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Abstra ct. Thi s pap er describes a connectioni st mod el of prin t-to­
sound transformation ("word naming" or "reading aloud" ). T he as­
sociative network it uses is based on published stu dies of oral reading,
and simulat ion res ults are compare d to experiment al data in t he psy ­
chological literature. Th e results ob ta ined are of interest for two sepa­
ra te reasons. Fir st , the print-to-sound connectionist model is based on
an indirectly interactive dual-route hy pothesis of reading aloud. The
model confirms t hat this hypothesis, when implemented as a detailed
and sizeable compute r simulat ion, can account qualitatively for anum­
ber of behavioral phenomena such as regularity and word frequency
effects. The model thu s provides support for a modified dual-route
hypothesis involving indirectly inter active routes and verifies the hy­
pothesis' consistency with a set of replicab le psychological data. Th e
second reason t he print-to -sound connectioni st model is of interest is
t ha t it uses a new approach to implementing compet it ive dynamics
in connectionist models. Focused spread of network act ivation and
avoidance of network sat uration are produced by using a com petit ive
activation mechanism rat her than explicit inhibi tory links between
compet ing nodes. T he print -to-sou nd model demonstrates for t he first
time t hat competit ive activation mechanisms can funct ion usefully in
relatively large, complex situations of interest in cognitive psychology
and ar tificial intelligence.
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1. I nt rod uction

T he nature of th e cognit ive mechanisms und erlyin g pro nun ciation of printed
text is currently a dynamic and cont roversial to pic. One of t he most influ­
ential t heories about these mechanis ms, the dual-route hypoth esis, proposes
that reading aloud can be achieved by either of two disti nct proced ures:
a. lexical procedu re by which letter st rings are associated with whole-word
pronunciatio ns , and a non -lexical pro cedure by which segme nts of pri nt ed
words {i.e., let ters or lette r clusters) arc associated with sub-lexical soun d
pa t terns, and then "assembled" into a pronunciation. Th e st andard version
of this hypothesis} referred to as the independent dual-route hypothesis in
t ills paper, start s with the assumption that these two information processing
"routes" are indep ende nt (e.g., [8,35]). While th is indepen dence assumption
is perha ps th e simplest perspect ive one can take, a convincing case can be
made that the indepen dent dual-route hypot hesis has di fficult y accounting
for exist ing empi rical data [e.g., [3D)). Many of the crit icisms that have been
direct ed at the dual-route model can be countered, and the basic architecture
of the model retained, if the assumpt ion is relinquished that the two infor­
mation processing routes involved are independ ent [15]. For thi s solut ion to
be tenab le, however, it becomes necessary to define clearly and explicitly the
nature of the interacti ons between the lexical and non-lexical routes , and to
provide some support for the viability of such an approach.

These considera t ions mot ivated the development of a connectionist model
of pr int-to-sound trans formation ("word naming," "reading aloud " ) based on
an indirect ly interactive dual-route bypothesis. This print-to-sound connec­
tioni st mod el uses a dual -rou te associative network to represent corres pon ­
den ces between relevan t linguist ic units. The te rm "indirectly in ter acti ve"
is used to characterize th e mo del because, although the flow of activation
throug h the lexical and non-lexical routes is not complete ly independent ,
these two rou tes influence one another only in a limited, indirect fashion.

The behavior of th e comp utat ional model described in this pap er has
been examined systemat ically for word frequency an d regulari ty effect s and
has been shown to exh ibit behav ior qualitatively similar to that seen wit h
normal read ers. Limited st udies with "lesioned" versions of th e model also
demon strate behavior having similar it ies to empirical observations of readers
with acquired dyslexia. Th e pr int-to-sound connectioni st mod el thu s pro­
vides support for an indirectl y interacti ve dual-rou te hyp othesis by demon­
st ra ting that, when mad e explicit in a detailed computer simulat ion, thi s
hypoth esis is consistent with some imp ortant results obtained in empirical
stu dies of nor mal and dyslexic readers.

Th e print-to-sound mod el is also of interest in that it uses a new method
for controlling spreading acti vation in connect ionist mod els. T his me thod is
referred to as a com petitive activation mechanism. In fact , it is thi s approach
to controlling network dynamics that forms th e basis for the limited , indi rect
interactions between the two routes in the pr int-to -sound model. To under­
stand the issues raised by competit ive activation mechanisms, it is important
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to recogni ze t ha t connectionist models like the print-t o-sound system (i.e.,
those using an associa t ive netw ork to represent memory) are gene rally not
"neural mo dels," eve n th ough t hey use a neuron-like network and processing
par adi gm. T heir nod es and connections represen t concepts and associations
rather than neurons and syna pses . They typically mo del fun cti onal cognit ive
mechanisms rather than biophysical brain processes, and are studied primar­
ily by worker s in cognit ive science and arti ficia l intelligence (AI) ra ther than
neuroscience [44].

In spite of th ese dist inctions, many associati ve networ k models have
adopted methods for con t rolling spreading activat ion that were init ially in­
tended for modelli ng networks of biological ne urons. For example, compet­
iti ve interac tions between nodes intended to prod uce a winner -takes-all be­
havior have usually been implemen ted th rough the use of late ral inhi bitory
links (14,20,34,57]. As explained below (sect ion 3), such an approach to
focus ing spread of act ivation involves significant probl em s when app lied in
associat ive rather than ne ural networ ks.

Recently, a different approac h to introdu cing comp et it ive inter actions
into conn ectionist models of associat ive memory has been proposed [40,41].
Rather than implemen ting direct com pet it ive behavior through explic it struc­
tural features of a network (inhibitory links), competit ion is int rod uced into
the functional mechani sm or rule by which the spread of activation is con­
t ro lled . The pri nt- to-sound mo de l demo nst rat es for the first time that such
com pe t it ive act ivation mechani sm s can function effecti vely in connectio nist
models having net works of a size and complexity often found in contem porary
cogni ti ve science and AI systems .

T he dua l-route prin t-to-sound t ransformation was selected as the first
large-scale test of com petit ive activation mechanisms bo th because it pro­
vides an im plementat ion of ind irectl y interacti ve rou tes, and because print ­
to-sound t ransformation is a chall enging but relat ively well-defined and cir­
cumscribed problem. T he print- to-sou nd transformation is chal lenging in
that the ex istence of two hypothesized "routes" by which information flows
through the und erl ying asso ciat ive network implies tha t phoneme nodes serv­
ing as ou tputs for the model might receive conflicti ng informat ion abou t what
their act ivation levels should be. Such conflicts must be resolved by these
phoneme no des based on loca lly ava ilable information as node activations ap­
proach equilibrium . On the oth er hand, compared to many other cognitive
tasks involving associat ive memory (e.g., na tural langu age processing at the
sem ant ic level) , th e underlying network is relatively circumscribed; hence, a
fai rly significant subset of it can be cap tured in a model. T here is also a
relat ively large am ount of empirically-derived informat ion in t he lit er atu re
up on which to base network st ructure , assignme nt of weights to connections)
an d ana lysis of simulat ion result s.

The remainder of t his paper is org anized as follows. Sect ion 2 summar­
izes em pirical st udies of print -to-soun d tr ansformation and the dual-route
hypothesis. The associat ive ne twork used in th e connec t ionist mo del to repre­
sent th e relevant corresponde nces between graphemes , pho nem es, an d words
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is describ ed. Secti on 3 discusses competitive behavior in connect ionist mod­
els and explains some difficult ies in implementing competition with lateral
inhi bitory connect ions when a local represen tation of information is used (as
in t he pr int -t o-sou nd mo del ). The specific competit ive act ivat ion mechanism
used in th e prin t -to-sound model is summarized , and the notions of indep en­
dent and interact ive routes are explained. Sect ion 4 describes a limited but
systematic study of the print- to-sound model' s behavior. Sectio n 5 concludes
by summar izing this work and its implicat ions.

2. Pr-int-to-sound t r ansform at ion

T he te rm prin t-ta-sound tr ansformation is used here to refer to the task of
reading aloud a single printed word. The specifics of the connect ionist model
of pr int-to-sound tr ansformation described in t his paper are st rongly influ­
enced by the dual-route hyp othesis of reading tha t postu lates the existence
of two parallel and independent "routes " of inform ation flow dur ing read­
ing [1,8,9,35]. We first briefly review this hypo thesis and then describ e the
associative network used in the print -to-sound connect ionist model.

2.1 Empirical st ud ies of t he print-to-sound mapping

During the last several years there has been a great deal of empirical re­
search on the cognit ive processes underlying skilled readin g [13,19]. A sig­
nifican t par t of this research has focused on oral reading or "word namin g. I'

In perform ing the task of readin g a word aloud, one transforms a sequence
of printed graphemes into a sequence of spoken phonemes. A graphem e is
defined to be one to a few prin ted characters serving as the written represen­
tat ion of a phoneme (following [10]). For typ ograph ic convenience, phonemes
will be represented by lower-case let te rs between slanted lines, graph emes by
upp er-case let ters, and word/morphemes by double-quote marks. For exam­
ple, the word "onion" consists of five graphemes, 0 N ION, which correspond
to five phonemes, /uh+ n y uh- n/. 1

T he cognitive task of word nami ng or reading aloud is often represented
diagram atically as information flow and transformat ion through a number
of cognit ive modules involving two routes (e.g., [19,36,48]). Figure 1 pro­
vides a simplified example of such a diagram involving two routes by which
information flows as it is t ransformed from writ ten to spoken form. One
route is the graphem e-phoneme correspondence or GPe route (bot tom of
figure 1). Reading aloud via this process involves map ping grap hemes onto
their corresponding phonemes. A major reason for postulating such a route
is the abi lity of skilled readers to read aloud pronounceab le non-words like
"kint ." Although ot her possible mechanisms for Don-word reading have been
postu lated [e.g ., [32,23)), these lack sufficient specificity for adequa te test ing.

"Symbols used here are keyboard-compat ible representations of the Internat ional Pho­
net ic Alphabet. T he phone mes they represent are largely obvious in this paper, but a
complete listing and definit ions can be foun d in (4).
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Written
Word

Sp.oken
Word

Figure 1: A simplified characterizat ion of t he P rint-to-Sound Map­
ping. G = graphemes, P = phonemes, W = words. The GPC route
is along the bottom (G ~ P), the lexical route along the top (G ~

W -+ P). See tex t for detai ls.

A second route used in reading aloud will be referred to as the lexical
route (to p of figure 1). Read ing aloud via thi s route involves the map ping
of grap hemes onto morphemes/words via the visual word recognition system
and then onto their phonem ic representation. This route is postul ated to
account for the ability of skilled readers to correct ly pronounce exception
{virreg ular") words and to distinguish t he mean ing of distinct words that
happ en to sound the same (e.g., "weak" and "week"; see [27, ch. 5]).

