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Abstract. When one compares the time evolution of two spin config-
urations subjected to the same thermal noise, domains appear of iden-
tical and opposite spins. We study these domains and their growth
for three magnetic systems in two dimensions: ferromagnet, spin glass,
and non-symmetric spin glass. For ferromagnets, these distance as-
sociated domains are very similar to the magnetic domains. For spin
glasses, they have a larger structure than the clusters of frozen spins
and they move in time. For non-symmetric spin glasses, small distance
associated domains move quickly whereas there are no frozen spins.

1. Introduction: the distance method

Dynamical phase transitions have recently been observed in a large variety of
magnetic systems when studying the time evolution of distances between two
spin configurations subjected to the same thermal noise [1] . The systems
which have been investigated so far by this technique include: ferromagnets
[1-3], spin glasses in two and three dimensions [1,3], and incommensurate
systems [4] (the ANNNI model). In its zero temperature version, the same
method has also been used to study networks of boolean automata [5-10]
and neural nets [11-13].
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In the case of dynamical phase transitions occuring at a finite temperature
T., two regimes are observed for the distance in the long time limit. In
both regimes, the spin configuration {S;(#)} at time ¢ depends both on the
initial configuration and on the applied noise between times 0 and £. At high
temperature, the effect of noise is strong enough to make the system forget
its initial condition. Therefore, two different configurations subjected to the
same thermal noise quickly become identical and their distance vanishes.
At low temperature, the distance between the two configurations remains
finite. Several effects can be responsible for this non-zero distance: either
the configurations belong to two valleys in phase space separated by high
energy barriers, like in the case of ferromagnets; or, because of a chaotic
dynamics with a tendency for close trajectories in phase space to diverge,
the configurations end up at a finite distance, like in networks of automata
[6-10], or non-symmetric spin glasses [11-14].

Several approaches have been used to locate the transition temperature:
for infinite range models (mean field models) [2], or for randomly diluted
models [5,11-14], it is possible to write exact equations which give the time
evolution of the distance. 7 is then analytically determined. For finite
dimensional systems, only Monte-Carlo simulations have been used so far to
compute the distance [1,3,4,6-8,15]. With the help of finite size scaling it is
possible to determine T, and the critical exponents rather accurately [3].

Only global properties have been studied so far, except in the case of
boolean automata on a lattice [6]. Questions arise about the possible ex-
istence of spatial structures: are the spins which differ between the two
configurations uniformly distributed in space or clustered? Are those spins
frozen, or do they flip often in time? What is the time evolution of the spatial
structures? Are they moving? What is the relation between these distance
related spatial structures and magnetic domains?

The aim of this article is to show these spatial structures, obtained by
computer simulations of ferromagnets and symmetric and non-symmetric
spin-glasses. Since the programming techniques are different from those
aimed at getting good statistics, this work is limited to the exhibition of
spatial structures without any attempt to measure quantities averaged on a
large number of samples.

The paper is organized as follows: section 2 describes the algorithm used
for the dynamics and introduces the various quantities that are displayed
in the following sections. Section 3 is devoted to 2 dimensional ferromag-
nets. Section 4 and 5 are devoted to the 2 dimensional symmetric and non-
symmetric spin glasses.

2. Heat bath dynamics

Let us briefly recall in this section the parallel heat bath algorithm to be
used in this work. All our calculations are done for Ising spins (S; = £1), on
a square lattice of linear size L = 100, with periodic boundary conditions in
both directions. Each spin interacts with its four nearest neighbors on the
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lattice. The coupling constants J;; between neighboring spins are +1 in the
case of ferromagnets, and +1 or —1 at random for spin glasses. Symmetric
spin glasses have equal J;; and Jj;, while non-symmetric spin glasses have
independent J;; and Jj;.

