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Abstract. Strongly coupled, dissipative systems of planar rot ators
are considered wit h the dynami cs described by t he au tonomous sys­
tem dr.p jdt = ~ +1I(r.p) where the nonlinear coupling r dep en ds on
th e pltasc differences i:- <Pj of N rot ators. It is pointed out that the
simplest mechanism of the asymptotic synchronization in such systems
can be described in terms of relative equilibria in t he N - 1 dimen­
sional phase space transverse with respect to the barycentri c motio n.
Particular examples of systems with short-range and all to all int erac­
tion are considered and the st ability problems discussed. Th e simple
entrai nment picture based upon the presence of relat ive equilibria is
excluded for large systems with all to all int eract ions and rand omly
distributed frequencies Wi. Recently reported crit ical behavior of th e
synchronization phenomenon in these systems must then have more
complicated dynamic origin.

1. Introduction

It is well-known that ensembles of st ruct urally similar, non-linearly cou­
pled subsystems may exhibit st riking cooperative behavior in st rongly non­
equilibrium regimes. T his self-organ izat ion effect bears some resemblance
to much better understood ordering phenomena for equilibrium and nea r to
equilibrium states. Open dissipative syste ms which never come to rest are
often considered in this context, wit h the dynami cs mod eled by some pos­
tulated equations of motion involving only part of the system's degrees of
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freedom, and an implicitly present external drive supplying energy to t he
system.

To t his class be longs a recently popular model of N cou pled rotators
where each structural unit is described by an abstract phase varia ble Ipi .

This variable in t he absence of any interaction varies monotonical ly wit h t ime
at constant rate (frequency) Wi . Here the frequency parameter describes t he
"rotator's dr ive" {i.e., its int rinsic activity caused by some unspecified ene rgy
supply). The coupling term, usually depending only on the relat ive phase dif­
ferences !.pi - 'Ph descr ibes the energy redistribut ion throughout the syste m .
T he common features of suc h systems are t he p ossibi lity of phase locking (an
asymptotic correlation among phase var iables of all rotators, largely inde­
pendent on the initial conditions ) and synchronization (or "entrainment"),
where all rotators, or a macroscopic par t of t hem, asymptotica lly move wit h
a single common frequency n.

In the biological context such models were first con sidered by W infree
[1,2] for describing t he synchronization in ensembles of "biological clocks".
He was also first to indicate that large communities of such rotators with
randomly distributed frequencies may exhibit a kind of "phase trans it ion"
between asynchronous and synchronous "phases". This idea has been pur­
sued and developed into an interest ing qualitative theory by Kuramoto and
co-workers [3-7J. A most detailed st udy has been presented t here for a model
wit h "all to all" interaction, decreasing wit h t he system size as l i N. As it
is well-known in equilib rium statistical physics , t his is the simples t model
interac tion for which the "mean field" ap proximation (single structural uni t
in self-consistently averaged env ironment) becomes exact in the N ---+ 00

limit , with the still preserved possibility of a "classica l" crit ica l beh avior. It
has been shown that a dynamical rotator model of t his type with random
frequences also exhibits the critical behavior at the onset of synchronizat ion
in the N ---+ 00 limi t, although the correspo nding "or der para meter " behaves
quite differently from that in thermodynamic phase transit ions .

Non-random systems of planar rotator s were earl ier pr oposed by J . C.
Neu (9] (as models of coupled chemical oscillators), and by other investi gators
[10- 13]' as mo dels of temporally pat terned seque nces of signals gene rated by
neural . etworks governing rhythmic act ivities of muscular groups . Typica l
systems considered in these papers are essent ially one-dimens ional arrays of
rotators with generally asymmetric coupl ing constants, whi ch m ay vary along
the chain. In parti cular a profound mathemat ica l ana lys is of the resulting
"frequency plateaus" has bee n given in [12] for chains wit h a linear gradie nt
in nat ive rotator frequences and weak nearest-neighbor coupling .

General systems of rotators with weak, in some sense, and otherwise ar bi­
t rary coupling are, on the ot her hand, a well-known an d long studied subject
in no n-linear mechanics since the time of Poincare (see V. 1. Arn old [14] for a
review of these beautiful resul t s including ergodic t heorems, structural stabil­
ity and reso nance problems ). Alt hough complete synchronization is usuall y
absent for weak coupling, such systems still exhibit t he locking phenomenon
to t he free frequencies, where the ratios t.pi!t.pj of t he phase variables are
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asymptotically equal to the corresponding frequency ratios wi/Wj ' In the
context of neural network s, these features of rot ator systems were investi­
gat ed by F. C. Hoppensteadt [15], who came to the coupled rotator model
via his mo del of a voltage-controlled oscillator neuron .