The dual-rou te model of read ing aloud is st rongly suppo rt ed by addit iona l
evidence from studies of individuals with acqu ired dys lexia (alex ia). Acquired
dyslexia is a disorder of reading result ing from brai n damage in form erly
literate readers. From a linguistic point of view, a var iety of forms of acquired
dyslexia exist, and form-specific features can be correlated with localized
functional impairments in information flow models like that of figure 1. For
example, in phonological dyslexia pa tients can read man y familiar words
but usually fail to read aloud even simple non-words. In such cases it has
been postulated that a select ive impairment of the ope route has occurred
[3,22). In contrast, surface dyslexics can read non-words and real words with
"regular" spelling patterns, but fail to read most "exception" words (e.g.,
"yacht" ) where grapheme-phoneme correspondences do not yield the correct
pronunciation [13). T heir responses to such irregular words are ty pically
"regulariaations" ; e.g. , reading "yacht" as /yae ch tJ. These pat ients appear
to suffer from im pairment to the lexical rout e, with rela t ive sparing of the
ere route. Th e important fact that both of these syndromes have been
described (a "double dissociati on" of symptoms) indicat es that the two routes
a.re functionally separate, and are not simply ext remes on a continuum of
processing resource with one type of process more suscept ible to the effects of
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bra in damage than the other. Such relatively seleetivefunctiona l deficits have
gene rated a great deal of research and interest among cogni tive psychologists
dur ing the last few years [1 2,19,36,48J.

Both th e lexical and the GP C routes have been implicated in the normal
pro nunciat ion of words by skilled readers. In research meas uring the time
taken for normal sub ject s to read word s aloud (pronunciation latency), it has
bee n found, in general, t hat word s wit h regular pronunciations can be read
fas ter t han irr egular words [24,53]. This finding has been interpreted as an in­
dication that congruency in the output of th e two routes yie lds faster response
t imes. A complication was subsequent ly added to this view by the finding
that this effect of regularity on pronunciation latency was detectable on ly for
words of low frequency [49]. High-frequency words, whether regular or ir­
regu lar, were pronounced uniformly qui ckly relat ive to low-frequency words.
T his finding sugges ts that any simple "horse-race" model , in which the two
par all el and independent routes are used to achieve the same end under dif­
ferent condit ions, underestimates th e complexity of the reading process. This
resu lt, which appears to require some kin d of flexible but structured interac­
tio n between the two routes, is t he primary focus of the print-to-sound mo del
discussed here.

2.2 Associative network structure

T he network in the connectionist model of pr int-to-sound transformation uses
a local represen tation of information. Nodes represent graphemes, phonemes
an d words, whil e connections represent positi vely weighted associations be­
tween these ent it ies. The overall network st ruct ure is illustrated in Figure 1,
where each pictured oval represen ts a set of node types, and each pictured arc
represents numero us forward connections. It can be seen that there are two
rou tes by whi ch activation can flow through the network: the "lower" GPC
route and the "upp er" lexical route. Running a simu lation involves selec­
t ive application of an externally supplied source of input to the appropriate
gra pheme nodes, thereby driving up their activation levels. Activation then
spreads from grapheme nodes to phoneme nodes (via the epc route), and
from grapheme nodes to "hidde n" word nodes to phoneme nodes (via th e lex­
ical route) . T he acti vation level s of phonem e nod es represent the network's
output.

Since each word node in such a network connects to multiple graph­
eme/phoneme nodes oc curring in specific positions , there are actually mu lti­
ple cop ies or instances of grapheme and phoneme node sets in any simulation .
The ex act number of instan ces of grapheme and phoneme node sets is de­
term ine d by the number of graphemes th at are des ignated as input. For
example, if a specific simulat ion involved the presentation of a sequence of n
graphemes as input, thi s is implemented in the model by dynamically con­
struct ing n copies of the graphe me nodes prior to initiating th e simulation .
Each set of graph eme nodes corresponds to one input pos ition, where posi­
t ions are numbered from 1 (initial posit ion) to n (final position). For each set
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of grapheme nodes so const ructed, a corresponding set of phoneme nodes is
generated (recall that a grapheme is defined as the orthographic represent a­
t ion of a single phoneme) along with all relevant connect ions from graphemes
to phonemes in one position . Thus, for an inpu t sequence of n graphemes,
counting the set of word nodes there are 2n + 1 interco nnected sets of nodes
present. This use of duplicate but posit ion-specific sets of nodes is similar to
that used in other connect ionist models of "low-level" linguisti c information
processing [18,34).

As an example, suppose the connect ionist model is presente d with the
five graphemes

ON I O N

as input. The network constructed for t he simulat ion would contain five sets
of grapheme nodes and fi ve sets of phoneme nodes as illust rated in figure
2. In what follows, all of the nodes and connect ions occur ring in a single
grapheme/phoneme posit ion are referred to as forming a path through the
network. Thus, in figure 2 all of the G3 and P3 nodes and their connect ions
are the third of five paths formi ng the GPC route. Similarly, the GJ , IV
and P3 nodes and their connect ions are one of five paths forming the lexical
rout e. The individual paths in the GPC route are separate from one another
in th is model, while those in the lexical rout e are not since they converge at
the single set of word nodes .

There are 48 phonemes and 168 graphemes represented as nodes in each
position-specific path in the print-to-sound mod el's associative uet
work. These nodes and their connections, which form the GPC route, are
hased on data from the analysis of a corpus of 17,310 words [26). That study
defined graphemes as letters or letter clusters corresponding to a single pho­
neme, using a one-to-one correspondence between graphemes and phonemes
in words. Motivated by educat ional issues related to spe lling, t he st udy by
Hann a. et al. provided for any given phoneme a list of its possible spellings
(graphemes) and their frequencies [26, tables 17 and 18]. T he information
needed in the print-to-sound model network is the "reverse" of this available
sound-to-print information, which can not be directly ret rieved from individ­
ual table ent ries in the source document. For example, although the phoneme
lawl is only occasionally written as AU (prohahility = .15), the grapheme
AU is almost always pronounced as lawl (probahility = .95).

For th is reason , a computer program was implemented to generate the
gra pheme-to-phoneme connections and weights (condi t ional probabilities)
needed to form the GPC route in the pr int-to-sound connect ionist mode l.
Th is program used a slightly revised version of the tables in the source doc­
ument [26] . A list ing of the resulti ng grap heme-to-phoneme associat ions and
their weight s as used in our model, as well as the details of their derivat ion,
can be found in [4]. An exam ple of a single grap heme node and its connec­
tions to phoneme nodes in a path of the GPC route is illustrat ed in fi gure 3.
For the special cases of graphemes in the first and final posit ion of a word,
modified weight s were derived in the same fashion [26].
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Figu re 2: Overview of network st ruct ure when the five-grapheme se­
quence 0 N I O N is input to th e prin t- to -sound model. T he two
rou tes in figure 1 are st ill evident. For each grapheme position , a cor­
responding set of graphemes and a set of phonemes exist s, an d each
route is t hus seen to be com posed of five paths. There are no connec­
t ions between two nodes in the same set anywhere in thi s network ; all
connections ar e forward-only.
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Figure 3: All connections from the gra pheme node I in a specific po­
sition (path) to phoneme nodes in t he same posit ion. Each phoneme
node receives additional incoming connections from ot her grapheme
nodes, as well as connections from appropria te word nodes , that are
not shown here. Each numeric weight repr esents the conditio nal prob­
ab ility that the grapheme I will be pronounced as the corres pondi ng
pho neme.

517
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The Toronto Word Pool [21] was selected as the source for the mo del's
lexicon because it contains a relatively large set (1080) of two-sy llable words
with a wide range of frequencies that were not preselected on the basis of
orthographic or phonetic structure. Although this is only a fraction? of the
words in the average per son 's lexicon, it provides a respectable set of wor d
nodes comparing favo rably in size to th at used in many pr evious connection­
ist models developed by cognit ive scient ists [34]. In ad dit ion, the Toront o
Word Pool is composed of two-syllable words . T his word length was se­
lected specifically in an attempt to move bey ond the focus on mon osy llabic
words that has cha racterized previous models (e.g., [6,34]). The pho nemic
pronunciation of each word was taken from Webster's New Collegiate Dic­
tionary (8th edition) . Once the phone mes were determined for each word ,
the printed word was segmented into graphemes so that a single phoneme
corresponded to a single gra pheme.

Each graphe me node in the i th grapheme set is conn ected to all word
nodes in which that gra pheme appeared in the i th posit ion . The weight on
each link from a gra pheme node to its word nodes is lin, where n is the
total numbe r of words to which that grapheme connected . For example, the
I in the third set G3 of graphemes in figure 2 is connected to all word nod es
with 1 in the thi rd posit ion , such as "onion ," "union," "prison," and "amid ."
Since there are n = 29 such word nodes in set W , the weight on each of these
links from 1 in t he third posit ion to word nodes is lin = .0345.

Each word node also has forward connections to phoneme nodes in the
ap propriate posit ion-specific phoneme sets . The word node for "onion," for
example, has a connect ion to Iy I in the th ird set P3 of pho neme no des .
With the exception of 17 words wit h common mult iple pronunciations (e.g.,
the second ph oneme of "content" is lahl or luh-I depending on wheth er
"content" is a noun or ad jec t ive), a word node has one connect ion wit h a
weight of 1.0 to a single phoneme node in each phoneme set (or no connections
to some phoneme sets if the number of phoneme sets exceeded the number
of phonemes in the word) .

In sum mary, the assoc iative network in the print-to-sou nd mo del consists
of numerous positively weighted , forward connect ions form ing mult ip le, pos ­
ition-specific paths through two routes (figure 2) . From the perspecti ve of an
indi vidu al node in the ne twork , it has mult iple disjoin t sets of connections
with which to interact (figure 4). Each grapheme node gi has an external
inp ut line an d two sets of output connections going to word nod es and to
phoneme nodes in t he same position (see figure 4a). Eac h word node Wj

has mul tiple inp uts from graphemes and mult iple outputs to phonemes that
span the pos ition-specific sets of graphemes and phonemes, respect ively (see
figure 4b) . Finally, each phoneme receives inputs from two separate sets
of connections: those from m ultiple word nodes, and those from mu lt iple
grapheme nodes in the same positi on (see figure 4c) . The re are no reve rse

2Fifty words from the Toronto Word Pool were omitted from the simu lat ions beca use
they contained a silent letter othe r th an H. Th ese words could not be used without a
modi fication of the Hanna , et al., correspo ndences. See [4, p. 5] for discussion .
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Figure 4: Summary of node connect ions: (a) Grapheme node gi re­
ceives external inp ut and sends output connections to both a set of
possible phoneme nodes (GPC route) and a separate set of word nodes
(lexical rou te); (b) Word nod e Wj receives input from grapheme node s
and sends output to phoneme nodes; (c) P honeme node Pk receives
one set of inputs from word nodes (lexical route) and a separate set
of inpu ts from gra pheme nodes (G PC route).

connect ions (phonemes to words or graphemes, words to graphemes), no
inhibitory connections, and no connecti ons between any two phonemes, any
two grap hemes, or any two words.

