Complex Systems 2 (1988) 463-484

Coarse-Coded Symbol Memories and Their
Properties

Ronald Rosenfeld*
David S. Touretzkyf?
Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Abstract.

Coarse-coded symbol memories have appeared in several neural
network symbol processing models. They are static memories that use
overlapping codes to store multiple items simultaneously. In order to
determine how these models would scale, one must first have some un-
derstanding of the mathematics of coarse-coded representations. The
general structure of coarse-coded symbol memories is defined, and
their strengths and weaknesses are discussed. Memory schemes can
be characterized by their memory size, symbol-set size, and capacity.
We derive mathematical relationships between these parameters for
various memory schemes, using both analysis and numerical methods.
‘We find a simple linear relationship between the resources allocated to
the system and the capacity they yield. The predicted capacity of one
of the schemes is compared with actual measurements of the coarse-
coded working memory of DCPS, Touretzky and Hinton’s distributed
connectionist production system. Finally we provide a heuristic al-
gorithm for generating receptive fields which is efficient and produces
good results in practice.

1. Introduction

A distributed representation is a memory scheme in which each entity is rep-
resented by a pattern of activity over many units [1]. If each unit participates
in the representation of many entities, it is said to be coarsely tuned, and
the memory itself is called a coarse-coded memory.

Coarse-coded memories have been used for storing symbols in several neu-
ral network symbol processing models, such as the Rumelhart and McClel-
land verb learning model [2], Touretzky and Hinton’s distributed connection-
ist production system DCPS [3,4], Touretzky’s distributed implementation of

*Computer addresses: roni@cs.cmu.edu (Internet).
TComputer addresses: dst@cs.cmu.edu (Internet).
{Reprint requests should be sent to the second author, at the address above.

© 1988 Complex Systems Publications, Inc.



464 Ronald Rosenfeld and David S. Touretzky

Lisp S-expressions on a Boltzmann machine, BoltzCONS [5,6], and St. John
and McClelland’s PDP model of case role defaults [7]. In all of these models,
memory capacity was measured empirically (if it was measured at all), and
parameters were adjusted by trial and error to obtain the desired behavior.
We are now able to give a mathematical foundation to these experiments by
analyzing the relationships among the fundamental memory parameters.

There are several paradigms for coarse-coded memories. In a feature-
based representation, each unit stands for some semantic feature. Binary
units can encode features with binary values, whereas more complicated units
or groups of units are required to encode multi-valued properties or numer-
ical values from a continuous scale. The units that form the representation
of a concept define an intersection of features that constitutes that concept.
Similarity between concepts composed of binary features can be measured
by the Hamming distance between their representations. In a’neural net-
work implementation, relationships between concepts are implemented via
connections among the units forming their representations. Certain types of
generalization phenomena thereby emerge automatically.

A different paradigm is used when representing points in a multidimen-
sional continuous space [8,1]. Each unit encodes values in some subset of
the space. Typically the subsets are hypercubes or hyperspheres, but they
may be more coarsely tuned along some dimensions than others [9]. The
point to be represented is in the subspace formed by the intersection of all
active units. As more units are turned on, the accuracy of the representation
improves. The density and degree of overlap of the units’ receptive fields
determines the system’s resolution [10].

Yet another paradigm for coarse-coded memories, and the one we will
deal with exclusively, does not involve features. Each concept, or symbol,
is represented by an arbitrary subset of the units, called its pattern. Unlike
feature-based representations, individual units do not determine the meaning
of a symbol. Only the pattern as a whole is assigned a meaning.

A symbol is stored in memory by turning on all the units in its pattern.
A symbol is deemed present if all the units in its pattern are active.! The
receptive field of each unit is defined as the set of all symbols in whose
pattern it participates. We call such memories coarse-coded symbol memories
(CCSMs). We use the term “symbol” instead of “concept” to emphasize
that the internal structure of the entity to be represented is not involved
in its representation. In CCSMs, a short Hamming distance between two
symbols does not imply semantic similarity, and is in general an undesirable
phenomenon.

The difference between CCSMs as defined above and dynamic memories of
the type studied by Hopfield [11] should be emphasized. A Hopfield network
stores patterns in the weights between active units. The units’ outputs evolve

'This criterion can be generalized by introducing a visibility threshold: a fraction of
the units in a pattern that should be on in order for a symbol to be considered present.
Our analysis deals only with a visibility criterion of 100%, but can be generalized to
accommodate noise.



Coarse-Coded Symbol Memories and Their Properties 465

over time as the network settles into an attractor state representing a single
stored item. In contrast, CCSMs have no attractor dynamics; they are simply
a coding scheme. External mechanisms such as the pullout networks of DCPS
and BoltzCONS may be used for associative retrieval from a CCSM, but
they are not part of the CCSM itself. The primary advantage of CCSMs is
their ability to represent multiple items simultaneously, possibly using fewer
resources than conventional, non-distributed schemes.

Coarse-coded symbol memories can be further classified by the degree
to which they are structured. In a completely unstructured CCSM, any
subset of the units is a legitimate candidate for representing a symbol. A
structured CCSM, on the other hand, imposes restrictions on the class of
patterns that may be used. These restrictions can be articulated in terms of
the patterns themselves or in terms of constraints on the receptive fields of
the units. Some constraints are very simple, e.g., that all patterns be of the
same size. The working memory of Touretzky and Hinton’s DCPS is a CCSM
with more complex constraints. “Symbols” in this memory are triples of
letters. The receptive field of each unit is generated by the cartesian product
of three randomly-chosen sets of six letters each. Thus each 216-element
receptive field is a 6 - 6 - 6 subspace of a larger three-dimensional space,
rather than a collection of 216 independently chosen symbols. Likewise, the
Rumelhart and McClelland verb learning model stores triples of phonemes
using cartesian product receptive fields. Rumelhart and McClelland refer to
this as “conjunctive coding”. In their model the fields are of varying size,
rather than uniform as in DCPS.