In thi s pape r we concent rate on rotator systems wit h sufficient ly strong
interact ion allowing, under specific circumstances, the comp lete synchroniza­
tion and yet ano ther typ e of phase locking wit h asymptot ically constant phase
differences of all rotat ors. We stress th e role of coupling sym me try by in­
t rod ucing an elementary geometric desc ription (section 2), together with the
concept of an "ent rained" solution . T he exam inations of entrained solutions
becomes much simpler for gradient systems (section 3). Th ere we show that
fully synchronized states are nothing bu t the states in the bas ins of attraction
of an asympt ot ically stable relative equilibrium . T he presence or absence of
these equilibria depends on the coupling strengt h and sign, and may not
dep end on the system size. T he lat ter statement is illust ra ted in sect ion 4
by an examp le of a st rongly coupled two-dimensional periodi c rotator array
with two frequenc ies. It is shown that th is system has at least one relative
asymptotically stable equilibr ium, and behaves in the neighborhood of this
equ ilibrium like a system of two coupled rotators .

Finite, non-random syste ms wit h "all to all" 1(N interaction are reex­
amined for t his point of view in the main part of secti on 5. By init ially re­
st rict ing the use of the "order parameter" concep t to relative equilibria only ,
we carry out the analysis of t he synchro nization and the related mechanical
stability problem without any furt her assumptions (like the one introduced
in [7] where the rota tor ensemble is part it ioned into synch ronized an d asyn­
chronized populat ions ). Th is sect ion contains a simple instability theorem
for sufficient ly large systems wit h "inhibitory" (accentu ati ng the phase differ­
ences ) coupling and finite frequency spread. On the other hand , systems with
sufficient ly st rong "excitory'' interact ion are proved there to have at least one
relative asy mp totically stable equilibrium by a stan dard perturbation argu­
ment with respect to the inverse coupling parameter.Relat ive equilibria, if
pr esent , provide the dynami cally simp lest mechan ism of the complete syn­
chronizat ion in finite rotator systems. Ilowe vergtheir role becomes marginal
for large systems with 1(N interaction and random, ident ically distributed
frequences. We prove (sect ion 5, propos ition 3) that the asymp totic synchro­
nizati on in the ab ove descri bed sense is an event with vanish ing pro bability
in the N ...... 00 limi t . In conclus ion, synchronization effects in such syst ems,
if any, must have much more comp licated (and interest ing) dynamical origin,
with an open possibility for the presence of strange attractors for N 2: 4 as
well as an intermit tent character of th e synchronizat ion phenome non . When
the complete dy namical analysis of partial entrainment effect is not available,
th en the approximat e scheme pro posed in [7] is certainly the best known the­
ory.

Th e concluding sect ion 6 contains remarks on applications and fut ure
work. The most immedia te application of the planar rotator model (with
st rong internal coupling) could be ma de in th e descripti on of firing pat terns
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of neural networks. Some open problems are list ed : in par ticul ar finite frus­
t rated systems of planar rotators (very recently investi gated by Daido [16],
in the framework of the "mean field" app roximation). These problems seem
par ti cularly promising, as they may exhibit a rich structure of relat ive equ i­
lib ria. Like in the Hopfield-Lit tle model (see, e.g . [15]) these equilibria can
be used as informatio n sto rages with each equilibrium manifest ing itself by
a specific vector of locked phases.

2. M odel

Consider a system composed of N structural un its where t he state of t he i th

unit (called a rotato r) is described by a single real variable !.pi , and where some
rotators exh ibit spo ntaneous cyclic act ivity wit h cha racteristic frequencies Wi _

We assume that the dynamics of th e system are governed by the evolut ion
equation

(2.1)

where the C t vect or field r. : nN ---+ nN describes the coupling between
rotators, / measures the interacti on st rength, and!=?. = (WI, W2, . . . , WN) is
the vecto r of "innate" frequencies, !=?. f::. Q. We will addit ionally assume that
the aut onomous system (2.1) does not have equilibrium states :

for all :e E "R.N (2.2)

In other words, at any instant t at least one rotator of the system has non-zero
instantaneous angu lar freq uency, and the system "never dies" in biological
terms.

Let rr E nN be an arb itrary vect or wit h integer components (n E Z N ),
and 11t be a spec ial vector of t his ty pe with all components equal to unity:

1ld = (1, . . . , 1).

We will rest rict ourselves to vecto r fields r. periodic in <Pi variab les

(2.3)

for all:e E "R.N, Zl E Z N, (2.4)

and invariant with respect to the t ranslations along the 1ld direct ion,

for all :e E "R.N , a E "R.. (2.5)

Differenti ating equat ion (2.5) with respect to the parameter 0 , one ob­
tains

(2.6)
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where DI:(re) E L(nN
) is the linearization of I:, thus necessarily singular for

all 'f'.
The symmetry (2.5) is equivalent to the assumption that r is a function of

the phase differences <Pi - <pj' As usual [17], the presence of a one-parameter
group of symmetries allows us to reduce by one the order of the system
(2.1). Let us decompose vectors 'f' into "longitudinal" (parallel to 1ld) and
transverse \11 parts: -

(2.7)

with 0 having the meaning of a "barycentric" coordinate. Due to the sym­
metry (2.5) we have I: ('f') = I:()l) . If t ...... 'f'(t) E nN is a solut ion to the
system (2.1, then its longit udinal O(t ) and transverse )l(t) parts sat isfy the
equations:

(2.8)

where

(2.9)

and

(2.10)

where

(2.11)

is the transversal component of the field r.
Conversely, let t ...... )l(t ) E n N - 1 be a solution to the syste m of the n-1

order:

With this solution given, one may solve the equation

d 0ldt = fl" + ,IN(I:( )l(t)),1ld)

(2.12)

(2.13)

by simple quadrature, and thus construct by superposition (2.7), a solution
to the system (2.1).

