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Abstract.
Coarse-coded symbol memories have appeare d in several neural

net work symbol processing models. T hey are st atic memories that use
overlap ping codes to store mu ltiple items simultaneo usly. In order to
determine how t hese models would scale, one must first have some un­
derstanding of the mathematics of coarse-coded represe ntations . The
general struct ure of coarse-coded symbo l memories is defined, and
their strengths and weaknesses are discussed . Memory schemes can
be characterized by their memory size, symbol-set size, and capacity.
We derive mathematical relationships between these par ameters for
various memory schemes, using both analysis and numerical method s.
We find a simple linear relat ionship between the resources allocated to
the syste m and the capacity t hey yield . The predicted capacity of one
of the schemes is compar ed wit h actual measur ements of the coar se­
coded working memory of DCP S, Touret zky and Hinto n's dist ributed
connectionist product ion system. Finally we provide a heurist ic al­
gorithm for generating receptive fields which is efficient and pro duces
good results in practice.

1. Int roduction

A distributed representation is a memory scheme in which each entity is rep­
resented by a pattern of act ivity over many units [1]. If each uni t participates
in the representation of many enti t ies, it is said to be coarsely tuned, and
t he memory itself is called a coarse-coded mem ory.

Coarse-coded memories have been used for storing symb ols in several neu­
ra l network symb ol pro cessing models, such as the Rumelhart and McClel­
land verb learning model [2],Touretzky and Hint on's dist ributed connection­
ist pro duction system DCPS [3,4], Toure tzky's dist ribu ted implementat ion of
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Lisp S-expressions on a Bolt zmann machine, BoltzCONS {5,6} , and St . John
and McClelland's PD P model of case role defaul ts [71. In all of these models,
memory capac ity was measured empirically (if it was measured at all), and
parameters were adjusted by trial and er ror to obtain t he desired behavior .
We are now ab le to give a mathematical foundation to these experiments by
analyzing the relationships amon g the fundamental memory parameters.

There are several paradigms for coa rse-coded memories. In a feature­
based representation, each unit stands for some semantic feature. Binary
units can encode features with binary values, whereas more complicated un its
or groups of units are required to encode multi-valued properties or numer­
ical values from a cont inuous scale. The units th at form the representation
of a concept define an intersect ion of features that const itutes that concept .
Similarity between concepts composed of binary features can be measured
by the Hamming distance between their representations. In a' neural net­
work implementation , relationships between concept s are implemented via
connect ions among the units forming their representations. Certain types of
generalizat ion phenome na thereby emerge auto matically.

A different paradigm is used when representing points in a multidimen­
sional cont inuous space [8,1]. Each unit encodes values in some subset of
the space. Typ ically the subsets are hypercubes or hyperspheres, but they
may be more coarsely tuned along some dimensions than others {9]. T he
point to be represented is in the subspace formed by t he intersecti on of all
acti ve units. As more units are turned on, the accu racy of the representation
improves. T he density and degree of overlap of the uni ts' recepti ve fields
determines the system 's resolut ion [10].

Yet another paradigm for coarse-coded memories, and the one we will
dea l with exclusively, does not involve features. Each concept, or symbol,
is represen ted by an arbit ra ry subset of the units, called it s pattern. Unlike
feature-based represent ati ons, indivi dual units do not determine the meaning
of a symbol. Only the pat tern as a whole is assigned a meaning.

A symbol is stored in memory by turning on all the units in its pattern.
A symbol is deemed present if all the units in it s pattern are acti ve.! The
recept ive field of each unit is defined as the set of all symbols in whose
pattern it par ti cipates. We call such memories coarse-coded symbol memories
(CCSMs). We use the te rm "symbol" instead of "concept " to emphasize
that the internal structure of the ent ity to be rep resented is not involved
in its representation. In CCSMs, a short Hamming distance between two
symbols does not imply semantic similari ty, and is in general an undesirable
phenomenon.

The difference between CCSMs as defined above and dynamic memories of
t be type st udied by Hopfield [Ill should be emphasized. A Hopfield net work
stores patterns in the weights between act ive units. The units' outputs evolve

tT his criterion can be genera lized by introducing a visibility ttuesbotd. a fraction of
the units in a pa t tern th at should be on in order for a symbo l to be considered present .
Our analysis deals on ly with a visibility criterion of 100%, but can be generalized to
accommodate noise.
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over t ime as the network settles into an attractor stat e representing a single
stored item. In contrast, CCSMs have no attractor dynami cs; they are simply
a.coding scheme. External mechanisms such as the pullou t networks of DCPS
and BoltzCONS may be used for associati ve retri eval from a CCSM, but
they are not part of the CCSM itself. Th e primary advantage of CCSMs is
their ab ility to represent multiple items simult aneous ly, possibly using fewer
resources than conventional, non-distributed schemes .

Coarse-coded symbol memories can be further class ified by the degree
to which they are structured. In a completely unstructured CCSM, any
subset of the units is a legitimate candidate for representing a symbol. A
structured CCSM, on the other hand, imp oses restri ctions on the class of
patterns th at may be used. These restrictions can be articulated in terms of
the pat terns themselves or in terms of constraints on t he receptive fields of
the units. Some constraints are very simple, c.g., tha t all patterns be of the
same size. The working memory of Touretzky and Hinton's DCPS is a CCSM
with more complex constraints. "Symbols" in thi s memory are triples of
let ters. T he recepti ve field of each unit is generated by the cartesian product
of three randomly-chosen sets of six letters each. T hus each 216-elemen t
receptive field is a 6 . 6 . 6 subspace of a larger three-dimensional space,
rather than a collect ion of 216 independently chosen symbols. Likewise, the
Rumelhart and McClelland verb learn ing model stores triples of phonemes
using cartesian prod uct recept ive fields. Rumelhart and McClelland refer to
this as "conjunctive coding" _ In their mod el the fields are of varying size,
rather than uniform as in DCPS .

