular language of predecessors, the numb er of different
predecessor configurations in general increases expo nent ially with the length
of the sequence . Thus, if we need to find a particular predecessor wit h a short
description this might take expo nent ial t ime )and it then seems plausible th at
any polynomial-t ime regularized quantity in certain cases could increase in
the t ime evolution of cellular automata.

1. 2 Com p lex ity

Alors entre I'ordre et Ie desordre , regne un moment delicieux...
Paul Valery

This sect ion should begin with a remark on semantics, previously em­
phasized by Grassberger [27J, Huberman n [28], and ot hers. Several of the
quantit ies ment ioned above went under the name of "complexity" , and the
word was then used as being synonymous to "information" or "randomness" .
Physicists generally seem to prefer to reserve the word "complex" for st ruc­
tures that are neither random nor regular , but (loosely speaking) show signs
of intricate, perhaps hierarchical organization. In the following we shall use
the word in this sense.

One way to make this notion of comp lexity more precise is to regard
complexit y as a property of ensem bles of pat terns) rather than the individ­
ual configurati ons themselves [27J. A nat ural approach would then be to
define the comp lexity as the size of a minimal descript ion of the ensemble of
pat terns. As an example, in this way a random pattern could be associat ed
to the ensemble of all possible patterns, which has a very simple descript ion,
at least in the case of st rings considered here.
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Some examples of quantities that have been suggested as measures of
complexity are the following;

(a) Various statist ical qua ntities related to the convergence rate of the
finite length block entropies Sn(a) rat her than their actual values
[27,29,30]' such as the effective measu re complexity int roduced by
Grassberger. These quantities essentially measure the amount of
long-range correlat ions contained in a pat tern , or an ensem ble of
patterns . We shall discuss these meas ures more extensively in
sect ion 2.

(b) At least one quant ity related to the Kolmogorov com plexity has
been suggested, Bennet t's "logical dept h" of a pattern [31], which
is the t ime requ ired to produce it from th e minimal program.
Clearly th is quantity is small both for very regu lar patterns and
for completely ran dom patterns, where the minimal program is es­
sent ially a copy of the pat tern . Even though it presumably shares
the property of uncomputability with t he Kolmogorov complexity,
one might still hope th at the generalized Kolmogorov complexity
classes mentioned above, such as the classes of all pat terns pro­
duced from logarithmic size programs in polynomial or exponen­
tial t ime, could be characterized in alternative (e.g . statistical)
ways. This could have interesting impli cat ions for biological sys­
tems.

(c) In the par ticular case when the pat tern are t rees rather th an
st rings, a measure of complexity has been introd uced by Huber­
mann and Hogg [28]. Even in the case of a probability dist ribu­
t ion on a set of st rings t his could be relevant , since the probabil ity
distributio n could be decomposed into pure states, an d in some
cases t hese could show an approximately ultrametric hierarchical
organizat ion [32] . The complexity of trees also t urns out to be
measur ed by the rate of relaxat ion for ultradiffusion in the hier­
arc hica l space described by the tree [33] .

(d) Another class of complexity meas ures are t hose related to a de­
scription of the ensemble of pat terns. For seque nces of symbols
th is description could be a grammar of a formal language (e.g.
[34]), or a weighted grammar if a meas ure on the ensemble is
considered . Different classes of formal languages can be cherac­
terized by' th eir accept ing automata, and th e complexity could for
example be measured by the number of nodes in the automaton
[35], or by th e ent ropy of a probability dis tri but ion on the nodes
[27]. We shall discuss th is further in the next sect ion. This ap­
proach requires that a grammatical description of the ensemble
is known. For one-d imensional cellular automata th is descript ion
can in principle be calculated at any finite time (though this might
not be computationa lly feasible), if the ensemble of initi al states is
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known. In most physical situat ions one would however encounte r
the difficult problem of inferring thi s descript ion from data. Fur­
thermore these concepts are considerably less developed in highe r
dime nsions.

Finally one can note tha t thi s state of affairs leaves some room for furt her
developments. Most of these m easures of complexity are of limited app licabil­
ity. The quantities men tioned in a) and d) might seem very gene ral (at least
if appropriate generalizations to higher dimensions could be constructed) ,
but unfo rtunately th ey are all divergent in very complex environments, an d
they ar e not eas ily computed in pr actice.

In the followin g sect ion we first review, interpret , and in some cases
genera lize the definitions of various stat ist ical and computation t heoret ical
meas ures of complexity, and discuss th e rela tions between them. We t hen
briefly discuss whether the computat ion theoretical quantities can be com­
pu ted when the grammar is not known from th e outset, and finally we prove
some results on the generic form of th e convergence of finite length block
entropies for measures corr esponding to regular languages. T he convergence
of block ent ropies for cont ext-free languages is also discu ssed. Section 3 deals
with cellular automata at finite t ime, and st arts with a characterization of
the exact time development of the meas ure on the space of infini te sequences
in terms of probabilisti c finite automat a. We then ap ply some of the concepts
from sect ion 2 to th e tim e evolut ion of cellular automat a, in particula r to an
addit ive cellular automaton r ule star t ing from a random initial stat e, but with
a density of ones different from 1/ 2. It is shown that in this case th e effect ive
measur e complexity increases linearly in time . Sect ion 4, finally, contains a
discussion of the attractors and limit set s of cellular aut omata. We attempt
to interpret the crit ical exponents observed numerically by Grassberger [36]
in the convergence of block entropies for certain chaot ic cellular automaton
rules. These numerical results indicate that the attractor in these cases does
not correspond to a regular or an unam biguous context-free language.

2. Entropies and com plexity measures

We sha ll now consider some of the quant ities mentioned in the introduction
more in detail. Let us begin by defining the Renyi entropies. Suppose that
we have a finite alphabet of symbols E, and for each integer n a probability
dist ribution on t he st rings of length n in E* (E* denotes the set of all finit e
strings over E). T his could for example correspond to the block probabili t ies
of a single infinite st ring, or an ensem ble of infinite st rings . T he Renyi ent ropy
of order c is then defined by [9J

(2.1)

where the block entropies Sm (<» are given by
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(2.2)
1

Sm(a ) = 1 _ a log( L p· (u)).
JO'I=m

Here t he sum is over all st rings (J of length m, and the base of the logarithm
is a, the number of symbols in E. For Q == 0, (2.1) is t he to pological entropy,
and in the limit a: -+ 1 the measure entropy Sw Using a coding procedure,
the measure entropy can he interpreted as the minimal average code length
per symbol in t he limit of infinite st rings. Thi s means that we are at tempt ing
to minimize I = L-p(u.)N.. where N. is the length of the code word that
corre sponds to (h . For 0' ::f:. 1, we are inst ead minimizing an average "code
length of order a" I,, (a ) [37], where

a " ' -aN )I,,(a ) = - - log(L.p(u. )e..... . ~ S,, (a ).
1 - a •

(2.3)

For Q < 1, thi s is equivalent to the minimizat ion of a total cost, where an
ex ponent ial cost funct ion has been associated to each code word .