T he complete networ k involved in a simu lation is thus relat ively large. For
example, for the input graphemes 0 N I O N, there are a total of 2110 nodes (5
times 168 gra pheme nodes, plus 5 t imes 48 phoneme nodes, plu s 1030 word
no des) and roughly 12,000 forward conn ections . The use of a compet itive
act ivation mechanism (described in next section), however, avoids the need
for mo re than a m illion la teral inhi bitory connections that would normally be
required to produce winner- take-all behavior among word nodes and among
each posit ion-specific set of phonem e nodes .



520 James Reggia, Patricia Marsland, and Rita Sloan Berndt

3 . C om pet it ive dynamics

Com pe t it ive interacti ons occur in many complex situat ions, and connection­
ist models are no except ion. Thi s sect ion discusses th e role of competit ion in
connect ionist mod els, and mot iva tes and desc ribes the concept of compet i­
t ive activat ion mechan isms. Th e specific competit ive activat ion mechani sm
used in the print-to-sound model is presented , and the sense in which this
model represents an "interact ive" dual-route hypot hesis is explained.

3.1 Competitio n in co n nection ist models

To consider the issue of competition in connect ionist mo dels, it is useful at
this po int to explain some terminology. First , it is important to appreciate
that the mechanis m by which competition occurs in various comp lex systems
may vary from sit uation to sit uat ion. Direct (antagonistic) compet ition is
said to occur between two rivals A and B when A directly suppresses B's
activities (e.g. , wrestling match) . Indirect (allocationaJ) com pet i tion is said
to occur when two rivals requ ire and consume the same limited resource, t he
gain of one coming at the expense of the ot her [e.g.. two animal populatio ns
competing for t he same source of food). Th ese two mechan isms for prod ucing
competit ion are not mutually exclusive.

In the following, it is assumed tha t each node in a connect ionist model
has a num eric act ivat ion level associated with it an d an activat ion mecha­
nism , a local algorit hm that periodically updates the node's act ivat ion level
as a funct ion of input received from neighbor nodes. Two broad classes of
connect ionist mod els are dist inguished: neural network models and associa­
ti ve network models. The te rm neural ne twork m odel is used here to refer
to connect ionist models of neurophysiological systems (e.g., nodes represent
neurons, links represent synapses, activation level represents neuron firing fre­
quency, etc .) th at typi cally adopt a distributed repr esentatio n of concepts .
Th e term associative network model is used to refer to "spread ing act ivation"
models developed in cognit ive science and AI which have a local represen­
tation of concepts (e.g., nodes rep resent concepts, links repr esent relatio ns
bet ween concepts, act ivation level represents prob abi lity/ belief/desirability
of concepts, etc.). Connect ionist mod els involving semant ic networks, and
the non-semanti c print-to-sound network described in thi s pap er , are exam­
ples of assoc iat ive networks.

A long-standing issue in the developm ent of connect ionist models has been
how to integrate competit ive and coope rat ive interactions between intercon­
nected nodes so t hat meaningful model behavior emerges. When external
activation is int roduced into a network , some competitive influence on net­
work dynami cs is necessary to focus t he spread of that act ivat ion and to avoid
network saturat ion. In neural network mo dels, direct / antagonist ic compe­
t it ion has usua lly been used and implemented through negati vely weighted
inhibitory links between com pet ing nodes (see figure 5,,) [2,25J. Having "lat­
eral' inhibi tory links has proven very useful in neural network models, and is
quite plausible in models of neurobiological circuit ry given t he overwhelmi ng
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,}
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Figure 5: (a) Two directly competing nodes lab eled Band C. In­
hibitory connect ions, indicated by arcs with circular ends, are "lat­
eral" (rather than "forward" or "backward" ) in that th ey are orthog­
onal to t he flow of activation th rough th is network fragmen t; (b) T wo
indir ectly competing nodes Band C without lateral inhibitory links .

ne uroph ysiological evidence of their imp ortance.

Many associati ve network models develop ed in cognitive psychology and
AI have relied on a similar approach by imp lementing compet itive dynamics
as direct competit ion. Lateral inhibitory connections have been widely used
in associative net work mod els, usually as a means for prod ucing a single­
winner-takes-a1l phenomenon [14,20,34,57). Th is phenomenon is particularly
relevant in mo dels where th ere are a set of nodes which are conceived of as
being mutual ly exclusive alternatives to one another. When these nodes get
act ivated, it is desired that their initi al, usually diffuse act ivat ion pattern be
transform ed into an equilibrium state in which one "winner" node is fully
activated while all other compet ing nodes become fully inact ive. In figure
5a, for exam ple, if node B becam e highly act ivat ed for whatever reason , its
inhibitory connection to node C would directly suppress node C's activa­
tion, which would also decrease inhibitory influences on node B from C, and
typically lead to a stable equilibrium with node B as th e sole winner .

While lateral inhibitory links pro vide a useful mechanism for impl ement-
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ing competitive interactions between nodes in associative networks, they also
raise a numb er of important theoret ical and practi cal issues. Fi rst, in con­
trast to neural network models where inhibitory links explicitly re present
inhibitory synaptic connect ions, it is unclear exactly what inhibitory links
represent in many associa tive network models of memory. Posit ively weighted
links in associa tive networks generally represent measurable, application­
specific associat ions between concepts. In contrast, negatively weighted in­
hibitory links are used to bring about application-independent functional
propert ies (competit ive interactions) . There is no clear analog in contem­
porary psychological theories of associat ive memory for the inh ibitory links
that appear in con nectionist models using associative networks.

This dist inction can be cla rified by considering associative networks in
computational models that use the more tradit ional symbol-processing meth­
ods of cognitive science an d AI rather than spreading activation . The net­
works in these symbol-processing models generally do not inclu de inhibitory
connections, and competit ive interac t ions are imposed by an interpretative
program wit h global access to the network (e.g . I intersection sea rch, or a
generalization of it called par sim onious cove ring [42,43]). The point is that
competi tive interactions I traditionally viewed as a functional aspect of mem­
ory in symbol-processing models, are now being rout ine ly implemented as
a structural component of the ne two rk in connectionist mo del s of memory .
To our knowledge, li t tle discussion of the implica t ions of such a rev ision of
network contents has occurred. For example, it is not imm ediately ob vious
in some assoc iative networks exactly where inh ibitory link s shou ld go, let
alone how their weights shou ld be assigned or measured [39].

Further, in many real ist ically sized networks of int erest in cognit ive sci­
ence an d All the number of inhibitory connect ions required to bring about
the desired competit ive interact ions can be enormous. For exam ple , if th ere
are n nodes in a set and they must each di rectly inhibit one anothe r to
produce a single-winner-takes-all phenomenon during pr ocessing, the n close
to n2 inhibi tory connecti ons would be require d [e.g ., only 1000 com pe t ing
nodes would require almost 110001000 inhibitory con nect ions). Thus, sca ling
up to large networks of the size often seen in cognitive scie nce or AI models
while using inh ibi to ry connections in th is fashion wou ld clearly require a large
number of connect ions and nodes wit h large fan ou ts . T his is an impor tant
consideration not only when using simula ted pa ra llelism on a sequent ia l (Von
Neumann) machi ne, but also when connectionist models are implemented on
parallel compute rs . T he lim ited experience to date wit h actual im plementa­
t ion of con nection ist model s on parallel arch ite cture ha rdware suggests t hat
communication time be tween pro cessors will be a maj or efficiency concern
(e.g., [5]) an d that in some situations speedup is adversely affected by large
node fanouts [541 .

Finally, in some impo rtant applications of associat ive networ ks a m ult iple­
winners-take-all phenomenon rather th an a sing le-winner-takes-all ph enom­
enon is des ired as the outcome of compet itive interact ions . In oth er words,
there are situations where mult iple winning nodes should be fully activated
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simultaneously while all other competing nodes shou ld be fully inactive. Gen­
eral diagnosti c problem-solvin g pro vid es an example of this: a hypothesis or
solution typically consists of one or more disorder s which plausibly explain
observed symptoms [42,43,38]. Im plement ing direct com petition be tween
nodes representing relevan t disorders in such a sit ua t ion is at best prob­
lematic. If a set of com peting nodes with dir ect, mutually-inhibitory links
between a ll nodes t ries to sustain multiple winners simultaneously, these
winners will tend to exti ngui sh each other 's act ivat ions . More selecti ve use
of inhibitory conn ections runs into the problem that , in some situ ations,
two disorder nodes may be considered to be in compet it ion, while in other
sit ua tions th e same two nodes may not be competitors and may actually
"cooperat e" to formulate a solut ion to a problem [39] . T he competi t ive in­
terrelationship between disorders dur ing diagnostic inference is not simply a
static, mutually-inhibitory relat ionsh ip, but a more com plex dynam ic func­
t ion of the network stru ct ure and the problem input (the lat ter bein g the set
of present symptoms ). Thus it is at least very difficult , if not impossible, to
model these relationships through simple inh ibitory link s with stat ic weights.

3 .2 C om p et itive a ctivat ion m echanisms

T hese difficult ies with using inhibitory connect ions to impleme nt com pet it ion
in associativ e network models mot ivate an alternative approach. Rather than
implementing direct or an tagonisti c competi tive behavior through explicit
struct ural features of a network (inhibi tory lin ks), ind irect or alIoc ational
competi t ion is introduced into the funct ional mechanism by which the spread
of activation is controlled. Wh en this is done, the resultan t connect ionst
model is sa id to use a competitive activation mechanism [40,41].

In connectionist models using a competi t ive act ivat ion mechanism , as
with many pas t network models , each node n j t ransm its its activation level
aj(t) at t ime t to neighboring nodes via weighted links, and th ese neighbor­
ing nodes updat e their own act ivat ion level based on activations received in
thi s fashion. However, unlike previou s models, with a competitive activation
mechanism each such neighboring node nm actively competes for th e out­
put from source node nj ' Fur ther , the abilit y of a neighboring node n m to
compet e for n/s output increases as am(t ) increases.

