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Abstract. Strongly coupled, dissipative systems of planar rotators
are considered with the dynamics described by the autonomous sys-
tem dyp/dt = w + vL(p) where the nonlinear coupling I depends on
the phase differences @; — ; of N rotators. It is pointed out that the
simplest mechanism of the asymptotic synchronization in such systems
can be described in terms of relative equilibria in the N — 1 dimen-
sional phase space transverse with respect to the barycentric motion.
Particular examples of systems with short-range and all to all interac-
tion are considered and the stability problems discussed. The simple
entrainment picture based upon the presence of relative equilibria is
excluded for large systems with all to all interactions and randomly
distributed frequencies w;. Recently reported critical behavior of the
synchronization phenomenon in these systems must then have more
complicated dynamic origin.

1. Introduction

It is well-known that ensembles of structurally similar, non-linearly cou-
pled subsystems may exhibit striking cooperative behavior in strongly non-
equilibrium regimes. This self-organization effect bears some resemblance
to much better understood ordering phenomena for equilibrium and near to
equilibrium states. Open dissipative systems which never come to rest are
often considered in this context, with the dynamics modeled by some pos-
tulated equations of motion involving only part of the system’s degrees of
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freedom, and an implicitly present external drive supplying energy to the
system.

To this class belongs a recently popular model of N coupled rotators
where each structural unit is described by an abstract phase variable ¢;.
This variable in the absence of any interaction varies monotonically with time
at constant rate (frequency) w;. Here the frequency parameter describes the
“rotator’s drive” (i.e., its intrinsic activity caused by some unspecified energy
supply). The coupling term, usually depending only on the relative phase dif-
ferences ; — ;, describes the energy redistribution throughout the system.
The common features of such systems are the possibility of phase locking (an
asymptotic correlation among phase variables of all rotators, largely inde-
pendent on the initial conditions) and synchronization (or “entrainment”),
where all rotators, or a macroscopic part of them, asymptotically move with
a single common frequency (.

In the biological context such models were first considered by Winfree
[1,2] for describing the synchronization in ensembles of “biological clocks”.
He was also first to indicate that large communities of such rotators with
randomly distributed frequencies may exhibit a kind of “phase transition”
between asynchronous and synchronous “phases”. This idea has been pur-
sued and developed into an interesting qualitative theory by Kuramoto and
co-workers [3-7]. A most detailed study has been presented there for a model
with “all to all” interaction, decreasing with the system size as 1/N. As it
is well-known in equilibrium statistical physics, this is the simplest model
interaction for which the “mean field” approximation (single structural unit
in self-consistently averaged environment) becomes exact in the N — oo
limit, with the still preserved possibility of a “classical” critical behavior. It
has been shown that a dynamical rotator model of this type with random
[requences also exhibits the critical behavior at the onset of synchronization
in the N — oo limit, although the corresponding “order parameter” behaves
quite differently from that in thermodynamic phase transitions.

Non-random systems of planar rotators were earlier proposed by J. C.
Neu [9] (as models of coupled chemical oscillators), and by other investigators
[10-13], as models of temporally patterned sequences of signals generated by
neural . :tworks governing rhythmic activities of muscular groups. Typical
systems considered in these papers are essentially one-dimensional arrays of
rotators with generally asymmetric coupling constants, which may vary along
the chain. In particular a profound mathematical analysis of the resulting
“frequency plateaus” has been given in [12] for chains with a linear gradient
in native rotator frequences and weak nearest-neighbor coupling.

General systems of rotators with weak, in some sense, and otherwise arbi-
trary coupling are, on the other hand, a well-known and long studied subject
in non-linear mechanics since the time of Poincare (see V. I. Arnold [14] for a
review of these beautiful results including ergodic theorems, structural stabil-
ity and resonance problems). Although complete synchronization is usually
absent for weak coupling, such systems still exhibit the locking phenomenon
to the free frequencies, where the ratios ¢;/¢; of the phase variables are
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asymptotically equal to the corresponding [requency ratios w;/w;. In the
context of neural networks, these features of rotator systems were investi-
gated by F. C. Hoppensteadt [15], who came to the coupled rotator model
via his model of a voltage-controlled oscillator neuron.

In this paper we concentrate on rotator systems with sufficiently strong
interaction allowing, under specific circumstances, the complete synchreniza-
tion and yet another type of phase locking with asymptotically constant phase
differences of all rotators. We stress the role of coupling symmetry by in-
troducing an elementary geometric description (section 2), together with the
concept of an “entrained” solution. The examinations of entrained solutions
becomes much simpler for gradient systems (section 3). There we show that
fully synchronized states are nothing but the states in the basins of attraction
of an asymptotically stable relative equilibrium. The presence or absence of
these equilibria depends on the coupling strength and sign, and may not
depend on the system size. The latter statement is illustrated in section 4
by an example of a strongly coupled two-dimensional periodic rotator array
with two frequencies. It is shown that this system has at least one relative
asymptotically stable equilibrium, and behaves in the neighborhood of this
equilibrium like a system of two coupled rotators.