T he Renyi entropies measure t he information content , or randomness,
of a sequence. A sequence with a certain ent ropy can st ill be more or less
complex, and one way of capturing this concept is to consider the convergence
rate of the block ent ropies Smeal . For the moment we restri ct ourselves to
t he case a = 1. The effect ive m easure complexity (EMC) introduced by
Grassberger [27) is then defined as

which can also he expressed as

00

TJ = - L m.6.2Sm +I ,
m= l

(2.4)

(2.5)

where 6.Sm = s.; - Sm_ l ~ 0 and 6.'Sm = 6.Sm - 6.Sm_1 ~ O. The
total information contained in the correlations of a sequence can be divided
into independent cont ribut ions kn = -.6.25n from block entropies of different
length s n [38), which shows t hat ~ can be interp reted as the product of
an average correlation length TJ / kCOTr and the total corre lational information
kCOT r = L:kn • The effective measure comp lexity can also be written as an
average Kullback information (relative information)

(2.6)

where 13m is a st ring of length m preceding o« in the sequence . This rep­
resents the average informat ion gain when the dist ribu tion p(u) is replaced
by p(uLB), or equivalently the average informati on stored in a semi-infinite
sequence about its cont inuat ion. 'When n addit ional symbols Un are added
to a semi-infinite sequence {3, an average inform ation n . s#J is gained. T he
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remai ni ng n(l - sp) bits of information are contained in th e st ructure of th e
ensemble, and can be div ided into one pa rt which is th e correlational infer­
ma.tion contained in Un, and one part which (if convergent) is equal to fJ in
the limit of large n . The EMC is divergent if th e block entropies converge
slower than lin, a phenomenon which can OCC Uf in more complex env iron­
ments, since when st rong long-range correlat ions are present, a semi-infin ite
sequence could sto re an infinite amount of information about it s cont inuation .
We show at the end of thi s sect ion that in the less comp lex situat ion where
th e ensemble of st rings correspon ds to a regular language, with a measu re
generated by a finite automaton, t he block ent ropies in many cases converge
as

(2.7)

In parti cular t he EMC is always finite if the auto maton has a non-zero sta­
t ionary probability distribu tion on its nodes. If the block entropies 8 m con­
verge as above, the differences f:j.S m converge exponent ially. T his rate of
convergence has been used as a measure of the complexity of t rajectories in
dynami cal systems by Gyorgyi and Szepfalusy [29,30J who defined a quant ity

, =- lim ~ 10g(L'.Sm - s" ).
m - oo m

(2.8)

These quant ities can be generalized to arb it rary Renyi ent ropies; we can for
exam ple define 7] (0') in terms of the convergence rate of Sn(O')'

1)(a) = lim (Sm(a) - ms(a)),
m_~

(2.9)

and similarly for 1'(0'). One could also conte mplate other definit ions, not
necessarily equivalent to (2.9), that redu ce to 7] when a ---+ I , such as a
correspondence of (2.6), where we form a weighted average of the relat ive
informatio n of order 0' ,

(2.10)

We now turn to quan ti ties that involve a grammat ical description of the
ensemble of pat tern s. Th is descript ion could be th e gram mar of a formal
language (given here as an accepting automaton) if only the set of allowed
sequences is considered, or a measure generated for example by a finite au­
tomaton. Th e reader wishing an int roduct ion to formal languages and com­
putation th eory could turn e.g. to [34J, and to the article [351 for applicat ions
to cellular aut omata. Languages with associated probab ility dist ribut ions
are for examp le encountered in the lit eratu re on syntactic pattern recogni­
t ion (e.g. [39]) . Very briefly, a formal language is any subset of E", t he set
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of finite st rings over the symbol set E. The Chomsky hierarchy of regular I

context-free , context-sensiti ve and unrestricted languages classifies (recur­
sive) languages according to the complexity of the automata needed for their
recognition.

R egular languages correspond to finite aut omata, which have a finite
number of internal states (no des in a transition graph) form ing a set Q, and
a transition function 6 : Q x E -+ Ql which means that the arcs in the
transit ion graph are labelled by symbols in E. A st ring a = 0"1 . . 'O"k belongs
to t he language L accepted by th e automaton if t here is a path labelled
by <71 •• • <7k from the st ar t node S to a node in the set F of allowed final
nodes. As long as no consider ation is given to the measure, deterministic
finit e automata, where a certain sequence can only be obtained in one way,
are equivalent to nondeterministic, where several arcs leaving a node may
carry the same symbol, since for any regular lan guage L a uni que minim al
deterministi c automaton accepting L can be const ructed. In general this
procedure cannot be perfor med when a probability distribution on L is taken
into account ; the class of measures where the underlying finite automaton
is nondeterministic is larger than that where we on ly consider deterministic
automata. Thi s yields two classes of measures generated by finite automata.
The semi-group measures investigated in [40] correspond to deterministic
automata wit h a uniqu e star t node, and since they can be written in te rms
of a finite-dimensional transition matrix, they are in many ways similar to
Markov measures. In part icular arbitrary Renyi ent ropies can be calculated
from the eigenva lues of the matrix obtained by raising each eleme nt of the
transition matri x to th e power Q . Each such semi-group measure is t he image
of a Markov chain under some cellular aut omaton rule (which is finite-to-one
on th e space of infinite sequences) [40], but in general I even for add itive rules I

the measures generated in cellular automaton time evolut ion belong to the
larger class we now describ e.

A measu re of thi s class is given by a finit e automaton with transi tion prob­
abilit ies as well as symbols assigned to the stat e transitions, an d equipped
with an ini t ial probability distribution on its nodes. For each symbol G'k ,
k = 1 . . .a , we th en have a t ransition matrix P. (G'k) , and the matr ix obtained
by summing over symb ols, p. = 2:P.(O"k), is an ordinary stochas tic t ransit ion
matrix wit h row sums equal to unity. This yields a probability distribution
on the st rings of length n in L for any n j if the vect or Qj represents th e ini tial
probab ility distribution, and we allow all nodes as final nodes, we have

(2.11)

where fJ = (1, 1, . . . , 1) . This set of probability dist ributions extend s to a
unique shift- invar..iant measure on the set E Z of hi-infinite st rings over E if
th e Kolmogorov consiste ncy condit ions (e.g. [41,42]) are fulfilled. It can
easily be checked that this is the case if Qj is an equilibrium probability
dist ribution on the automaton. Measur es belonging to th is larger class can
be classified accord ing to the nature of th e underlying finit e automa ton I
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which is either determi nist ic (but with an ini tial probabili ty distribution on
nodes), for example in the case of the finit e t ime meas ures for surjective rul es,
or nondeterministic. In th e first case the measure ent ropy can be calculated
exactly as

s" = I >(j) L; p(<7 Ii) log - ( 11 ·)
j <1 EE P a)

(2.12)

(2.13)

(where p(j) is the equi librium probabi lity dist ribut ion on the nodes of the
aut omato n), while in the mu ch more subt le second case, it appears that
ent ropies can only be calculated exact ly in part icular cases [43].