Many formul ations of a competit ive activation me chanism are possible;
one example follows. Let ak(t) and Wij be restricted to the interval [0, 1J for
all i , j I and k, where Wij is the connection strength {rom node n j to node n i.
Note that in this example there are no inhibitory link s since Wij is always a
positive number. Let the rate ai(t) at which n/s activat ion changes be given
by

ai(t) = j;(ini(t) , ai(t)) . (3.1 )

Here, Ii is a monotonically increasing function of ini(t ), the total input act i­
vation to node ni at t ime t resulting from external inputs and/or incom ing
connect ions from other nodes. For the competi ti ve act ivation mechanisms
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discussed in t his paper, calculation of in j(t ) for each no de nj is arranged so
that 0 S; inj (t) ::; 1. This is achieved using

in;(t) = 1 - II k (1 - outik(t)) (3.2)

whe re Qutik(t) is the output from node n k arriving at no de nj at time t , or
is an extern al input to nj . As long as each Qutik value satisfies 0 :S Qut ik .::;

1, equation (3.2) guar antees t hat the resultant in, is also restricted to this
range. Equat ion (3.2) can be viewed as comb ining individual inputs Qu t i k in
a nonlinear, accumulative fashi on. If each an d every individ ual Qutik is zero,
then so is in. . If any outn, is nonzero, then in, is non-zero, and in general,
the more individual Qutik values that are non-zero, t he greater the resul tant
in. . Acco rding to Eq. (2), in, is a monotonically increasing function of eve ry
outjk, and can be viewed as a nu merical versi on of a logical OR operat ion .

The activation mechanism describe d so far as equat ions (3.1 ) and (3.2)
does not d iffer in any fundamental way from many non-compet it ive activation
mechanisms . To in t roduce allo ca ti onal competition into this model, con sider
the perspective of a node nk computing outikl its output to node H j . Let

(3.3)

where Cjk(t) is the competitive st rength of node ni determ ining how much of
ak(t) reaches ni. As a specific example, let

( ) ,..:W:.:;k~· .:::'a,'O.:(t.!-)=Cjk t =:=I:m Wmk . am(t)
(3.4)

where m ranges over no des to which Hk sends connect ions . If the de nominator
in equation (3.4) is zero t hen the numerator is a lso zero, a nd by defini ti on
we let Cik(t) = Wik in this case. Note that 0 ::s Cik .::s 1, so by equat ion
(3.4), 0 .::s out ik ::s 1, and thus the total input in, received by any node ni is
guaranteed to sat isfy 0 ::s in, .::s 1 (see equat ion (3.2) and discussion following
it ). Fur ther , it follows from equation (3.3) and (3.4) th at the total outpu t of
any node Hk is Lm outmk = ak(t).

The key point here is the appearance of aj(t) and am(t), the current ac­
tivation levels of nod es receiving activation from node nk, in the formula
for cu : T his is what makes this a competitive activation mechanism involv­
ing allocational competition. Node ni "com petes" for nk's activation such
that the portion of ak it receives increases as aj increases. Conversely, if
some competitor n m of nj receives input from nk, t hen by equation (3 .3) and
(3.4) the amount of input that nj receives from nk will dec rease as am in­
creases. This can be contrasted with the situation whe re a non-competitive
activation mechanism is used . Typically, wit h a non-competitive activation
mechanism, Cik(t) = Wik, a constant value for all t ime in non-adapt ive net ­
works, so outik(t) = Wikak(t). In t his case the fraction of ak(t) dist ributed to
node ni remains constant with time and ak is not allocated competitively to
nodes n m t o which nk connects.
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Iteration A B C
0 0 0 0
5 .344 .022 .007
10 .613 .216 .013
20 .865 .596 .011
40 .984 .937 .004
60 .998 .992 .001
100 1.000 1.000 .000

Table 1: Node act iva tions for the net wor k pictured in figure 5b using
the competitive activation mechanism described by equ ations (3.2­
3.5). Derived numerically using time quantization of 0.1 unit of tim e
per itera tion .
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As a sim ple specific example, con sider the 3-node network in Figure 5b
where all nodes start with zero act ivat ion, and a constant external input of
1.0 is applied to node A starting at t = o. Each node uses the competitive
activa tion mechanism described by equations (3 .1-3.4) where, in equation
(3.1, we let

a; = [in; - a;(l - in;)] · (1 - ai) (3.5)

T he first factor here, in, - aj (1 - a j), can be positive or negat ive, and
ranges from - 1 to +1. This fact or causes a j to increase whenever in, >
a j (1 - in.), and to decrease whenever in, < a j(l - in.), an d insu res that
aj 2: O. The second factor , 1 - aj, insures that a j has 1.0 as a maximum
value. For this specific example, approximate activa tion of nodes with time
is given in table 1. As the external input act ivates node A, nodes Band
C are bot h init ially par tially act ivated , but as equilibrium is approached a
winner-takes-all ph enomenon appears (node B fully activated, nod e C fully
inact iva ted). Although no inhibitory links exi st between nodes Band C,
an indi rect inhibitory interact ion (" virtual lateral inhibit ion" ) between these
nodes is apparent as a resu lt of the allo cational competi tion controlling how
node A distribut es act ivation to nodes Band C.

The behavior of connect ionist models using a competit ive act ivation mech­
an ism has been studied so far pri mar ily through small scale simula tions
[41,39] and limited theoret ical analysis of simpl e netwo rks [51]. This work has
clearly demonst rated many useful properties of competitive act ivat ion mech­
anisms: circ umscribed network activation, tr aj ectories leading to an equi­
libri um point (att ractor) , abi lity of suitable formulations of a com peti tive
activation mechanism to pro duce winner-takes-all behavior in the absence of
inhib itory links, and context-sensit ivity of the winner-takes-all phenomenon .
T hese results suggest that allocational competition can implement the types
of competitive interact ions needed in many connect ionist models without th e
problems associa ted with lateral inhibitory links as outlined earl ier [theoret­
ical representational issues, assignment of inh ibitory weights, large number
of connections needed , etc.) . However, this prev ious work with competitive
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activat ion mechani sm s has only exam ined small, uncomplicated networks.
Not uncom monly, method s develop ed for use in connect ionist mod els in the
past have been successfully applied to small, simple prob lems, only to have
subsequent study show that they do not scale up well to larger and more
realist ic sit uations. T he mo de l of print -to-sound transform ation described in
the nex t sect ion begins to add ress this issue for com petit ive activation mech­
anisms. It demonstr ates for t he first t ime that connectionist models using
competit ive activat ion mechan isms can be developed for networks of a. size
and complexity found in ty pical cognit ive science and AI applicat ions.

3.3 Activation r ule for the print-to-sound con nect ionist model

vVe now consider the specific competit ive act ivat ion rule used in the print­
to-sound model. All nodes in the associat ive network follow a similar "rule"
in updati ng their act ivati on and output levels during a simulation. This rule
involves st rict ly local comp utat ions as determ ined by equations (3.1- 3.4) af­
ter adjustment of these equat ions to accommo date the complexities ar ising
from having multi ple routes and paths through a networ k composed of mul­
t iple classes of nodes (grapheme, word, and phoneme nodes). The exact
form of th is rule (desc ribed below) was determ ined init ially in an intu it ive
fashion, and then mod ified based on preliminary simulations using a small,
abstract network. The purpose of these init ial exploratory simulations with
a prototype network was to produce a specific competit ive acti vation mecha­
nism that provided clear-cut winner- takes-all behavior (i.e., correct "winner"
nodes t hat had act ivation above .99 and all "loser" nodes wit h act ivat ion be­
low 0.01). The network used in this preliminary work had only 16 word nodes
with an average of about 3 grap hemes/phonemes per word . T here were 4
possible graphemes and 4 possible phonemes per posit ion in a word, and
9 arbitrarily-weighted connect ions be tween t hese graphemes and phonemes.
Th e act ivat ion rule describ ed below is the best of the limited number of vari­
at ions examined dur ing this exploratory work. In the following, "preliminary
simulat ions" refer to simulat ions done with thi s small network.

Starting with aj(O) = 0.0, each node in the print- to-sound model uses the
following specific version of equation (3.1) to update its act ivat ion level:

a; = k;· [in; - 2a; (I - in;)] (I - a;) (3.6)

T his is the same as equation (3.5) except that two constants have been in­
troduced . Th e value 2ai(1 - in.] in the second factor is used rather than
ai(1 - ini) as in equation (3.5) because in the preliminary simulations t his
alteration was observed to result in much cleaner winner-takes-all behavior.
T he ot her new constant k; was 1.0 for phoneme and grapheme nodes. For
word nodes, the value of kj was a logari th mic functi on of Pi, a node's prior
probab ility.3 We introduced ki to allow analysis of word frequency effects.

3Specifically, ki is an increas ing function of Pi , t he prior probability of the i t h word ,
given by k j = .451og(Pi . 106) . T he prior probabilit ies of word s used in th e print-to-sound
lexicon ranged from about 1 x 10- 6 to 1815 X 10- 6 • Th e natural logari thm function is
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Inpu t to all nodes is based on equation (3.2), but the details of how this
was ach ieved differ depending on whether the node involved is a grapheme,
word or phoneme node. In the parti cularly simple case of a grapheme node
9j (figure 4a), only a single "external input," designated out io, is present, and
equ at ion (3.2) simplifies to in. = outio' In t he sim ula t ions the value of in.
for grapheme 9j indicates th e presence (ini = 1.0) or absence [in , = 0.0) of
the grapheme rep resented by node 9i. In this spec ial case, with a constant
in, = 1.0, the activation rule (equ ation (3 .6)) simplifies to a i = 1 - ai havi ng
solution a i = 1 - e- t for t 2: O. Thus aj init ially inc reases rapidly then
progre ssively more slowly as ai asymptotically ap proaches 1.0 . Inp ut to a
grapheme node is thus so simp le that it direc t ly indicates whether the node
should turn on or off.

For word and phoneme nodes the situat ion is more complex because these
nodes receive inpu ts along multiple paths (figures 4b, 4c). Th e input along
any single path is aga in determined using equation (3.2), but inputs along
different paths may provide conflicting information ab out whether or not
the receiving word or pho neme node should be act ivated. Further , input
along each path changes cont inually and somet imes dramatically during a
simulat ion as nodes on that path com pete for availab le output from nod es
sending them act ivation . It is therefore useful to compute the total input
in, to a word or pho neme node using an inpu t combining function of the
individual inputs as determined for each individual path using equation (3.2) .
A sim ilar approach has been used by other s, such as wit h "conj unct ive" or
"sigm a-pi units" [47,20, p. 73]

For word nodes , each node W i receives inputs via n path s (figure 4b)
where n is the number of grapheme/phoneme position s in the word repre­
sented by node W i . Each path-specific input injp is determined by equation
(3.2): in;p = 1 - Ih (l - out;.). Ini t ially, we combin ed these indi vidual
path-specific inputs in jp by taking the resultant in, in equat ion (3.6) to be
the average of the n path-specific inputs. This insured that each word node
receiving any input at all would become at least par t ially act ivated . Lim ited
exploratory simulat ions with the small , abstract network described earl ier in­
dicated th at using a different input-combining funct ion (product rather than
average) for the second occurrence of in, in equat ion (3.6) produced cleaner
winner-takes-all behavior among word nod es, so this latter function was used
in th e print-to-sound model. In retrosp ect, this improved performance makes
sense because it resul ts in a larger subtra hend in the first factor in equation
(3.6) when any graphem e in a word is missing, thereby lowering that word
nod e' s activation and hence it s abili ty to compete.

