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Abstract. This paper describes a connectionist model of print-to-
sound transformation (“word naming” or “reading aloud”). The as-
sociative network it uses is based on published studies of oral reading,
and simulation results are compared to experimental data in the psy-
chological literature. The results obtained are of interest for two sepa-
rate reasons. First, the print-to-sound connectionist model is based on
an indirectly interactive dual-route hypothesis of reading aloud. The
model confirms that this hypothesis, when implemented as a detailed
and sizeable computer simulation, can account qualitatively for a num-
ber of behavioral phenomena such as regularity and word frequency
effects. The model thus provides support for a modified dual-route
hypothesis involving indirectly interactive routes and verifies the hy-
pothesis’ consistency with a set of replicable psychological data. The
second reason the print-to-sound connectionist model is of interest is
that it uses a new approach to implementing competitive dynamics
in connectionist models. Focused spread of network activation and
avoidance of network saturation are produced by using a competitive
activation mechanism rather than explicit inhibitory links between
competing nodes. The print-to-sound model demonstrates for the first
time that competitive activation mechanisms can function usefully in
relatively large, complex situations of interest in cognitive psychology
and artificial intelligence.
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1. Introduction

The nature of the cognitive mechanisms underlying pronunciation of printed
text is currently a dynamic and controversial topic. One of the most influ-
ential theories about these mechanisms, the dual-route hypothesis, proposes
that reading aloud can be achieved by either of two distinct procedures:
a lexical procedure by which letter strings are associated with whole-word
pronunciations, and a non-lexical procedure by which segments of printed
words (i.e., letters or letter clusters) are associated with sub-lexical sound
patterns, and then “assembled” into a pronunciation. The standard version
of this hypothesis, referred to as the independent dual-route hypothesis in
this paper, starts with the assumption that these two information processing
“routes” are independent (e.g., [8,35]). While this independence assumption
is perhaps the simplest perspective one can take, a convincing case can be
made that the independent dual-route hypothesis has difficulty accounting
for existing empirical data (e.g., [30]). Many of the criticisms that have been
directed at the dual-route model can be countered, and the basic architecture
of the model retained, if the assumption is relinquished that the two infor-
mation processing routes involved are independent [15]. For this solution to
be tenable, however, it becomes necessary to define clearly and explicitly the
nature of the interactions between the lexical and non-lexical routes, and to
provide some support for the viability of such an approach.

These considerations motivated the development of a connectionist model
of print-to-sound transformation (“word naming,” “reading aloud”) based on
an indirectly interactive dual-route hypothesis. This print-to-sound connec-
tionist model uses a dual-route associative network to represent correspon-
dences between relevant linguistic units. The term “indirectly interactive”
is used to characterize the model because, although the flow of activation
through the lexical and non-lexical routes is not completely independent,
these two routes influence one another only in a limited, indirect fashion.

The behavior of the computational model described in this paper has
been examined systematically for word frequency and regularity effects and
has been shown to exhibit behavior qualitatively similar to that seen with
normal readers. Limited studies with “lesioned” versions of the model also
demonstrate behavior having similarities to empirical observations of readers
with acquired dyslexia. The print-to-sound connectionist model thus pro-
vides support for an indirectly interactive dual-route hypothesis by demon-
strating that, when made explicit in a detailed computer simulation, this
hypothesis is consistent with some important results obtained in empirical
studies of normal and dyslexic readers.

The print-to-sound model is also of interest in that it uses a new method
for controlling spreading activation in connectionist models. This method is
referred to as a competitive activation mechanism. In fact, it is this approach
to controlling network dynamics that forms the basis for the limited, indirect
interactions between the two routes in the print-to-sound model. To under-
stand the issues raised by competitive activation mechanisms, it is important
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to recognize that connectionist models like the print-to-sound system (i.e.,
those using an associative network to represent memory) are generally not
“neural models,” even though they use a neuron-like network and processing
paradigm. Their nodes and connections represent concepts and associations
rather than neurons and synapses. They typically model functional cognitive
mechanisms rather than biophysical brain processes, and are studied primar-
ily by workers in cognitive science and artificial intelligence (AI) rather than
neuroscience [44].

