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A bstra ct . When one compares t he time evolution of two spin config­
ura tions subjected to the same t hermal noise, domains appea r of iden­
t ical and opposite spins . We st udy these domains and their growt h
for three magnetic systems in two dime nsions: ferromagnet, spin glass,
and non-symmetric spin glass. For Ierromagnet s, t hese distan ce as­
sociated domains are very similar to the magnetic domains. For spin
glasses, t hey have a larger st ruct ure than the clusters of frozen spins
an d they move in tim e. For non-symmetric spin glasses, small dist ance
associated domai ns move quickly whereas there are no frozen spins .

1. I ntroduction: t he d istance method

Dynami cal phase transi t ions have recently been observed in a large variety of
magnetic systems when studying the t ime evolution of distances between two
spin configurations sub jected to the same thermal noise [1] . The systems
which have been investigated so far by thi s tech nique includ e: ferromegnete
{1-3}, spin glasses in two and th ree dimensions [1,3}, and incommensurat e
systems [41 (the ANNNI model). In its zero temperature version, the same
method has also been used to study network s of boolean automata [5- 10]
and neural nets [11-1 31 .
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In the case of dyn ami cal phase transitions occur ing at a.finite temperature
Tel two regimes are observed for th e distance in the long time limi t . In
both regimes, th e spin configurat ion {S;(t )} at t ime t depends both on th e
initial configuration and on the applied noise between t imes 0 and t. At high
temperature, the effect of noise is strong enough to make t he system forget
it s init ial cond it ion. T here fore, two different configurations subjected to the
same thermal noise quickly become iden tical an d their dist ance vanishes .
At low temperature, th e distance between the two configurat ions rem ain s
finite. Several effects can be responsible for this non-zero dist ance: either
th e configurat ions belong to two valleys in ph ase space separated by high
energy barriers, like in th e case of ferromagnets; or, because of a chaotic
dyn am ics with a tendency for close trajectories in phase space to diverge,
the configurations end up at a finite dist ance, like in network s of automata
[5-10), or non-symmetr ic spin glasses [11- 14].

Several approach es have been used to locate the transition temperature:
for infinite range models (mean field mod els) [2] , or for randomly diluted
models [5,1l -1 4}, it is possib le to write exact equat ions which give th e time
evolut ion of the distance. Tc is then analyti cally determined. For finite
dim ensional systems , only Monte-Carlo simulat ions have been used so far to
compute the distance [1,3,4,6-8,15J . With the help of finite size scaling it is
possible to determine Tc and the critical exponents rath er accurately [3].

Only global propert ies have been studied so far, exce pt in the case of
boolean automata on a lattice [6J . Quest ions arise about the possible ex­
istence of spat ial st ructures : are th e spins which differ between the two
configurat ions uniformly distributed in space or clustered? Are those spins
frozen, or do they flip often in time? What is th e time evolut ion of the spat ial
st ruct ures? Are th ey moving? What is the relation between these distan ce
rela ted spat ial structures and magnetic domains?

T he aim of this article is to show these spat ial st ruct ures, ob tained by
computer simulat ions of ferromagnets and symmetric and non-sym metric
spin-glasses . Since the programming techniques are different from th ose
aimed at getting good statistics, this work is limi ted to the exhibit ion of
spat ial st ruct ures without any attempt to measure quant it ies averaged on a
large number of samples.

Th e paper is organi zed as follows: sect ion 2 describ es the algorithm used
for th e dynamics and int roduces the var ious quanti ties that are displayed
in th e following sections. Secti on 3 is devoted to 2 dimensional fer romag­
nets. Sect ion 4 and 5 are devote d to the 2 dimensional symmetric an d non­
symmetric spin glasses.

2 . Heat b ath dynamics

Let us br iefly recall in thi s sect ion the parallel heat bath algor ithm to be
used in this work. All our calculat ions are don e for Ising spins (Si = ± l) , on
a square lat t ice of linear size L = 100, with periodic bou ndary cond itions in
both directions. Eac h spin interacts with it s four nearest neighbors on the
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lattic e. The coupling constants Jij between neighboring spins are + 1 in the
case of ferromagnets, and + 1 or -1 at random for spin glasses. Symmetric
spin glasses have equal Ji j and Jj i , while non- symmetric spin glasses have
independent Jij and Jj j •

In th is paper we use parallel dyn ami cs based on the heat ba th method.
To obtain (Si(i + I )} at time t + 1 from (Si(i)} at time t, one computes all
the updating probabiliti es Pi(i) by