Imposing st ruct ure (i.e. , constraints) on recepti ve fields might be expected
to reduce the capacity of the memory. When we meas ured thi s effect for
DCPS by comparing it s memory capacity to that of similar non-structured
CCSMs, we found the actual penalty to be slight .

CCSMs can be very efficient for implementing large, sparse memories.
By "large" we mean memories t hat are capable of rep resenti ng many dis­
t inct symbols, and by "sparse" we mean th at only a small fractio n of these
symbols will be simultaneously present in the memory. An extreme localist
rep resentation, in which each symbol is encoded by one unit and each unit is
dedicat ed to encod ing a single symbol, is very inefficient in such cases. For a
given numb er of symbols, Q' , a localist representation requires exactly Q' units,
whereas a CCSM can make do with far fewer than that . Alternat ively, the
advantage can be recast in terms of represent ation al power: given N units,
a loealist representation can represent exactly N symbols, whereas a CCSM
can potentially handle man y more. The efficiency with which CCSMs handle
spa.rse mem ories is the major reason they have been used in connectionist
systems, and hence the major reason for st udying them here.

T he unit-sharing st rategy that gives rise to efficient encoding in CCSMs
is also the source of their major weakness. Symbols share units wit h other
symbols. As more symbols are stored , more and more of the units are turned
on. At some point, some symbol may be deemed present in memory because
all of its units are turned 00 , even though it was not explicitly sto red: a ghost
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Figure 1: A mem ory scheme. 8 symbols are ass igned overlapping
patterns over 6 unit s. T he columns are the symb ols' pattern s. The
rows are the units' receptive fields.

is born. Ghosts a re an unwanted phen omenon ar ising out of the overla p
among the rep resentations of the various symbols. T he emergence of ghosts
marks the limits of the system's capacity: the number of symb ols it can store
simultaneously and reliabl y.

In what follows, we define coarse-coded symbol memories rigo rously, and
develop a for m alism in which questions about t he performance of t hese sys­
tems can be given exact, quantitative formu lat ion. Four different mem ory
schemes are described, their capacities analyzed, an d their strengths and
weaknesses contrasted with one another. T he principle of "economy of scale"
is disc ussed, an d the conditions under which it applies are spelled out . Struc­
tured symbol memories are presented next, whe re two examples from the
literature (Touretz ky and Hinton's DCPS and Rumelhart and McClelland 's
verb learning model) are analyzed . Actual capacity measurements of DCPS
are compared with one of t he theoretical schemes. F inally, we provide a
heuristi c algorithm for gene rat ing receptive fields which is efficient and pro­
duces good results in practi ce.

2 . Defin itions and fundamental paramet ers

A coar-e coded symb ol memory in its most general form consists of:

A set of N binary state u n its.

An alphabet of 0: sym bols to be represent ed . Sym bols in thi s context
are atomic entities: they have no const it uent st ruct ure .

A nlemory sc heme, which is a function that maps each sym bol to
a subset of the uni ts - it s pattern . The recep t ive fiel d of a un it
is defined as the set of all symbols to whose pattern it belongs (see
figure 1).

The exact nature of the memory scheme mapping determines the prop­
erties of the memory, and is the cent ra l target of our investigation.
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As symbols are stored, the memory fills up and ghosts eventu ally app ear.
It is not possible to detect a ghost simply by inspecting the contents of
memory, since there is no general way of distinguishing a symbol that was
stored from one th at emerged out of overlaps with other symbols. (It is
sometimes possible, however , to conclud e that there are no ghosts. Thi s is
true when every symbol that is visible in memory has at least one unit that
is not shared with any other visible symbol.) Furthermo re, a symbol that
emerged as a ghost at one time may not be a ghost at a later t ime if it was
subsequently stored into memory. Thus the definit ion of a ghost depends not
only on the state of the memory but also on its history.

Some memory schemes guarantee that no ghost will emerge as long as
the number of symbols stored does not exceed some specified limit . In other
schemes, the emergence of ghosts is an ever-present possibility , but its proba­
bility can be kept arbitrarily low by adju sti ng other parameters. We analyze
systems of bot h typ es. First , two more bit s of notation need to be introduced:

P .h~' : Probability of a ghost. Th e probability that at least one ghost
will appear after some numb er of symbo ls have been stored.

k : Capacity. The maximum number of sym bols that can be stored simulta­
neously before t he probability of a ghost exceeds a specified threshold.
If the threshold is 0, we say that the capacity is guaranteed.

A loealist representation, where every symbol is represen ted by a single
unit and every unit is dedicated to the representat ion of a single symbol, can
now be viewed as a spec ial case of coarse-coded memo ry, where k = N = a
and P gh ost = O. Lccalist rep resentat ions are well suited for memories that
are not sparse. In these cases, coarse-coded memories are at a disadvantage.
In designing coarse-coded symbol memori es we are interested in cases where
k « N « G . The permissible probabili ty for a ghost in these systems should
be low enough so that its impact can be ignored, i.e., Pghos t « 1.