For a given i£. the solutions of the equation (2.13) are parameterized by
the initi al value 0(0) = 00 . Pu tting O(t) = 00+ry(t) one has :e(t) = ry(t)1ld +
Oo1ld + )l(t) where the vector 001ld + )l( t) has constant comp onent along the
!1d direction. This is why it will be often more convenient to work with yet
another system of equations:

(2.14)
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where f:!l- na11i+-yrtr(cp) is a transverse vector field in nN with t he longi tu­
dinal component along 1it always equal to zero. We will denote the solutions
of equation (2.14) by rp : n -4 nN The system (2.14) has an obvious first
in tegral : -

(.'£(t),1!d) = const . (2.15)

i.e., its phase t raj ectories are entirely contained in hyperplanes hav ing com­
mon normal vector !!d . The famili es of solutions belonging to two different
hyperplanes are in one-to-one correspondence und er the respective transla­
tion along the 11i direction, and ~ components of the system (2.1) solutions
are simply cp type solutio ns of the equat ion (2.13) contained in the plane
(<p,1!d) = O.
- Below we select the constant in equation (2.15) in a most convenient way

for a discussion of the singular it ies, and only later on we will pass to the
.9L~type solutions. Formally, the above-described procedure correspon ds to
working with t he N scalar equations of the type (2.10) written in the origi­
nal coordinate system, including the "redundant» equation . Here one avoids
the expl icit introduction of new independent coordina tes (like, e.g. phase
differences) keeping in mind that such elimination may only overshadow sys­
tern's symmetries.

3. "Entrained" solutions

Definition 1. We say that an integral curve t >-> <p(t) of the sys tem (2.1) is
an entrained solut ion if there exist such a constantf! and vector.9L1 so that

':£.(t) = (Ot +8(t))1!d +~(t)

where

lim 8(t)/t = o.
/.....+00

(3.1)

(3.2)

(3.3)

f! is then called the entrained frequency of the system, an d ][1 is the vector
of locked phases. It is easy to see that properties (3.1) and (3.2) are not
independent as any solution to the system (2.12) wit h the property

lim W(t) = WI,
t .....+oo- - (3.4)

(or an equivalent solution to the system(2.13)) induces an entrained solution
of the system (2.1) . Indeed, constructing th e function:

(3.5)

We see that
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,.t!~ O(t )/t = a, + -r W ' (I:(!t, ),n,,) (3.6)

using nothing but L'Hopi tal' s rule. Hence

n = fi. + -r W '(r(!ILr), n,,)

is the corresponding entrained frequency.
If in addition to equation (3.3)

tE~oo d!t(t)/dt = Q,

(3.7)

(3.8)

then !t, is necessarily an equilibrium point of the system (2.14). It can be
proven that this is always the case for gradient systems (see section 3).

Below we will concentrate on entrained solutions induced by singularities
of the vector fields in equation (2.12) (or equation (2.14)). Obviously, any
singularity ~ of the vector field ~ - n(l!!d + 1'LT(.~.) induces at least one
entrained solution of the form:

ott) = fit + 00,

!t(t ) =!t. .

(3.9)

(3.10)

Following the terminology already used by Poincare, we will call such
solut ions relative equi libria of the system (2.1). If !t. is an asymptotically
stable equilibrium of the system (2.12) then each integral curve of the sys­
tem entering the basin of att raction of i!.., is an entrained solution of the
system (2.1); see figure 1. One may call such entrained solutions relatively
asymptotically stable (r.a.s).

Returning to our original assumption of the non-singular character of the
vector field f!l+ f' I:(l,O) , we see that it can be trivially satisfied, e.g., for a large
class of systems willi an initially transverse vector field r. and nonvanishing
average frequency n(l ' The presence of true equilibria in the original system
(2.2) addit ionally complicates the analysis of possible entrained solut ions and
this problem is excluded here from consideration.

4. Entrainment in gradient systems

An important subclass of systems with the dynamics described by equation
(2.1) are gradient ones, where the vector field I. is a gradient of a C2-scalar
function Uo : nN -+ n:

(4.1)

Consequent ly, the vecto r field ~ + -r r (!t) is then the gradient field of t he
function

(4.2)
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Figure 1: Schematic presentation of an entrained solution. T he vector
field ~+1 I (rp) is invari an t wit h respect to transla t ions along the 1!d
direction. It sproject ion ~ - Q(I.!!d +1 L r(!e:) looks identical on t rans­
verse hyper planes (~, .!!d) . If t he projected field has an asymptotically
st able equilibr ium t hen an entrained solution (dark line) is possible.
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Below both the funct ions Uo and U will be called potentials.
If the vector field I: has the symmetry (2.5) and has the potential Uo , then

integrating r along a segment with endpoints e and p... + a!!d one obtains

UO(!e+ Olld) = UO(!e) - O(I:(!e),lld).