Imposing structure (i.e., constraints) on receptive fields might be expected
to reduce the capacity of the memory. When we measured this effect for
DCPS by comparing its memory capacity to that of similar non-structured
CCSMs, we found the actual penalty to be slight.

CCSMs can be very efficient for implementing large, sparse memories.
By “large” we mean memories that are capable of representing many dis-
tinct symbols, and by “sparse” we mean that only a small fraction of these
symbols will be simultaneously present in the memory. An extreme localist
representation, in which each symbol is encoded by one unit and each unit is
dedicated to encoding a single symbol, is very inefficient in such cases. For a
given number of symbols, o, a localist representation requires exactly « units,
whereas a CCSM can make do with far fewer than that. Alternatively, the
advantage can be recast in terms of representational power: given N units,
a localist representation can represent exactly N symbols, whereas a CCSM
can potentially handle many more. The efficiency with which CCSMs handle
sparse memories is the major reason they have been used in connectionist
systems, and hence the major reason for studying them here.

The unit-sharing strategy that gives rise to efficient encoding in CCSMs
is also the source of their major weakness. Symbols share units with other
symbols. As more symbols are stored, more and more of the units are turned
on. At some point, some symbol may be deemed present in memory because
all of its units are turned on, even though it was not explicitly stored: a ghost



466 Ronald Rosenfeld and David S. Touretzky

L[ Si[S:[S[5]Ss]5|5]5%
Uy |l e o | e °
U, o | o e | o
Us ® ® ® ®
Uy || o e | e
Us ° ®
Usll o | e e | o ®

Figure 1: A memory scheme. 8 symbols are assigned overlapping
patterns over 6 units. The columns are the symbols’ patterns. The
rows are the units’ receptive fields.

is born. Ghosts are an unwanted phenomenon arising out of the overlap
among the representations of the various symbols. The emergence of ghosts
marks the limits of the system’s capacity: the number of symbols it can store
simultaneously and reliably.

In what follows, we define coarse-coded symbol memories rigorously, and
develop a formalism in which questions about the performance of these sys-
tems can be given exact, quantitative formulation. Four different memory
schemes are described, their capacities analyzed, and their strengths and
weaknesses contrasted with one another. The principle of “economy of scale”
is discussed, and the conditions under which it applies are spelled out. Struc-
tured symbol memories are presented next, where two examples from the
literature (Touretzky and Hinton’s DCPS and Rumelhart and McClelland’s
verb learning model) are analyzed. Actual capacity measurements of DCPS
are compared with one of the theoretical schemes. Finally, we provide a
heuristic algorithm for generating receptive fields which is efficient and pro-
duces good results in practice.

2. Definitions and fundamental parameters

A coarre coded symbol memory in its most general form consists of:

A set of N binary state units.

An alphabet of « symbols to be represented. Symbols in this context
are atomic entities: they have no constituent structure.

A memory scheme, which is a function that maps each symbol to
a subset of the units — its pattern. The receptive field of a unit
is defined as the set of all symbols to whose pattern it belongs (see
figure 1).

The exact nature of the memory scheme mapping determines the prop-
erties of the memory, and is the central target of our investigation.



Coarse-Coded Symbol Memories and Their Properties 467

As symbols are stored, the memory fills up and ghosts eventually appear.
It is not possible to detect a ghost simply by inspecting the contents of
memory, since there is no general way of distinguishing a symbol that was
stored from one that emerged out of overlaps with other symbols. (It is
sometimes possible, however, to conclude that there are no ghosts. This is
true when every symbol that is visible in memory has at least one unit that
is not shared with any other visible symbol.) Furthermore, a symbol that
emerged as a ghost at one time may not be a ghost at a later time if it was
subsequently stored into memory. Thus the definition of a ghost depends not
only on the state of the memory but also on its history.

Some memory schemes guarantee that no ghost will emerge as long as
the number of symbols stored does not exceed some specified limit. In other
schemes, the emergence of ghosts is an ever-present possibility, but its proba-
bility can be kept arbitrarily low by adjusting other parameters. We analyze
systems of both types. First, two more bits of notation need to be introduced:

Pahost: Probability of a ghost. The probability that at least one ghost
will appear after some number of symbols have been stored.

k: Capacity. The maximum number of symbols that can be stored simulta-
neously before the probability of a ghost exceeds a specified threshold.
If the threshold is 0, we say that the capacity is guaranteed.

A localist representation, where every symbol is represented by a single
unit and every unit is dedicated to the representation of a single symbol, can
now be viewed as a special case of coarse-coded memory, where k = N = o
and Pgost = 0. Localist representations are well suited for memories that
are not sparse. In these cases, coarse-coded memories are at a disadvantage.
In designing coarse-coded symbol memories we are interested in cases where
k <« N < a. The permissible probability for a ghost in these systems should
be low enough so that its impact can be ignored, i.e., Pgpos < 1.

We wish to find memory schemes that will maximize the number of sym-
bols & and the capacity &k while minimizing N, the number of units required.
We are also interested in the tradeoff between o and k for a fixed N. In
the following section, we present four memory schemes, and analyze each of
them in terms of the mathematical relationship among N, a, k, and Pges.-

3. Analysis of four memory schemes
3.1 Bounded overlap (guaranteed capacity)

If we want to construct the memory scheme with the largest possible « (given
N and k) while guaranteeing Pgpos = 0, the problem can be stated formally
as:

Given a set of size N, find the largest collection of subsets of it
such that no union of k such subsets subsumes any other subset
in the collection.