In this paper we use parallel dynamics based on the heat bath method.
To obtain {S;(t + 1)} at time ¢t + 1 from {S;(¢)} at time ¢, one computes all
the updating probabilities p;(t) by

1. 1 1
p"(t) = -5 + E tanh |:T ZJ: J,JSJ(I‘)] (21)
where T is the temperature, and one updates all the spins by
Si(t+1) = +1 with probability p(t) (2.2)

Si(t+1) = —1 with probability 1 — p;(t)

In practice, at each time step ¢, we choose for each site ¢ a random number
z;(t) uniformly distributed between 0 and 1 and we calculate S;(¢ + 1) by

1

Si(t + 1) = sign 2 + %ta.nh (%ZJ;ij(t)) - z,-(t)} (2.3)

‘When we say that we compare the evolution of two different configurations
{S:(2)} and {S{(¢)} subjected to the same thermal noise, we mean that we
use exactly the same set of random numbers z;(¢) and the same interactions
Ji; to update the two configurations and therefore

88(E 4 1) == sign. [% + 5 tanh (%2 J;jS;(t)) - z;(t)] (2.4)

In this paper we usually start our calculations with uncorrelated random
configurations {5;(0)} and {S!(0)} (figures 2-6). Starting with random op-
posite configuration ({5;(0)} = {—S!(0)}), the same behavior is observed.
For figure 7 we start with two configurations which are identical outside an
horizontal strip, and opposite inside.

Parallel dynamics are more convenient than sequential dynamics for com-
puter simulations (in particular because it allows one to vectorize the pro-
grams). Most of the physical properties are identical to those obtained by
sequential dynamics: same critical temperature at equilibrium, same magne-
tization [3]. There are however a few properties which are different between
these two kinds of dynamics [1,3], in particular, for parallel dynamics, the
two sublattices of the square lattice are not correlated at a given time. They
can be considered as independent events; there are only correlations between
a sublattice at time t and the other sublattice at time ¢ + 1, because all the
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information contained in one sublattice at time ¢ is transferred at time ¢ + 1
to the other sublattice. Therefore, in order to avoid to show pictures of two
uncorrelated sublattices, all the pictures presented in this paper show one
sublattice at time t and the other sublattice at time ¢ — 1.

Let us now describe the quantities which are represented in the next
sections. The first quantities that one can consider are, of course, the instan-
taneous magnetizations {S;(¢)} and {5!(t)} at time ¢ (they are represented
in figure 2, columns b and c). From these, it is easy to get the instantaneous
distance d;(t) between the two configurations

di(t) =1 if Si(t) = -Si(t) (2.5)
di(t) =0 if Si(t) = Si(t)

represented in figure 2 column a, figures 4, 5, 6 column b, and figure 7
columns a, b, c. In order to get some information on the time evolution of
spatial structures, we will also show averages over time of the magnetization:

m() =13 s() (26)

=1

mi(t) =+ 3 SK(#)

=1

represented in figure 3, columns b, c¢. The distance averaged over time

ci(t) = % i: di(t") (2.7)

=1

is represented in figures 3, 4, 5, 6 column a.

Lastly, since in spin glass systems one does not expect much structure for
the magnetization, we decided to show a quantity f;(¢), to be further called
the flipping rate, defined by the absolute value of the average magnetization

m;(t):
fi(t) = |mi(t)| (2.8)

represented in figure 4,5,6, column c.

If fi(t) is close to 1, this means that the spin S;(%) is almost frozen, whereas
if f;(t) is close to zero, this means that this spin is much more flipping. In
preliminary tests we also measured how many times each spin flips and we
observed structures very similar to those obtained with f;(¢). Simulations
were done on a SUN 3/ 110 computer and took about 2 hours for 6250 steps
for two configurations of 100100 spins. The grey scale for all quantities S;,
d;, m;, ¢;, and f; is defined on figure 1.
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Figure 1: Grey levels used to code the various quantities displayed
on the following figures. (a) Instantaneous quantities, S;, d;. (b)
Averaged magnetization, m;. (c) Averaged distance, ¢;. (d) Flipping
rate, fi.