In spite of these distinctions, many associative network models have
adopted methods for controlling spreading activation that were initially in-
tended for modelling networks of biological neurons. For example, compet-
itive interactions between nodes intended to produce a winner-takes-all be-
havior have usually been implemented through the use of lateral inhibitory
links [14,20,34,57]. As explained below (section 3), such an approach to
focusing spread of activation involves significant problems when applied in
associative rather than neural networks.

Recently, a different approach to introducing competitive interactions
into connectionist models of associative memory has been proposed [40,41].
Rather than implementing direct competitive behavior through explicit struc-
tural features of a network (inhibitory links), competition is introduced into
the functional mechanism or rule by which the spread of activation is con-
trolled. The print-to-sound model demonstrates for the first time that such
competitive activation mechanisms can function effectively in connectionist
models having networks of a size and complexity often found in contemporary
cognitive science and Al systems.

The dual-route print-to-sound transformation was selected as the first
large-scale test of competitive activation mechanisms both because it pro-
vides an implementation of indirectly interactive routes, and because print-
to-sound transformation is a challenging but relatively well-defined and cir-
cumscribed problem. The print-to-sound transformation is challenging in
that the existence of two hypothesized “routes” by which information flows
through the underlying associative network implies that phoneme nodes serv-
ing as outputs for the model might receive conflicting information about what
their activation levels should be. Such conflicts must be resolved by these
phoneme nodes based on locally available information as node activations ap-
proach equilibrium. On the other hand, compared to many other cognitive
tasks involving associative memory (e.g., natural language processing at the
semantic level), the underlying network is relatively circumscribed; hence, a
fairly significant subset of it can be captured in a model. There is also a
relatively large amount of empirically-derived information in the literature
upon which to base network structure, assignment of weights to connections,
and analysis of simulation results.

The remainder of this paper is organized as follows. Section 2 summar-
izes empirical studies of print-to-sound transformation and the dual-route
hypothesis. The associative network used in the connectionist model to repre-
sent the relevant correspondences between graphemes, phonemes, and words
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is described. Section 3 discusses competitive behavior in connectionist mod-
els and explains some difficulties in implementing competition with lateral
inhibitory connections when a local representation of information is used (as
in the print-to-sound model). The specific competitive activation mechanism
used in the print-to-sound model is summarized, and the notions of indepen-
dent and interactive routes are explained. Section 4 describes a limited but
systematic study of the print-to-sound model’s behavior. Section 5 concludes
by summarizing this work and its implications.

2. Print-to-sound transformation

The term print-to-sound transformation is used here to refer to the task of
reading aloud a single printed word. The specifics of the connectionist model
of print-to-sound transformation described in this paper are strongly influ-
enced by the dual-route hypothesis of reading that postulates the existence
of two parallel and independent “routes” of information flow during read-
ing [1,8,9,35]. We first briefly review this hypothesis and then describe the
associative network used in the print-to-sound connectionist model.

2.1 Empirical studies of the print-to-sound mapping

During the last several years there has been a great deal of empirical re-
search on the cognitive processes underlying skilled reading [13,19]. A sig-
nificant part of this research has focused on oral reading or “word naming.”
In performing the task of reading a word aloud, one transforms a sequence
of printed graphemes into a sequence of spoken phonemes. A grapheme is
defined to be one to a few printed characters serving as the written represen-
tation of a phoneme (following [10]). For typographic convenience, phonemes

~will be represented by lower-case letters between slanted lines, graphemes by
upper-case letters, and word/morphemes by double-quote marks. For exam-
ple, the word “onion” consists of five graphemes, O N [ O N, which correspond
to five phonemes, /uht n y uh- n/.!