468 Ronald Rosenfeld and David S. Touretzky

This is a well known problem in Coding Theory, in slight disguise. Un-
fortunately, no complete analytical solution is known. We therefore simplify
our task and consider only systems in which all symbols are represented by
the same number of units (i.e., all patterns are of the same size). In mathe-
matical terms, we restrict ourselves to constant weight codes. The problem
then becomes:

Given a set of size N, find the largest collection of subsets of size
exactly L such that no union of k such subsets subsumes any
other subset in the collection.

We wish to provide two arguments in support of this simplification. First,
we believe it does not significantly reduce the size of the collection. This is
because the solution to the original problem is likely to be composed of
subsets of similar size. This can be seen by considering the effect too small
or too large a subset would have on the capacity of the system. An unusually
small subset will have a very high tendency to become a ghost, whereas an
unusually large subset will have a high tendency to create one.

The second argument is a pragmatic one. In order for coarse-coded mem-
ories to be useful, they need to be accessed by some external mechanism.
One such mechanism is the clause space of DCPS. Clause spaces use lateral
inhibition to extract a single stored symbol from a coarse-coded memory.
This competitive mechanism works best when patterns are of uniform size.

There are no known complete analytical solutions for the size of the largest
collection of patterns even when the patterns are of a fixed size. Nor is any
efficient procedure for constructing such a collection known. We therefore
simplify the problem further. We now restrict our consideration to patterns
whose pairwise overlap is bounded by a given number. For a given pattern
size L and desired capacity k, we require that no two patterns overlap in
more than m units, where:

- [%J . (3.1)

Memory schemes that obey this constraint are guaranteed a capacity of
at least k symbols, since any k symbols taken together can overlap at most
L —1 units in the pattern of any other symbol — one unit short of making it
a ghost. Based on this constraint, our mathematical problem now becomes:

Given a set of size N, find the largest collection of subsets of size
exactly L such that the intersection of any two such subsets is of
size < m (where m is given by equation (3.1).)

Coding theory has yet to produce a complete solution to this problem,
but several methods of deriving upper bounds have been proposed (see for
example [12]). The simple formula we use here is a variant of the John-
son Bound. Let a4, denote the maximum number of symbols attainable in
memory schemes that use bounded overlap. Then



Coarse-Coded Symbol Memories and Their Properties 469

N
ap(N,Lym) < %—"%—1%- (3.2)

The Johnson bound is known to be an exact solution asymptotically (that
is, when N, L,m — oo and their ratios remain finite).

Since we are free to choose the pattern size, we optimize our memory
scheme by maximizing the above expression over all possible values of L. For
the parameter subspace we are interested in here (N < 1000, k < 50) we use
numerical approximation to obtain:

N
an (N, k) = max ) _ o (L)W < 037, (33)
e Le[1,N] (mil) Le[L,LN]\L —m

(Recall that m is a function of L and k.) Thus the upper bound we derived
depicts a simple exponential relationship between o and N/k. Next, we
try to construct memory schemes of this type. A Common Lisp program
using a modified depth-first search constructed memory schemes for various
parameter values, whose a’s came within 80% to 90% of the upper hound.
These results are far from conclusive, however, since only a small portion of
the parameter space was tested.

In evaluating the viability of this approach, its apparent optimality should
be contrasted with two major weaknesses. First, this type of memory scheme
is hard to construct computationally. It took our program several minutes
of CPU time on a Symbolics 3600 to produce reasonable solutions for cases
like N = 200, & = 3, m = 1, with an exponential increase in computing
time for larger values of m. Second, if CCSMs are used as models of memory
in naturally evolving systems (such as the brain), this approach places too
great a burden on developmental mechanisms.

The importance of the bounded overlap approach lies mainly in its role
as an upper bound for all possible memory schemes, subject to the simpli-
fications made earlier. No scheme with guaranteed capacity (Penost = 0) is
likely to yield a better scaling behavior than that of equation 3.3.

3.2 Random fixed size patterns (a stochastic approach)

Randomly produced memory schemes are easy to implement and are attrac-
tive because of their naturalness. However, if the patterns of two symbols
coincide, the guaranteed capacity will be zero (storing one of these symbols
will render the other a ghost). We therefore abandon the goal of guaran-
teeing a certain capacity, and instead establish a tolerance level for ghosts,
Pipost- For large enough memories, where stochastic behavior is more robust,
we may expect reasonable capacity even with very small Pypos.

In the first stochastic approach we analyze, patterns are randomly selected
subsets of a fixed size L. Unlike in the previous approach, choosing k does not
bound «. We may define as many symbols as we wish, although at the cost of
increased probability of a ghost (or, alternatively, decreased capacity). The
probability of a ghost appearing after & symbols have been stored is given by



470 Ronald Rosenfeld and David S. Touretzky

min(N,kL) (C) X
Pgou(N,L ki) = 1- ¥ TN‘L(k,c)-[ _—L—] . (34)
=L

)

Tn(k,c) is the probability that exactly ¢ units will be active after k
symbols have been stored. It is defined recursively by

Tn(0,0) =1
Twi(k,c)=0 foreitherk=0ande= 0,ork>0andc< L (3.5)
Ta(k,e) = Thoo T(k—1,c—a)- (V). (52)/(5).

We have constructed various coarse-coded memories with random fixed-
size receptive fields and measured their capacities. The experimental results
show good agreement with the above equation.

The optimal pattern size for fixed values of N, k, and « can be deter-
mined by binary search on equation (3.4), since Pyhost(L) has exactly one
maximum in the interval [1, N]. However, this may be expensive for large N.
A computational shortcut can be achieved by estimating the optimal L and
searching in a small interval around it. A good initial estimate is derived by
replacing the summation in equation (3.4) with a single term involving E[c]:
the expected value of the number of active units after & symbols have been
stored. The latter can be expressed as

Eld = N-[1-(1-L/N).

The estimated L is the one that maximizes the expression

Elc] N

L L
An alternative formula, developed by Joseph Tebelskis, produces very
good approximations to equation (3.4) and is much more efficient to compute.