Finite, non-random systems with “all to all” 1/N interaction are reex-
amined for this point of view in the main part of section 5. By initially re-
stricting the use of the “order parameter” concept to relative equilibria only,
we carry out the analysis of the synchronization and the related mechanical
stability problem without any further assumptions (like the one introduced
in [7] where the rotator ensemble is partitioned into synchronized and asyn-
chronized populations). This section contains a simple instability theorem
for sufficiently large systems with “inhibitory” (accentuating the phase differ-
ences) coupling and finite frequency spread. On the other hand, systems with
sufficiently strong “excitory” interaction are proved there to have at least one
relative asymptotically stable equilibrium by a standard perturbation argu-
ment with respect to the inverse coupling parameter.Relative equilibria, if
present, provide the dynamically simplest mechanism of the complete syn-
chronization in finite rotator systems. Howeverg their role becomes marginal
for large systems with 1/N interaction and random, identically distributed
frequences. We prove (section 5, proposition 3) that the asymptotic synchro-
nization in the above described sense is an event with vanishing probability
in the N — oo limit. In conclusion, synchronization effects in such systems,
if any, must have much more complicated (and interesting) dynamical origin,
with an open possibility for the presence of strange attractors for N > 4 as
well as an intermittent character of the synchronization phenomenon. When
the complete dynamical analysis of partial entrainment effect is not available,
then the approximate scheme proposed in [7] is certainly the best known the-
ory.

The concluding section 6 contains remarks on applications and future
work. The most immediate application of the planar rotator model (with
strong internal coupling) could be made in the description of firing patterns
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of neural networks. Some open problems are listed: in particular finite frus-
trated systems of planar rotators (very recently investigated by Daido [16],
in the framework of the “mean field” approximation). These problems seem
particularly promising, as they may exhibit a rich structure of relative equi-
libria. Like in the Hopfield-Little model (see, e.g. [15]) these equilibria can
be used as information storages with each equilibrium manifesting itself by
a specific vector of locked phases.

2. Model

Consider a system composed of N structural units where the state of the i*®
unit (called a rotator) is described by a single real variable ;, and where some
rotators exhibit spontaneous cyclic activity with characteristic frequencies w;.

We assume that the dynamics of the system are governed by the evolution
equation

dp/dt = w +~L(w), (2.1)
where the C' vector field I : RY — RY describes the coupling between
rotators, ¥ measures the interaction strength, and w = (wy,wa,...,wy) is

the vector of “innate” frequencies, w # 0. We will additionally assume that
the autonomous system (2.1) does not have equilibrium states:

w+ L) # 0, for all ¢ € R, (2.2)

In other words, at any instant ¢ at least one rotator of the system has non-zero
instantaneous angular frequency, and the system “never dies” in biological
terms.

Let n € RY be an arbitrary vector with integer components (n € ZV),
and ny be a special vector of this type with all components equal to unity:

ng=(1,...,1). o (2.3)

We will restrict ourselves to vector fields I' periodic in ¢; variables

D¢ + 27n) = (y), for all ¢ € RY ne gV, (2.4)
and invariant with respect to the translations along the n, direction,

L{g + any) =L(p), for all p € RY, @ € R. (2.5)

Differentiating equation (2.5) with respect to the parameter o, one ob-
tains

DI(p)ng = 0, (2.6)
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where DI'(¢) € L(R") is the linearization of I, thus necessarily singular for
all .

‘The symmetry (2.5) is equivalent to the assumption that I is a function of
the phase differences ¢; — ;. As usual [17], the presence of a one-parameter
group of symmetries allows us to reduce by one the order of the system
(2.1). Let us decompose vectors g into “longitudinal” (parallel to n,) and
transverse W parts:

p=0n,+%, (ng,¥)=0,0=N"(gn), (2.7)

with 6 having the meaning of a “barycentric” coordinate. Due to the sym-
metry (2.5) we have I'(p) = (). If t = (%) € RY is a solution to the
system (2.1, then its longitudinal 0(¢) and transverse W(t) parts satisfy the
equations:

dofdt = Qy + v N7HL(L()), na), (2.8)
where

Qo 1= N7 (w,ng), (2.9)
and

d¥/dt = w — Qany + 704 (2(2)), (2.10)
where

T (2) := 0(%) = NTHL(D), n4)n (2.11)

is the transversal component of the field I'.
Conversely, let ¢ — ¥(t) € R¥~! be a solution to the system of the n —1
order:

d¥/dt = w - Qung + 1L (Z), L, : RV - RV (2.12)
With this solution given, one may solve the equation
40/dt = @ +7/N(LEE), ) (2.13)

by simple quadrature, and thus construct by superposition (2.7), a solution
to the system (2.1).