1 1 [ 1 ]Pi(i) = 2" + 2" tanh T~ JijSj(t )

where T is the temperature, and one updates all the spins by

(2.1)

Si(t + 1) = +1 with probab ility

Si(t +1) = - 1 with probability
Pi(i)
1 - Pi (i)

(2.2)

In practice, at each time step t , we choose for each site i a random number
ziti) uniforml y distributed between 0 and 1 and we calculate Si(i + 1) by

(2.3)

When we say that we compare the evolution of two different configurations
{Si(t )} and {SHi)} subjected to the same thermal noise, we mean that we
use exact ly the same set of random numbers Zj(t) and the same interactions
Jij to update the two configurations and therefore

(2.4)

In this paper we usually start our calculations with uncorrelated random
configurations {Si(O )} and {S;(O )} (figures 2--<3) . Starting with random op­
posite configuration ({Si(O)} = {- S;(O )}), the same behavior is observed.
For figure 7 we start with two configurations which are identical outside an
horizontal strip, and opposite inside.

Parallel dynamics are more convenient than sequential dynamics for com­
puter simulations (in particular because it allows one to vectorize the pro­
grams). Most of the physical properties are identical to those obtained by
sequential dynamics: same critical temperature at equilibrium, same magne­
tization [3J. There are however a few properties which are different between
these two kinds of dynamics [1,3], in particular, for parallel dynamics, the
two sublatt ices of the square latt ice are not correlated at a given time. They
can be considered as independent events; there are only correlations between
a sublattice at time t and the other sublattice at time t + 1, because all the
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information contained in one sublattice at time t is transferred at t ime t +1
to t he other sublat t ice. T herefore, in order to avoid to show pictures of two
uncorrelated sublat t ices, all th e pictures presented in th is paper show one
sublattice at t ime t and the ot her sublattice at t ime t - l.

Let us now describe the quanti ties which are represented in the next
sect ions. Th e first quantit ies that one can consider are, of cour se, the instan­
taneous magnet izations {S;(t)) and {Sa t )) at t ime t (they are represented
in figure 2, columns b and c). From these , it is easy to get the instan taneous
distance dj(t ) between the two configurations

d;(t ) = 1 if S;(t) = -S;(t)
d;(t ) = 0 if S;(t) = S;(t)

(2.5)

represented in figure 2 column a, figures 4, 5, 6 column b, and figure 7
columns a, b, c. In order to get some information on the time evolut ion of
spatial st ruct ures, we will also show averages over tim e of th e magnet ization :

1 I

m;(t ) = - L S;(t')
t 1'=1

m:(t) = ~ i: Silt')
t t'= l

represented in figure 3, colum ns b, c. T he distan ce averaged over t ime

1 I

c;(t) = - L d;(t')
t t'= 1

(2.6)

(2.7)

is repr esented in figures 3, 4, 5, 6 column a.
Lastly, since in spin glass syste ms one does not expect mu ch st ruct ure for

th e magneti zati on, we decided to show a quantity fi(t ), to be further called
th e flipping rate, defined by th e absolute value of t he average mag netization
m;(t):

1;(t) = Im;(t)1 (2.8)

represented in figure 4,5,6, column c.
If li (t ) is dose to 1, thi s means that the spin Sj(t) is almost frozen, whereas

if 1;(t) is close to zero , this means t hat this spin is much more flipping. In
preliminary tests we also measured how many t imes each spin flips and we
observed st ruct ures very similar to those obtained with fi (t ). Simulations
were done on a SUN 3/ 110 computer and took about 2 hou rs for 6250 steps
for two configurations of 100*100 spins. Th e grey scale for all quant it ies Sj,
di , m,, Ci, and It is define d on figure L
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Figure 1: Grey levels used to code the various quantities displayed
on the following figures. (a) Instantaneous quantities, Sj, dj. (b)
Averaged magnetization, mi . (c) Averaged distance, Ci. (d) Flipping
rate, t;

3. Ferromagnets

Since our simulations are done by quenching random configurations at a
temperature below the critical point (Tc ::::: 2.27)' one expects to observe
magnetic domains which grow with time (for a review see reference [15]).
Figure 2 refers to a 100*100 lat t ice at a temperature of 1.5 . It displays the
time evolut ion of the instantaneous magnetizations, {Silt)) and {S!(t)), of
two random initial configurations, on the right columns (b and c) of frames,
and of their distance diet), on the left column (a). Time increases from the
upper row to the bottom row. For this figure 2, as for figures 3, 4, 6 and
7, t ime is 10 for the first row, 50 for the second, 250 for the third, 1250 for
the fourth and 6250 for the bottom row. On magnetization frames, black
corresponds to + 1 spins, and white to - 1 spins. On distance frames, black
corresponds to parallel spins (Si(t) = Sil t)) and white to opposite spins
(S;(t) = - Silt )) .