After storing k symbols in memory, the probability P, that a single arbitrary
symbol = has become a ghost is given by

Pi(N,L,k,a) = J_f;(-—l)f (f) (N;j)k/(‘;f)k. (3.6)

If we now assume that each symbol’s P, is independent of that of any
other symbol, we obtain:

Pl Lfl= B, (3.7)



Coarse-Coded Symbol Memories and Their Properties 471

25
k=4 k=6
k= -
i k=10
201
k=12
S
N k=14
@« s |
-k
A
= k=16
o]
5
E k=18
@ 10
T k=20
)
& /
sl
0 - - - : } {
0 100 200 300 400 500 600
Number of Units

Figure 2: Log(symbol-set-size) vs. number of units for even capacity
values (k) from 2 to 20. Probability of a ghost was set to 0.01. The
optimal pattern size was used in each case.



472 Ronald Rosenfeld and David S. Touretzky

This assumption of independence is not strictly true, but the relative
error was less than 0.1% for the parameter ranges we considered, when Pypos
was no greater than 0.01.

We have constructed the two-dimensional table T ;,(k, c) for a wide range
of (N, L) values (70 < N < 1000, 7 £ L < 43), and produced graphs of
the relationships between N, k, a, and FPyoq for optimum pattern sizes, as
determined by equation (3.4). A representative graph is shown in figure 2.

The results show an approximately exponential relationship between o
and N/k. Thus, for a fixed number of symbols, the capacity is proportional
to the number of units. Let o,, denote the maximum number of symbols
attainable in memory schemes that use random fixed-size patterns. Then
some typical relationships, derived from the data, are:

A pp( Pohost = 0.01) =~ 0.0086 - PR T

T 3.8
s fp( Phosy = 0.001) = 0.0008 - e®473%, (3.8)

3.3 Random receptors (a stochastic approach)

A second stochastic approach is to have each unit assigned to each symbol
with an independent fixed probability s. This method lends itself to easy
mathematical analysis, resulting in a closed-form analytical solution.

After storing k symbols, the probability that a given unit is active is
1 — (1 — s)* (independent of any other unit). For a given symbol to be a
ghost, every unit must either be active or else not belong to that symbol’s

N
pattern. That will happen with a probability [1 —s-(1— .s)"] , and thus
the probability of a ghost is

Piuile, N, k) = 1—[1—[1—3-(1—8)’“]1"]“_1‘. (3.9)

Assuming Pyest € 1 and k < a (both hold in our case), the expression
can be simplified to

Pghost(agN,k‘,S) pad a‘[l—s'(l—s)klN,

from which « can be extracted:

Pghost 3 (3.10)

a-rr(Nak:S,Pghost.) [1_«5.(1’_5),:]]\;

We can now optimize by finding the value of s that maximizes o, given any
desired upper bound on the expected value of Py,e. This is done straight-
forwardly by solving da/8s = 0. Note that s - N corresponds to L in the
previous approach. The solution is s = 1/(k + 1), which yields



Coarse-Coded Symbol Memories and Their Properties 473

o) = Pt [l =i (1——1 )k =
erS—k_*_l - ghost k+1 k+1

- g [ T
(k+ 1) — kF
= P o8 iR (3.11)
For large k we obtain
Ny B, Paiost) = Prnost - €5 2 Pyposs - €%35%, (3.12)

A comparison of the results of the two stochastic approaches reveals an
interesting similarity. For large k, with Pges = 0.01, the multiplicative
factor of 0.0086 in equation (3.8) approximates Py in equation (3.12), and
similarly for Pgost = 0.001. The coefficient in the exponent is larger in the
case of fixed-size patterns. This is hardly surprising, since an exceptionally
small pattern, which may be generated by the Random Receptors method,
has a high probability of becoming a ghost, and conversely an exceptionally
large pattern has a high probability of creating one. The advantage of fixed-
length patterns, which was predicted in section 3.1, is now demonstrated
analytically. According to the Law of Large Numbers, in the limit (N, k, ¢ —
oo, with k € N < «a) the two methods are equivalent.

For Large k, the Bounded Overlap method and the Random Receptors
method yield virtually identical exponents. Note, however, that the former
guarantees its capacity, whereas the latter does not. Note also that ay, is
only an upper bound, derived solely for the parameter ranges we considered
here.

It should be noted that the stochastic approaches we analyzed generate
a family of memory schemes, with non-identical ghost-probabilities that de-
pend on the particular patterns chosen. Ppgos in our formulas is therefore
better understood as an expected value, averaged over the entire family.

3.4 Partitioned binary coding (a reference point)

The last memory scheme we analyze is not strictly distributed. Rather, it
is somewhere in between a distributed and a localist representation, and is
presented for comparison with the previous results. For a given number of
units N and desired capacity k, the units are partitioned into k equal-size
“slots”, each consisting of N/k units (for simplicity we assume that k divides
N). Each slot is capable of storing exactly one symbol.

The most efficient representation for all possible symbols that may be
stored into a slot is to assign them binary codes, using the N/k units of each
slot as bits. This would allow 2¥/* symbols to be represented. Using binary
coding, however, will not give us the required capacity of 1 symbol, since



474 Ronald Rosenfeld and David S. Touretzky

binary patterns subsume one another. For example, storing the code ‘10110’
into one of the slots will cause the codes ‘100107, ‘10100’ and ‘00010 (as well
as several other codes) to become ghosts.