For a given ¢ the solutions of the equation (2.13) are parameterized by
the initial value 6(0) = 6. Putting 0(t) = 0 + 5(t) one has @(t) = n({)n, +
Oony + ¥ (t) where the vector fgny + ¥(t) has constant component along the
ny direction. This is why it will be often more convenient to work with yet
another system of equations:

de/dt = w — Qany + 1L, (9) (2.14)
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where w — Q,ny + T4, () is a transverse vector field in RN with the longitu-
dinal component along n, always equal to zero. We will denote the solutions
of equation (2.14) by ¢ : R — R™. The system (2.14) has an obvious first
integral: N

(¢(2), ng) = const. (2.15)

i.e., its phase trajectories are entirely contained in hyperplanes having com-
mon normal vector n,. The families of solutions belonging to two different
hyperplanes are in one-to-one correspondence under the respective transla-
tion along the n, direction, and ¥ components of the system (2.1) solutions
are simply ¢ type solutions of the equation (2.13) contained in the plane
(¢,ny) = 0.

Below we select the constant in equation (2.15) in a most convenient way
for a discussion of the singularities, and only later on we will pass to the
U-type solutions. Formally, the above-described procedure corresponds to
working with the N scalar equations of the type (2.10) written in the origi-
nal coordinate system, including the “redundant” equation. Here one avoids
the explicit introduction of new independent coordinates (like, e.g. phase
differences) keeping in mind that such elimination may only overshadow sys-
tem’s symmetries.

3. “Entrained” solutions

Definition 1. We say that an integral curve t — @(t) of the system (2.1) is
an entrained solution if there exist such a constant §} and vector ¥y so that

e(t) = (U + 6(t))na + (1) (3.1)
where

ili-l-moo )= 2 (3.2)

cliglm §(t)/t=0. (3.3)

) is then called the entrained frequency of the system, and ¥; is the vector
of locked phases. It is easy to see that properties (3.1) and (3.2) are not
independent as any solution to the system (2.12) with the property

Jim ¥ =¥, (3.4)
(or an equivalent solution to the system(2.13)) induces an entrained solution
of the system (2.1). Indeed, constructing the function:

0t) = Qut + 0o +y N7" | (L(Z(7), ng)dr. (3:5)

t
o]

We see that
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Jim 6(2)/t = Qu + 9 N7HD(L), na) (&8)
using nothing but L'Hopital’s rule. Hence
Q =0, +9 N (L(L), n) (3:4)

is the corresponding entrained frequency.
If in addition to equation (3.3)

Jim_dw(t)/dt =, (3.8)

then ¥, is necessarily an equilibrium point of the system (2.14). It can be
proven that this is always the case for gradient systems (see section 3).

Below we will concentrate on entrained solutions induced by singularities
of the vector fields in equation (2.12) (or equation (2.14)). Obviously, any
singularity ¥, of the vector field w — Q,n; + 7L, (¥) induces at least one
entrained solution of the form:

8(t) = Qt + b, (3.9)
¥(t) = 9, (3.10)

Following the terminology already used by Poincare, we will call such
solutions relative equilibria of the system (2.1). If ¥, is an asymptotically
stable equilibrium of the system (2.12) then each integral curve of the sys-
tem entering the basin of attraction of ¥, is an entrained solution of the
system (2.1); see figure 1. One may call such entrained solutions relatively
asymptotically stable (r.a.s).

Returning to our original assumption of the non-singular character of the
vector field w+ I'(p), we see that it can be trivially satisfied, e.g., for a large
class of systems with an initially transverse vector field I and nonvanishing
average frequency (1,. The presence of true equilibria in the original system
(2.2) additionally complicates the analysis of possible entrained solutions and
this problem is excluded here from consideration.

4. Entrainment in gradient systems

An important subclass of systems with the dynamics described by equation
(2.1) are gradient ones, where the vector field I is a gradient of a C'*-scalar
function Uy : RY — R:

L(¢) = —grad Uo(p)- (4.1)

Consequently, the vector field w + v I'(\F) is then the gradient field of the
function

U(p) = —(w, ¢) + 7 Us(p)- (4.2)
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Figure 1: Schematic presentation of an entrained solution. The vector
field w + v I'(g) is invariant with respect to translations along the ny
direction. Its projection w — Q14+ Iy, () looks identical on trans-
verse hyperplanes (@, n,). If the projected field has an asymptotically
stable equilibrium then an entrained solution (dark line) is possible.
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Below both the functions Uy and U will be called potentials.
If the vector field I has the symmetry (2.5) and has the potential Uy, then
integrating ' along a segment with endpoints ¢ and ¢ + any one obtains

Uo( + any) = Us(p) — o(L(g), ma)- (4.3)
Let us define the “transverse” potential U, : RN — R by

Uir(9) = —(w — Qung, ) + 1Vo(@) + N, na)(L(g), ma)]. (44)

Putting, as usual, ¢ = ¥ + fny, we have from equation (4.3):

Utr(ﬁa) Utr ) L —(w ﬂa..d: E’.) 7 UU(lI’) (45)

i.e., U;, behaves identically on all (y,n;) = const. planes, and its gradient
field is purely transverse (U, has a vanishing directional derivative along the
n, direction). Using (2.6), one can check that Uy, is the potential of the
vector field defining the system (2.14) thus being also a gradient system.