Let us define the "transverse" potential Utr : nN --+ R: by

(4.3)

Putting, as usual, '£. =~ +Blld, we have from equation (4.3):

(4.5)

i.e., UtT behaves identically on all (l;? ,11l ) = const. planes, and its gradient
field is purely transverse (UtT has a vanishing directional derivative along the
lld direction). Using (2.6) , one can check that U" is t he potential of the
vector field defining the system (2.14) thus being also a gradient system.

If a grad ient field I: is initi ally t ransverse and has the symmet ry (2.5)
then the potential Uo is invariant with respect to the translations along the
!!d direction. Conversely, any system (2.1) with the translationally invariant
potential Uo.

(4.6)

is obviously described by a transverse vector field. The entrained solutions, if
any, for such systems have necessarily only one entrained frequency: On = n.

Let us restrict the potential U" to the plane (\0, lld) = 0, and let S!!.m be an
isolated minimum of the restricted potential. Then P...m = .2m+ (c/N )J1d are
the isolated minima of the potential U!T restricted to the planes (~£., 11i ) = c,
even if the potential U, is not translationally invariant along the 11i direction.

Exploring standa rd results for grad ient syste ms (see, e.g., [18]), we see
that each such minimum is an asymptot ically stable equilibrium of the gre­
cl ient system (2.14), and thus induces a family of r .a .s. entrained solutions.

Let us also note that for gradient systems one may prove that the vector
of locked phases is an equilibrium point of the system (2.14). Indeed, if
lim S!!.(t) =S!!.I for some trajectory \O(t ), then S!!., is the (unique) w-limi t point
of the solution t -+ S!!.(t) to the system (2.14), and all w-limit point s of a
gradient flow are equi libria [18J.

In conclusion, the search for families of r .a. s . entrained solutions of gradi­
ent systemsis equivalent to the finding of all isolated minima of the potential
Utr(~, restricted to one of the planes (~, !!d) = canst . This is equivalent to
finding all the sinks of the vector field !!l- n.lld+'1'L , (!e) in nN

- ' . Restri cted
isolated ext rema of the potential Ut T can be easily identified for sufficiently
large 1 '1' I, if the potenti al u, itself has an isolated extremum. By the
well-known perturbation lemma UtT will also have an isolated extremum at
S!!., (I!1 ) for sufficiently large values of the coupling parameter, with S!!., being
a continuous function of the parameter 1/ "1.
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Interaction graphs

Consider a finite system of N rotators where the componen ts of the vector
field r. can be written in terms of bin ary interactio ns

fj(:e) = 'LJjk 9jd'Pj - 'Pk)
k,j

(4.7)

and where parameters Jj k are not necessarily symmetric in i ,k indic es. Ab­
scribing to a given ph rot ator a vertex j an d the set of oriented (ingoing)
edges { (j , k) : Jjk9jk ('Pj - 'Pd f' OJ, one obtai ns a digraph st ruct ure of
interacting rotators.

Particular topological features of this digraph may further facilitate the
search for entrained solut ions.

In most of the published stud ies the interaction between two rotators i
and j has been chosen in a specific funct ional form:

(4.8)

It can be shown [3,10,131 th at this type of interaction can be considered
general for systems of weakly coupled st ructural uni ts where each uni t (with
possibly complicated "internal dynami cs"] has a limi t cycle. T he coordinate
({Jj (j = 1, . .. , N) is then a "pos ition" coordinate on the phcycle, and sin­
type interact ion corresponds to the leading term in perturbat ion series.

We will consider the interaction (4.8) as a generic one for coupled rotator
systems allowing arbit rary values for the coupling constant f . All syste ms
with symmetric Jj k and interacti ons of the type (4.8) are , of course, gradient
ones wit h the potent ial:

UQ(:e) = 'L;Jjk cos('Pj - 'Pk) (4.9)

where summation is over all of the edges of the interaction graph. Hence the
related vector field r. is here necessarily tranverse. Introducing un it vectors
!ij = cos ({Jj!ll + sin ({Jj!l2, attached to each vertex of the interact ion graph,
one may write the potential Us in the form L Jj k (fi j u2,k) . This potent ial is
obvio usly invariant with respect to the uniform rot ations of all vect ors "*..j
t hrough the same angle 0' - a symmetry operation equivalent to the above
discussed translations in th e ({J space along the !1d direction. In t his repre­
sentat ion U, coincides with the configurat ional par t of the Hamiltonian of
an intens ively studied an d well-known equilibrium model of classical planar
magnets. Res ulting analog ies were exp loited to some extent in [4]. However ,
th e dynamics of such planar magnetic systems could be quite different from
t hat postulated in equat ion (2.1), as such mag net ic syste ms are typically
considered as conservative.

One more equ ivalent descript ion of the rotator syste m is given in te rms
of the complex var iables Zj = exp(i({Jj) . In particular, the arithmeti c mean of
these variables, J.l = N-1 Li Zj, is a useful quant ity for systems with uniform,
all-to-all, interact ions (see section 6).
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Figure 2: Two-dimensional periodic system of planar rotators with
two native frequences.

5 . Two-dimensional lattice of rotators

As a simp le example of an arbitrarily large syste m exhibit ing perfect syn­
chronization, we consider first a finite two-dimensional array of rotators with
two characterist ic frequences WI and W2 occupying vertices of a rect angular
set A C Z' in a chessboard fashion (figure 2).