3. Ferromagnets

Since our simulations are done by quenching random configurations at a
temperature below the critical point (T, ~ 2.27), one expects to observe
magnetic domains which grow with time (for a review see reference [15]).
Figure 2 refers to a 100100 lattice at a temperature of 1.5 . It displays the
time evolution of the instantaneous magnetizations, {S;(¢)} and {S!(¢)}, of
two random initial configurations, on the right columns (b and c) of frames,
and of their distance d;(t), on the left column (a). Time increases from the
upper row to the bottom row. For this figure 2, as for figures 3, 4, 6 and
7, time is 10 for the first row, 50 for the second, 250 for the third, 1250 for
the fourth and 6250 for the bottom row. On magnetization frames, black
corresponds to +1 spins, and white to —1 spins. On distance frames, black
corresponds to parallel spins (5;(f) = S!(¢)) and white to opposite spins
(Si(t) = —SK1)) -

As expected, we observe on the right columns the growth of magnetic
domains, ending with a single domain at the latest times. Apart from their
growth, the domains do not seem to move in space with time. One can check
that when the configurations are identical, the same fluctuations appear on
both domains. We can see that for the ferromagnet, the domain structure
associated to the distance (column a) looks similar in shape to the magnetic
domains (columns b and ¢) . This shows that the distance d;(t) is a quantity
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of the same nature as the magnetization [2,3,16].

Figure 3 is obtained with different initial conditions and represents the
time evolution of quantities averaged in time from the beginning of the sim-
ulation: the two right columns (b and c) represent the averaged magnetiza-
tions, m;(t) and m/(t), of the two configurations and the left one (a) their
average distance c;(t). In both cases, two domains are still present at time
t = 6250. The effect of averaging over time is to smooth the frontiers of
the domains. The fact that very little grey is present on the picture is an
indication that the domains do not drift.

Simulations at higher temperatures show that above T, & 2.27, the aver-
age magnetization frames become grey in the long time limit, which means
that the average magnetization is 0, and the distance frames become black,
indicating that the two configurations merge.

4. Symmetric spin glasses

Figure 4 displays from left to right, the time evolution of the time-averaged
distance between two configurations ¢;(¢), the instantaneous distance d;(t),
and the flipping rate f;(¢) of a 100*¥100 symmetric spin glass lattice. Temper-
ature is 0.9 , which is below T, = 1.7 [3], the dynamical transition temper-
ature for spin glasses. Colour coding for distance frames is the same as for
the preceeding figures. On the flipping frames, white corresponds to flipping
spins and black to fixed spins.We see the appearance of spatial structures
which develop in time on the distance frames. Small domains appear, which
grow in time. Their size is definitely smaller than ferromagnetic domains,
and their frontiers look more fractal, even when the distance is averaged over
the time. The size of the grey regions indicates that these domains drift in
time. Smaller structures also appear on the frames describing the flipping
rates, but they do not seem to be simply correlated to the distance related
spatial structures: this implies that those parts of the configurations which
are identical include both fixed and oscillating spins.

Figure 5 represents, from left to right: the time-averaged distance, the in-
stantaneous distance, and the flipping rate, for increasing temperatures from
the top row to the bottom: the rows corrrespond to T = 0.3, 0.6, 0.9, 1.2,
and 1.5, all at the same time 6250. When temperature is increased the effect
of thermal noise becomes stronger. A larger fraction of spins are flipping and
the distance between configurations decreases.The spatial structures associ-
ated with the distance are bigger and move faster (the last frame of column
a is grey because of their motion). Above 7, &~ 1.7, nonrepresented figures
show that the two configurations merge and all the spins are flipping.

5. Non-symmetric spin glasses

Figure 6 displays the time evolution of the time-averaged distance, of the
instantaneous distance between two configurations and of the flipping rate
of a 100*100 non-symmetric spin glass lattice. Temperature is 0.9, below
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Figure 2: Time evolution of two initially random configurations for the
ferromagnet at a temperature of 1.5. Times are from top to bottom
10, 50, 250, 1250, and 6250. (a) Instantaneous distance d;(t) between
the two configurations. (b) Instantaneous magnetization of the first
configuration Si(¢). (c) Instantaneous magnetization of the second

configuration Si(t).
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Figure 3: Time-averaged evolution of two initially random configura-
tions for the ferromagnet at a temperature of 1.5, Times are from top
to bottom 10, 50, 250, 1250, and 6250. (a) Time-averaged distance
¢i(t) between the two configurations. (b) Time-averaged magnetiza-
tion of the first configuration m;(t). (c) Time-averaged magnetization
of the second configuration mi(t).
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Figure 4: Time evolution of two initially random configurations for
a symmetric spin glass at a temperature of 0.9. Times are from top
to bottom 10, 50, 250, 1250, and 6250. (a) Time-averaged distance
¢i(t) between the two configurations. (b) Instantaneous distance d;(t)
between the two configurations. (c) Flipping rate of the second con-
figuration fi(t).
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5a 5b T