If a gradient field I is initially transverse and has the symmetry (2.5)
then the potential Uj is invariant with respect to the translations along the
n, direction. Conversely, any system (2.1) with the translationally invariant
potential Up.

Us(¢ + any) = U,(gp) for all g and « (4.6)

is obviously described by a transverse vector field. The entrained solutions, if
any, for such systems have necessarily only one entrained frequency: {1, = (.

Let us restrict the potential Uy, to the plane (¢, n,;) = 0, and let ¥,, be an
isolated minimum of the restricted potential. Then ¢ = ¥, + (c/N )n, are
the isolated minima of the potential Uy, restricted to the planes (,ma) =6
even if the potential U, is not translationally invariant along the n, direction.

Exploring standard results for gradient systems (see, e.g., [18]) we see
that each such minimum is an asymptotically stable equilibrium of the gra-
dient system (2.14), and thus induces a family of r.a.s. entrained solutions.

Let us also note that for gradient systems one may prove that the vector
of locked phases is an equilibrium point of the system (2.14). Indeed, if
lim ¥(t) = ¥; for some trajectory ¢(t), then ¥; is the (unique) w-limit point
of the solution t — U(t) to the system (2.14), and all w-limit points of a
gradient flow are equilibria [18].

In conclusion, the search for families of r.a.s. entrained solutions of gradi-
ent systems is equivalent to the finding of all isolated minima of the potential
Uir(), restricted to one of the planes (p,n;) = const. This is equivalent to
finding all the sinks of the vector field w—Qany+7L,, () in RV, Restricted
isolated extrema of the potential U, can be easily identified for sufficiently
large | 7 |, if the potential U, itself has an isolated extremum. By the
well-known perturbation lemma U, will also have an isolated extremum at
W, (1/7) for sufficiently large values of the coupling parameter, with ¥; being
a continuous function of the parameter 1/7.
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Interaction graphs

Consider a finite system of IV rotators where the components of the vector
field I can be written in terms of binary interactions

Ti(e) = Y Jin gir (05 — @) (4.7)
k,j

and where parameters Jj, are not necessarily symmetric in j, k indices. Ab-
scribing to a given j* rotator a vertex j and the set of oriented (ingoing)
edges {(7,k) : Jjrgjr (p; — k) # 0}, one obtains a digraph structure of
interacting rotators.

Particular topological features of this digraph may further facilitate the
search for entrained solutions.

In most of the published studies the interaction between two rotators ¢
and j has been chosen in a specific functional form:

gik(0; — wr) = sin{p; — pr). (4.8)

It can be shown [3,10,13] that this type of interaction can be considered
general for systems of weakly coupled structural units where each unit (with
possibly complicated “internal dynamics”) has a limit cycle. The coordinate
w; (7 =1,...,N) is then a “position” coordinate on the 7™ cycle, and sin-
type interaction corresponds to the leading term in perturbation series.

We will consider the interaction (4.8) as a generic one for coupled rotator
systems allowing arbitrary values for the coupling constant . All systems
with symmetric J;), and interactions of the type (4.8) are, of course, gradient
ones with the potential:

Us() = 3, Jix cos(p; — pr) (4.9)

where summation is over all of the edges of the interaction graph. Hence the
related vector field I is here necessarily tranverse. Introducing unit vectors
§; = cos pje; + sinje,, attached to each vertex of the interaction graph,
one may write the potential U, in the form ¥ Jji(s;,8). This potential is
obviously invariant with respect to the uniform rotations of all vectors s;
through the same angle o — a symmetry operation equivalent to the above
discussed translations in the @ space along the n, direction. In this repre-
sentation U, coincides with the configurational part of the Hamiltonian of
an intensively studied and well-known equilibrium model of classical planar
magnets. Resulting analogies were exploited to some extent in [4]. However,
the dynamics of such planar magnetic systems could be quite different from
that postulated in equation (2.1), as such magnetic systems are typically
considered as conservative.

One more equivalent description of the rotator system is given in terms
of the complex variables z; = exp(iy;). In particular, the arithmetic mean of
these variables, p = N™1¥; z;, is a useful quantity for systems with uniform,
all-to-all, interactions (see section 6).
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Figure 2: Two-dimensional periodic system of planar rotators with
two native frequences.