For ph oneme nodes, each node Pi receives inp ut s via two separate pos­
it ion-specific paths (figure 4c). T hese are designated iniw for th e path in
the lexical route, and iniG for the path in the GPe route . Both iniw and

used because of the large ratio be tween th ese two endpoints ; multiplication of Pi by 106 is
used so k; > 0 for all words, and sca ling by .45 makes k; values for low frequ ency words
lie around 1.0 , th e value of k j used for graphem e and phoneme nod es , and k; for high
frequency words lie between 2.0 and 3.5.
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iniG ar e calc ulated using equat ion {3.2}, and can differ from one another
greatly in value (e.g., in irr egularly spe lled words). We wished to resolve
such conflict ing inputs in a. symmetric fashion such that a phoneme node
did not ha ve to be concerned about the class of nodes (words or graphemes)
respo nsible for input along a path [i.e., subst it ut ing iniG and ionv for each
ot her in the inpu t-combining function should result in the same function).
Initi ally, we combined t hese path-specific inputs using simply

(3.7)

reasoning t hat bot h the lexical routes and the epe route connections should
be acti ve in order for phoneme Pi to be activated. The pro duct in equation
(3.7) can be viewed as a numerical vers ion of a logical AND operation . While
th is works reasonably well when inp ut graphemes form a word, t he pre lim i­
na ry simulat ions revealed that if input graphemes are non-words then clear­
cut winne r-takes-all phonem es usually did not occur. The reason for th is is
that word nodes only partially match the input graphemes of a non-word and
thus are weakly activated, so iniW is usually small. While a large lex icon hav­
ing more partially-acti vated word nodes during a simulat ion could imp rove
thi s situation, we elected instead to use a more complex input-combining
function. The revised input-combining function first determines resultant
input to be proportional to th e extent tha.t input is arri ving at Pi via both
rou tes (using iniANO ), but as p/ s activation level increases, the resultant in­
put gradually shifts to become proportional to the extent that either inpu t
route is act ive (using inion ). This is done as follows. Recalling th at equa­
t ion (3.2) can be viewed as a numerical version of a logical OR operation ,
analogously let

in;oR = 1 - l1R (1 - in;R) (3.8)

where R is W or G.4 T he input combining funct ion for phonemes as used in
the full prin t-to-sound mode l is then

(3.9)

Note that this behaves precisely as descr ibed above. Initi ally a il the act iva­
t ion of t he i th phon eme nod e Pi, is very small, so in, ~ iniAND. Sub sequently,
as Pi becomes more acti vated , in, gradually shifts progressively closer to being
inion·

Finally, for all nod es in the network th e out put out ik from node n k to
node n ; is de termined by equations (3.3) and (3.4). This is don e separate ly
for each path to which a node sends output. Each grapheme node 9 sends
output via connections in two paths (in the lexical and GPC routes; see figure
4a). Output from 9 is divided up competitively accordi ng to equations (3.3 )
and (3.4) am ong t he connections to word nodes, and separately is divided up

4It follows that iniOR ;;; 1 - [I I: (1 - outil:), where k ranges over all input connect ions
to Pi from bo th grap hemes and words.
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competit ively among t he connect ions to phoneme nodes. Stated otherwise,
phoneme nodes do not direct ly compete with word nodes, nor vice versa,
in extract ing t heir sha re of g's output, so t he two routes do not compete
against each ot her for g's out put . A similar sit uat ion holds for each of the
position-specific pat h outputs from a word node to phonemes in the sense
tha t phoneme nodes in one path (e.g., those in P3 in figure 3) do not compete
against phoneme nodes in other paths (e.g., P4).

3.4 Independ ent versus interact ive routes

We are now in a posit ion to clarify the sense in which the two routes in
the print-to-sound mod el are interact ive. As described above, an individual
act ivated grapheme g effect ively dist ributes two identi cal "copies" of its ac­
ti vation along its outputs, one to phoneme nodes and one to word nodes.
From g's local perspecti ve, events along the GPC route do not affect the
total amoun t or distribution of acti vation being sent along the lexical route,
and vice versa . Fur ther , there is no direct or "late ral" influence of the GP C
and lexical routes upon one another . Thus, jf in addit ion no retrograde in­
fluences were present [i.e., influences flowing from phonemes back t hrough
t he network), the two routes in the print- to-sound mode l would represent an
independent dual-rout e theory of inform ation processing.

The most commo n way that retrograde influences are implemented in con­
nectionist mod els is th rough "backward" connections over which act ivat ion
flows in a reverse direction. For example, such reverse connect ions were used
as a crit ical aspect of the interactive acti vat ion model of let ter perception
in context [34,46]. If reverse connect ions were present in the print -to-sound
network described in thi s paper, then the two routes involved could be charac­
terized as representin g a direct ly intera.ctive dual-route theory. The quali fier
"directly interactive" is used in the sense tha t such connect ions would permit ,
for example, phoneme nodes to increase or suppress directly the act ivat ion
levels of word nodes or grapheme nodes. In such a situat ion, the act ivat ion
of phoneme nodes by grapheme nodes via the GPC route could directly exert
an influence on the act ivat ion of word nodes in the lexical route, mak ing t he
two routes stro ngly interacti ve.

The print-to-sound model described in this paper involves two routes of
information flow which are neit her independent nor directly interact ive. T hey
are not directly interacti ve in t hat no reverse connect ions exist that perm it
phoneme nodes to directly influence act ivat ion levels of word or grapheme
nodes. However, neither are the two routes complete ly independent. Al­
tho ugh there is no reverse flow of act ivat ion, there is limited reverse flow of
information that steers and focuses the foward flow of act ivation. Nodes dis­
tributing their act ivation in a forward direction are influenced in t he manner
in which their act ivation is parcelled out to receiving nodes by the act ivat ion
levels of those receiving nodes (see discussion of competit ive act ivatio n rnech­
anisms above ). Activation of a phoneme node via, for example, the lexical
route can influence how much act ivat ion t hat phoneme node receives from a
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gra pheme node via the GPC route, but does not influence the activation of
the gra pheme node it self . We thus say that the network of the pr in t -to-soun d
model represents an indirectly in teract ive dual-rou te model. T he two routes
do not com pete against each other for grapheme node activat ion, but each
rou te does influence how the other route's competition is resolved.

4. Model performance

The print -to-sound connection ist model involves a lar ge associative network
based on the best publi shed empirical data known to t he aut hors [26,21,56].
Nevertheless, the scope of the network is significantly circumscribed in ob vi­
ous ways: no semantic component is present, th e lexicon is limi ted in size,
and no word-specific morphological, syllabic or segmentation informa tion is
used . The print -to-sound model should thus be viewed as only a first ap­
proximat ion to pr int-to-soun d transformation , an d its evaluation necessarily
could have on ly limi ted goals. One goal was to establish whether a compet­
itiv e act ivat ion mechanism could produce sui table winner-takes-all behavior
am ong word nodes and phonem e nodes in the absence of lateral inhi bi tory
conn ections . As explained earlier, previous work with competitive activation
me chanisms has used only relatively trivial net works. It was not ob vious a
priori that t his approach could be scaled up to the complex print-to- sou nd
network involving conflicting input signals to phoneme nodes arriving over
two separate routes.

The second goal was to examine qualitat ively how t he per formance of an
indirectly in te rac tive dual-route model would correlate wit h published data
on reading alo ud single words and non-words. As discussed earlie r, skilled
adult subjects read aloud reg ular words faster than except ion (virregular"]
words in the lower frequen cy range, and read all types of words faster than
non-words. The issue he re is whether or no t a dual route model is at least
consistent with th ese findings and ot her relevant performance data.

In the following, we br iefly summarize word regu larity as it relates to
the print-to-sound model, and give an example of the model's pe rformance
during a single sim ula t ion . Following thi s the results of limited but system at ic
sim ulat ions with the intact and "damaged" model are presented .

4.1 Regularity m etric

The notion of word regularity or irregulari ty, or of "ex ception wor ds," is
complex and con troversial. The trad itional notion of regular ity assumes a
single preferred pronunciat ion for let ters and multi -letter graphemes. A set
of rul es can be formulated that captures reasonably well the normal cor ­
respondences between letters and sounds [55]. Recently, however, t he idea
of rule-based grapheme-to-phoneme correspondences has been challenged by
t he notion that pronunciation may be based on associations between sounds
and print segments of various sizes that are probabilistically derived from
known words [37]. Values for rule-based correspondences and for word- based
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(4.1)

correspondences often coincide, and there is some evidence that words in
which they do coincide are read most easily and quickly [23]. Nonetheless,
these two types of "regularity" can be manipulated independently when the
size of th e segme nt to be pronounced is larger than a single grapheme [31].
Var ious arguments have been advanced favoring bot h typ es of "regularity" as
the det erminan t of ease of pronunciat ion and there has even been a prop osal
that pronunc iation latencies reflect an int eraction of the two [45]. Most of
th ese arguments are based on the reading of monosyllabi c words; two-syllable
words could only be expected to involve even more comp lexity.

Given th e difficult ies involved in characterizing word regularity} a sim­
ple regularity me tric was adopted for th is study based on t he frequency of
grapheme-to- phoneme correspondences in a word . This metric is a compro­
mise between the two position s summarized above in that it mai ntains the
grapheme as the unit size (as does the rule-based position) but it computes
probabilities of correspondence based on the number of words in which a
particular correspondence occurs (as does the "word-based" position.) The
intent was not to dict ate what "regularity}' should be, but to provide an
objective quanti tative est imate of th e st rength of particular correspond ences
for unbiased comp ar ison with simulat ion results.