We will assume tha t only nearest neighbors interact and introduce peri­
odic boun dary conditions, for which points of A can be viewed as located on
a two-dimensional torus . We will show that for sufficiently large I such sys­
te ms have at least one class of ent rained solut ions irrespecti ve of the system
size. T hese are solut ions induced by the "gro und-state" of the potential

U,,(:e) = -~w(I: 'Pi - I: 'Pk) + ')I: cos('Pi - 'Pd ,
iE!1 kE12

(5.1)

where II and 12 are subsets of A occupied by WI- and wT type rotators re­
spectively. Here 6.W = WI - !1a = (WI - w2)/2, and the summat ion in the
inte raction te rm goes over all pair s of nearest neighbors.

To find the ground state of Uv- let us divide the system into square pla ­
quet tes (figure 3), ascribing to each plaquette the potential

+(-y /2) cost 'Po+'P~) +cos('P~+'Po)+cost'Po +'P') +cos('P' +'Po)J.(5.2)

T he total potenti al Ut r can then be considered as a sum of plaq uet te
potentials with suitably chosen set s of plaquette variables. The plaquette
potential Up itself is evidently invariant with respect to the uniform shift



452 Kowalski , Ansari, Prueitt, Dawes, and Gross

• • • • • •

• [(0---~--~--~ •
I I
I I

• !@ @ @ @i •
I I

II I

• !@ @ @ @! •
~-----------------------~

• • • • • •

Figure 3: Single plaquette of four rotators and its vertex variables .

in all it s variables (t ranslat ions along the (1,1 ,1) 1) direct ion in t he corre­
sponding R " space) . Let us assume t hat for som e ratio f:j.w/"Y ( a un ique
parameter of the system) the potential Up has an isolated abso lute minimum
at ('P': , tp{jI !fir:: I 'P6' ) in the 'Per +<pp + <P'Y + 'Po = aplane. If plaquettes with
minimal tl "?' vari ables can be tiled into a pattern on A, then thi s pattern will
he a ground state of Ui- . It remains to show that such a pattern is indeed
an isola te d m inimum in the L 'Pi = 0 plane, as so far we can on ly assure
the existence of an isolated minimum on the subset of this plane with ver­
tex variables of each plaquet te summing to zero. Let ~ be a point which
does not belong to this subset. Then there exists a plaquette such that
Wo + W~ + Wo + W, = c # o. Subtract ing c/4 from each variable we see that

unless Wo = W;;'+c/4, W~ = W;J+c/4, Wo = W:;'+c/4, W, = W6'+ c/4. Thus
possible degeneracy may only happen when some plaquettes have assigned
to them uniformly shifted values of the q;rm plaquette variables, with c =f o.
However, a set A of plaquettes with un iformly shifted variables is compat ible
on A if and only if all plaquettes have the same shift cf4. T his, however ,
contradict s our assumption (1? ,11d) = O.

Stationary points of th e plaquette potential Up in the ('P, lld) = 0 plane
sat isfy the equat ions: -

2 sin(Wa - (W~ + w,)/2) cos((W, - W~ ) /2 ) = - !;"w/ 2"{ ,
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2 sin(ilIp - (illa + ilI , )/2) cos((ilI, - illa)/2) = -6.w/2"

2 sin(ilI, - (illp + ill, )/2) cos((ilI, - illp)/2) = - 6.w/2"

2sin(ilI, - (ilia + ilI,)/ 2) cos((ilI, - ilIa)/ 2) = -6.w/2"

ilia + ill, = - (ilI p + ill,).

It follows from equations (5.3) that for 6.w # 0

sin(ilI a + (ilia + ilI,) /2) = sin( ilI, + (ilia + ilI,)/2),

sin(ilIp + (ilip+ ilI,)/2) = sin(ilI, + (ilip+ ilI, )/2),

(5.3)

(5.4)

For 0 <I ti.w/ 4"{ 1< 1 one may show, afte r some algebra, that Up has
exact ly two extr ema given by sin 2wO' = - l::J.w /4"{, W{3 = -Wo" W"Y = Wen
ill, = -ilia.

The fj2 u;/aWlaWk matri x at these stat ionary points becomes diago­

nal in the coordinate basis !&J = 1/ 2(1, 1,1 ,1 ), f.l:) = 1/2(-1,-1,1,1),
(2) _ / ( ) (3) _ / () .§,t r - 1 21,-1 , -1, 1 ,fur - 1 21, -1, 1, - 1 . f;L belongs, as It should,

to t he zero eigenvalue , and remaining eigenvalues are, respecti vely, equal to:
-"{ cos 2wO' , -7 cos 2\11 0" - 27 cos 2\110" Hence for bo th signs of the interaction
-r the plaquette potential has exactly one minim um for 0 <16.w/4,1< 1. In
conclusion, the whole system considered has at least one r.a.s. equil ibr ium
where th e phase difference between any two W I and W2 rot ators is equal to
2 Wo' , and Wo' is this solution of t he equation sin 2w O' = -D.w/47 for which
-7Cos2wa > O.

The method used ab ove gives no information on possible local minima of
Ut r which are different from th e ground state.