5. Two-dimensional lattice of rotators

As a simple example of an arbitrarily large system exhibiting perfect syn-
chronization, we consider first a finite two-dimensional array of rotators with
two characteristic frequences w; and w; occupying vertices of a rectangular
set A C 2% in a chesshoard fashion (figure 2).

We will assume that only nearest neighbors interact and introduce peri-
odic boundary conditions, for which points of A can be viewed as located on
a two-dimensional torus. We will show that for sufficiently large v such sys-
tems have at least one class of entrained solutions irrespective of the system
size. These are solutions induced by the “ground-state” of the potential

U(p) = =Aw(Y i — 3 ) + 73 cos(p; — r), (5.1)

jeh kel

where I; and I, are subsets of A occupied by w;- and w,-type rotators re-
spectively. Here Aw = w; — 0, = (w; — wy)/2, and the summation in the
interaction term goes over all pairs of nearest neighbors.

To find the ground state of Uy, let us divide the system into square pla-
quettes (figure 3), ascribing to each plaquette the potential

Up(®as 8y 0: 95) = — (A w/4)[(pa + ¢y) — (08 + vs)]

+ (7/2) co8(pa+0p) + 08(i25+ 05) + c08(ipy +05) + cos(i2s + ¢a)].(5.2)

The total potential U, can then be considered as a sum of plaquette
potentials with suitably chosen sets of plaquette variables. The plaguette
potential U, itself is evidently invariant with respect to the uniform shift
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Figure 3: Single plaquette of four rotators and its vertex variables.

in all its variables (translations along the (1,1,1,1) direction in the corre-
sponding R* space). Let us assume that for some ratio Aw/y ( a unique
parameter of the system) the potential U}, has an isolated absolute minimum
at (o, vh, ey, v§) in the v, + @p + @, -+ ps = 0 plane. If plaquettes with
minimal U™ variables can be tiled into a pattern on A, then this pattern will
be a ground state of U;.. It remains to show that such a pattern is indeed
an isolated minimum in the } ¢; = 0 plane, as so far we can only assure
the existence of an isolated minimum on the subset of this plane with ver-
tex variables of each plaquette summing to zero. Let W be a point which
does not belong to this subset. Then there exists a plaquette such that
U+ Us+ T, + ¥s = c 5 0. Subtracting ¢/4 from each variable we see that

Up(Wa, U, U,y W) > U, (W7, U7 U7 U7

unless U, = U2 +c/4, Uy = U7 +¢/4, ¥, = U+ /4, U5 = UP +¢f4. Thus
possible degeneracy may only happen when some plaquettes have assigned
to them uniformly shifted values of the ™ plaquette variables, with ¢ 5 0.
However, a set A of plaquettes with uniformly shifted variables is compatible
on A if and only if all plaquettes have the same shift ¢/4. This, however,
contradicts our assumption (@, n,) = 0.

Stationary points of the plaquette potential U, in the (g, n,) = 0 plane
satisfy the equations:

2sin(T, — (Us + T5)/2) cos((Ts — Tj5)/2) = —Aw/27,
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2sin(¥p — (Yo + ¥,)/2) cos((Ty — ¥a)/2) = —Aw/27,

2sin(Wy — (Vg + Us)/2) cos((¥s — ¥p)/2) = —Aw/27,

2sin(¥y — (Yo + ¥,)/2) cos((¥, — V) /2) = —Aw/2y,

Uy + Wy = —(¥p + ¥s). (53)
It follows from equations (5.3) that for Aw % 0

sin(Po + (Vo + ¥y)/2) = sin(¥, + (Vo + ¥,)/2),

sin( ¥+ (Ug + T5)/2) = sin(Ts + (V5 + Ts)/2), (5.4)

For 0 <| Aw/4y |< 1 one may show, after some algebra, that U, has
exactly two extrema given by sin2¥, = —Aw/dy, ¥y = -0, ¥, = T,
U= -0,

The 9*U;/d ¥ 0V, matrix at these stationary points becomes diago-
nal in the coordinate basis ¢, = 1/2(1,1,1,1), gg,l.) = 1/2(-1,-1,1,1),
_qg'} = 1/2(1,-1,-1,1), ggf) = 1/2(1,-1,1,-1). ¢, belongs, as it should,
to the zero eigenvalue, and remaining eigenvalues are, respectively, equal to:
—vycos2W,,, —cos 2V, —27 cos 2V,. Hence for both signs of the interaction
7 the plaguette potential has exactly one minimum for 0 <| Aw/4v |< 1. In
conclusion, the whole system considered has at least one r.a.s. equilibrium
where the phase difference between any two w; and w, rotators is equal to
2%, , and U, is this solution of the equation sin2¥, = —Aw/4y for which
—vycos2¥, > 0.