A possible solution is to use only half of the bits in each slot for a binary
code, and set the other half to the binary complement of that code (we
assume that N/k is even). This way, the codes are guaranteed not to subsume
one another. Let cy. denote the number of symbols representable using a
partitioned binary coding scheme. Then,

Qe = 2N/2k s 60.347%. (313)

Once again, a is exponential in N/k. The form of the result closely
resembles the estimated upper bound on the Bounded Overlap method given
in equation (3.3). There is also a strong resemblance to equations (3.8)
and (11), except that the fractional multiplier in front of the exponential,
corresponding to Fyhost, is missing. Pyuose is 0 for the Partitioned Binary
Coding method, but this is enforced by dividing the memory into disjoint
sets of units rather than adjusting the patterns to reduce overlap among
symbols.

As mentioned previously, this memory scheme is not really distributed in
the sense used in this paper, since there is no one pattern associated with a
symbol. Instead, a symbol is represented by any one of a set of k patterns,
each N/k bits long, corresponding to its appearance in one of the £ slots. To
check whether a symbol is present, all & slots must be examined. To store
a new symbol in memory, one must scan the k slots until an empty one is
found. Equation (3.13) should therefore be used only as a point of reference.

3.5 Comparison of results

Table 1 summarizes the results obtained for the four methods analyzed. Note
that these results assume the use of optimal pattern sizes. The effect of using
other pattern sizes can be derived from the analyses in the preceding sections.

Memory Scheme Result
Bounded Overlap apo(N, k) < €0367%
Random [ixed-size Patterns | o, pp(Pghose = 0.01) = 0.0086 - £0-168%
0, 1 Peost = 0.001) 2 0.0008 - £2473%

¥l
Random Receptors Wy = ey R
034748

Partitioned Binary Coding | om. = e

Table 1: Summary of results for various memory schemes.

Some differences must be emphasized:

@y, and oy deal with guaranteed capacity, whereas @, and ., are
meaningful only for Pyes > 0.



Coarse-Coded Symbol Memories and Their Properties 475

au, 15 only an upper bound.
o, fp 1s based on numerical estimates.

e 1s based on a scheme which is not strictly coarse-coded.

The similar functional form of all the results, although not surprising, is
aesthetically pleasing.

There is a simple linear relationship between the resources allocated to the
system (V) and the capacity they yield (k). This is true no matter what the
other parameters are. This result can be assumed to hold in all reasonably
efficient memory schemes. Thus if we are given a working CCSM whose
characteristics are known, perhaps through empirical measurements, we can
increase its capacity by any desired factor by simply increasing the number
of units by that factor. This may be a handy rule of thumb for designers
and users of coarse-coded memories. Alternatively, if a working CCSM is
observed to scale qualitatively worse than the models we investigated here,
e.g. have a sublinear dependency of & on N, then in all likelihood the scheme
being used is inherently inefficient.

Similarly, there is a linear tradeoff between the expressive power of the
system (e, the number of symbols it can represent) and the tolerated proba-
bility of an error (Pynest). Note that Pghost is defined as the probability that
any of the o symbols is a ghost, i.e. it already takes into account the size
of the symbol set. The probability of a given symbol being a ghost is much
smaller than Pgest. Thus a second rule of thumb we derive is that the prob-
ability of error can be reduced by a proportionate reduction in the symbol
set size.

Finally, all four parameters are related exponentially, through a coefficient
which may vary from one memory scheme to another, but can be expected to
remain within a rather narrow range. Since o/ Pypost is exponential in N/k, a
third rule of thumb to emerge is that the system’s behavior is most sensitive
to the ratio N/k, much more than to the ratio a/Pgpos. For this reason it
makes sense, when analyzing a memory scheme, to ignore the latter ratio and
to evaluate the system’s efliciency in terms of the number of bits required
per stored symbol.

4., Economy of scale in coarse-coded memories

Coarse-coded symbol memories are characterized by a resource-sharing strat-
egy. It is this pooling of resources that is responsible for the efficiency with
which they handle sparse memories. It may be tempting to conclude that
one large CCSM is in general more efficient than several (say m) smaller CC-
SMs providing the same functionality. We now discuss the conditions under
which this is true. For simplicity’s sake, we restrict our analysis to the case
m = 2. We believe that the qualitative results apply to the general case as
well.



476 Ronald Rosenfeld and David 5. Touretzky

4.1 Mei-ging two CCSMs

Consider a system that requires two sparse memories. Each one must be
able to represent a symbols (from disjoint alphabets) and to hold up to k of
them in storage at any one time, while maintaining the probability of a ghost
below Pgpos. Let us use a separate CCSM for each memory requirement and
choos the Random Receptors memory scheme (see section 3.3). We assume
that k is large enough so that equation (3.12) can be used. The number of
units we need for both CCSMs together is

N;_ccsms = 2 ek (log o — log Pghnst.)- (4.1)

If, on the other hand, we use one CCSM to provide the same functionality,
we need a representation power of 2o symbols and a capacity of 2k symboals,
while maintaining the same Py Using the same memory scheme, the
number of units required for the single, “merged” CCSM is

Npergea = €2k - (log 2a — log Pynost)

2ek (log a + log Pehost + log 2)

Na_cesms +2 log2ek

=~ Ny _cosms +3.77k (4:2)

Thus the single, combined CCSM requires more resources than the two
separate CCSMs.

4.2 Splitting a single CCSM

Consider now a system that requires a single memory with parameters «,
k, Pghost- Using a single CCSM and the Random Receptors memory scheme
again, the number of units we need is

Ni_cosm = ek (log @ — log Pypost) (4.3)

We now consider splitting our memory into two smaller CCSMs. We may
do this by splitting the symbol set randomly into two halves, and accommo-
dating each half using a separate CCSM. In this way, any k pre-selected
symbols will be distributed binomially between the two smaller CCSMs. Us-
ing the same memory scheme and an as-yet-undetermined total number of
units (Ngppe), the probability of a ghost in the split system is

Pghost(NspIih @, k) =
] 515' z?:ﬁ (j) [1 - Pshost(ﬂ;ﬂa %a J)][]' a Pshﬂﬁt(ﬂg,;lﬂa %a k— 3)1(44)



Coarse-Coded Symbol Memories and Their Properties 477

We now require the probability of a ghost in the split system to be the
same as that of the original system. Using this constraint, Nynanepie can be
extracted numerically.