We wish to find memory schemes that will maximize the number of sym­
bols a and the capacity k while minimizing N , the number of units required.
We are also interested in the tradeoff between a and k for a fixed N. In
the following sect ion, we present four memory schemes , and anal yze each of
them in terms of the mathematical relat ionship among N, a , k, and Pghos t '

3 . A nalysis of fou r memory schemes

3.1 Bounded over la p (g uara nteed capacity)

If we want to construct the memory scheme with the largest possible a (given
N and k) while guarantee ing Pghost = 0, the problem can be stated formally
as:

Given a. set of size N, find the largest collect ion of subsets of it
such that no union of k such subsets subsumes any ot her subset
in the collection.
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T his is a well known problem in Coding Th eory, in slight disguise. Un­
fort una tely, no comp lete analyt ical solut ion is known . We therefore simplify
OUf tas k and cons ider only systems in which all symbols are represented by
the same numbe r of units (i.e., all pat tern s are of the sam e size) . In mathe­
matical te rms, we restrict ourse lves to constant weight codes. Th e problem
t hen becomes:

Given a set of size N 1 find the largest collection of subsets of size
exactly L such that no union of k such subsets subs umes any
ot her subset in the collection.

We wish to provide two arguments in support of this simp lification. Fi rst,
we believe it does not significantly reduce the size of th e collection. T his is
because th e solut ion to th e original problem is likely to be composed of
subsets of similar size. Th is can be seen by considering the effect too small
or too large a subset would have on the capacity of th e system. An unusually
small subset will have a very high tendency to become a ghost , whereas an
unusually large subset will have a high tend ency to create one .

Th e second argume nt is a pragmatic one. In order for coarse-coded mem­
ories to be useful , they need to be accessed by some external mechanism .
One such mechanism is t he clause space of DCP S. Clause spaces use lateral
inhibi tion to extract a single stored symb ol from a coarse-coded memory.
T his competit ive mechanism works best when pattern s are of uniform size.

T here are no known complete analy tica l solutions for the size of the largest
collecti on of patterns even when the pattern s are of a fixed size. Nor is any
efficient procedure for const ruct ing such a collection known. We therefore
simp lify th e problem fur ther . We now restri ct our consideration to pattern s
whose pairwise overlap is boun ded by a given number. For a given pattern
size L and desired capacity k, we requ ire that no two pat tern s overlap in
more t han m units, where:

m-lL -
1j- - k- ' (3.1)

Mem ory schemes that obey this constraint are guaranteed a capacity of
at leas t k symbols, since any k symbols taken together can overlap at most
L - 1 uni ts in the pat tern of any other symbol - one unit short of mak ing it
a ghost. Based on this constra int, our math em a.tical problem now becomes:

Given a set of size N, find the largest collection of subsets of size
exactly L such that the intersecti on of any two such subsets is of
size ~ m (where m is given by equ ati on (3.1).)

Coding theory has yet to produce a complete solution to this problem,
but several methods of deriving upper bounds have been proposed (see for
exa mple (12J). The simple formula we use here is a variant of th e John­
son Bound. Let Qbo denote the maximum number of symbols at tainable in
memory schemes that use bou nded overlap. T hen
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(3.2)Qb,(N, L, m) < (m~l)
(m~J .

The Jo hnson bound is known to be an exact solu tion asymptotically (t hat
is, when N, L, m --+ 00 and their ra tio s remain finite).

Since we are free to choose the pattern size, we optimi ze our memory
scheme by maxim izing the ab ove expression over all possible values of L. For
the parameter subspace we are inte reste d in here (N < 1000, k < 50) we use
numerical approximation to obtain:

( N) N mH

Qb,(N, k) = max (mLH) < max (-L--) < ,°.367 11 . (3.3)
LE[l ,N j LE[l,Nj - m

mH

(Recall that m is a functio n of Land k.) Thu s the upp er bound we derived
depicts a simple exponential relationship be tween Q and N / k. Next , we
try to construct memory schemes of th is type. A Com mon Lisp program
using a modified depth-first sear ch cons tructed memory schemes for various
parameter values, whose a's cam e within 80% to 90% of the upper bo und.
These results ar e far from conclusive , however , since only a small portion of
the parameter space was test ed.

In evaluating the viability of th is approach , its apparent optimality should
be contrasted with two major weaknesses. First , this ty pe of memory sche me
is hard to construct computationally. It took our program several minutes
of CPU time on a Symbolics 3600 to produce reasonable solut ions for cases
like N = 200, k = 5, m = I, with an exponential increase in com puting
t ime for larger values of m. Secon d, if CCSMs are used as models of memory
in naturally evolving systems (such as the brain), th is approach places too
great a burden on developmental mechanism s.

The importance of the bounded overlap ap proach lies main ly in its role
as an .upper bound for all possible memory schemes, sub ject to the simpli­
fications made earlier. No scheme with guarant eed capacity ( Pghost = 0) is
likely to yield a better scaling behavior than that of equation 3.3.

3 .2 R a nd om fixed size patterns (a stochastic app roac h )

Randomly produced memory schemes ar e easy to implement and are attrac­
t ive because of their na turalness. However, if the pattern s of two sym bols
coincide, the guaranteed capacity will be zero (storing one of these symbols
will render the other a ghost) . We therefore abandon the goa l of guaran­
tee ing a certain capacity, and instead establish a tolerance level for ghosts,
P ghost. For large enough memories, where stochas t ic behavior is more rob ust,
we may expe ct reasonable capacity even with very sm all P ghost .