The method used above gives no information on possible local minima of
U,, which are different from the ground state.

6. Systems with complete interaction graph

Consider a finite system where each rotator interacts with all others with
equal strength via the coupling,

Ti(p) = N7' 3 sin(e; — ), 4 = 1,00, V. (6.1)
k
Obviously, this is a gradient system where the potential Uo can be chosen
as
Uo(ip) = (2N)™" 3 cos(; — i), (6.2)
ik

with an unrestricted summation over all pairs of indices j, k.

The vector field (6.1) and its potential (6.2) have particular features sim-
plifying the system’s analysis. Let us introduce, following Kuramoto [7], the
complex “order parameter”:
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p=NT3 exp(ip;), |n|<1 (6.3)
F
The potential U, can then be written as
1 2
Uo = (E)N I I I

and its level surfaces are given by the equations | u |= const. Moreover, the
potential U, has an absolute maximumfor |  |= 1, and an absolute minimum
for p = 0. Putting p =| | exp(i(), one may write the components of the I’
field in the form:

T(p) =| p | sin(pi = ¢) (6.4)

with an explicit dependence on the ; variable and an implicit dependence
on all phase variables through the quantities | u | and ¢. All components of
the I field are uniformly bounded: | T;(¢) |<| p |< 1.

The transverse motion of the system with an arbitrary frequency vector
will be governed by the equations :

dpj[dt = w; —Qa + 7 | p | sin(e; — (). (6.5)

The transverse potential of the system is

@~y ) + (N7 4] (66)

where the presence of the linear form (w — ,n4, ¢) modifies the potential

YU, = (3)N~ | p |*. Together with y, one may introduce the transverse
order parameter defined on the system’s solutions:

() = N expli6si(t)) = exp(—i Qut)u(e(t). (6.7)

Tran. .erse order parameters of two solutions of the @-type residing in differ-
ent hyperplanes differ by a constant phase factor,

11((t)) = exp(ia)ur(¥(t)) for (p(t),n) = @ (6.8)

In particular, if ¢_is an equilibrium point of the system (6.5) with a complex
value of p(p, (m = pu, then there always exists a transverse hyperplane
where the respectively shifted equilibrium will have a real and non-negative
value of the order parameter p,. Such hyperplanes are most convenient in
finding the coordinates of relative equilibrium ¢, ; being the solutions to the
system of equations

wj — S+ i, sin(p, ;) =0, (6.9)
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where
N N
s = N7~ cos(i,,;) and N7'3 " sin(p, ;) = 0. (6.10)
J 3

Obvious necessary conditions for the existence of relative equilibria are
| (w5~ Q)/7IS1  forallj. (6.11)

If at least one frequency of the rotator system is different from other
frequencies, the parameter y, is necessarily different from zero. We will first
discuss this more “realistic” case, which turns out to be simpler than the
analysis of the phase locking in the frequency degenerate case (all w; equal).

With p, # 0, singular points satisfy the equations

sin(ps; = (wj — Qo) /7 ps (6.12)

where p,, in turn, are solutions of the family of implicit equations

pe = N3 will = (w5 — W)/ () (6.13)

where v; € {—1,1} are the sign factors. The equation (6.13) can be rewritten
as

#e = N7 3w} — (wi — Q) (6.14)
J
and hence
s = m?'x I Wy — £, | /h’l = IA""VI‘T' (6'15)

Equation (6.14) may have solution satisfying the condition p, > |Aw|/|v|
only for some of the 2" possible sign factor choices (e.g., it is clear that for
all »; = —1 there are no positive solutions of equation (6.14)).

If such solutions exist for a certain choice of sign factors v;, it will lead to
an isolated singularity in the respective transverse plane with ¢,; uniquely
determined (modulo 27) by the pair of equations:

sin(ip,;) = Wy — Qu)/'}‘ Hay

cos(i55) = v5[1 — (w; — a)?/7* w22 (6.16)
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Angular coordinates W,; of this singularity projection onto the (p,ny) =
0 plane (a candidate for the vector of locked phases of the corresponding
relative equilibrium) can be found by subtracting from each ¢,; the sum
N—l S Psj- 3

~U, can be considered the “true” potential of a system with all frequen-
cies equal. For v < 0 (an excitatory coupling), the corresponding absolute
minimum of v U, is obviously attained at a single point ¥, = 0 in the trans-
verse space. For sufliciently large ||, the frequency term in the U potential
can be considered as a perturbation to U, producing a small shift in ¥, = 0
minimum position. As a result, for sufficiently large || there will be at least
one class of entrained solutions which is induced by the basin of attraction
of this minimum.

For v > 0 (an inhibitory coupling) and N > 4 there is a nontrivial
degeneracy in the v U, absolute minimum position in the transverse space.
Indeed, the equation

N7V Y exp(ie;) =0

j=1,N

has then infinitely many solutions {¢;} not related by a “rigid” rotation (see
figure 4).