Figure 3 depicts both Ny and Ny_cesy as a function of the required
capacity, for typical values of @ and Fypos. The single, undivided memory is
significantly more efficient than the two-CCSM alternative, requiring 25-50%
fewer units in the parameter range of the graph.

4.3 Comparison and analysis

We analyzed two scenarios. In the first, we considered merging two CCSMs
into one, and proved it disadvantageous, requiring more units than the orig-
inal system. In the second scenario, we considered splitting a single CCSM
into two halves, and concluded similarly that such a split would not be benefi-
cial, at least with regard to the resources needed. The seeming contradiction
between the two results can be explained by careful analysis of the differences
between them.

In the first case, the capacity requirements were specified separately for
the two symbol sets. Each memory was required to be able to hold up to &
symbols, and therefore the merged CCSM needed a capacity of 2k symbols.
Note that this means that the merged CCSM will accommodate more than
k symbols from a single symbol set, as long as the total number of stored
symbols is less then 2k. This “extra capacity” is not afforded by the two
separate CCSMs. Thus it seems that “we got more than we bargained for”
when we merged the two CCSMs into one. This added capacity helps us
understand why the merged CCSM requires more units than the 2-CCSM
system.

In the second case, there is only one symbol set, and hence only one
capacity requirement. The usage profiles of the various symbols may in fact
be correlated. For example, it is possible that a certain pair of symbols
will never be stored together. If we knew of such a case we could use that
fact to our advantage by, say, putting the two symbols into the same pool.
Unfortunately, we don’t know anything about the likely distribution of future
storage demands, so the best we can do is split the system randomly, which
results in a binomial distribution. Having no a priori knowledge about the
intended use of the system, we cannot gain anything by splitting it into
modules. The “economy of scale” argument mentioned before makes the
non-split system more efficient, accounting for the data in figure 3.

The conclusion we draw from this analysis is that knowledge about the
likely distribution of memory demands can be used to design a more efficient
CCSM. However, when no such knowledge exists, merging all resources is
likely to yield the most efficient system.



478 Ronald Rosenfeld and David S. Touretzky

800

700 1L

500 L

300 1

Number of Units (N)
g

200 L

100 1

R S S S T
Required Capacity (k)

Figure 3: Economy of scale in CCSMs. Number of units (N) vs.
the required Capacity (k) for original (solid line) and split memory
(dotted line). Symbol-set size is 2000. Probability of a ghost is 0.001.



Coarse-Coded Symbol Memories and Their Properties 479

5. Structured symbol memories

The three distributed schemes we have studied all use unstructured patterns
(as discussed in the introduction), the only constraint being that patterns
are at least roughly the same size. In this section we discuss structured mem-
ories, beginning with an examination of the working memory of DCPS. We
then show how the Wickelfeature representation used in the Rumelhart and
McClelland verb learning model can be understood as a structured CCSM.

5.1 Measurement of DCPS

Imposing structure on the receptive fields of units, using any of the coarse
coding schemes we have discussed, is likely to reduce the capacity somewhat.
In order to quantify this effect, we measured the memory capacity of DCPS
and compared the results with one of the theoretical models analyzed above.

There are 2000 units in the working memory of DCPS. Its symbols are
triples of letters drawn from an alphabet of size 25. All possible combinations
of letters are permitted, resulting in a three dimensional symbol space of size
a = 25% = 15625 triples. The receptive field of each unit is defined by the
cartesian product of three randomly-chosen sets of six letters each. Thus
each receptive field is a three dimensional subspace of form

{{(a,b,c)|a€ A,be B,ce C},

where A, B and C are independent, randomly-chosen six letter sets. Units
therefore have fixed-size receptive fields containing 6% = 216 triples. (Each
triple counts as one symbol.) DCPS requires structured receptive fields so
that a distributed winner-take-all network, called a “bind space”, can be used
to decompose triples into their component letters.

The symbols in DCPS’ working memory do not have fixed pattern sizes.
The expected pattern size is (6/25)% - 2000 a 28. Touretzky and Hinton
manipulated the receptive fields as described in [4] to artificially reduce the
variance from this mean. In the current implementation of DCPS, pattern
sizes vary from 23 to 33, but most symbols have patterns containing 26 to
29 units; the standard deviation is only 1.5.

Figure 4 shows Py as a function of k for the Random Receptors method
as estimated by equation (11) and for DCPS (based on 10,000 trials, each
consisting of storing randomly-generated triples until the first appearance of
a ghost). N is 2000 and o is 15625. The two curves are quite close. Note
that when Pyhost is 0.01, we observe an actual capacity of 48 symbols for
DCPS? and an expected capacity of 51 symbols for the random receptors
scheme. We thus conclude that for the parameter ranges discussed here, the
structure in DCPS’s fixed-size receptive fields (which have been manipulated
to assure nearly fixed-size patierns) results in only a slight penalty relative
to the random receptors approach.

2This measurement is based on a 100% visibility criterion, which we use throughout this
paper. It therefore differs from previously reported values where lower visibility criteria
were used [4].



480 Ronald Rosenfeld and David S. Touretzky

§ 0.05¢
S
a3
T 0.04}
=
:E
2
E 0.03¢
o,
Actual DCPS Measurement
===+ Random Receptors Method
0.02
0.01f
0.00 ........... i M 4
35 40 45 50 55 60

Number of Symbols Stored

Figure 4: Probability of a ghost as a function of the number of symbols
stored, measured for DCPS (solid line) and computed for the Random
Receptors method (dotted line). The point on each line where Fghost
reaches 0.01 is marked by an asterisk.