Perh aps the simplest word regular ity metric of this sort would be the aver­
age of th e grapheme-phoneme corres pondence (GPC) frequ encies occurri ng
in a given word. However} such a. metric ignores the fact that many En­
glish words considered to be "irregular" have a single very uncommon vowel
correspondence [e.g. , "many") . Thus}t he metri c described here weights low­
frequency GPC}s more heavily in forming t he average. Let prob, be the
relat ive frequency with which the grapheme-to-phon eme correspondence in
the i th posit ion in a word occurs in English [4] . Then the regularity of the
kth word}designated Rk 1 is given by

R. = L:?_, (1.05 - prob,)prob,
L:?=l (1.05 - prob.)

where n is th e numb er of grapheme-phoneme positions in the word . In aver­
aging the individual prcb, values, thi s formula weights each by 1.05 - prob,
thus giving lower frequency prob. ts a higher weight. T he value 1.05 was used
rather than 1.0 so that all GP C frequ encies are counted , albe it slightly, in
thi s average}even those with prob, = 1.0.

Applyi ng the word regularity met ric Rk describ ed by equat ion (4.1) to
th e mode l's lexicon of 1030 words from the Toronto Word Pool } prior to
runn ing the sim ulations whose results are described below, convinced t he
authors that th is me tr ic provided a coarse but reason able measure of word
regularity. For exam ple, consider t he three words in table 2. T he highly
regular word "needle" has Rk = 0.99, the less regular word "disturb" has
Rk = 0.41, and the very irregular word "onion" has Rk = 0.12.

It should be noted tha t the regulari ty metri c Rk is based on an input
st ring tbat is already parsed into let ter segme nts (graphemes) . T hus it does
not capture possible irregularities that might resu lt from a mis-parsed letter
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"need le" "disturb " "on ion"
i GCP; Probi GPC; P rob, GCP; Prob,
1 N-> n 1.0 D->d 1.0 0-> uh+ 0.007
2 EE -j. ee 0.98 I --4 ih 0.72 N ->n 0.967
3 D ->d 1.0 S->s 0.87 1 -> y 0.008
4 LE -> ul 1.0 T -> t 0.97 o -> uh- 0.269
5 U ---f. er 0.08 N-> n 0.975
6 R -> r 1.0
7 B->b 1.0

Table 2: Examples of words and t he freque ncies of their grapheme­
phoneme correspondences to illustrate the word regularity metric Rk •

st ring . For example, "design" might be thought of as irregular because of the
silent G; in the system developed here (following [26]) GN is considered to
be a grapheme with high probability (=1.0) of pronunc iation as In/. Since
the print-to-sound model discussed in this paper starts with a segmented
inp ut str ing, a regula rity metric based solely on the probability of graph­
eme-to -phoneme corresp ondences was deemed the most appropriate one to
use.

4.2 An example simulation

The print-to-sound model was im plemented using MIRRO RS, a general pur­
pose software environment for developi ng connect ionist models [16,17]. All
simulations were ru n on a sing le-processo r DE C MicroVAX/2 under Unix©
using single-precis ion arithmetic. A t ime step of 0.1 was used during numeric
calculations. Input characters were manually grouped into graphemes.

A sing le brief example of a representative simulat ion with the print-to­
soun d model is given here to illustrate its ability to activate correctly word
and phoneme nodes wit h a very sha rply defined winne r-takes-all performance.
A sequence of five graphemes, 0 N I O N, representi ng an irregular word
(R k = 0.12), serves as input to the model. T he overall network structure for
this input has already been seen (figure 2). Table 3 gives activat ion levels as
a funct ion of time for selected nodes in th e netwo rk . The symbol "-" means
"inactive" (ai < .001) and the symbol "****,, means "saturated" (aj> .99).
Each 10 ite rations (first column in table 3) represents one unit of simulated
tim e.

Grapheme nodes qu ickly become saturated (second column) . While a fair
number of word nodes are activated early in the sim ulation, activations for
only two of these word nodes are given here (columns 3-4) . These nodes
represent th e target word "onion" and one of its orthographic neighbors,
"un ion," which has four of five grap hemes in common with the target word .
These are the most highly act ivated word nodes during this simulation . Early
in the sim ulation, the node representing the orthographic neighbo r "union"
is more act ivated than the node for "onion." However, eventually "onio n"
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Iterations Grapheme Words Phonemes
"onion" "union" /uh-/ 1 /uh+!I jih/ 3 nt« Inls

0 - - - - - - - -
10 .651 .063 .134 .001 - .001 - .029
20 .878 .211 .164 .002 - .001 - .166
30 .958 .383 .097 .001 - - - .360
40 **** .657 .023 - - - .253 .613
50 **** .884 .002 - .272 - .658 .803
60 **** .967 - - .722 - .875 .942
70 **** **** - .879 - .956 .979
80 **** **** - - .966 - .985 ****
90 **** **** - - **** - **** ****

Table 3: Activation of selected nodes in the prin t-to-sou nd network
following inp ut of the grapheme sequence 0 N ION starting at
t = O. Subs cripts of phonemes indicate their positions. The entry "-"
ind icates a node is inactive (c, < .001) and the entry "****,, indicates
a node is fully active (ai > .99).

dominates and becomes fully activated, while activation of all ot her word
nodes (both those shown here and all oth ers) dies out. The clear-cut winner­
takes-all behavior arises completely th rough allocational competition, with
"onion" eventually dom inating because of its perfect match wit h th e inp ut
graphemes in this case. The larger early act ivation of the node represent ing
the or thographic neighbor "union" ar ises primarily as a word frequency effect .
T he prior probabil ity of "union" (Pi = 182 X 10- 6 ; kj = 2.34) is much larger
than that of "onion" (Pi = 15 x 10- 6

; ki = 1.22). Thus, even though the
"union" node does not init ially rece ive as much input from graphemes on all
paths as the "onion" node does, it act ivates more qu ickly initially due to th e
larger ki in equat ion (3.6) .

The last three columns in table 3 illust rate act ivations of selecte d pho­
neme nodes. Allocatio nal competi tion results in clear-cut , winner-takes-all
act ivation of exactly those phoneme nodes rep resent ing the correct pronunci­
at ion of th e word "onion." Activation of phoneme nodes is slower than that of
word nodes because, especially early on, their activation dep ends on receiving
significant input from both t he lexical and GPe routes (equations (3.7,3.9)).
T he rightmost column illustrates the mapping of grapheme Ns to phoneme
In/5 in the fifth position . In this case, the GPC route connection Ns -+ Inls
in the final posit ion has the large weight .975 (table 2). Further, the most
h ighly act ive word nodes ("on ion'l and "union") both have a In/s in their
phonemic realization. Thus, In/s receives reinfor cing input simu ltaneously
from the lexical and GPe routes, and rapidl y activates with lit tle significant
competi ti on. In cont rast , in the th ird pos it ion grapheme 13 connects to six
phoneme s (figure 3) . Act ivat ion levels for two of these phonem es, l ihh and
IYh, are given in table 3. Weights on the GPC route connections are .716
for 1, ..... lih/, and .008 for 13 ..... Iy/" the latter being t he correct phonemic
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rea lization of 13 in "onion." T he very low weight on th e epc connection to
tvl« and support for l ib/3 from t he word rout e (e.g.. from "pr ison," "exist ,"
etc., in this case) result in the slow act ivat ion of jY/3 relat ive to In/s; see
table 3. However , a clean winner-t akes-all act ivation of jY/3 st ill eventual ly
occurs . A simi lar situation holds for / uh-/ , and / uh+/ , (table 3).

4.3 Simulations w it h intact model

To examine word freq uency an d regularity effects on t he model's perfor­
mance, data consisting of four set s of words with 16 words per set were used
to test the mode l. Words for each of these sets were selected from those in
the assoc iative network's lexicon based on word frequency (high VB. low) and
regular ity (very regular VB . very irregular). One test set consisted of only
high-freq uency regular words; another of only high-frequency irregular words;
a third of only low-frequency regular words, and the fourth of low-frequency
irregular words. Word freq uency was obtained from the Kucera and Francis
[331 norms given in the Toronto Word Pool [21]. Word frequency ranged
from 1 X 10- 6 to abo ut 1800 x 10- 6 with a median of 30 x 10- 6 and a mean
of 77 x 10- 6 for the 1030 words in the model's lexicon. "High-frequency"
words were arbit rarily defined as those having freque ncies in the to p quarter
of all frequencies (> 80 x 10-6 ) and "low-frequency" words as those with
frequencies in the bottom quarter of all frequencies « 18 X 10- 6 ) . High- and
low-frequency regular words were selected by star t ing at the top of a regu­
lar ity ranking of the 1030 words based on Rk and systematically select ing
16 words which met the word frequency criteria stated above. In a similar
fashion, high and low-frequency irregular words were select ed by start ing at
the bottom of the regularity ranking of the 1030 words.

Th e range of word frequencies for the set of low-frequency, irregular words
was 3 X 10-6 to 15 X 10- 6 with a mean ofl O.2 X 10- '. Th e set of low-frequency,
regular words had similar values with word frequencies ranging from 4 x 10- 6

to 18 X 10- 6 and a mean of 10.8 x 10- 6 . T he set of high-frequency, irregular
words had word frequencies of 114 x 10- 6 to 1236 X 10- 6 with a mean of
377 x 10- 6

, while the set of high-frequency regular words had a frequency
range of 94 X 10- 6 to 831 X 10- 6 and a mean of 190 x 10- 6 . To achieve
more similar means between the two sets of high-frequency words, t he four
words with the highest frequencies in the irregular word set were omitted
and replaced wit h four newly selected irregular words which were obtained
by continuing up the lexicon list (from the bottom of the regulari ty rankin g
based on Rk ) and select ing the next four words with frequencies exceeding
80 x 10- 6

. The new mean for thi s set of 16 words was then 189 x 10- 6 , which
was very similar to t he mean frequency for the high-frequency, regular words
of 190 x 10- 6 . The four sets of test words which were used to evaluate the
print-to-sound model are listed in the app endix.

In all 64 run s where a word contained in the model's lexicon was intro­
duced as input, the corre ct set of phonemes eventually at tained 1.0 act iva­
t ion, and all remaining phoneme nodes in each of the phoneme sets had 0.0
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Figur e 6: Mean activation of phoneme nodes for t he four classes of
test words as a funct ion of time.

activations. T hus, clear-cut winner-takes-all behavior for the correct pho­
neme node always occurred with these sim ulations in a fashi on sim ila r to
tha t de monst rated with "onion" above (table 3).

Measurements were recorded with the print-to-soun d model of the ti me
requ ired for the correct set of phoneme nodes in each of the 64 words to at­
tain 0.25, 0.50, 0.75 and 0.999 act ivation. These data were averaged for the
16 words in each data set. Fig ure 6, based on these averages, shows clearly
t hat phonemes for low-frequency irregul ar words had a delayed act ivation
rate compared to phonemes in the other three sets of words. Phoneme acti­
vation levels of "winning" nodes followed a sigm oid cu rve in asy mptotically
ap proaching a value of 1.0.