6 . Systems with complete in t erac ti on graph

Consider a finite system where each rotator interact s with all ot hers with
equa l st rength via the coup ling,

fj (:e) = N- J 2:sin(<pj - <pd, j = 1, ... , N .
k

(6.1)

Obviously, th is is a gradient system where th e potent ial Do can be chosen
as

Uo (:e) = (2Nt' 2:cos(<pj - <Pk),
j, k

(6.2)

with an unrestri ct ed summation over all pairs of indi ces i, k.
The vector field (6.1) and its potential (6.2) have par ticular feat ures sim­

plifying the system's analysis. Let us introduce, following Kuramoto [7], the
complex "order parame te r" :
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I' = N - 1 L: exp(il"; ),
i

(6.3)

The poten tial U»can then be written as

and its leve l surfaces are given by the equat ions I", 1= const . Moreover, the
potential Us has an absolute maximum for Ip.1= 1, and an absolute minimum
for I' = O. Putting I' =1I' Iexp(i(), one may write the components of t he r
field in the form:

f (£) =1I' Isin(I"; - () (6.4)

with an explicit dependence on the <Pi variable and an implicit dependence
on all phase variables through the quantit ies I I' 1 and ( . All compo nents of
the r field are uniformly bounded: I f;(I") 1:51I' 1:5 1.

The transverse mot ion of the system with an arbitrary frequency vector
will be governed by the equations :

dl";/dt = w; - fl. + -y I1'1 sin(l"; - () .

The transverse potential of the system is

(6.5)

(6.6)

where the presence of the linear form (~- na!la l ~ modifies the potential
-y U. = ( ~ )N -y II' I' . Together with 1', one may int rodu ce the transverse
order parameter defined on the system's solutions:

I' /( I"(t )) = N - 1 L: exp ( i~; (t )) = exp(-ifl. t) I'(I"(t )).
i

(6 .7)

'Iran , .erse order parameters of two solut ions of the rp-type residing in differ­
ent hyperplanes differ by a constant phase factor,

(6.8)

In particular, if cp is an equilibrium point of the system (6.5) with a complex
value of I' /(<e,(l) = 1'. then there always exists a transverse hyperp lane
where the respectively shifted equilibrium will have a real and non-negative
value of the order parameter Jl$' Such hyperplanes are most convenient in
finding the coordinates of relative equilibrium <P. J being the solutions to the
system of equations

W; - fl. + -y 1'. sin(I".,; ) = 0, (6.9)



Synchronizat ion and Phase Locking in Systems of Planar Rotators 455

where

N N

1'. = N - 1 2: cos("". ,;) and N - 1 2: sin("".,; ) = O.
; j

(6 .10)

Obvious necessary conditions for the existence of relat ive equilibria are

1(w; - fl.)h 1:'0 1 forall j . (6.11)

If at least one frequency of the rotator system is different from other
frequencies, the parameter 11- , is necessarily different from zero. We will first
discuss this more "realistic" case, which turns out to be simpler than the
analysis of the phase locking in the frequency degenerate case (all W; equal).

With 1'. '" 0, singular points sat isfy the equations

sin("".; = (w; - fl. )h 1'.

where p." in turn, are solutions of the family of implicit equations

1'. = N-1 2: v;[l - (w; - fl.?Ib' I'~ )J ' /'
j

(6 .12)

(6.13)

where Vj E {- I , 1} are the sign factors. The equation (6.13) can be rewr itten
as

I'~ = N - 1 2: Vj [l'~ - (Wj - fl.)' J'/'
j

and hence

1'. 2: max 1Wj - fl. I /1"11= l,;wl/ l"l1,

(6.14)

(6.15)

Equ ation (6.14) may have solution sat isfying the condit ion 1'. > l,;wl/ l"l1
only for some of the 2N possible sign factor choices (e.g., it is clear that for
all Vj = -1 there are no positive solut ions of equation (6.14» .

If such solutions exist for a certain choice of sign factors Vj , it will lead to
an isolated singularity in the respect ive transverse plane with <Psj uniquely
determined (mo dulo 2,, ) by the pair of equations:

sin("".j ) = Wj - fl.)h 1'..

(6.16)
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Angular coordinates \II"j of this singularity projection onto the (:£,,1:!.:l ) =
o plane (a candidate for the vector of locked phases of the corresponding
relative equilibrium) can be found by subtracti ng from each ep"j the sum
N - ' 'L-'P,i '

,Uo can be considered the "t rue" potent ial of a system with all frequen­
cies equal. For 1 < 0 (an excitatory coupling), the corresponding absolute
minimum of I U, is obviously attained at a single point ~ = 0 in t he trans­
verse space. For sufficiently large 1')'1, th e frequ ency term in th e U potenti al
can be considered as a perturbation to U, producing a small shift in~ = 0
minimum position. As a result, for sufficiently large hi t he re will be at least
one class of entrained solutions which is induced by the basin of attraction
of this minimum.

For / > 0 (an inhibitory coupling) and N 2:: 4 there is a nontri vial
degeneracy in the / U, absolute minimum position in the transverse space.
Indeed, the equation

N-1 L exp(i 'Pi ) = 0
j = l ,N

has then infinitely many solut ions {!pj} not related by a "rigid" rot at ion (see
figure 4).