Smolensky has recently shown that this form of structured, coarse-coded
memory can be viewed as a special case of a tensor product representation
(13]. In his formalism, each letter that appears in a DCPS receptive field
table has an associated 2000-bit pattern. (Call the letters appearing in the
first column A; through Yj. The bit pattern for A; has a 1 in position i iff A;
appears in the first column of the receptive field table of unit ¢. Similarly for
the other letters, and for the other columns. A total of (6/25) - 2000 = 480
bits will be on in each pattern.) Each of the 2000 working memory units then
becomes an element on the major diagonal of a rank three tensor defined by
the tensor product of three 2000-bit vectors.

The tensor product approach is interesting because it suggests alterna-
tives to DCPS-style clause spaces for retrieving elements from memory. On
the other hand, CCSMs use their units more efficiently because they have
far less redundancy. Measurement of efficiency in practice is complicated by
the retrieval issue; for self-addressing, which is the simplest retrieval method
for tensor product representations and requires taking the inner product of
a rank three tensor with a rank two tensor, the number of items that,can
be stored before retrieval fails is difficult to derive analyfically. Empirical
measurements are currently in progress.



Coarse-Coded Symbol Memories and Their Properties 481

5.2 Wickelfeature representations

The Rumelhart and McClelland verb learning model [2] uses an interesting
coarse-coded representation for triples of phonemes, or “Wickelphones”. The
Wickelphone | Am denotes a phoneme /A/ whose left context is /k/ and
whose right context is /m/. Words are encoded as sets of Wickelphones;
beginning and ending word boundaries are marked by #, which appears as
the left context of the first Wickelphone and the right context of the last
Wickelphone making up the word.

Each phoneme is described by an eleven-bit vector with either four bits
on (for consonants and vowels) or one bit on (for word boundary markers).
Each of these bits stands for some phonetic feature, such as Front, Back,
Stop, Nasal, Voiced, and so on. The encoding provides for 35 distinguishable
phonemes. Fach of the 460 Wickelfeature units in the coarse coded repre-
sentation stands for a conjunction of three of these phonetic features, one
from each of the three phonemes making up a Wickelphone. For example,
one of the units that participates in the representation of | Am is active for
Wickelphones whose left context is a stop like /k/, whose central phoneme is
voiced (for consonants) or long (for vowels) like /A/, and whose right context
is a nasal like /m/.

If phonetic features are microfeatures, then Wickelfeatures are three-way
conjunctions of microfeatures. One can look at a single active Wickelfeature
unit and learn something useful (for purposes of the verb learning task) about
the properties of the Wickelphone it encodes. In contrast, the individual units
in a structured CCSM such as DCPS have no simple interpretation, because
the letters that make up a receptive field table are not grouped together by
shared microfeatures.

Consider the [Stop, Voiced/Long, Nasal] Wickelfeature unit described
previously. It is defined by these three phonetic features, but it can also be
described in terms of a cartesian product receptive field table. The receptive
field table contains, in the first column, all the stops; in the second column,
all phonemes that are either voiced consonants or long vowels; and in the
third column, all the nasals.

When individual units are described using Wickelfeatures they appear
uniform, but when viewed as receptive fields of Wickelphones we see that
there is substantial variation from unit to unit. For example, Vowel is a fea-
ture of twelve distinct phonemes; Interrupted is a feature of nine phonemes;
Stop/Fricative/High is a feature of eighteen phonemes, while Word Boundary
is a feature of only one phoneme. So the Wickelfeature unit [Word Boundary,
Interrupted, Vowel] codes for 1-9-12 = 108 Wickelphones, while the unit
[Vowel, Stop, Vowel] codes for 972. Since the encoding provides for 35 distin-
guishable phonemes plus the word boundary marker, there are 35% + 2 - 357

3Actually the first column contains stops, fricatives, and high vowels, because the
mutually exlcusive features Stop, Fricative, and High are all represented by the same
bit in the eleven-bit encoding. There is really a Stop/Fricative/High feature rather than
three separate ones. Likewise, the third column contains not just nasals, but also liquids,
semivowels, and low vowels.



482 Ronald Rosenfeld and David S. Touretzky

or 45325 Wickelphones in all. The varying coarseness of the units’ recep-
tive fields makes it difficult to estimate the capacity of this memory, but it
appears to be adequate for the intended application.

The lesson to be drawn from the Wickelfeature example is that coarse
coding is not incompatible with a conjunctive microfeature representation.
Although one gives up a certain amount of capacity in return for the ad-
ditional structure, useful properties may result. The verb learning model
showed generalization to novel verbs precisely because of the overlapping
representations of phonetically similar Wickelphones. Rumelhart and Mec-
Clelland further blurred the representation (by introducing noise into the
receptive fields) to enhance this generalization effect, which also reduced the
amount of training required.

6. Constructing coarse-coded memories

Returning to the main topic of this paper, which is CCSMs with maximal
efficiency rather than domain-specific internal structure, we note that the
three distributed schemes studied here have similar properties in the limit.
However, when constructing actual models that use these representations,
one generally cannot afford to simulate more than a few thousand units.
This is too many units to generate optimal receptive fields as defined by
the Bounded Overlap method, because of the exponential search involved.
On the other hand, it is too few units to permit reliance on either of the
two simple stochastic schemes. Unless the memory parameters are large,
the variance in pattern size (for the Random Receptors method) and in the
overlap between patterns (for both stochastic methods) may be large enough
to interfere with the operation of the generated memory.

For practical application of CCSMs, we present an algorithm for heuristi-
cally generating good fixed-size receptive fields. The algorithm guarantees a
uniform pattern size (provided that N divides ), and attempts to minimize
the overlap between patterns. For a given receptive field size F, the pattern
size will be L = N - F'/a, and the expected overlap between two patterns is

Og = L+(F —1)(a = 1).