Let variable t .5 represent the time (iterations) required for a word's pho­
neme nodes or a word node to attain a 0.50 activation level. Variable t .5
prov ides a representative value (see figure 6) or "t ime constant" for stat is­
t ica l an alysis of the di fferences in rate of phoneme activation. Averaged ls
values are presented in table 4 (columns 3-4) for each of the four sets of test
words where k j is based on word frequency.

A one-way analysis of variance with two factors (regularity and freq uen cy)
assessed by cont rast was used to eva luate the t im ing data for the four sets
of words in table 4. To com pensate for a rather large var iation in standard
dev iations among the data sets , log t ime was used as the dependent var iab le.
Th e main effects of regulari ty (F 3,60 = 48.96, p < 0.0001), frequency (F
3,60 = 106.46, p < 0.0001) and interact ion of regular ity and frequency (F
3,60 = 17.70, p < 0.0001) were all highly significant. Based on the Student
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Using Word Frequencies Ignoring 'Word Frequencies
Word Group n phonem es word phon em es word

ts ± sd is ± sd 1.5± sd 1.5 ± sd
1. High frequen cy 16 27.9 ± 0.73 18.8 ± 1.29 32.5 ± 1.08 25.1 ± 1.61

Regul ar

2. High frequency 16 306 ± 2.39 18.9 ± .89 38.7 ± 5.00 26.8 ± 3.10
Irregul ar

3. Low frequency 16 333 ± 2.50 26.1 ± 4.06 31.6 ± 0.74 23.8 ± 1.53
Regular

4. Low frequency 16 46.7 ± 9.45 35.3 ± 14.27 40.3 ± 4.59 25.7 ± 2.91
Irregular

5. Non -word s 10 666 ± 12.55 NA 68.6 ± 11.79 NA

Table 4: Mean times for phoneme and wor d nodes to at tain 0.50
activa t ion in five different word groups with two different methods of
spreading activation. Columns labeled "word" refer to the word node
rep resenting the exte rn al input of a sequence of graphemes.

Ne wm an Keul s tes t (a po st hoc multiple comparison tes t), no significan t
difference was found in the mean ts values of phonemes for high-frequency
regul ar vers us hig h-frequency irregular word s; however, t he mean t .5 va lues
of phonemes for low-frequen cy regular words versus low-frequency irregular
words were significantly different (p < 0.005) . Thus, the inter action effect of
regul ar ity and fre qu ency is quite evident in that high-frequency regular and
irregular words had ver y similar phoneme activation t imes (27.9 and 30.6 ,
respectively ) , whereas low-frequency regular words had significan t ly fast er
phoneme activat ion t imes than low-frequency irr egula r words (33.3 versus
46.7).

T he m ean word ts va lue for high -frequency reg ular words (18.8 iterations)
was very sim ila r to the mean word t .5 value for high-frequency irregular words
(18.9 iterations) . Unexpectedly, t he mean word t.5 value for low-frequency
regular words (26.1 iterat ions) was significant ly less (p < .005) than th at of
low-frequency irr egular word s (35 .3 iterat ions). It had been anticipated th at
the se la tter two values would be approx imately th e same since on ly word
frequency and activated word nodes rep resenting com p et ing orthographic
ne igh bors (and not regulari ty] should influ ence t he rate of word node acti­
va t .ion in the model. To est abli sh whether this unanticipated finding with
word activa tions was respo nsible for the results described in th e pr eceding
parag ra ph, the four low-frequency irregular words with the largest word t«
val ues were omitted from t he origin al set. of 16 low-frequency irregul ar words
to create a modified tes t. set. T he new mean word t.5value for this modified
test set con taining 12 words from the original low-frequency irregular word
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set was 27.8 iterat ions, which is very similar to the mean word t« value of
26.1 iterat ions for the set of 16 low-frequency regular words. Rep eating the
simulat ions with the mo dified te st set , the mean ts value for phonemes was
42.7 ± 6.27. This is st ill significant ly greater than the mean phoneme t«
valu e of 33.3 ± 2.5 for the low-frequency regular word set . T his is an impor­
tan t point : it indicat es that the slower act ivat ion t imes for phoneme nod es
of low-frequency irregular words versus regu lar words was not primarily th e
result of differences in rates of word act iva tions, bu t rath er of differences in
regular ity of t he words in the da ta set.

T hree of the four "outlier" words in the low-frequency irregula r word set
(which had word t.5 values of 45, 54, 56 and 70 iterations while th e mean
for the rem ain ing 12 words was 27.8 iterations) had very low frequ enci es
(3 x 10- 6 and 4 x 10- 6 ) and had ort hographic neighbors wit h very high
frequencies; thus, the rate of word nod e activat ion for t hese particular words
was significant ly slower than for the remaining words in the data set . T he
four th outlier word , "resort ," had a moder ately low freq uency (12 x 10- 6 )

but it s or thographic neighbor "report" was a very significant competitor
(because it shared 5 of 6 graphemes with "resor t" and had a high frequ ency
of 174 x 1O~6) , so t he rate of word node activa t ion for "resort" was qui te
slow. In th e relati vely small set of 16 words, the low-frequency regular words
did not happen to have any distinct outlier s. If a lar ger lexicon was used and
the data sets contained more words, the mean word t.5 values for these two
data sets would probabl y be very similar.

To confirm that the phon eme activat ion t im ing pat terns describ ed above
were due to word frequency effects and not to some ot her un anticipated
factor , a1164 simu lat ions were also run using kj = 1.0 for all word s (see section
3 for a description of kj in equat ion (3.6) ). In this situat ion word frequencies
a re comp lete ly ignored by the model and can have no impact on sim ulat ion
results. The ts results of these simulat ions are presented in the right most
two colum ns of Table 4. In t his situat ion, activation of phoneme nodes of
high-frequ ency irregular word s (t.s = 38.9) was no longer similar to that of
high -frequency regu la r words (t.5 = 32.5) bu t was mu ch more sim ilar to th at
of low-frequ ency irr egular words (t .5 = 40.3) . In cont rast to t he previou s
simu lations which included word frequ encies, analysis of variance of average
phoneme t.5 values now indicat ed th at only the main effect of regu la rity (F
3,60 = 84.06, p < 0.0001) was highly significant whereas t he main effects of
frequ ency (F 3,60 = 0.12, p < .73) and int er act ion of regulari ty and frequency
(F 3,60 = 2.28, p < .14) were not significant . Based on the St udent Newm an
Keu ls test, when ki. was constant (kj = 1.0) a significant difference in t.5 values
of phonemes was found for regula r words versus irr egular words (p < 0.005)
while no significan t difference was observed in l.s values of phonemes for
high- frequ ency versus low-frequency words. As an ticipated , the t .5 va lues for
word activation were ap proximately the same among all four word grou ps
(rightmost column , table 4) .

The performance of the print -to-sound mo de l was also tested using non­
words as inpu t . Th e set of non-words consisted of arbi tr arily selected , two-
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sy lla ble words which were not contained in t he mo del's lexicon. In about
ha lf the cases of attemp ted f uns with non-words , one and somet imes two
or t hree phonemes never at t ain ed full act iva t ion because equilibrium was
achieve d wit hout resolu tion of a sing le winner among t wo or t hree com peting
phonemes. For those ten non-word s for which winne r-takes-all beh avior was
attained for all phonemes, t he mean t, value for phonemes was 66 .6 when
k j was based on word frequency and 68.6 when kj was con stant (see bot tom
row , Table 4) . In bo th instances, t hese were sign fica ntly greater t.5 val ues
than for t he four sets of tes t wor ds .

A major factor which appeared to influence t.5values for phone mes of non­
words was the graphemic/pho nemic profile of the non-word 's or t hographic
ne ighb ors con taine d in t he 1030-word lexi con. For example, usin g graphe mes
of the non-word "lament" as input (cons idered a "non-word" since it is no t
contained in the m ode l's lexicon) produced significant act iva t ion of such or ­
thographic neighbors as "latter," "m ome nt," "p atent," and "talent ." Because
t hese activated word s have several con flict ing phonemes, more t ime is re­
qui red for a winning pho neme to emerge from t he com peti t ion .

Often for vowel gr aphemes (wh ich generally had lower connection weight s
to phonemes than consonant graphemes), orthogra phi c nei ghbors of non­
words influenced the selection of the winning p honemes m ore st rongly than
did t he probabil ities of grapheme-to-phon eme correspon dences . For example,
us ing the graphemes of the 'non-word ' "cargo" as input resul ted in significant
activation of t he orthographic nei ghbor "ca rb on ." As a result the winning
phoneme for t he second grapheme A was lah/ , the second ph oneme in "car­
bo n," even t hough the probabili t ies (con nection weight s) for realiz ation of
grapheme A as phonemes lael (proba bility .54), luh-I (.19) and layl (.13)
all significant ly exceeded the probability of IaJJ.I (.08).

4.4 Simulations with lesioned model

As noted in sect ion 2, part of the sup port for t he dual-route hypothesis of
reading aloud comes from st udy ing patients wit h var ious forms of acquired
dys lexia . The print-to-sound connectionist model described in this paper
cannot be related directly to some of t he data from th ese studies because of
it s circumscr ibed nature (no semant ic influ ences, no incorrect segmentat ion of
let t ers into graphemes, etc .) . However , it is possibl e to exa mi ne t he behavior
of a "damaged" mo del where onl y one of its two rou tes is funct ioning usefully.
After com pleting the simulat ions descri bed in the pr evious section, a nu m ber
of simulations were un dertaken where ei ther the lexical or t he GPC ro ute was
rendered nonfunctional.

Some aspects of "phonologica l dys lexia" were simulat ed by disabling t he
GP C route of the model while leaving the lexical rout e intact . This was
implemented by always setting iniG in equations (3.7) and (3 .8) to a cons tant
val ue of 0.5 for the GPC route for all ph onem e nod es in each of the phoneme
sets . That is, inpu t from grapheme nod es in G, (first instan ce of a grap heme
set) to eac h of the phoneme nodes in P I (first instance of a phon eme set)
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was clamped at a constant 0.5; the input from grapheme nodes in G2 to each
of the 48 phoneme nod es in Pz was clamped at 0.5, etc . T his universal 0.5
input to pho nemes alon g the GPC route could be int erp ret ed as meaning "no
information," so the lexical route entirely determ ined phoneme activat ion . In
other words, for a given phoneme set , t he lexical rou te inputs forming iniw
were the sole source of det ermining which phonem e became the "winner."