Context-free and higher lan guages can also be represen ted by t ransit ion
graphs , but th e graphs are th en infinite . Context-free languages arc accepted
by pushdown automata, i.e. automata with a st ack. The use of th e stack
can be rest ricted to only push and pop operations (an d no move) [34], which
means that one can represent this st ructure as an infinite self-similar tree
of finite automata, see figur e 1. T he nodes here represent all states with
a cer tain stack content , and their internal st ruct ure depends only on th e
sym bol at the top of the stack. T he arrow s thus summarize a number of
t ra nsit ions in both directi ons, and the bra nch ing rat io of th e t ree depends
on the numb er of symhols in the stack alphabet (which need not equal E).
An acceptable word mu st terminate with the stack em pty, i.e. at th e top
node (or we could equivalently use acce ptance by final state) . This means
that the ent ropies of context-free languages should behave similar ly to th e
auto-correlat ion function for diffusion on a self-sim ilar tree; we shal l discuss
this fur ther in section 4.

Sim ila rly, an ar bitrary Tur ing machine can be simulated by a two-counter
machine [34}, which has two stacks where except for a start sym bol at th e
bot tom of t he stack, only one symbol is used. T his structure could be drawn
as (one quadrant of) a two-dimensional array of finit e automata, see figur e
1. W hen arbit ra ry stack moves are allowed, the t ransitions become ra ther
complicate d, and th is rep resentation is less usefu l.

Given a mechanism with int ernal states which describes our ensemble,
various quan ti ties meas uri ng the complexit y of the ensemble can be intro­
duced [27,35]. T hese are essent ially entropies of the equilibrium probabili ty
distribution on the nodes, or internal states . We should distinguish two cases ;
we could either cons ider automata that only rep roduce the set of allowed se­
quences, or we could conside r probabilisti c automata th at are required to
reproduce the measure . In th e first case it suffices to consider determin­
ist ic au tomata (for regul ar languages) and one can define the algorit hm ic
complexity as th e number of nodes in the m inimal deterministic auto maton
accepting the language [351,

v = in fl og N (A ),
A

(A is the class of determi nist ic automata acce pt ing the language). U th ere
is a measure on the ensemble of infinite st rings, t his induces a probability
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(0)

.... :... ...., .... '"
(b) (0)

Figure 1: Accept ing automata for (a) a regular language, (b) context­
free languages, (c) unr estricted languages.

distribution on t he nodes of any automaton acce pti ng the language, and
Grassberger defined the set complexity as the entropy of this distribution
[27),

a = inf(L; p(j) log (1)).
A j Pl

(2.14)

T his quantity may be finite for many infinite automata accepting context-free
and higher languages, but on th e other hand , th e restriction to determ inist ic
automata is not as meaningful in that case, since i t excludes certain lan­
guages.

If we now consider the class A' of probabilist ic automata that reproduce
a certain measure (an d the underlying finit e automata are now in gene ral
nondeterminist ic, as ment ioned above) , one can define

v' = i)l.flog N(A' ),

Tl = inf(L; p(j) log (1)),
At j P J

(2.15)

(2.16)

(2.17)

inf(L;p(j ) log (1) - lim L; P("n)L; p(jl"n) log-( 11 ))
At j P J n .....oo Un j P J Un

= in,f(L; p(j ) L;P("nlj ) log p(,,( nl1)\
A i O'n p Un.

where v ' and TI are the cases 0' = 0 and 0' = 1 of the Renyi entropy T(O') of
the probabi lity distribution on nodes. T he quantity T I represents the aver­
age information contained in the state of the automaton; in T21 which is the
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true measure com plexity (TMC) introduced by Grassberger [27], we have
subt racted a ter m which represen ts the am ount of information that asymp­
totically remain s in the aut omaton. This term vani shes if asympt ot ical ly one
for almos t all sequences can uniquely determine at which nod e the sequence
started , which means that the probability dist ribut ion pUIO"n) singles out one
par t icul ar node. We conjecture that this is always the case when the under­
lying finite automaton is deterministic , while in the nondeterminist ic case
the number of paths that corresponds to a sequence increases with length,
and this statement need not be valid (counterexamples can easily be found ,
e.g. some of the automata discussed in section 3). T he qu ant ity 7 2 can also
be written as an average Kul lback informat ion in an alogy with (2.6). T here
is an obvious inequ ality Vi 2 7 1 2 7 21 and it is also evident that the infor­
mation about the future sequence carr ied by the st ate of the automaton is
larger than or equal to t he information th e preceding part of the sequence
contain s about it s continuat ion , i.e . the effective measure complexity TJ [27 ].
One also can show more formally that 7 2 2 TJ :

Using p(<rn) = L;p(<rnlj )p(j ), and p(<rnlj )p(j ) = p(j l<rn)P{<rn) for any
nod e i , we can rewrite t he block entropy Sn as

1
I>(<rn) log -(-)
ern P (In

= I:>(j) I>(<rnlj ) log-(1 10) +
j "n P (In J

+ I>(j) log _(l ) - LP(<rn)I>(j l<rn) lag-( 11 ) =
i P J!Tn j P J (In

= Lp(j) LP{<rnlj) log - ( 1 10) +"0
j <1n P an J

Here the first term is smaller than or equal to n . S JJl since

(2.18)

(2.19)o < J~~ P(l1m ) Ep{<rnlj)p(j l l1m) lag~~I~~)

= J~~P(l1m ) ~ p(<rnl l1m)log p(<rn

11I1
m)

-LP(j)LP(<rnlj)log-{1 1')
j "n P an J

= n. s"-LP(j)LP(<rnlj)lag-{ 11 ' )'
j!Tn pan)

and thus Sn ::; u . sJJ + 7 2 , which in turn implies that 72 2 TJ · T he Kullback
information used in thi s derivat ion is always well-defined , since p(anl.Bm) = 0
implies th at p{<rnlj)p(j ll1m) = 0 for any j . We th en have the follow ing set of
inequalities:
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(2.20)

This in part icular shows that the EMC is finite for any measure given by
a finite automaton, provided that it has a non-zero equilibrium probability
distribution. We have not been able to find a useful extension of (2.20) to
arbitrary Renyi entropies.