1. Initialize. Let U[l..N] be an array of sets defining the receptive
fields of the N units. Initialize U to sets of consecutive symbols in
the infinitely repeating sequence § = {S,...,S5,,51,...}, so that
Ull] = {S1,---,Sr}, U[2] = {SF41,...,52F)}, and so on. This step

guarantees equal size patterns and equal size receptive fields.

2. Shuffle. Pick two distinct units z and y at random. Pick two symbols
S; and S; such that S; € Ulz] and S; € Uly], and S; ¢ Uly] and
S; ¢ Ulz]. Swap S; and S; in the two receptive field tables. Repeat
this step some multiple of N - F' times, to assure adequate shuffling of
all receptive fields.

3. Compute the variance. Let C[1..a;1..a] be an array of integers in
[0, L]. For each pair of symbols S;, 5}, let C[t, j] be the number of units



Coarse-Coded Symbol Memories and Their Properties 483

whose receptive fields contain both symbols. Note that C[z,i] = L for
1 <1< e Ideally, C[f,j] = O for 1 <4, < a when ¢ # j. Define
the variance V' to be the difference between the expected and actual
overlap for all pairs of symbols: V = 1 ¥ (C[4, j] — Og)*.

4. Reduce the variance. Pick two distinct units z and y at random. Pick
two symbols S; and S; such that S; € Ulz] and S; € Uly],and S; ¢ U[y]
and S; ¢ Ulz]. Swap S; and S; in the two receptive field tables,
and update the co-occurrence matrix C. (The update will affect up
to 4(F — 1) of the a? entries. Half will be decremented, the other
half incremented.) Let V' be the new variance computed after C' is
updated. If V' < V accept the swap; otherwise undo it. Repeat this
step until the variance has been reduced to an acceptable level.

The last step of the algorithm assures a monotonic decrease in variance
over time, so one can stop at any point when the current state is “good
enough.” In contrast, the depth first search algorithm we used to generate
optimal fields for the Bounded Overlap method must run to completion in
order to obtain a full set of N receptive flelds. Our heuristic algorithm
does not guarantee optimal fields because the search can get trapped in local
minima, but experience with models such as DCPS and BoltzCONS suggests
that in practice this is not a serious problem.

The algorithm is also applicable to structured memories, where one may
swap a letter in any column of one unit’s receptive field table with a letter in
the corresponding column in some other unit’s table. The major change to
the algorithm is in the computation of which symbols are affected by a swap:
in DCPS, replacing one letter in one column of the table causes the replace-
ment of 36 symbols, due to the cartesian product that generates the receptive
field. Fixed pattern sizes are difficult to obtain when cartesian products are
involved, but good approximations are possible. Instead of computing vari-
ance based on the co-occurrence rate of pairs of symbols (which will depend
on the number of components they have in common), the last step of the al-
gorithm should manipulate the receptive field tables to minimize the variance
in pattern size.

Acknowledgments

We thank Geoffrey Hinton, Noga Alon and Victor Wei for helpful comments,
and Joseph Tebelskis for sharing with us his formula for approximating Pyyos
in the case of fixed pattern sizes.

This work was supported by National Science Foundation grants IST-
8516330 and EET-8716324, and by the Office of Naval Research under con-
tract number N00014-86-I1K-0678. The first author was supported by a Na-
tional Science Foundation graduate fellowship.



484

Ronald Rosenfeld and David S. Touretzky

References

(1]

(2]

(4]

(5]

[6]

[7

—

(8]

[9]

[10]

(11]

[12]

[13]

G. H. Hinton, J. L. McClelland, and D. E. Rumelhart, “Distributed Rep-
resentations”, in Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume 1, D. E. Rumelhart and J. L. McClelland,
eds. (MIT press, 1986).

D. E. Rumelhart and J. L. McClelland, “On Learning the Past Tenses of
Fnglish Verbs”, in Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume 2, J. L. McClelland and D. E. Rumelhart,
eds. (MIT press, 1986).

D. S. Touretzky and G. E. Hinton, “Symbols Among the Neurons: Details
of a Connectionist Inference Architecture”, Proceedings of IJCAI-85, held
at Los Angeles, CA (1985) 238-243.

D. S. Touretzky and G. E. Hinton, “A Distributed Connectionist Production
System”, (to be published in Cognitive Science 12(3) (1988)).

D. S. Touretzky, “BoltzCONS: Reconciling Connectionism With the Recur-
sive Nature of Stacks and Trees.”, Proceedings of the Eighth Annual Con-
ference of the Cognitive Science Society, Amherst, MA (1986) 522-530.

D. 8. Touretzky, “Representing and transforming recursive objects in a neu-
ral network, or ‘Trees do grow on Boltzmann machines’ 7, Proceedings of
the 1986 IEEE International Conference on Systems, Man, and Cybernetics,
Atlanta, GA (1986) 12-16.

M. F. St. John and J. L. McClelland, “Reconstructive memory for sentences:
a PDP approach”, Proceedings of the Ohio University Inference Conference
(1986).

J. A. Feldman and D. H. Ballard, “Connectionist models and their proper-
ties”, Cognitive Science, 8 (1982) 205-254.

D. H. Ballard, “Cortical connections and parallel processing: structure and
function”, Behavioral and Brain Sciences, 9(1) (1986).

J. Sullins, “Value cell encoding strategies”, Technical report TR-165 (1985),
Computer Science Department, University of Rochester, Rochester, NY.

J. J. Hopfield, (1982) “Neural Networks and physical systems with emergent
collective computational abilities”, Proceedings of the National Academy of
Sciences, USA, 79 (1982) 2554-2558.

F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, (North-Holland, 1978).

P. Smolensky, “On Variable Binding and the Representation of Symbolic
Structures in Connectionist Systems”, Technical report CU-CS-355-87, De-
partment of Computer Science, University of Colorado at Boulder.