The cognitive task of word naming or reading aloud is often represented
diagramatically as information flow and transformation through a number
of cognitive modules involving two routes (e.g., [19,36,48]). Figure 1 pro-
vides a simplified example of such a diagram involving two routes by which
information flows as it is transformed from written to spoken form. One
route is the grapheme-phoneme correspondence or GPC route (bottom of
figure 1). Reading aloud via this process involves mapping graphemes onto
their corresponding phonemes. A major reason for postulating such a route
is the ability of skilled readers to read aloud pronounceable non-words like
“kint.” Although other possible mechanisms for non-word reading have been
postulated (e.g., [32,23]), these lack sufficient specificity for adequate testing.

1Symbols used here are keyboard-compatible representations of the International Pho-
netic Alphabet. The phonemes they represent are largely obvious in this paper, but a
complete listing and definitions can be found in [4].



Competitive Dynamics in a Dual-route Connectionist Model 513

Lexical Route

Written

Spoken
Word Word

GPC Route

Figure 1: A simplified characterization of the Print-to-Sound Map-
ping. G = graphemes, P = phonemes, W = words. The GPC route
is along the bottom (G — P), the lexical route along the top (G —
W — P). See text for details.

A second route used in reading aloud will be referred to as the lexical
route (top of figure 1). Reading aloud via this route involves the mapping
of graphemes onto morphemes/words via the visual word recognition system
and then onto their phonemic representation. This route is postulated to
account for the ability of skilled readers to correctly pronounce exception
(“irregular”) words and to distinguish the meaning of distinct words that
happen to sound the same (e.g., “weak” and “week”; see [27, ch. 5§]).

The dual-route model of reading aloud is strongly supported by additional
evidence from studies of individuals with acquired dyslexia (alexia). Acquired
dyslexia is a disorder of reading resulting from brain damage in formerly
literate readers. From a linguistic point of view, a variety of forms of acquired
dyslexia exist, and form-specific features can be correlated with localized
functional impairments in information flow models like that of figure 1. For
example, in phonological dyslexia patients can read many familiar words
but usually fail to read aloud even simple non-words. In such cases it has
been postulated that a selective impairment of the GPC route has occurred
[3,22]. In contrast, surface dyslexics can read non-words and real words with
“regular” spelling patterns, but fail to read most “exception” words (e.g.,
“yacht”) where grapheme-phoneme correspondences do not yield the correct
pronunciation [13]. Their responses to such irregular words are typically
“regularizations”; e.g., reading “yacht” as [y ae ch t/. These patients appear
to suffer from impairment to the lexical route, with relative sparing of the
GPC route. The important fact that both of these syndromes have been
described (a “double dissociation” of symptoms) indicates that the two routes
are functionally separate, and are not simply extremes on a continuum of
processing resource with one type of process more susceptible to the effects of
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brain damage than the other. Such relatively selective functional deficits have
generated a great deal of research and interest among cognitive psychologists
during the last few years [12,19,36,48].

Both the lexical and the GPC routes have been implicated in the normal
pronunciation of words by skilled readers. In research measuring the time
taken for normal subjects to read words aloud (pronunciation latency), it has
been found, in general, that words with regular pronunciations can be read
faster than irregular words [24,53]. This finding has been interpreted as an in-
dication that congruency in the output of the two routes yields faster response
times. A complication was subsequently added to this view by the finding
that this effect of regularity on pronunciation latency was detectable only for
words of low frequency [49]. High-frequency words, whether regular or ir-
regular, were pronounced uniformly quickly relative to low-frequency words.
This finding suggests that any simple “horse-race” model, in which the two
parallel and independent routes are used to achieve the same end under dif-
ferent conditions, underestimates the complexity of the reading process. This
result, which appears to require some kind of flexible but structured interac-
tion between the two routes, is the primary focus of the print-to-sound model
discussed here.