Several of the quantities mentioned above involved a grammatical descrip­
tion of the ensemble. If the initi al ensemble is known, and the dynamics is
given for example by a cellular automaton rule, one could in principle evolve
t he descri ption of the ini tial state forward in time to obtain the grammar (or
measure) at any finite time. But thi s might not be computationally feasi­
ble, and in a more reali sti c physical situat ion one is confronted with a set of
pat terns without any a priori knowledge of a grammatical description. T he
problem of inferri ng th e grammar of a form al language has been studied in
comput er science (e.g. [3]); here we just intend to make some br ief remarks
about the possibilit y of calculating quanti ties like (2.13).

Suppose that a sequence u'i , WZ , . . . of strings from an unknown form al
language L is presented to us, and that we make a sequence of guesses
Gn(WI, .. . , wn) about the grammar, assuming that L belongs to some class U
of languages. Th e class U is said to be identifiable in the lim it [44] if there is
an inference method M such that for any accept able presentat ion WI, W z , .. .

of a language in U (a mini mal requirement is that the presentat ion includes
all st rings in L at least once), the correct gram mar is obtained after a finite
number of conjectures. This is a rather weak notion of convergence, since the
algor ithm M need not know wheth er it has converged to the right answer.
In a similar way, we could call an integer-valued function f (Wh W z, . . .) of
an infinite sequence computabl e in t he limit, if there is an algorithm wit h
finite subsequences WI, ... , W n as input which converges to the right value
for some finite n. It is known [44] that the class of regul ar languages is not
ident ifiable in the limi t from positive presentations [i.e. when no exa mples
from the complement of L are given), and we have modified this arg ument
to show that th e regular language algorit hmic comp lexity (2.13) is not com­
putable in the lim it in this case . But for ensemb les of infinite st rings thi s
is not rea lly relevant, since the argument depends on th e fact that all finite
languages are incl uded among the regul ar languages as allowed hypotheses,
and a finite language cannot be th e set of permitted n-block s of an ensem ble
of infinite strings. This indicates that a different space of hypotheses should
have been chosen. Furthermore, thes e difficulties are only encounte red [or a
negligible subset of all presentations; all cont ext-free languages (and thus all
regular languages) are known to be identifiable in the limit with probability
1 [45J.

In practice, one would need a computat ionally feasibl e procedure for es­
t imating the grammar. Assuming that we are given both a positive sample
of st rings from L, and a negat ive sample of st rings not in L, a natural ap­
proach would be to find t he min imal finite automaton (or regular expression)
compatible with th e samples. Thi s has been shown to be an NP-complete
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problem [46,47J. For the more difficult (and more relevant to us) problem of
only positi ve presentations, polynomial-t ime algorit hms exist if one considers
certain subclasses of the regular languages, e.g. the k-reversible langu ages
(48). In cases where the EMC can be calculated numerically, a lower bound
on the algori thmic comp lexity v' of the automaton A' giving the measure
is obtained from the inequality (2.20). This does not necessarily yield any
informat ion about the algorit hmic complexity n of the deterministi c automa­
ton A corresponding to the set of sequences, since A is obtained from A' by
a combinat ion of a reduction (when tr ansition probabi liti es are removed,
nodes may become equivalent) , and a conversion from a nondeterministic to
a det erminist ic automaton. (It seems likely th at a lower bound on n could
be obtained from /,(0), which measures the difference between the first and
second eigenvalue of the transit ion matri x of A.) Instead of the algorithmic
complexity, one could attempt to calculate the entropies (1, TI and T2, which
should behave significant ly better when the grammar is approximated . The
set complexity has been calculated for the symbolic dynamics of iterated
one-dimensional map s by Grassbe rger [49].

We now turn to the question of the rate of convergence of finite length
block entropies for measures generated by finite automata. For the Renyi
entropies with a = 0,2,3, 4, .. . we can prove that generically the block en­
tro pies converge as

(2.21)

for all measures gener ated by finite automata, for other values of a our results
are incomplete.

To prove the statement (2.21), let us first introduce some concepts from
the theo ry of formal power series in noncommuting variables, following the
book by Salomaa and Soittola [50). A formal power series is a formal sum

s = L: Cj W j ,

UI;EM
(2.22)

where the coefficients c, in our case are real numbers (an d in a more general
case belong to a semiring A), and the Wi are the elements of a monoid M (a
monoid is an object that sat isfies every axiom for a group except the existence
of an inverse for every element) . Th e monoid t hat will actually enter here is
the free m onoid generated by a finite set E, which is simply the set E- of all
finite st rings of symbols in E. The product W I * W 2 of two strings WI and W2

in E'" is formed by concatenat ion, WI * W 2 =WI W2.

\lve sha ll prim arily be concerned with the important class of formal power
series called rat ional series, which are rational funct ions in noncommuting
variab les, i.e. one component of the formal solut ion to a linear system of
equations in noncommuting variab les. As we shall see, these series are closely
related to the regular languages. There are various operat ions that preserve
the rat ionality of forma l power series, a less obvious one which we shall need
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later is the Hadam ard product r 0 r' of two series) which is defined by term­
wise multiplication of coefficients ,

(L; c;w;) 0 (L;diwi) = L;(c;d;)wi' (2.23)

An important theorem which characterizes the class of rational series
is the Representation Theorem of Schiitzenberger [50,51]' which states the
following:

Any rational series can be written as

r = L; (aT l'(w),B)w,
wEM

(2.24)

and conversely any formal power series of the form above is rational.
Here J.L : M ~ Amxm is a representat ion of the monoid M in terms

of m X m matrices with elements in the semiring of coefficients A. This
means that the matrices I'(w) sat isfy I'(wtll'(w, ) = I'(w.w, ) for any Wh

W2 in M . Furthermore Q' and f:J are constant vectors of length m. The
connection between rational series and regular languages is evident if we let
I'(w = 0'• . . . an) = 1'(0'1) " ' I'(an), where 1'(0') for a E E are the transition
matrices given by a finite automaton accepting the regular language, and
we let the vectors Q' and f:J be given by the start node and the allowed final
nodes (e.g. aT = (1,0, ... , 0) and,BT = (1, 1, .. . , 1) if all nodes belong to the
set F of final nodes). We can also see that Schiitzenberger's Representation
Theorem applies to the measures defined by finite automata according to
(2.11); the series

s = L;p(w)w
".