In the first stochasti c approach we analyze, patterns are ran domly selected
subse ts of a fixed size L. Unlik e in th e previous approach, choosing k does not
bound a . VVe may define as many symbols as we wish , although at t he cost of
increased probabili ty of a ghos t (or , alternat ively, decreased capacity) . The
probab ility of a ghost appearing afte r k symbols have been st ored is given by
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min(N.kL) [ n]n-k

P.h~,(N,L,k, o) = 1- E TN,L(k,e)· I-d) (3.4)

TN,L(k, e) is the probability that exactly e unit s will be act ive after k
symbols have been sto red. It is defined recursively by

TN,L(O, O) = I

TN,L(k, e) = 0 for eit her k = 0 and e -4 0, or k > 0 and e < L (3.5)

TN,L(k,e) = l:;=o T(k - I , e - a) . (N-~-'») . (~:::) I (~).

We have constructed various coarse-coded memor ies with random fixed­
size receptive fields and measured the ir capacities. The ex perimental results
show goo d agreement with the above equation.

The optimal patt ern size for fixed values of N, k, and Q can be deter­
mined by binary search on equat ion (3 .4), since Pghost{L) has exactly one
maximum in the interval [1, N J. However, this may be ex pensive for large N .
A computational shortcut can be achieved by est imating the opti mal L and
searching in a sma ll interval around it. A good initial est imate is derived by
replacing the summation in equation (3.4) with a single term involving E[c] :
the expected value of the number of act ive units after k symbols have been
stored . T he latt er can be expressed as

E [e] N · [1- (1- LIN )k].

T he estimated L is the one that max imizes the ex pression

An alte rnative formul a, developed by Joseph 'Iebelskis, produ ces very
good approximations to equation (3.4) and is much more efficient to com pute.
After storing k symbols in memory, the probability P:l; that a single arbitrary
symbol x has become a ghost is given by

L (L) ( N _ j )k ( N) kP.(N, L, k, 0) = ~(-I)' j L I L (3.6)

If we now assume that each symbol's P:z: is independent of that of any
ot her symbol, we obt ain:

(3.7)
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Figure 2: Log(symbol-set-size) vs. number of units for even capacity
values (k) from 2 to 20. Proba.bility of a ghost was set to 0.01. The
optimal pat tern size was used in each case.
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This assump tion of independence is not strict ly true, but the relative
error was less than 0.1% for the parameter ranges we considered, when P ghost

was no greater than 0.01.
We have constructed the two-dimensional table TN,d k, c) for a wide range

of (N, L) values (70 :0 N :0 1000, 7 :0 L :0 43), and produced graphs of
the relationships between N, k, O!, and P ghost for optimum pattern sizes, as
determined by equation (3.4) . A represent at ive graph is shown in figure 2.

The results show an approximately exponential relationship between a
and N / k. Thus, for a fixed number of symbols, the capacity is proportional
to the number of uni ts. Let O!rJp denote the maximum number of symbols
attain able in memory schemes that use random fixed-size patt erns. Then
some typical relationships) derived from the data, are:

Qr/p(Pghost = 0.01) R::: 0.0086. e°.468¥

o, f, (Pgho," = 0.001) '" 0.0008· eOA73i! .
(3.8)

3.3 R an d om r ecept ors (a stochastic approach)

A second stochastic approach is to have each unit assigned to each symbol
with an independent fixed probability s . This met hod lends itself to easy
mathematical analysis) resulting in a closed-form analytical solution .

After storing k symbols) the probability that a given unit is active is
1 - (1 - 8)k (independent of any other unit) . For a given symbol to be a
ghost, every unit must either be active or else not belong to that sym bol' s

pattern. That will happen with a probability [1 - s · (1 - 8)k( , and thus
the probabili ty of a ghost is

Pghost(a,N, k)s ) [
N]o-k

1 - 1 - [1 - s . (1 - 8)k] (3.9)

Assumi ng P gho, t « 1 and k « o (both hold in our case), the expression
can be simplified to

Pghost(Q, N , k;s) o · [1 - 8 .(1 - 8)k(,

from which a can be extracted:

Pghost
[1 - 8 . (1 - s )klN"

(3.10)

We can now optimi ze by finding the value of s that max imizes o, given any
desired upper bound on the expected value of Pghost. This is done straight­
forward ly by solving ao/as = O. Note that s . N correspond s to L in the
previous approach. The solution is 8 = l/(k + 1), which yields
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(3.11)

N 0368'"
Pf!;host · e'd ~ Pghost· e · T. (3.12)

A comparison of the results of the two stochastic approaches reveals an
interesting similarity. For large k, with Pghost = 0.01, the multiplicative
factor of 0.0086 in equat ion (3.8) approximates Pgh , ,, in equat ion (3.12), and
similarly for P ghos t = 0.001. The coefficient in the exponent is larger in the
case of fixed-size patterns. This is hardly surprising, since an except ionally
small pattern , which may be generated by th e Random Receptors method,
has a high prob ability of becoming a ghost , and conversely an exceptionally
large pat tern has a high probability of creating one. Th e adv antage of fixed­
length patterns, which was predicted in section 3.1, is now demonstrated
analytically. According to the Law of Large Numbers , in the limit (N, k, " ->
00 , with k « N «a) the two methods are equivalent.

For Large k, the Bounded Overl ap method an d the Random Receptors
method yield virtually identical exponents. Note, however, that the former
guarantees its capacity, whereas the latter does not. Note also that abo is
only an upper bound, derived solely for the parameter ranges we considered
here.

It should be noted th at the stochast ic approaches we analyzed generate
a family of memory schemes, with non-identical ghost- probabilities that de­
pend on the particular patterns chosen. Pgh05t in our formulas is therefore
better understood as an expected value, averaged over the entire family.