T he graphemes of the original set of 64 words were again used as input
and sim ulat ions were run until a pho neme node in all positions at tain ed
0.999 activation. For all 64 word s the correct set of phoneme nodes became
full y act ivated in the same winne r-takes-a ll manner as was obser ved with the
or iginal intact model. The mean l .s value for the 16 high -frequency regular
words was 38.2 iterations which was very close to the mean t.s valu e of 38.3
iterations for th e 16 high-frequ ency irr egular words. Likewise, the mean l .s
valu e for the 16 low-frequency regul ar words (47.3 iterat ions) was very similar
to th e mean t.s value for 13 low-frequency irr egular words (50.6 iterat ions) .
Thus, as might be an t icipated with only the lexical route intact , only word
frequency and not regulari ty affected the t ime for phoneme act ivation in these
simulat ions . This result is consistent with reported behavior of phonological
dyslexic patients, who ar e unaffect ed by regular ity but read high-frequency
better than low-frequency words (e.g., [22]) .

Fi ve of the original ten non-words which previously had winn ing phonemes
at taining an act ivat ion level of 1.0 with the int act model were arbitrarily se­
lected . Thei r graphemes were also used as input to th e lesioned mode l. In
this case, only part ial activation of phonemes occurred when the network
reach ed equilibrium (less than 10- 3 change in any pho neme activat ion over a
period of 50 iterat ions). The ph onemes which were pa rt ially acti vated never
exceeded 0.30 activation and most were less than 0.20. These phonemes
corresponded to phonemes of words in th e model' s lexicon which were ortho­
graphic neighbors of the input non-word. Often there were several such word s
which became partially activat ed , hence two and som etimes three phonemes
in a give n phon eme set would remain part ially activat ed at equilibrium , with
no clear winner-t akes-all ph enom enon. For exa mple, using the graphemes
of th e non-word "compile" as input (since "compile" is not contained in the
1 03 0~word lexicon of th e model it is considered to be a "non-word" ) produced
part ial act ivat ion of several of it s orthographic neighbors such as "combine,"
"com pel ," and "host ile." Thus, when the network reached equilibrium , par­
ti al activation was found for both Ipl and Ibl in the fourth phoneme posi­
t ion, both lehl and lail in the fifth phoneme posit ion and both III and Inl
in th e sixth phoneme posit ion .

Som e as pects of "surface dyslexia" were simulated by disabling the lexical
rou te of our original model while leaving the GPC route intact. This was
implemented by clampin g iniw to a constant 0.5 in equations (3.7) and (3.8)
as input to all phonemes nodes from word nod es. In this sit uat ion t he graph­
erne-to-phoneme route inp uts iniG were the sole source of determining which
phoneme became the "winner" in each phoneme set .

Graphemes for the entire original set of 64 test word s were again used as
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input to the model. For all of the regul ar word s, the correct set of phonemes
became totally act ivated in the usual winn er- takes-all manner. The mean t.5

value for phonemes of the 32 reg ular words was 27.1. Gr aphemes for irregular
words also produced winner-takes-all behavior , but did not acti vate the cor­
rect set of phonemes. Rather, the fully acti vated phoneme nodes wer e those
which had t he highest probability among all of the possible grapheme-to-pho­
neme corr espondences. For exa mp le, using the five graphemes D ES I G N
of the word "design" as input resulted in th e winnin g phon emes being jd eh s
ih nl, the set of phonemes wit h the highest conditional probabilities, instead
of the corre ct jd ih z ai nJ. Table 5 list s nine examples of irregular words and
the "regular ized" winning phonem es (versus the correct phonemes) when ru n
with thi s model. The mean phoneme t.5value for th e 32 irr egular words was
28.4 . These "regularization" errors are precisely the type of error produced
when surface dy slexic s attempt to read irregular words (e.g., [7]).

Gr aphem es for th e same five non-words used with th e "pho nological
dyslexi a" model were again used as inpu t. T hese sim ulat ions also produced
winner-t akes-all beh avior with a "regularized" pronunciation. Ju st as wit h
irr egul ar word s, full y activated phoneme nod es were always those which had
the highest probabilit y among al l GPC frequ enci es. The mean phoneme t .5
valu e was 27.9.

5 . Discussion

The print-to-sound connect ionist model described in this paper is based on
an indirect ly interact ive du al-route associative network derived from data
published in the psychological literature. A competitive act ivation mecha­
nism obvia tes the need for inhibi tory connections between nodes rep resent ­
ing mutually-exclu sive outcomes (word and phoneme nodes) . The resu lts
of st udy ing this mo del are of int erest both because of their implicat ions for
implementing com pet it ive dynamics in connectionist models and because of
the support they provide for an int eractive dual-route hypothesis.

Testing of t he intact model with graphemic input corresponding to 64
words of varying frequ ency and regularity always result ed in clear-cut winner­
takes-all behavior by correct nodes in every case. Testing the model wit h in­
put graphemes form ing "non-word s" somet imes resulted in one or two pho­
neme posit ions fai ling to establish a clear "winne r" at equilibr ium . This
occurred when the partially acti vated word nodes in t he model's limited
lexicon conflicted concerning the correct pho nem e and th e winner was "t oo
close to call. " In other studies with competitive act ivat ion mechan ism s, it has
proven pos sible to sharpen competitive effects and force select ion of a winn er
in close outcom es by suitable alterations of the act ivation rule [41,38]. It
is likely that such an approach could be used to improve the pr int -to -sound
mo del' s performance with non-word graphemic inp ut, but thi s possibility was
not explored in th e curre nt st udy.

These results prov ide encouragement concerning the direct appl icability
of competitive act ivat ion methods to the large, com plex associative networks
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Word APPROVE
Graphemes A PP R O-E V

Winning Phonemes ae p r 0 v

Correct Phonemes uh- p r 00 v

Word BEHIND
Graphemes B E H 1 N D

Winning Phonemes b eh h ih n d
Correct Phonemes b ih h a, n d

Word DECLARE
Graphemes D E C L A-E R

Winning Phonemes d eh k 1 ay r
Correct Phonemes d ih k I eh r

Word DESIGN
Graphemes D E S I GN

Winning Phonemes d eh s ih n
Correct Pho nemes d ih z a' n

Word MAJOR
Graphemes M A J 0 R

Winning Phonemes m ae dj 0 r
Correct Phonemes m ay dj er r

Word MONKEY
Graphemes M 0 N K EY

Winning Phonemes m 0 n k ee
Correct Phonemes m uh+ ng k ee

Word REMIND
Graphemes R E M I N D

Winning Phonemes r eh m ih n d
Correct Phonemes r ih m ai n d

Word TREASURE
Graphemes T R EA S U-E R

Winning Phonemes t r ee s yu r
Correct Phonemes t r eh zh er r

Word UNION
Graphemes U N I 0 N

Winning Phonemes uh+ n ih 0 n
Correct Phonemes yu n y uh- n

Table 5: Phoneme activation patt erns for irregular words when only
the GPC route is intact .
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of interest in cognit ive science and AI. Previou s connect ionist models have
avoided diffuse network saturat ion as act ivat ion spreads throughout a net ­
work in a variety of ways. In some cases, decay has been used [18]. More
commonly, lateral inhi bito ry links have been added to an othe rwise excita­
to ry network [14,20,34], perhaps reflect ing t he ra ther discouraging observa­
tion tha t "lateral inhi bition seems to have fewer disad vantages" than alter­
nat ive mechani sms [57, p. 55]. Competitive activat ion mechani sms offer a
thi rd alte rnat ive with some significant advantages: lateral inh ibitory links
are un necessary (over one million avoided in the print-to-sound network ) ,
mu lt iple fully-act ive "winners" can be sustai ned when ap propr iate, etc. (see
section 2). Of course, much work remains to be done to extend this ap­
proach. Important issues needing study in future research inclu de how to
combine competit ive activation methods wit h symbol-process ing approaches
[29], gating of node out put on semantically lab eled links (e.g., inher itance
in semant ic category hiera rchies), and methods for systematically der iving
competitive activation rules.

The print-to-sound t ransformation model is also of interest because of its
ab ility to replicate, at leas t quali tati vely, a number of previously-observed
behav iora l phenomena. Thi s is particularly st riking in the context of the
rest ricted nature of the implementati on (only 1030 words in the lexicon , no
segmentat ion analysis, etc.) . When words are t reated as if they all have the
same frequency, th e model "pronounces" (generates phonemic representation
for ) regular words more quickly th an irregular word s. In cont ras t, when word
frequency is factored in as an influence on word act ivat ion, only t hose irreg ­
ular word s having a low frequency are found to be "pro nounced" slower than
regular words; high-frequ ency irreg ular words are pronounced at th e same
rate as regular words. All of these results are consistent with observat ions
mad e with nor ma l rea ders [49,281 .

On ly a few other connect ionist mo dels of print-to-sound transformation
have been reported to date and most of th ese are quite different in their goals
and meth ods. For example, NETtaik is fundam entally d ifferent in that it uses
a d istributed representation of information, does not use a compet it ive ac­
tivation mechan ism, does not explicit ly rep resent a dual-rou te network, and
applies error backpropagat ion to learn connection weight s [50]. T he most
similar previous work known to the authors is Brown's word nam ing model
[6] . It is difficult to compare Brown's model with the one descri bed here
because very little information on the actual impl ement at ion of his mod el is
p resented . However , Brown 's model differ s from ours in th at it uses exp licit
inhi bitory connections, and rather than using grapheme-to-phoneme corre­
spondences, it maps multiple input segments (single, double, t riple letters)
into various phonologica l codes . In addition, th e lexicon it uses is limi ted to
an unspec ified num ber of four-letter words wit h frequ encies of either "h igh"
or "low."

Th ere are curre ntly a number of hypoth eses concern ing the cognit ive
mechanisms involved in reading aloud. Many of these involve what appear
to be complex interactions, such as the relationship between frequency an d
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regularity in determining reading time s, as discussed above. The nature
of these interaction s are difficult to determine simply from experimentat ion
with research subjects. One of the values of det ailed computational mod­
els of cognitive processes is that they both force one to be explicit about
an implementation and permi t one to determine whether or not anticipated
behaviors truly can arise from a given manipulation. It is precisely in this
sense that the correspondence of the behavior of the print-to-sound model
to a number of phenomena observed in both normal and dyslexic readers
provides support for the general consistency of the dual-route hypothesis.
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Appendix

High-frequency High-frequency Low-frequency Low-frequency
Regular Irregular Regular Irregular
Indeed Design Daylight Accord

Meetin g Union Fright en Approve
Simple Future Plainly Odor
Maybe Above Feeble Onion
Feeling Unit Needle Idle
Lit tle Foreign Ample Array

Middle Report Lazy Torture
Highly Private Apple Absorb

Training Open Swiftly Armor
District Behind Railway Treasure
Clearl y Market Dismay Depart

Standing Labor Lately Resort
Inside Major Kit ten Monkey
Likely Color Upright Vapor
Nearly Forward Whistle Declare
Figure Record Invade Remin d
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