(2.25)

is then a rational series, and taking the Hadamard product of s with itself n
times we find that

sen) = L;pn(w )w

'"
(2.26)

is a rational series for any integer n 2: 1 (or rather n 2:: 0, if the coefficient of w
is defined as 0 when w rt L). For a rational series r , the generating function
G(z) obtained by replacing each symbol from 2:: in r by the commuting
variable z ,

G(z) = L;( L; c(w) )zm,
m Iwl=m

is an ordinary rational function, which means that

a!:)= L; pn(w)
Iwl=m

(2.27)

(2.28)
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are t he Taylor coefficients of a rational function . These necessarily satisfy a
linear difference equ ation [52], which means that they are of the form

(2.29)

(2.30)

where the Pj(m) are polynomials in m . T he matrices jt( n)( w ) that en­
te r if s(n) is written as in (2.24) are obtained by taking tensor products,
I'CnJ(w) = I'(w) 0 .. .0 1'(w), and have dimension (diml'(w))" , which means
that th e num ber of terms N(n) increases exponentially wit h n . For the Renyi
entropies with a = n (n i' 1) th is implies that

IS ry C om- m """" S+ - + e-
m m

in nondegenerate cases, where PI is a constant. In a degenerate case, the
corrections to Sm/m may behave as log(m)/m , an d we can give a sim ple
example illust rating this for the topological ent ropy. The number of words
in the regular language L = 0*1* = {onp for arbitrary n , p 2: O} clearly
increases linearly with length, which means that the topological ent ropy van­
ishes, since 8 m is proport ional to log m . It has also been noted in [53] that
the growth function for a regular language, i.e. the number of words of length
m , asymptotically increases exponentially, pclynomially, or approaches a con­
stant . Nonstat ionary ensembles of this kind may occur as cellular automaton
limit sets (see the examp les of limit sets in [351 and [54]), hut the automata
defining the ensemble the n have tr ansien t par ts , which are remov ed if a mea­
sure on the ensemble is introduced according to (2.11), since a stationary
probability distribution on nodes is needed to define the meas ure.

When the cha racteristic equat ion giving rise to (2.29) has complex roots,
oscillatory behavior could be seen in the convergence of block entropies, par­
t icularly in the topological case. Thi s was obser ved in [55] for th e topological
entropy ~8n (0 ) in sym bolic dynami cs of the logist ic equation.

The arg ument above does not extend to arb itrary Renyi entropies in its
present form, except in restricted cases. For the sem i-group measures in [40]
there is a unique start node for each sequence, and entropies can be calcul ated
by raisi ng each element of the transit ion matrix to the power 0:'. In this case
(2.3L1) is valid for all 0:'. We also exp ect this to be the case for all measures
of the form (2.11) with a determinist ic underlying finite automaton, since
the probabili ty of a sequence of any length is then given by the sum of a
fixed number of terms (equal to the number of nodes), and asymptot ically
this sum is dominated by it s largest term for almo st all sequences, which
asymptotically singles out a unique start node.

For unambiguous context-free languages (CFLs), where each word ha s
a unique derivat ion, the arg ument above could be modified by rep lacing
ra t ional by algebraic ser ies [50]. But since we have not discussed what classes
of measures could be associated to CFLs , we shall here primarily restrict
ours elves to the topological entropy. In t hat case a classical theorem [56]
states that the st ruct ure gene rating function ((2.27) wit h c(w) = 1 if wE L,
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c(w) = 0 otherwise) of an unambiguous CFL is an algebraic function, and
from the asymptotic behavior of the Taylor coefficients of algebraic functions
it then follows that asymptot ically the numher of words in L increases as [57]

g(n ) ~ cn""Y"(Lc;wi), (2.31)

where K. is rational, '1 is an algebraic number, and in the oscillating factor ,
c, and Wi are algebraic wit h Iwd = 1. The topo logical hlock entropies then
converge as log(m )/ m . A simp le example is given hy the context-free lan­
guage of all finite strings consisting of an equal number of the sym bols 0 and
1. Then (for n even)

g(n) = ( n ) ~ f22" +0 (n- 3/'2" ). (2.32)
n/2 V;;;

The asymptotic behavior of the topological entropy for context-free languages
will be compared to the auto-correlation function for diffusion on a self­
similar tree in section 4, where we also briefly discuss measures corresponding
to context-free languages.

3. Cellular aut omata at fin it e t im e

Let us now apply some of these concepts to the generation of complexity in
the time evolution of infinite one-dimensional cellular automata. The cellular
auto mato n mappi ng on infinite sequences is induced by a local transformation
¢> : E2r+I -+ E, where E is a finite set of symbols, in our examples E =
{O,l} , and r is the range of the transformation. Many cellular automata are
irreversible systems, and this is reflected in a decrease of spatial entropies
[58,59,201. In fact all spatial Renyi entropies sat isfy t.s(a) $ 0 at each t ime
step ; we can easily generalize the proof involving the measure entropy given
in [20J:

and

= Ii ITlm.....oo

1 1
(-Sm(a, I + 1) - -Sm(a , I))
m m

1
(- - 2-(Sm(a, I + 1) - Sm+', (a , I))
m+ r

2r
+ ( 2 )Sm(a,t+l ))m m+ r

(3.1)

1= 1 _ a log( L pQ(um, 1+ 1))
1Cl'I=m

= 1 ~ a log( L ( L p(u m +2" I))")
1Cl'I=m ,p(Cl'm+2r)=Cl'

s _1_ log( L pQ(um+,,, I) ) = Sm+2,(a, I),
I - 0: lCl'j=m+2r

(3.2)
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which means that the first term in (3. 1) is .:s 0, an d since the second ter m
van ishes as m --t 00, we obtain

L',5(<» :':: O. (3.3)

If the initial state has well-defined block probabilit ies and ent ropy, thi s will
be the case at every subsequent time as well, and (3.3) is then valid at every
t ime step.

The quant ities defined as measures of com plex ity in t he previous section
can also be used to characterize cellular autom ato n time evolut ion, but before
we can do this we need to discuss the time evolution of the probability m ea­
sure on t he space of sequences. Prev ious work on cellu la r au tomata has often
studied the generat ion of complexity by considering the set of all allowed se­
quences at t ime t, starti ng from arbitrary init ial configurations. For finite
time t, this set corresponds to a regular language [35,60], which in principle
can be constructed explic it ly. As was described above, one way to measu re
the generated complexity is to count the number of nodes in the minimal
determ inist ic finite automaton accept ing the language (finite t ime set) O(t).
In practice the algorithmic comp lexity of the finite time sets increases very
rapidly for chaotic rules, and cannot be calculated by explicit construction
of O(t) except for the first few time steps. Furt hermore, this way of mea­
sur ing complexity does not take statistical aspects of the time evolut ion into
account, and gives equal weight to common behavior and phenomena occur­
ring with vanish ing probability. A treatment of the t ime evolut ion of the
measure would be a complement to th is approach and show several phenom­
ena more clearly.

One example is given by class 2 ru les, which by definit ion asymptotically
simulate a shift map for almost all init ial states. Th e set of sequences on
which the rule simulates a shift map is a simple regular language, which can
easily be constructed from the cellular au tomaton rule [35], and it seems
reasonable to call th is set an attractor. Even though the attractor is a sim­
ple regular language , and the individual patterns genera ted seem to become
less complex with time as transients disappear , the algorithmic complexity
in general increases polynomially, often linearly, in time for class 2 cellular
automata. One reason for thi s is t hat the limi t set, which includes configu­
rat ions occurring with vanishing probabili ty, may be more.com plicated t han
the attraetor [54]. This is illustrated even in the simple case of rule 128
discussed later in th is section.