3.4 Part itioned binary co ding (a reference point)

The last memory scheme we analyze is not strictly distributed. Rather, it
is somewhere in between a distributed and a Iocalist representation, and is
presented for comparison with the previous results. For a given number of
units N and desired capacity k, the units are partitioned into k equal-size
"slots", each consisting of Nj k units (for simplicity we assume that k divides
N). Each slot is capable of storing exactly one symbol.

The most efficient representation for all possible symbols that may be
stored into a slot is to assign them binary codes, using the N/ k units of each
slot as bits. This would allow 2N1k symbols to be represented. Using binary
coding, however, will not give us the required capacity of 1 symbol, since
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(3.13)

binary patterns subsume one another. For example, storing the code 110110'
into one of the slots will cause the codes '10010" '10100' and '00010' (as well
as seve ral other codes) to become ghos ts .

A possi ble solution is to use only half of the bits in each slot for a binary
code, and set the other half to the binary complement of that code (we
assume that N / k is even) . This way, the codes are guaranteed not to subsume
one another. Let Q:p!>c denote the number of symbols representable us ing a
partitioned binary coding scheme. T hen,

~ _ 2N/2k _ eO.347~
.....pbc- - .

Once again, a is expo nential in N / k. The form of the result closely
resembles t he estimated upper bound on t he Bounded Overlap me thod given
in equation (3.3). There is also a st rong resemblance to equations (3.8)
and (ll), except that the fract ional multiplier in front of the exponent ial,
corresponding to Pghost, is missing. P ghost is 0 for the Partit ioned Binary
Coding method, but this is enforced by dividing the memory into disjoint
sets of units rather than adjusting the patterns to red uce overlap among
symbols.

As mentioned previously, this memory scheme is not really dist ribute d in
the sense used in th is paper, since there is no one pat tern associated with a
symbol. Instead, a symbol is represe nted by any one of a set of k patterns,
each N / k bits long, corresponding to its appearance in one of the k slots . To
check whet her a symbol is present , all k slots must be examined. To store
a new symbol in memory, one must scan the k slots until an empty one is
found . Equation (3.13) should therefore be used only as a point ~f reference.

3.5 Co mparison of results

Table 1 summar izes th e results obtained for the four methods analyzed. Note
that these results assume the use of optimal pat tern sizes. Th e effect of using
other pat tern sizes can be derived from the ana lyses in the preceding sections.

Memory Scheme Result
Bounded Overlap "", (N, k) < e O.367T

Ran dom Fixed-size Patterns o,f p( Pghost = 0.01) "" 0.0086· e°.468f

""fp(p.h" , = 0.001) "" 0.0008 . eo.m ji

Random Receptors "'" = Plthost . eO .36Sf'

Partitioned Binary Coding apbc = e O.347f'

Tab le 1: Summary of results for various memory schemes .

Some differences must be emphasized:

abo and Qpbc deal wit h guaranteed capacity, whereas Qrfp and a - , are
meaningful only for Pghost > O.
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a bo is only an upp er bound.

o, fp is based on numerical est imates .

apbc is based on a scheme which is not strict ly coarse-co ded.
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The similar functional form of all the results, altho ugh not surp rising, is
aesthet ically pleasing.

There is a simple linear relationship between the resources allocated to the
system (N ) and th e capacity they yield (k). This is t rue no mat ter what the
other para meters are. This result can be assumed to hold in all reasonably
efficient memory schemes . Thus if we are given a working CCSM whose
characteristics are known, perhaps through empirical meas urements , we can
increase it s capacity by any desired factor by sim ply increasing the number
of units by that factor. Thi s may be a handy rule of thumb for designers
and users of coarse-coded memor ies. Alte rnat ively, if a working CCSM is
observed to scale qualit atively worse than the models we investigat ed here,
e.g. have a sublinear dependency of k on N, then in all likelihood the scheme
being used is inherently inefficient.

Similarly, there is a linear tr adeoff between the express ive power of the
system (a, the number of symbols it can represent ) and the tolerate d prob a­
bility of an error (Pgh ost ). Note th at P gh ost is defined as the probabili ty that
any of the a symbols is a ghost , i.e. it already takes int o account the size
of th e symbol set. The probability of a given symbol being a ghost is much
smaller th an P ghost . Thus a second rule of t humb we deri ve is tha t th e prob­
abili ty of error can be reduced by a proportionate reduction in the sym bol
set size.

Finally, all four parameters are related exponentially, through a coefficient
which may vary from one memory scheme to another, but can be expected to
remain within a rather narrow range. Since a / P gh ost is exponential in N / k , a
third rule of thumb to emerge is that the sys tem's behavior is most sensitive
to tbe ratio N / k, mu ch more than to th e ratio a / Pghost . For this reason it
makes sense, when analyzing a memory scheme, to ignore the latter rat io and
to evaluate th e system's efficiency in ter ms of the num ber of bits required
per stored symb ol.