2.2 Associative network structure

The network in the connectionist model of print-to-sound transformation uses
alocal representation of information. Nodes represent graphemes, phonemes
and words, while connections represent positively weighted associations be-
tween these entities. The overall network structure is illustrated in Figure 1,
where each pictured oval represents a set of node types, and each pictured arc
represents numerous forward connections. It can be seen that there are two
routes by which activation can flow through the network: the “lower”™ GPC
route and the “upper” lexical route. Running a simulation involves selec-
tive application of an externally supplied source of input to the appropriate
grapheme nodes, thereby driving up their activation levels. Activation then
spreads from grapheme nodes to phoneme nodes (via the GPC route), and
from grapheme nodes to “hidden” word nodes to phoneme nodes (via the lex-
ical route). The activation levels of phoneme nodes represent the network’s
output.

Since each word node in such a network connects to multiple graph-
eme/phoneme nodes occurring in specific positions, there are actually multi-
ple copies or instances of grapheme and phoneme node sets in any simulation.
The exact number of instances of grapheme and phoneme node sets is de-
termined by the number of graphemes that are designated as input. For
example, if a specific simulation involved the presentation of a sequence of n
graphemes as input, this is implemented in the model by dynamically con-
structing n copies of the grapheme nodes prior to initiating the simulation.
Each set of grapheme nodes corresponds to one input position, where posi-
tions are numbered from 1 (initial position) to n (final position). For each set
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of grapheme nodes so constructed, a corresponding set of phoneme nodes is
generated (recall that a grapheme is defined as the orthographic representa-
tion of a single phoneme) along with all relevant connections from graphemes
to phonemes in one position. Thus, for an input sequence of n graphemes,
counting the set of word nodes there are 2n + 1 interconnected sets of nodes
present. This use of duplicate but position-specific sets of nodes is similar to
that used in other connectionist models of “low-level” linguistic information
processing [18,34].

As an example, suppose the connectionist model is presented with the
five graphemes

ONION

as input. The network constructed for the simulation would contain five sets
of grapheme nodes and five sets of phoneme nodes as illustrated in figure
2. In what follows, all of the nodes and connections occurring in a single
grapheme/phoneme position are referred to as forming a path through the
network. Thus, in figure 2 all of the G3 and P; nodes and their connections
are the third of five paths forming the GPC route. Similarly, the G5, W
and P; nodes and their connections are one of five paths forming the lexical
route. The individual paths in the GPC route are separate from one another
in this model, while those in the lexical route are not since they converge at
the single set of word nodes.

There are 48 phonemes and 168 graphemes represented as nodes in each
position-specific path in the print-to-sound model’s associative net
work. These nodes and their connections, which form the GPC route, are
based on data from the analysis of a corpus of 17,310 words [26]. That study
defined graphemes as letters or letter clusters corresponding to a single pho-
neme, using a one-to-one correspondence between graphemes and phonemes
in words. Motivated by educational issues related to spelling, the study by
Hanna et al. provided for any given phoneme a list of its possible spellings
(graphemes) and their frequencies [26, tables 17 and 18]. The information
needed in the print-to-sound model network is the “reverse” of this available
sound-to-print information, which cannot be directly retrieved from individ-
ual table entries in the source document. For example, although the phoneme
Jaw/ is only occasionally written as AU (probability = .15), the grapheme
AU is almost always pronounced as /aw/ (probability = .95).

For this reason, a computer program was implemented to generate the
grapheme-to-phoneme connections and weights (conditional probabilities)
needed to form the GPC route in the print-to-sound connectionist model.
This program used a slightly revised version of the tables in the source doc-
ument [26]. A listing of the resulting grapheme-to-phoneme associations and
their weights as used in our model, as well as the details of their derivation,
can be found in [4]. An example of a single grapheme node and its connec-
tions to phoneme nodes in a path of the GPC route is illustrated in figure 3.
For the special cases of graphemes in the first and final position of a word,
modified weights were derived in the same fashion [26].