Another example is the case of surjective rules, where the set of all possible
sequences is a fixed point of the time evolution. Certain of these rules can st ill
show chaot ic behavior, and if we instead measu re the complexity generated
starting from restricted classes of sequences, or even from random sequences
with a density of ones p different from 1/2, the behavior will be more similar
to other chaotic ru les. Thi s is exemplified below for an add itive rule, where
we show that the effect ive measure complexity increases linearly in t ime when
the init ial state has p # 1/2.
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The time evolution of the meas ure for cellular automata has been st udied
by Gutowitz, Victor and Knight [42] in an approximation (" local st ru ct ure
th eory") where the block prob abi liti es above some length n are obt ained by
Bayesian extension , which means that th e lengt h m correlat ional informa­
tions km van ish abo ve that length. This approximation seems to work very
well in many cases . Here we shall inst ead consider the exact t ime evolut ion of
t he meas ure, which in some cases will reveal phenomena, such as a divergin g
effective meas ure complex ity, that cannot be seen in a truncation to a fixed
block length.

If the ensemble of init ial states is given by a probabili stic finit e automat on
A in the way described in section 2, the measures at finite t ime can be calcu­
lated by a procedure very similar to that of applying th e cellular automaton
mapping to an ordinary finite aut omaton descr ibed in [35]. For r = 1 we
can label the nodes in th e result ing automaton ¢(A) by connect ed pair s of
arcs in A, and the allowed transit ions and transi tion probabilit ies in ¢(A) are
then given by the arc-to-arc t ransit ions in the original auto maton . To define
a measure, we also need an initial prob ability distribution on t he nod es of
¢(A). Th is distribution should in general be th e equilibrium distribution for
the automaton to consistently define a measure on hi-infinite sequences, and
one can check by explicit calcul ation that an equilibrium distribut ion on A is
in fact mapped to an equ ilibrium distribution on ¢(A) . If a node is labelled
by two arcs where th e first starts at node i , th e new initial prob abil ity dis­
t ribut ion should be p(i ) multiplied by the t ransit ion probabilities of the arcs
to give the correct measure, and thi s turns out to be exact ly the equilibrium
distribution on the new automaton. For surject ive rules, we obtain a measure
where the underlying finite automaton is deterministic, for ot her rules it is
in general nondeterministic. One can sometimes simplify the resu lting mea­
sure by identifying equi valent nodes just as for ord inary finite automata [35]
(nodes are equ ivalent if they have identi cal transitions, i.e. with equa l proba­
bilities and labelled by ident ical symbols, to all equivalence classes of nodes),
but we know of no general procedure to determine whether two measures of
this kind are equal. Let us now illust rate th is by a few simple examples:

As a first example, let us consider ru le 4 (we number CA rules according
to the coovention of Wolfram [58]). Thi s rule maps 010 to 1, and all othe r
length three blocks to 0, and thus it reaches a fixed point at t = 1 for any
initial state, since (P = tjJ. One can easily calculate the limi t language and
the corresponding measure in th is case; st ar t ing from an uncorrelated init ial
state with a density of ones equal to p one obtains the aut omata shown in
figure 2.

Th is measure is an example of a nondeterministi c au tom aton where an
exact expression for the measure ent ropy can be written down, since the oc­
currence of the symboll in a sequence implies a uniqu e st ate for the aut oma­
ton. The cond it ional prob abi liti es p(10 . .. 011) sat isfy (where the sequence is
read from right to left , and we define an = p(10n I1))
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(a)

I
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(b)
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Figure 2: Probabilistic aut omata for rule 4, giving (a) the initial state,
(b) the limit set, (c) t he invariant measure.

n-1
an = (1- P)an_1 + L (l - p)pk-1an_k

k=3

"" an - an-l + p(l - p)a n-2 - p2(1 - p)an_3 = 0

(3.4)

and the measure ent ropy can be expresse d in term s of the solut ion to th is
difference equation as the following infinit e ser ies :

2::~=1 an log t
s~= L:~=l (n +l)an '

(3.5)

As anot her sim ple example we consider rule 128, which maps 111 to 1
and all ot her length three blocks to O. In this case we have arbitrarily long
t ra nsients, and all block probabilities approach zero excep t for blocks con­
sisting only of zeroes. The meas ures at the first few t ime steps are shown in
figure 3 (the finite time sets can he found in [35]). At time t the measure is
given by an automaton wit h 2t +1 nodes , where the non-zero elements of the
trans it ion matrices 1'(0) and 1'(1) are given by 1'(0),,2 = 1 - p for i = 1 . .
2t +l , 1'(0)",+1 = 1'(0),'+1,1 = P for i = 2 . . .2t , and 1'(1)11 = p. These nonde­
terminist ic aut omata could be converted to infinit e dete rm inist ic aut omata
of the form shown in figure 3(d), since once again the symbol 1 determines
the state of th e aut omaton. An express ion for the measure ent ropy could
in princip le be given, since the t ransit ion probabilities obey a recursion rela­
tion pelon11) = p(10n-1Il) - p2t+1(1_ p)p(10n- (2t+2) 11), hut numerical results
are more easily obtained directly from the block probabilities given by the
automaton.

Even th ough th e algorithmic com plexity v' obviously diverges with t in
this case, the ent ropy of th e probability distribution on the nodes 71 re­
mains finite . If we calculat e the equilibrium probabi lity distri bution on the
aut omaton giving t he measure at t ime t , we find that
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(d)

Figure 3: Automata giving t he measures for rule 128, (a) at t = 0,
(b) at t = 1, (c) at t = 2, (d) the st ructure of an equivalent infinite
deterministic automaton.

I- p" 1 1 l - p"
T1( t) = - - (p log - + (1 - p) log -1-) = - -s.(O), (3.6)

l-p p -p l - p

which asymptotically ap proaches a constant. T he inequality (2.20) then
shows that '2 and 1] also remain bounded, and since it cannot be uniquely
dete rmined at which node a sequence wit h an init ial segment of more than
one zero started, '2 is st rict ly sm aller than ' 1 at every finite t . Class 2 rules
in gene ral appear to be cha racterized by asymptot ically finite '1, '2 and 1).

This seems reasonable, since for class 2 rules we expect that informat ion in
general only spreads over a finite distan ce, an d the EMC should then remain
finite.

If we now turn to the additive rule 90, where the value of a cell is given by
the sum modulo 2 of its neighbors at the preceding time step, then if p # 1/2
the measures at fini te time are given by the de Bru ijn graphs shown for the
first few time steps in figure 4. Start ing with p = 1/2 one clearly remains at
the invariant measure.