4. E con om y of scale in coarse-cod ed m emories

Coarse-coded symbol memori es are characterized by a resource-sharing st rat­
egy. It is thi s pool ing of resources that is respon sible for th e efficiency with
which they handle sparse memories. It may be tempting to conclude that
one large CCSM is in general more efficient than several (say m) smaller CC·
8Ms providing the same functi onalit y. We now discuss t he condit ions under
which thi s is true. For simplicity's sake, we restrict our analysis to the case
m = 2. We believe that the qualitative result s apply to the general case as

well.
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4.1 M erging two CCSM5

Consider a system that requires two sparse memories. Each one must be
able to represent 0/ symbols (from disjoint alph ab ets) and to hold up to k of
th em in storage at anyone t ime , while maintaining the probabil ity of a ghost
below Pgh ost - Let us use a separ ate CCSM for each memory requirement an d
choos the Random Receptors memory scheme (see section 3.3). We assum e
that k is large enough so that equation (3.12) can be used . T he numb er of
uni ts we need for both CCSMs together is

N'_CCSM. = 2 e k {log 0/ - logPgh~tl . (4.1)

If, on the other hand, we use one CCSM to prov ide the same fun ctionali ty ,
we need a representation power of 20: symbols and a capacity of 2k symbols,
while maintainin g the same P ghost o Using the same memory scheme, the
numb er of unit s required for t he single, "merged" CCSM is

N m"god e . 2k . (log 20/ - logPgh~l )

= 2 e k (log 0/+ log Pgh~l + log 2)

N'_ CCSM. + 2 log2 e k

"" N'_CCSM. + 3.77k (4.2)

T hus the single, combined CCSM requ ires more resources than the two
separate CCSMs.

4.2 Sp litt in g a singl e CCSM

Consider now a syste m that requires a single memory with parameters 0: ,

k, P gho!lt . Using a single CCSM and th e Random Receptors memory scheme
again, the num ber of units we need is

N I-CCSM = e k (log 0/ - log Pgh~.) (4.3)

We now consider split ting our memory into two smaller CCSMs. We may
do this by split t ing the symbol set randomly into two halves, and accommo­
da ting each half using a separate CCSM. In th is way, any k pre-selected
symbols will be distributed binomially between th e two smaller CCS Ms. Us­
ing the same memory scheme and an as-yet -undeterm ined total number of
unit s (Nsplit ) , the prob abi lity of a ghost in the split system is

P ghost ( N 6plit l 0:, k) =
1 1 ", (')[1 P (N.,,;, 0 ·)][1 P (N.,;;, 0 k ·)1(4 4)
- ~LJj=o j - ghos t 2 ' 2,J - ghost 2 ' 2 ' -J . .
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We now require the probability of a ghost in the split system to be the
same as that of the original system. Using t his constraint , N .malls plit can be
extracted num erically.

Figure 3 depicts both N . pli, and N t-CCSM as a function of the required
capacity, for typi cal values of a and Pghos t . Th e single, undivided memory is
significantly more efficient than t he two-CCSM alternative, req uir ing 25-50%
fewer units in the parameter range of the graph.

4. 3 C om p ar ison a nd a na lysis

We analyzed two scenarios. In the first, we considered merging two CCSMs
into one, and proved it disadvantageous, requiri ng more uni ts than the orig­
inal system. In the second scenar io, we considered splitting a single CCSM
into two halves, and concluded similarly that such a split would not be benefi­
cial, at least with regard to the resources needed. The seeming contradict ion
be tween t he two results can be explained by careful anal ysis of the differences
between them.

In the first case, the capacity requirements were specified separately for
the two symbol sets. Each memory was required to be ab le to hold up to k
symbols, and therefore the merged CCSM needed a capacity of 2k symbols.
Note that this means that the merged CCSM will accommodate more than
k sym bols from a single symbol set , as long as the total number of sto red
symbols is less then 2k . This "extra capaci ty" is not afforded by the two
separate CCSMs. Thus it seems tha t "we got more than we bargained for"
when we merged the two CCSMs into one. This added capaci ty helps us
understand why t he merged CCSM requ ires more units than the 2-CCSM
system.

In the second case, there is only one symbol set, and hence only one
capacity requ irement . The usage profiles of the various symbols may in fact
be correlated. For example, it is possible that a certain pair of symbols
will never be stored together. If we knew of such a case we could use that
fact to our advantage by, say, putting the two symbols into the same pool.
Unfor tun ately, we don 't know anything about the likely distribu tion of fut ure
storage demands, so the best we can do is split the system randomly, which
results in a binomial dist ribution. Having no a priori knowledge about the
intended use of the system, we can not ga in anything by splitting it into
modules. T he "economy of scale" argument mentioned before makes t he
non-spli t system more efficient, accounting for the data in figure 3.

The conclusion we draw from th is analysis is that knowledge about the
likely distribution of memory demands can be used to design a more efficient
CCSM. However, when no such knowledge exists, merging all resources is
likely to yield t he most efficient system.
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Figure 3: Economy of scale in CCSMs. Number of units (N) V5.
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(dotted line) . Symbol-set size is 2000. Probability of a ghost is 0.001.
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5. Struct ur ed symbol mem oeies

The three distr ibuted schemes we have st udied all use unstructured patterns
(as discussed in the introduction) , the only constraint being that patterns
are at least roughly the same size. In thi s sect ion we discuss st ruct ured mem­
ories, beginning with an examination of the workin g memory of ncps. We
then show how the Wickelfea ture represent ati on used in the Rumelhart and
McClelland verb learning model can be understo od as a st ructured CCSM.

5.1 Meas urement of D C P S

Imposing struct ure on the receptive fields of units, using any of the coarse
coding schemes we have discussed , is likely to reduce t he capacity somewhat .
In order to qua.ntify this effect, we measured the memory capac ity of ncps
and compared the results with one of the theoretical mod els analyzed above.