The presence of the non-zero frequency term (leading to p., oF 0) will
par tly remove this degeneracy, leading to isolat ed singularit ies (as discussed
above) . However, the position of the~ singularities will remain ext remely
sensitive with respect to smal l changes in the system frequencies for arb itrary
large / . For systems with negative and sufficient ly large (in absolut e value)
values of / these points will act as repellers for the system 's trajectories, once
again indicat ing the possibility of a very complicated dynamical behavior.

The situation is not so complicated if one is interested only in the entrain­
ment phenomenon when the positive coupling st rength remains constant and
the system size increases. Indeed , an elementary stability analysis shows that
all singularit ies~ are then necessar ily unst able equilibria.

To discuss stability of equilibria we shall consider the linearizati on of the
vecto r field ~ - na1ld + / I. coinciding with the derivati ve of the vector field
') 1:.

The matrix elements of thi s operator are

b D 1:(:£))ii = ') N-1 L cos('Pi - 'Pi )
j (¢i )

(6.17)

(6.18)

We have already noti ced that D 1:(<£) is singular eqnation (2.6). Hence

det DI:(ee,) = 0 (6.19)
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Figure 4: For N 2:: 4 there are infinitely many sets of unit vectors in
the complex plane summing up to t he zero vector, resulting from the
deformation of the polygon shown. Th e same arg ument can be used
for an arb itrary fixed value of the order parameter Ji, which shows
that the level surfaces of the Uo potential could be quite intricate for
N 2: 4.

Clear ly, DL('t'.l = DL{~) for all 't': Moreover, 't'... is an asymptotically stable
equilibrium of the system (2.14) if and only if - D L{'£.., )) is positi vely definite
when restricted to the transve rse space. Hence, the positive semi-definiteness
of -DI(y:) is the necessary condition for the existence of r.a.s . entrained
solutions.

In turn, the conditions

- (-y D L('£.., ));; :::0: 0, for all i , (6.20)

are necessary for the posit ive semi-definiteness of Dr~) . These two simple
observat ions allow us to exclude a class of unstable solut ions for different
signs of the interact ion parameter o.

Let 2.,. be a singularity residing on a hyp erplane with real /J. ~ O. Then ,
by equat ions (6.10),

- (-y D L('£.., ));; = -y{N - ' -/" cos('I',;))' (6.21)

Consider, first , the case , < O. It is clear that all the solutions with some
of t he (<Psi) negative, can not be stable. Thus, the only solution which could
he st able is that obtained for all Vj = + 1, corresponding to the maximal
possible value of J-L • • For sufficient ly large " thi s solut ion will be stable, as
obtained by perturbing the p. = 1 minimum of the potent ial , Uo ' We obtain
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P ro position 1. Rotator communit ies with purely excitatory (i < 0) all to
all I IN int eraction may only have one class of r.a.s. solut ions with a single
vector of locked phases.

For"Y > 0 conditions (6.18) narrows the interval for rns to

(6.22)

Taking into accoun t t he existence condition (6.15) we are led to the re­
st rict ive inequality

(6.23)

This can be summarized in P roposit ion Two:

P roposition 2. Large (N -; 00) sys tems of rotators with purely inhibitory
typ e oilJN interaction (fixed "t > 0) and fini te frequency spread cannot have
entrained solut ions.

On the ot her hand, for fixed N entrained solut ions are Dot excluded if f
is sufficiently large.

The distinction between excitatory b < 0) and inhibitory b > 0) in­
te ract ions persist for rotator systems wit h randomized (in the spirit of the
Mattis model of spin glass) interaction signs (see [16]). The evolut ion equa­
t ions contain then addi tional random variables Tj E {- I , I}:

'Pj = Wj - f!. + -r N - 1 L TjTj sin('Pj - 'Pk)
j

(6.24)

Introd ucing afte r [161 new variables 'Pj -; 'Pj +¢ TjJ2, one may gauge-out
the Tj randomness from t he evolution equat ions, and thus systems of t his
type again separate into two classes with different behaviors depending on
the sign of / . For / < 0 t he Tj configurat ions will be stored in the vector of
locked phases, which is different for each configurat ion.

P artial entra inment and large random systems wit h l I N int er act ion

In our simple analysis of the entrainment phenomenon we concent rated on
the case when the tranverse space may have sink-type singularit ies forcing
a.ll rot ator s to move with the same asymptotic frequency fla . However, the
system may exhibit some amount of organization if some of the equilibria
are of the saddle type. To be more precise, consider the simplest and pos­
sibly t he generic sit ua t ion (a lack of other obvious symmetries) when t he
equi libr ium~ is hyperbolic in the transverse space (and it is not a sink).
According to the Stable Manifold Tbeorem (see, e.g., [19)) t he solutions ~(t)

sufficiently close to th is point will have an asymptotically constant compo­
nent in t he subspace of dimension less than N - 1 and a complementary
"escaping" component . Diagonalizing the operator D I:.(:.e.,) one will obtain
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a local equivalence of the original system to a new system of non-interacting
abstract rot ators, where a part of th em will move wit h the same asym ptotic
frequency n. However, conditions (6.11) remain necessary for this type of
behavior.