These graphs have 22t nodes at time t, and if each node is labeled by a
binary address ala2 " . a21 we have the following transit ions:

ala2 · . . au ---Jo a2 ... a2/1 with probability p,

labeled by s = 1>'(a,a, ... a"l)

and

a1 a2 . . . a2t ---Jo a2 ' .. a2tO with probability 1 - p,

labeled by 1 - s = 1>'(a ,a, . . . a"O),

where cP is now cons idered as a map ping <p : E1+2 r
-j. EI for ar bitrary 1.

One can show that th ere are no pairs of equivalent nodes in this graph . T he
equ ilibrium probability dist ribution should satisfy
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»<:r:'<.

o I 0 I • 1 PO I 0/ I • I ~ 1

(a) (b) ./ p 0 / /e

~.~
(0)

Figure 4: Automata giving t he measur es for rule 90 at (a) t = 0, (b)
t = 1, and (c) t = 2.

( ) { p(p(oal . .. a,,_,) + p(la, . . . a,,_I)) if a" = 1
pal · · .a-u = (1- p)(p(Oa , . .. a,,_,) + p( la , . . . a,,_I)) if a" = 0,

(3.7)

which is solved by

(3.8)

where the function n l (w) counts the number of ones in w. If we then calcu­
late the entropy of th is distribution at t ime t, we find that th e quantity 71

intro du ced above inc reases linearly in t ime when p =j:. 1/ 2,

T,(a, t) _ 1_ log( L: p"(a, . .. a,, ))
I - a a, ...a"

1
21

1_
a log(p" + (1 - p)")

= 21 s(a, 0).

(3.9)

Vve have not yet shown that these automata act ua lly minirnizethe entropy for
the probabi lity dist ribution on nodes, but we shall now calculate the effective
meas ure comp lexity 1], which turns out to equal (3.9), and the inequality
(2.20) then shows that th is is the minimum value. Th is means that we
should calculate the rate of convergence for the finite length block ent ropies
Sn at arbitrary times . We first take a single step forward in time and consider
1= 1, and the calcu lat ion is done for rule 60 (where a,(I) = (a'_I(1 - 1) +
ai(t - 1)) mod 2) instead of ru le 90. Since an uncorre lated init ial state is
used, t he results for ru le 90 can be obtained by considering two indepen dent
copies of the t ime evolutio n of rule 60. For ru le 60, each infinite sequence
has exactly two predecessors, and t he block probabilities at t = 1 are
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p(CT = CTI •• • CTm ) = L: pn,{a'l( l _ p)m+l- n,{a'l,
u':t/>(u')= u

and the block entropies at t = 1 are given by
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(3.10)

_l_ log( ~ I=' (m+1 ) (~ ( l _ p)m+H + (1 _p)i pm+l-i )· ). (3.11)
1 - a 2 i =O J

Using Stirling's formula, we find that the expression summed over has two
ma xima (when a > 0 and p"# 1/2) at

p' 1 p. - (1 - pl·
J = p" + (1 _ pl. (m + 1) + 2 p" + (1 _ pl. + O(l /m ), (3.12)

and at the value of j obtained by interchanging p and (1 - pl . The sum can
then be approximated by two Gaussian integrals, and after some amount of
calculat ion it is found that

1 1 1
-Sm(a, t = 1) = (1 + - ) log(p· + (1 - p).) = (1 + -). (a, t = 0)
m m m

(3.13)

to order 11m. This can be extended to arbitrary times by first noting that
for t = Z" , where a,(t ) = (ai_'(O)+ a,(O)) mod 2, we can use (3.13) to obtain

ry(a, t = 2n) = 2n.(a, t = 0). (3.14)

For the additive rules we are discussing, sea:) is constant in time, which
implies that the change in 7/(0:) in one time step satisfies

L'.ry(a) = lim (Sm(a, t + 1) - Sm+2,(a, t) + 2r. (a)) S .(a). (3.15)
m_oo

This shows that the value of 1) (0') at t = 2" is the maximum value allowed,
and this value can only be reached if 811(Q) is maximal at eve ry ste p in time.
At an arbitrary time t , we then have

ry (a , t ) = t · .(a, 0)

= 0

For rule 90 we get

1
fora>Oand p"#2

1
for a = 0 or p = 2.

(3.16)
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Figure 5: The increase of t he effective measure complexity in one ti me
step for rule 90, shown as a function of th e density of the init ial state .

~(a, t) = 2t· s(a ,0)

o

1
for a > 0 and p # 2"

1
for a = 0 or p = 2'

(3.17)

which equals (3.9), so t hat in par t icular T 1 = 72 = 1J at any t in t his case.
T he dependence of 6.1J on the initial density p is illustr ated in figure 5.

The discontinuity at p = 1/2 might seem peculiar at first , but i t can be
und erstood in the following way. Suppo se an infinite sequence ... 01100101
given by the automaton is known up to a certain point. When p f:. 1/ 2, the
sta te of the au tomaton can always be determin ed wit h probability I , but if
p is increased towar ds 1/ 2, a la rger segment of the sequence is necessary to
est imate the state. Th is means that TJ increases as p approaches 1/2 , since
the inform ation is cont ained in longer blocks. When p is exact ly 1/ 2, all
correlat ions disappear I the automaton collapses to a single node, and the
EMC changes discont inuously to zero.

If we finally consider the t ime evolut ion of an arbit rary cellular automaton
rule with s symbols per site and range r , starting from an uncorrelated initial
state, the nondete rmini st ic automaton giving t he measure at t ime t has at
most S21"t nodes , which means t hat

v' = log, N(A) ~ 2rl, (3.18)

and from (2.20) it then follows that the effect ive measure complexity is
bounded by

~ ~ 2rt . (3.19)
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For rules with a positive sum of left and right Lyapunov exponents, we ex­
pect that asymptotically the EMC, which measu res a product of average cor­
rela tio n length and tot al corre lat ional information , in general will increase
linearly.

4. A sy m ptotic b ehavior of cellular au tomata

For class 2 cellular automaton rules, some observations on the asymptot ic
behavior were made in th e previous sect ion. In that case, the a.ttrector [61],
the set of sequences that dominates the asy mpt ot ic behavior an d represents
the behavior for typical init ial states, is in general considerably simpler than
the limit set , i.e. th e intersect ion of all finite time sets . This could conceivably
be th e case for some chaotic cellular automaton ru les as well, even though
th e algorithmic complexity of their finite t ime sets grows very rapidly in
t ime, indicatin g th at th e limi t set is more complicated in th is case (limit
sets of cellular automata in general need not even corres pond to recursively
enumerable sets [60]). If the att ractor happened to correspond to a regular
or a context-free language, it might be possible to deduce its grammati cal
st ructure from the results of simulat ions, using various induct ive inference
methods [3].