Th ere are 2000 units in the working memory of ncps. Its symbols are
triples of let ters drawn from an alphabet of size 25. All possible combinations
of let ters are permitted, resulting in a three dimensional symbol space of size
'" = 253 = 15625 triples. The receptive field of each unit is defined by the
cartesian product of three randomly-chosen sets of six let ters each. Thus
each receptive field is a three dime nsional subspace of form

{(o, b,c) I 0 E A , b E B , c E C} ,

where A, Band C are independent , randomly-chosen six let ter sets. Units
therefore have fixed-size recept ive fields containing 63 = 216 triples. (Each
triple counts as one symbol.) DCP S requires st ructured recep tive fields so
t hat a distributed winner-t ake-all network , called a "bind space", can be used
to decomp ose triples into their component letters.

The sym bols in DCPS' working memory do not have fixed pa t tern sizes.
The expected pattern size is (6/25 }3 . 2000 '" 28. Touretz ky and Hinton
manipulated the receptive fields as describ ed in [4] to arti ficially redu ce the
variance from thi s mean. In the current implementat ion of DCP S, pattern
sizes vary from 23 to 33, but most sym bols have patterns containing 26 to
29 units; t he standard deviat ion is only 1.5.

F igure 4 shows Pghost as a funct ion of k for the Ran dom Recep tors met hod
as est imated by equation (u) and for DCPS (based on 10,000 trials, each
consist ing of storing randomly-generated triples until t he first appearance of
a ghost). N is 2000 and a is 15625. The two curves are quite close. Note
that when Pgho,t is 0.01, we observe an a.ctual capacity of 48 symbols for
DCPS2 and an expected capac ity of 51 symbols for the random receptors
scheme. We th us conclude that for t he parameter ranges discussed here, the
st ruct ure in DCl'S's fixed-size receptive fields (which have been man ipulated
to assure nearly fixed-size pat terns) results in only a slight penalty relative
to th e random receptors approach.

"This measurement is based on a 100% visibili ty crit erion, which we use throughout this
pap er. It therefore differs from previously reported values where lower visibility crite ria
were used [4].
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Smolensky has recently shown that thi s form of st ructured, coarse-coded
memory can be viewed as a. spec ial case of a tensor pro duct represent at ion
[13]. In his formalism, each letter that app ears in a DCPS receptive field
table has an associated 2000-bit pattern. (Call the let ters appearing in the
first column Ai throug h 1';. . T he bit pattern for Al has a 1 in posit ion i iff Ai
app ears in the first column of the receptive field table of unit i . Simi larly for
the other let ters, and for the other columns, A total of (6/25) . 2000 = 480
bits will be on in each pattern.) Each of the 2000 working memory units then
becomes an element on the major diagonal of a rank th ree tensor defined by
the tenso r product of t hree 2000-bit vectors.

The tensor product approach is interesting because it suggests alterna­
ti ves to DCPS-style clause spaces for retrieving elements from memory. On
the ot her hand, CCSMs use their units more efficiently because they have
far less redundancy. Measurement of efficiency in practice is comp licated by
the retrieval issue; for self-addressing, which is the simplest retrieval method
for tensor product representations and requires tak ing the inner product of
a rank three tenso r with a ran k two tenso r, the number of items that, can
he stored before retrieval fails is difficult to derive analytically. Empirical
measurements are curre ntly in progress.



Coarse-Coded Symbol Memories and Th eir Properties 481

5. 2 Wickelfeature representations

The Rumelhart and McClelland verb learning model [2] uses an interesti ng
coarse-cod ed representat ion for tr iples of phonemes, or "Wickelphones". T he
Wickelphone kAm denotes a phoneme / A/ whose left context is / k/ and
whose right conte xt is [m], Words are encoded as sets of Wickelphones;
beginning and ending word boundaries are mar ked by # , which appears as
the left context of the first Wickelphone and th e right context of the last
Wickelphone making up the word .

Each pho neme is descr ibed by an eleven-bit vector with either four bit s
on (for consonants and vowels) or one bit on (for word boundary markers).
Each of these bits stands for some phonetic featu re, such as Front , Back,
Stop, Nasal, Voiced, and so on. The encoding provides for 35 disti nguishable
phonemes. Each of the 460 Wickelfeature units in th e coarse coded repre­
sentation stands for a conjun ct ion of three of these phonet ic featu res, one
from each of the t hree phon emes making up a Wickelphone. For example,
one of the units tha t participat es in th e represent at ion of kAm is active for
Wickelphones whose left context is a stop like /k/, whose central phoneme is
voiced (for consonants) or long (for vowels) like / A/, and whose right contex t
is a nasal like [ tn] ,

If phonetic features are microfeatu rea, th en Wickelfea tures are th ree-way
conju nct ions of microfeatures. One can look at a single act ive Wickelfeature
unit an d learn something useful (for purposes of th e verb learning tas k) ab out
the propert ies of the Wickelphone it encodes. In contrast, th e individual units
in a structured CCSM such as DCPS have no simple interpret atio n, because
the letters that make up a recept ive field table are not grouped toget her by
shared microfeatures .

Consider the [Stop, Voiced/Long, Nasal] Wickelfeature unit described
previously. It is defined by these three phone tic features, but it can also be
described in te rms of a cartes ian product recept ive field table. The recept ive
field table contains, in the first column , all th e stops; in the second column,
all phonemes that are either voiced consonants or long vowels; and in th e
third column, all the nasals."