The very presence of equilibria may not be necessary for the par tial en­
t rainme nt if more complicated trapping sets (st range attractors for N 2: 4)
are present in the transverse space. One may also th ink about a partial en­
trainme nt with finite time scale, where th e system lives for a long time in
some "small" sets in the transverse space with intermi t tent short periods of
asynchronous behavior. These ideas are at the heart of the Kuramoto ap­
proach [7] when one works ab initio with averaged equat ions of motion (6.5),
assuming th e possibili ty of the non-zero average orde r par ameter and latter
on taking into account the fluctu ation around t his average. We will show
below that such behavior must be of crucial importance for the possible par­
tial entrainment in large systems wit h random freque ncies. Indeed, it is not
difficult to estimate the probability that a syste m with random frequencies
has relative equilibria, which leads to the Proposit ion 3.

Propositio n 3. Almost all infinite rotator systems with identically normally
distributed independent frequencies and arbitrary "I/N interactions do not
have relative equilibria. In particular, perfect ly entrained solutions are ex­
cluded with probability one.

P roof. A frequency vector of a system with entrained solut ions is necessari ly
located inside a cylinderset in the frequency space (compare equation (6.11)) .

(6.25)

For the Gaussian frequency distribution consider t he probability PN(w E
TNh)). Chasing the average frequency ON,. and frequency deviat ions I'j =
Wj - n N ,a, j = 1, . .. , N - 1 as new integration variables (Jacobian factor
equal to N) , one obtains

PN(!!!. E TNh )) = N (2' /' " U)- 1L:~ dflN,. exp( - N (ON,. - 0 )' /217')*

N-I

f ··· f ex p( L;uj-(ud u, + .. . +UN_I)'/2u')
k= l

IUj l :S 1'1 1, IL: ujl :S I'll
j= l , ... ,N - l

where IT and o are the distribut ion parameters. Hence

(6.26)

PN :S (N Il' /(27fu)N-l )(/ 1'71 exp( - u' / 2u')d u)N
- 101

and limN_~ PN = 0 for all finite 1'11· •
Comment : It is interesting to note that replacing the necessary condition

(6.11) by a weaker condit ion
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N

(l /b'l) II ~ - n.I!d 11= ( l/l'Y I)[I:(~i - n.I!d)'J'/2 s N '/
2

;=1
(6.27)

one can obt ain a crit ical behavio r in the N -+ 00 limit when the cor res pond­
ing probability tends to zero for all values of b lless th an some threshold value
(proport iona l to c-) and has a non-zero value above this threshold. However,
we were unable to find a reasonable dynamical interpretation of th e inequal­
ity (6.27) besides an obvious observation that it ensures the existence of at
least one rotator sat isfying the condition I~ - n.I!d1::; 171.

Conclu ding Remarks

We sketched above a picture of the complete synchronizat ion phenomenon
as generically caused by the presence of relatively stable asymptotic equilib­
ria in finit e systems with t rans lat ionally invariant coupling. We limi ted our
discussion to relati vely simple examples, an d we are unable to prove the exis­
tence of mul t iple entrained states . In this respect higher-dim ensional systems
with fr ust ra ted interactions are interesting, as they have largely degenerate
ground states.

Equ ally interesting are the dynamics of finite systems with random fre­
quencies, const ant interaction st rength, and random interaction graph s. We
are considering systems of th is type as a mod el qualita tively explaining exper­
imental data der ived from the recorded electrical acti vity of single neu rons
in highly interconnected ran dom neural networks studied in vitro [20- 22].
These systems exhibit both chaotic and quasi-periodic burst ing patterns,
depending on the synaptic connect ion type and st rength. Th e synapt ic in­
teraction can be influenced chemically or with elect ric st imulat ion, giving
us th e possibili ty to control the mod el' s coupling parameter;. Adopt ing a
threshold act ivat ion pict ure for a single neuron [10], we carry out com puter
simulat ions of th e spiking pattern produced by entrained and asynchronous
neurons. These results will be reported in a separate publicat ion.

Anoth er class of problems is related to pa t te rn storage in rotator systems.
It should be mentioned that the idea itself is not new. E. Bienenstock [23]
was first to propose th e use of t he rotator model in studies of memory and
learni ng. However , the pattern retrieval has been carried out by Bienen­
sto ck by a "simulated annealing" procedure. The use of dissipati ve evolut ion
equat ions (like equat ion (2.1) remains for us an interest ing possibility.
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Note add ed in proof: Large systems of plan ar rot ators with random fre­
quencies have been thoroughly investigated in a recent pap er by S. H. Stro­
gatz and R. E. Mirollo [24) . Th e basic method is the same as we employed
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proving proposition 3 (the use of necessary conditions for entrainment and
probability estimates) . However, as presented by those authors, the non­
existence theorems for entrainment have much wider range of applicability
(type of interactions and frequency distributions). Moreover, they proved
that the entrained clusters, if any, in an asymptotically infinite system must
have a "sponge-l ike" structure in an interesting analogy to percolation clus­
ters.

Systems with all-to-all interactions and random frequencies have also been
investigated in a paper previously unknown to us by G. B. Ermentrout [25].
We are grateful to the referee for pointing this out and for all other comments.
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