Some general conclusions on the struct ure of the attractor (invariant mea­
sure) can be drawn from numerical data such as Fourier spe ct ra [61] or finite
length block entropies. Here we shall discuss what can be learn ed ab out the
struct ure of the at tr actor from numerical dat a for the block entropies of rule
22. This cellular automato n rule, which maps 100, 010 and 001 to 1, and
other length 3 blocks to 0, has been extensively studied as an example of a
rule showing chaot ic behavior, both by direct simula t ions [36,62], and in the
local st ruct ure theory app roximation [42]. These results indicat e that this
rule is st rongly mix ing, an d that th ere is rapid convergence to an invariant
measure. The space-t ime pattern s generated cont ain significant long-range
corre lat ions; in [36], algebraic decay towards zero was found for the fini te
length block ent ropies t1Sn (i.e. for a = 1),

(4. 1)

both for spa t ial and temporal block entropies, with different crit ical expo­
nents f3 < L Figure 6 shows the finit e length spat ial block entropies Sn(a)
for 0: = 0, 1 and 2 up to lengt h n = 18 obtained in a fairly smal l scale
simulat ion of ru le 22. Periodic boundary condit ions were used on a lat t ice of
length 50 000 (th e dat a shown were taken at t = 10000). The data for a = 1
and a = 2 are well fit ted by

(4.2)

with f3 = 0.95± 0.OI, which is in agreement with the results in [36) for a = l.
The crit ical exponent {3 does not appear to dep end significant ly on Q' in this
regime. A more extensive numerical invest igat ion of thi s phenomenon is in
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Figure 6: Finit e length block ent ropies Sm(a ) for rule 22, where (+)
stands for a: = 0, (0) for a = 1, and (e) for a: ::: 2.

progress. At any finite t ime, the block entropies 6..sn decay exponent ially if
n is sufficiently large, but assuming that the behavior in (4.2) characterizes
the attractor, we can immediately conclude from (2.30) that t he at tr actor
cannot correspond to a regular language. More precisely, th is means that
finite ly generated measures (corresp onding to regular langu ages) of the form
discussed in sect ion 2 are excluded. If more complicated measures, possi­
bly without finite specificat ion, on a regular language L are considered , any
allowed behavior for the block entropies could be reproduced, since the mea­
sure could be (approximately) concentrated to a subset of L corresponding
to a non-regular language.

Our remarks on context-free languages are more speculat ive. For un­
ambiguous context-free languages, we know from (2.31) that in the topo­
logical case, finite length topo logical block ent ropies generically converge as
log(m )j m . The topological entro py both converges more slowly and is more
sensitive to finite size effects than the measure entropy (as is evident in fig­
ure 6), and our numerical data do not admit any firm conclusions in this
case. It is st ill of interest to understand the scaling behavior (2.31) better,
in par t icular since one may expect that the simplest measures associat ed to
CFLs should show qualitat ively similar behavior for" = 0 and " = I. Thi s
would he t he case for any measure given by a stochast ic push-down auto ma­
ton with a unique st art node (and such measures could then be excluded by
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the results for 0: = 1 and 0: = 2). Pro bability dist ribut ions on CFL s have
been constructed in th is way [39], but to define a measure on infinite st rings
one should impose Kclmogorov'e consistency condit ions, which gives rise to
st rong restrictions. In fact , for a dete rministic CFL (the deterministic Cf' Ls
form a subset of the unambiguous Cf'L s where the accepting push-down au­
tomaton is deterministic, i.e. two tr ansitions from a node cannot be labeled
by identical symbols), no st ring in L can be a prefix of any other, and it
is thus impossible to define a measure on infinite st rings in this case. Mea­
sures corresponding to context-free and higher languages should be further
invest igated.

A qualitat ive understanding of the context-free language growth funct ion
(2.31) can be obtained by considering diffusion on the tr ee of finite automata
drawn in figure l(b) as a representation of a push-down automaton. We
first consider a case with a fixed num ber of allowed tra nsitions from each
state , and with an unambiguous (bu t not necessarily determinist ic) eFL, so
that each path beginning with the star t symbol S on the stack, and ending
with empty stack, i.e. at the absorbing top node rPl gives a unique word
in the language. If the k allowed transit ions at each node are given equal
probabilitie s, the prob ability that a diffusing par t icle, initially located at the
start node with S on the stack, is absorbed at the top node at discrete t ime
t = n is equal to

p(S --> 1>,n) = gl:), (4.3)

where g(n) is the numb er of words of length n in the language. In a rough
app roximat ion we could neglect the internal st ructure of the finite automata
in the tree and instead introduce effective transition probabilit ies, obtained
by averaging over L, from an automaton to itself and those connected to it.
The transit ion probabil iti es from a node (automaton) then only depend on
the top element of the stack at that node, so the tree is self-similar .

Diffusion on the backbone of a tree (as opposed to diffusion among the
leaves at a certain level as in [33]) has been t reated by several authors [63­
65], e.g. in connect ion with chaot ic t rans port in Hamiltonian systems. The
Markov tree model in [65] of t rans port across cant ori (see also [66] for a dis­
cussion of l / f noise in this contex t) is in fact almost identical to our model of
a push-down automaton accept ing a context- free language; we only need to
modi fy the transition prob abilities. The self-similarity of the tree can then
be used (as in [65]) to derive a system of algebra ic equations for the Laplace
transforms of th e transit ion prob abil ities p(a --> 1»(t), (where nodes are la­
beled by stack conten t , so that a is a node with a single sym bol a from the
stack alphabet on the stack, and c/> is the absorbin g top node). The time de­
pendence found by tra nsforming the solution of thi s system back generically
corresponds to asymptotic power law relaxation (possibly mult iplied by an
exponential factor) on the tr ee, which in tu rn corresponds to the form (2.31)
for the eFL growth functi on. For a more general automaton, where the num­
ber of t ransitions at a node is not necessarily constant , this approximation
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can be modified by including an absorption probability at each nod e with
fewer t ransit ions than the max imum, so that all words of equal length st ill
have the same weigh t. Wh en diffusion on th e tree is considered, an effect ive
absorpt ion probability at each node can be included without changing the
functional form of t he solutio n .

If, on t he cont rary, th e scal ing behavior of (4.1) and (4.2) was fou nd for
the topological entro py, thi s would give a growth function

g(n) = c e,n' (4.4)

wit h {3 < 1 (fer ent ropy d ifferent from zero this would be multiplied by an
exponent ial factor). This correspond to Kohlrausch relaxation on the tree.
It doe s not appear to be known whether a context -free language can have
a growth funct ion wit h asy mpto t ic beh avior of the form given by (4.4 ) [571.
T his could only happen for an inh erent ly ambiguous language, where several
paths in the tree correspond to the same word.

In any case, block ent ropies van ishing accordi ng to (4.1) appear not to be
char acter istic of unambiguou s context-free langu ages, but it should then be
noted th at our understanding of measures associated wit h context- free and
higher lan guages is very limi ted .
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