When individual units are describ ed using Wickelfeatu res t hey appear
uniform, but when viewed as recep tive fields of Wickelphones we see that
t here is substantial variation from unit to unit . For example, Vowel is a fea­
ture of twelve disti nct phonemes; Interrupted is a feat ure of nine phonemes;
Stop/Fricati ve/High is a feature of eighteen phonemes, while Word Boundary
is a feature of only one phoneme. So the Wickelfeature unit [Word Boundary,
Interrupted , Vowel] codes for 1 . 9 . 12 = 108 Wickelphones, while the unit
[Vowel, Stop, Vowel] codes for 972. Since th e encoding provides for 35 dist in­
guishable phonemes plus the word bou ndary marker , there are 353 +2 . 352

3Actually the first column contains stops, fricatives, and high vowels, because the
mutually exlcusive features Stop, Fricat ive, and High are all represented by the same
bit in the eleven-bit encoding. Th ere is really a Stop/Fricative /High feature rather than
three separate ones. Likewise, the third column conta ins not just nasals, but also liquids,
semivowels, and low vowels.
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or 45325 Wickelphones in all. The varying coarseness of the units' recep­
t ive fields makes it difficult to est imate the capacity of this memory, but it
appears to be adequate for the inten ded applicat ion.

The lesson to be drawn from t he Wickelfeat ure example is that coarse
cod ing is not incom pat ible with a conjunct ive microfeature represen tation.
Although one gives up a certain amount of capac ity in return for t he ad­
ditional st ructure, useful prope rt ies may result. The verb learning model
showed generalization to novel verbs precisely because of the overlapping
representat ions of phonetically similar Wickelphones. Rumelhar t and Mc­
Clelland fur the r blur red the rep resentation (by introducing noise into the
recepti ve fields) to enhance thi s generalization effect I which also reduced t he
amount of training required .

6. Co nst r uct ing coarse-coded m em ories

Returning to the main topic of this pap er I which is CCSMs with maximal
efficiency rather t han domain-specific internal st ructure, we note that the
three distributed schemes studied here have similar properties in the limit .
However I when construct ing actual models that use these representations,
one generally cannot afford to simulate more than a few thousand units.
T his is to o man y units to generate opt imal recepti ve fields as defined by
the Bounded Overlap method I because of t he exponenti al search involved.
On the other hand , it is too few units to permi t reliance on either of the
two simple stochastic schemes. Unless the memory parameters are large,
the variance in pattern size (for the Ran dom Recepto rs method) and in the
overlap be tween patterns (for bot h stochas t ic methods) may be large enough
to interfere with the operat ion of the generated memory.

For pract ical applicat ion of CCSMs, we present an algorithm for heur ist i­
cally generat ing good fixed-size receptive fields. The algorit hm guarantees a
uniform pattern size (provided that N divides a ), and at tempts to mini mize
the overlap between pat terns. For a given recept ive field size F , the pat tern
size will he L = N · F[a, and the expected overlap between two patterns is
OE = L> (F - 1)/ (<> - 1).

1. Init ialize. Let U [l .. NI be an array of sets defining the receptive
fields of the N units. Init ialize U to sets of consecutive symbols in
t he infinitely repeating sequence S = {Sh . . . , S(:t)Sh " '}' so that
U[lJ = {Sh .. ·, SF}, U(2) = {SF+h ... ,S,Fl, and so on . Thi s step
guarantees equal size patterns and equal size receptive fields.

2. Shuffle. Pick two dist inct units x and y a.t random. Pick two sym bols
s, and S; such that s. E U[x] and S; E U[y], and s, rt U[yJ and
S; rt U[x]. Swap Si and S; in the two recept ive field tables. Repeat
th is ste p some mul t iple of N . F t imes, to assure ade quate shuffl ing of
all receptive fields.

3. Compute the variance. Let C[1.. OJ1 .. a J be an array of integers in
[0, £1 . For each pair of symbols Si, S;, let C[i, j l be the number of units
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whose receptive fields contain both symbols. Note that C[i, i] = L for
1 $ i $ a . Ideally, C[i, j] = DE for 1 $ i, j $ a when i # j . Define
the variance V to be the difference between the expected and actual
overlap for all pairs of symbols: V = t 'Zi#j (C[i ,j] - DE)'.

4. Reduce the variance. Pick two distinct units x and y at random. Pick
two symbols S, and s, such that S, E U[x] and s, E U[yl, and S, fie U[y]
and Sj fie U[xJ . Swap Si and Sj in the two receptive field t ables,
and update the co-occurrence matrix C. (The update will affect up
to 4(F - 1) of the a' entries. Half will be decremented, the other
half incremented.) Let V' be the new variance computed after C is
upda ted. If V' $ V accept the swap; ot herwise undo it. Repeat this
step until the variance has been reduced to an acceptable level.

The last step of the algorithm assures a monotonic decrease in variance
over time, so one can stop at any point when the current state is "good
enough." In contrast, the depth first search algorithm we used to generate
optimal fields for the Bounded Overlap method must run to completion in
order to obtain a full set of N receptive fields. Our heuristic algorithm
does not guarantee opt imal fields because the search can get trapped in local
minima, but experience with models such as DCPS and BoltzCONS suggests
that in practice this is not a serious problem.

The algorithm is also applicable to structured memories, where one may
swap a letter in any column of one unit's receptive field table with a letter in
the corresponding column in some other unit's table. The major change to
the algorithm is in the computation of which symbols are affected by a swap:
in DCPS, replacing one letter in one column of the table causes the replace­
ment of 36 symbols, due to the cartesian product that generates the receptive
field. Fixed pattern sizes are difficult to obtain when cartesian products are
involved, but good approximations are possible. Instead of computing vari­
ance based on the co-occurrence rate of pairs of symbols (which will depend
on the number of components they have in commo n) , the last step of the al­
gorithm should manipulate the receptive field tables to minimize the variance
in pattern size.
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