Figure 5: Evolution of two initially random configurations after 6250
time steps as a function of temperature for a symmetric spin glass.
Temperatures are from top to bottom 0.3, 0.6, 0.9, 1.2, and 1.5. (a)
Time-averaged distance ¢;(t) between the two configurations. (b) In-
stantaneous distance d;(t) between the two configurations. (c) Flip-
ping rate of the second configuration fi(t).
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T, =2 1.56 [3]. Far less structure is observed than in the symmetric case. The
distance reaches equilibrium faster. The domain structure is smaller than for
symmetric spin glasses. The nearly uniform grey level of the average distance
show that these structures are extremely mobile. The bottom frame of the
flipping rate is almost completely white, showing that no spin is frozen. The
same behavior is observed at lower temperatures down to 7' = 0.01. As for
the other cases, above T, the two configurations merge and all the spins are

flipping.

6. Conclusions

In this work, we have seen that the three systems: ferromagnet, symmetric
spin glass, and non-symmetric spin glass have rather different behaviors.
The two extreme cases are clearly the ferromagnet and the non-symmetric
spin glass. For the ferromagnet, we have seen that the structures associated
with the distance are comparable in size and shape, to the magnetic domains.
These domains do not move much in time. For the non-symmetric spin glass,
the dynamics are much more chaotic. No spins are frozen, but there are small
domains of opposite spins which move rather quickly. The symmetric spin
glass has intermediate properties: rather large domains are associated to
the distance. These domains are mobile but much less than in the non-
symmetric spin glass. There are also some frozen spins at least at times
t < 6250. The size of domains of frozen spins seems much smaller than the
structures associated to the distance.

Another way of visualizing the growth of the domains associated to the
distance for spin glasses is to start from a stripped structure represented
on figure 7: we start with two configurations which are identical outside
an horizontal strip, and opposite inside. We see that the strip of opposite
spins invades the whole system. This invasion is much faster for the non-
symmetric spin glass (column c) than for the symmetric spin glass (column
a) when one starts with a random initial configuration. When starting from
a configuration which has already evolved for 6250 time steps, the invasion
for the symmetric spin glass is even slower and the structure appears more
compact (column b). This invasion behavior has the same origin as the
spreading of damages [17-19].

It would be interesting to try to observe domains on much larger samples
in order to measure their fractal properties and to compare these observations
for spin glasses with recent theories on domain structures [20-22].

It would also be interesting to redo similar calculations for other systems
(Kawasaki dynamics, ANNNI model,boolean automata, etc.) to see whether
they present new dynamical properties or they have a behavior similar to
one of the models studied here. Lastly, since the structures associated to the
distance are rather often mobile, it would be interesting to define a quantity
which would give a measure of these motions. This might not be too easy
because the clusters of opposite spins move, change in shape and disappear.
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Figure 6: Time evolution of two initially random configurations for
a non-symmetric spin glass at a temperature of 0.9. Times are from
top to bottom 10, 50, 250, 1250, and 6250. a) Time averaged dis-
tance c;(t) between the two configurations. b) Instantaneous distance
d;(t) between the two configurations. c) Flipping rate of the second
configuration f;(%).
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Figure 7: Time evolution of instantaneous configurations starting
from two configurations which initially are half opposite on a hori-
zontal strip. Times are from top to bottom 10, 50, 250, 1250, and
6250. a) Symmetric spin glass at a temperature of 0.9, with random
initial configurations. b) Symmetric spin glass at a temperature of
0.9, with a 6250 steps old initial configurations. ¢) Non-symmetric
spin glass at a temperature of 0.9, with random initial configurations.
In all three cases, the difference spreads.
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