As expected, we observe on the right columns the growth of magnetic
domains, ending with a single domain at the latest times. Apart from their
growth, the domains do not seem to move in space with time. One can check
that when the configurations are identical, the same fluctuations appear on
both domains. We can see that for the ferromagnet , the domain structure
associated to the distance (column a) looks similar in shape to the magnetic
domains (columns b and c) . T ills shows that t he distance d;(t) is a quanti ty
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of t he same nature as th e magnetizat ion [2,3,16].

Figure 3 is obtained with different initi al conditions and represents the
time evolution of quant ities averaged in t ime from the beginning of the sim­
ulation : the two righ t columns (b and c) represent the averaged magnet iza­
t ions, mitt) and mitt) , of the two configurations and the left one (a) their
average distance Cj(t). In bot h cases, two domains are st ill present at t ime
t = 6250. The effect of averaging over t ime is to smooth the front iers of
the domains. The fact that very lit t le grey is present on the picture is an
indi catio n that th e domai ns do not drift .

Simulation s at higher temperatures show that above T; ~ 2.27, the aver­
age magnetization frames become grey in the long t ime limit , which means
that the average magnetization is 0, and t he distance fram es become black,
indicating that the two configurat ions merge.

4. Symmetr-ic spin glasses

Figure 4 displays from left to right , the tim e evolution of the t ime-averaged
distance between two configurations Ci(t) , the instantaneous distance di(t) ,
and the flipping rate /;(tl of a 100*100 symmetric spin glass lattice. Temper­
ature is 0.9 , which is below T; ::::::: 1.7 [3], the dynamical t ransition temp er­
ature for spin glasses. Colour coding for distance fram es is the same as for
the preceeding figures. On the flipping frames , white corresponds to flipping
spins and black to fixed spins.We see the appearance of spatial st ructures
which develop in time on the distance frames . Small domains appear , which
grow in ti me. Their size is definitely smaller than ferromagnetic domains,
and their front iers look more fractal , even when the distance is averaged over
the t ime. The size of the grey regions indicates that these domains drift in
t ime . Smaller st ructures also appear on the frame s describing the flipping
rates, but they do not seem to be simply correlated to the distance related
spatial st ructures: this implies that those parts of the configurations which
are identi cal include both fixed and oscillat ing spins.

Figure 5 rep resents, from left to right : the time-averaged distance, the in­
stantaneous distance, and the flipping rate, for increasing temperatures from
the top row to the bottom: the rows corrrespond to T = 0.3, 0.6, 0.9, 1.2,
and 1.5, all at the same time 6250. When temperature is increased the effect
of thermal noise becomes st ronger. A larger fraction of spins are flipping and
the distance between configurations decreases.The spatial st ruct ures associ­
ated with the distance are bigger and move faste r (the last fram e of column
a is grey because of their mot ion). Above T; ::::::: 1.7, nonrepresented figures
show that the two configurations merge and all the spins are flipping.

5. Non-symmetr-ic spin glasses

Figure 6 displays the time evolution of the time-aver aged distance, of the
instantaneous distance between two configurations and of the flipping rate
of a 100*100 non-symmetric spin glass lat t ice. Temperature is 0.9, below
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Figure 2: Tim e evolution of two init ially random configurations for the
ferromagnet at a temperature of 1.5. Tim es are from top to bottom
10, 50,250, 1250, and 6250. (a) Inst antaneous distance diet ) between
the two configurations. (b) Instantaneous magnet izat ion of the first
configuration Si(t). (c) Instantaneous magnetization of the second
configuration Si(t ).
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3.. 3.b 3.e

Figure 3: T ime-averaged evolution of two initially random configura­
tions for t he ferromagnet at a temperature of 1.5. Times are from top
to bot tom 10, 50, 250, 1250, and 6250. (a) Time-averaged distance
Ci( t ) between t he two configurati ons. (b) Time-averaged magnetiza­
tion ofthe first configurat ion mj(t). (c) Time-averaged magnetization
of the second configuration mj(t ).
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4.a 4.b 4.c