The presence of the non-zero frequency term (leading to u, # 0) will
partly remove this degeneracy, leading to isolated singularities (as discussed
above). However, the position of the ¥, singularities will remain extremely
sensitive with respect to small changes in the system frequencies for arbitrary
large . For systems with negative and sufficiently large (in absolute value)
values of v these points will act as repellers for the system’s trajectories, once
again indicating the possibility of a very complicated dynamical behavior.

The situation is not so complicated if one is interested only in the entrain-
ment phenomenon when the positive coupling strength remains constant and
the system size increases. Indeed, an elementary stability analysis shows that
all singularities ¥, are then necessarily unstable equilibria.

To discuss stability of equilibria we shall consider the linearization of the
vector field w — Q,n; + 7L coinciding with the derivative of the vector field
L.

The matrix elements of this operator are

(rDL(g))s =y N7 (Z) cos(pi — ;) (6.17)
J(#
(YDL(p))ii = =y N~ cos(pi — ;), § # j (6.18)

We have already noticed that D ['(y) is singular equation (2.6). Hence

det DI(p,) =0 (6.19)
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Figure 4: For N > 4 there are infinitely many sets of unit vectors in
the complex plane summing up to the zero vector, resulting from the
deformation of the polygon shown. The same argument can be used
for an arbitrary fixed value of the order parameter x, which shows
that the level surfaces of the Uy potential could be quite intricate for
N > 4.

Clearly, DI(y) = DI(¥) for all ¢. Moreover, @, is an asymptotically stable
equilibrium of the system (2.14) if and only if —D I'(¢,)) is positively definite
when restricted to the transverse space. Hence, the positive semi-definiteness
of —DI'(y ) is the necessary condition for the existence of r.a.s. entrained
solutions.

In turn, the conditions

- (yDI(g,))i =0,  forallq, (6.20)

are necessary for the positive semi-definiteness of D I ). These two simple
observations allow us to exclude a class of unstable solutions for different
signs of the interaction parameter 7.

Let o be a singularity residing on a hyperplane with real g, > 0. Then,
by equations (6.10),

— (¥ DI(g,))i = Y(N™" = py cos(si)). (6.21)

Consider, first, the case 4 < 0. It is clear that all the solutions with some
of the (,;) negative, can not be stable. Thus, the only solution which could
be stable is that obtained for all »; = +1, corresponding to the maximal
possible value of p,. For sufficiently large v, this solution will be stable, as
obtained by perturbing the 4 = 1 minimum of the potential v U/,. We obtain
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Proposition 1. Rotator communities with purely excitatory (y < 0) all to
all 1/N interaction may only have one class of r.a.s. solutions with a single
vector of locked phases.

For v > 0 conditions (6.18) narrows the interval for ms to
0<p, <N? (6.22)

Taking into account the existence condition (6.15) we are led to the re-
strictive inequality

|Aw|/ly| < po < N7V? (6.23)
This can be summarized in Proposition Two:

Proposition 2. Large (N — oo) systems of rotators with purely inhibitory
type of 1/N interaction (fixed v > 0) and finite frequency spread cannot have
entrained solutions.

On the other hand, for fixed N entrained solutions are not excluded if
is sufficiently large.

The distinction between excitatory (v < 0) and inhibitory (v > 0) in-
teractions persist for rotator systems with randomized (in the spirit of the
Mattis model of spin glass) interaction signs (see [16]). The evolution equa-
tions contain then additional random variables 7; € {—1,1}:

0; =wj — Qo+ N 3775 sin(p; — ) (6.24)
J

Introducing after [16] new variables ¢; — @; + ¢ 7;/2, one may gauge-out
the 7; randomness from the evolution equations, and thus systems of this
type again separate into two classes with different behaviors depending on
the sign of 4. For v < 0 the 7; configurations will be stored in the vector of
locked phases, which is different for each configuration.

Partial entrainment and large random systems with 1/N interaction

In our simple analysis of the entrainment phenomenon we concentrated on
the case when the tranverse space may have sink-type singularities forcing
all rotators to move with the same asymptotic frequency 2,. However, the
system may exhibit some amount of organization if some of the equilibria
are of the saddle type. To be more precise, consider the simplest and pos-
sibly the generic situation (a lack of other obvious symmetries) when the
equilibrium ¥, is hyperbolic in the transverse space (and it is not a sink).
According to the Stable Manifold Theorem (see, e.g., [19]) the solutions (%)
sufficiently close to this point will have an asymptotically constant compo-
nent in the subspace of dimension less than N — 1 and a complementary
“escaping” component. Diagonalizing the operator DI'(y, ) one will obtain
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a local equivalence of the original system to a new system of non-interacting
abstract rotators, where a part of them will move with the same asymptotic
frequency . However, conditions (6.11) remain necessary for this type of
behavior.

The very presence of equilibria may not be necessary for the partial en-
trainment if more complicated trapping sets (strange attractors for N > 4)
are present in the transverse space. One may also think about a partial en-
trainment with finite time scale, where the system lives for a long time in
some “small” sets in the transverse space with intermittent short periods of
asynchronous behavior. These ideas are at the heart of the Kuramoto ap-
proach [7] when one works ab initio with averaged equations of motion (6.5),
assuming the possibility of the non-zero average order parameter and latter
on taking into account the fluctuation around this average. We will show
below that such behavior must be of crucial importance for the possible par-
tial entrainment in large systems with random frequencies. Indeed, it is not
difficult to estimate the probability that a system with random frequencies
has relative equilibria, which leads to the Proposition 3.

Proposition 3. Almost all infinite rotator systems with identically normally
distributed independent frequencies and arbitrary /N interactions do not
have relative equilibria. In particular, perfectly entrained solutions are ex-
cluded with probability one.

Proof. A frequency vector of a system with entrained solutions is necessarily
located inside a cylinder set in the frequency space (compare equation (6.11)).

In(y) = {2 =1, w5 — ol < 7], DN € R} (6.25)

For the Gaussian frequency distribution consider the probability Py(w €
TN('y) Chosing the average frequency {1y, and frequency deviations p; =
— Qng, §j = 1,...,N — 1 as new integration variables (Jacobian factor
equa.l to N), one obtams

+o0
Py(w € Tn(v)) = N(2V%x0)™? dQn . exp(—N(Qn. — 0)*/20%)%

N-1
By exp( > ul — (wy+uz+ ...+ Un1)?/20%)
k=1
Iu‘lshfla 2yl < gj
N @20

where @ and o are the distribution parameters. Hence
1/2 N-1y, [T 2402 N
Py < (NY2/(2ro)N-1)( f - exp(—v/20")dw)
=Y
and limy_.. Py = 0 for all finite |y|. B

Comment: It is interesting to note that replacing the necessary condition
(6.11) by a weaker condition
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(/) | @ = Qana 1= (1/I71)[Z (w; — Qong)’/? < N2 (6.27)

=1

one can obtain a critical behavior in the N — oo limit when the correspond-
ing probability tends to zero for all values of |y| less than some threshold value
(proportional to o) and has a non-zero value above this threshold. However,
we were unable to find a reasonable dynamical interpretation of the inequal-
ity (6.27) besides an obvious observation that it ensures the existence of at
least one rotator satisfying the condition |w — Q,ny| < |7|.

Concluding Remarks

We sketched above a picture of the complete synchronization phenomenon
as generically caused by the presence of relatively stable asymptotic equilib-
ria in finite systems with translationally invariant coupling. We limited our
discussion to relatively simple examples, and we are unable to prove the exis-
tence of multiple entrained states. In this respect higher-dimensional systems
with frustrated interactions are interesting, as they have largely degenerate
ground states.

Equally interesting are the dynamics of finite systems with random fre-
quencies, constant interaction strength, and random interaction graphs. We
are considering systems of this type as a model qualitatively explaining exper-
imental data derived from the recorded electrical activity of single neurons
in highly interconnected random neural networks studied in vitro [20-22].
These systems exhibit both chaotic and quasi-periodic bursting patterns,
depending on the synaptic connection type and strength. The synaptic in-
teraction can be influenced chemically or with electric stimulation, giving
us the possibility to control the model’s coupling parameter v. Adopting a
threshold activation picture for a single neuron [10], we carry out computer
simulations of the spiking pattern produced by entrained and asynchronous
neurons. These results will be reported in a separate publication.

Another class of problems is related to pattern storage in rotator systems.
It should be mentioned that the idea itself is not new. E. Bienenstock [23]
was first to propose the use of the rotator model in studies of memory and
learning. However, the pattern retrieval has been carried out by Bienen-
stock by a “simulated annealing” procedure. The use of dissipative evolution
equations (like equation (2.1) remains for us an interesting possibility.
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Note added in proof: Large systems of planar rotators with random fre-
quencies have been thoroughly investigated in a recent paper by S. H. Stro-
gatz and R. E. Mirollo [24]. The basic method is the same as we employed
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proving proposition 3 (the use of necessary conditions for entrainment and
probability estimates). However, as presented by those authors, the non-
existence theorems for entrainment have much wider range of applicability
(type of interactions and frequency distributions). Moreover, they proved
that the entrained clusters, if any, in an asymptotically infinite system must
have a “sponge-like” structure in an interesting analogy to percolation clus-
ters.

Systems with all-to-all interactions and random frequencies have also been
investigated in a paper previously unknown to us by G. B. Ermentrout [25].
We are grateful to the referee for pointing this out and for all other comments.
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