Figure 4: Time evolution of two initi ally ran dom configurations for
a symmetric spin glass at a temperatu re of 0.9. Ti mes are from top
to bottom 10, 50, 250, 1250, an d 6250. (a ) Time-averaged dist ance
Ci(t ) between t he two configur ations. (b) Instantaneous distance diet)
between the two configurations. (c) Flipping rate of t he second con­
figuration / ;(t).
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5.a 5.b 5.c

Figure 5: Evolution of two initially random configurations after 6250
time steps as a function of tem perature for a sym metric spin glass .
Tem peratures are from top to bottom 0.3, 0.6, 0.9, 1.2, and 1.5. (a)
Tim e-averaged dist ance Ci(t) between the two configurations. (b) In­
stantaneous distance diet) between the two configurations . (c) Flip­
ping rate of the second configura tion fi(t).
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Tc ~ 1.56 [3]. Far less st ructure is observed than in the symmetric case. The
dist ance reaches equilibrium faste r. Th e domain st ructure is smal ler than for
symmetric spin glasses. The nearly uniform grey level of the average distance
show that these st ructures are extremely mobile. T he bot tom frame of the
flipping rate is almost completely white, showing tliat no spin is frozen. The
same behavior is observed at lower temperatures down to T = 0.01. As for
the ot her cases, above Tc ' the two configurations merge and all the spins are
flippin g.

6. Conclusions

In t his work, we have seen that the three systems: ferromagnet , sym metric
spin glass, and non-symmetric spin glass have rather different behaviors.
The two ext reme cases are clearly the ferrom agnet and the non-symmetri c
spin glass. For the ferromagnet , we have seen that the st ructures associated
with the distance are comparable in size and shape, to the magneti c domains.
Th ese domains do not move much in time. For the non-symmetric spin glass,
t he dynamics are much more chaotic. No spins are frozen, but t here are small
domains of opposite spins which move rather quickly. The symmetric spin
glass has intermed iat e properties: rather large domains are associa ted to
the dist ance. Th ese domains are mobile but much less than in t he non­
sym metric spin glass. There are also some frozen spins at least at t imes
t < 6250. The size of domains of frozen spins seems much smaller than the
structures associated to the distance.

Anot her way of visua lizing the growt h of the domai ns associated to the
distance for spin glasses is to star t from a stripped st ructure represented
on figure 7: we start with two configurations which are identical outside
an horizontal strip, and opposite inside. We see that the st rip of oppos ite
spins invades the whole system. This invasion is much fast er for the non­
symmetric spin glass (column c) than for the symmet ric spin glass (column
a) when one starts wit h a random initial configuration. When start ing from
a configuration which has already evolved for 6250 time ste ps, the invasion
for the symmetric spin glass is even slower and the structure appe ars more
compact (column b). Th is invasion behavior has the same origin as the
spreading of damages [17- 19).

It would be interesting to try to observe domains on much larger samples
in order to measure their fractal properties and to compare these observations
for spin glasses with recent theories on domain structures [20-22J .

It would also be interesting to redo similar calculations for other systems
(Kawasak i dynam ics, ANNNI model.boolean automata, etc.) to see whet her
they present new dynamical proper t ies or they have a behavior similar to
one of the models st udied here. Lastly, since the structures associated to the
distance are rather often mobile, it would be interest ing to define a quantity
which would give a measure of t hese motions. This might not be too easy
because the clusters of opposite spins move, change in shape and disappear .
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6.a 6.b

: ~

6.c

Fig ure 6: T ime evolution of two initially ran dom configurations for
a non-symmetric spin glass at a t emperature of 0.9. Times ar e from
to p to bo ttom 10, 50, 250, 1250, and 6250. a) T ime averaged dis­
tance Ci(t) between t he two configur at ions. b) Inst ant aneous distance
di(t) between the two configurations. c) Flipping rate of the second
configuration f i(t).
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7.a 7.b 7.e

Figure 7: T ime evolut ion of instanta.neous configurations starting
from two configura.tions which init ially are half opposit e on a hori­
zontal st rip. T imes are from top to bottom 10, 50, 250, 1250, and
6250. a] Symmet ric spin glass at a temperature of 0.9, with random
init ial configuration s. b) Symmet ric spin glass at a temperature of
0.9, with a 6250 steps old initi al configurations. c) Non-symmetric
spin glass at a te mperature of 0.9, with random initial configurations.
In all t hree cases, the difference spreads .
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