516 James Reggia, Patricia Marsland, and Rita Sloan Bernd{

Figure 2: Overview of network structure when the five-grapheme se-
quence O N I O N is input to the print-to-sound model. The two
routes in figure 1 are still evident. For each grapheme position, a cor-
responding set of graphemes and a set of phonemes exists, and each
route is thus seen to be composed of five paths. There are no connec-
tions between two nodes in the same set anywhere in this network; all
connections are forward-only.
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Figure 3: All connections from the grapheme node I in a specific po-
sition (path) to phoneme nodes in the same position. Each phoneme
node receives additional incoming connections from other grapheme
nodes, as well as connections from appropriate word nodes, that are
not shown here. Each numeric weight represents the conditional prob-
ability that the grapheme I will be pronounced as the corresponding
phoneme.
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The Toronto Word Pool [21] was selected as the source for the model’s
lexicon because it contains a relatively large set (1080) of two-syllable words
with a wide range of frequencies that were not preselected on the basis of
orthographic or phonetic structure. Although this is only a fraction? of the
words in the average person’s lexicon, it provides a respectable set of word
nodes comparing favorably in size to that used in many previous connection-
ist models developed by cognitive scientists [34]. In addition, the Toronto
Word Pool is composed of two-syllable words. This word length was se-
lected specifically in an attempt to move beyond the focus on monosyllabic
words that has characterized previous models (e.g., [6,34]). The phonemic
pronunciation of each word was taken from Webster’s New Collegiate Dic-
tionary (8th edition). Once the phonemes were determined for each word,
the printed word was segmented into graphemes so that a single phoneme
corresponded to a single grapheme.

Fach grapheme node in the i*" grapheme set is connected to all word
nodes in which that grapheme appeared in the ' position. The weight on
each link from a grapheme node to its word nodes is 1/n, where n is the
total number of words to which that grapheme connected. For example, the
Iin the third set (G5 of graphemes in figure 2 is connected to all word nodes
with 7 in the third position, such as “onion,” “union,” “prison,” and “amid.”
Since there are n = 29 such word nodes in set W, the weight on each of these
links from I in the third position to word nodes is 1/n = .0345.

Each word node also has forward connections to phoneme nodes in the
appropriate position-specific phoneme sets. The word node for “onion,” for
example, has a connection to /y/ in the third set P; of phoneme nodes.
With the exception of 17 words with common multiple pronunciations (e.g.,
the second phoneme of “content” is fah/ or /uh-/ depending on whether
“content” is a noun or adjective), a word node has one connection with a
weight of 1.0 to a single phoneme node in each phoneme set (or no connections
to some phoneme sets if the number of phoneme sets exceeded the number
of phonemes in the word).

In summary, the associative network in the print-to-sound model consists
of numerous positively weighted, forward connections forming multiple, pos-
ition-specific paths through two routes (figure 2). From the perspective of an
individual node in the network, it has multiple disjoint sets of connections
with which to interact (figure 4). Each grapheme node g; has an external
input line and two sets of output connections going to word nodes and to
phoneme nodes in the same position (see figure 4a). Each word node w;
has multiple inputs from graphemes and multiple outputs to phonemes that
span the position-specific sets of graphemes and phonemes, respectively (see
figure 4b). Finally, each phoneme receives inputs from two separate sets
of connections: those from multiple word nodes, and those from multiple
grapheme nodes in the same position (see figure 4c). There are no reverse

Tifty words from the Toronto Word Pool were émitted from the simulations because
they contained a silent letter other than H. These words could not be used without a
modification of the Hanna, et al., correspondences. See [4, p. 5] for discussion.
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Figure 4: Summary of node connections: (a) Grapheme node g; re-
ceives external input and sends output connections to both a set of
possible phoneme nodes (GPC route) and a separate set of word nodes
(lexical route); (b) Word node w; receives input from grapheme nodes
and sends output to phoneme nodes; (¢) Phoneme node pj; receives
one set of inputs from word nodes (lexical route) and a separate set
of inputs from grapheme nodes (GPC route).

connections (phonemes to words or graphemes, words to graphemes), no
inhibitory connections, and no connections between any two phonemes, any
two graphemes, or any two words.

The complete network involved in a simulation is thus relatively large. For
example, for the input graphemes O N 1 O N, there are a total of 2110 nodes (5
times 168 grapheme nodes, plus 5 times 48 phoneme nodes, plus 1030 word
nodes) and roughly 12,000 forward connections. The use of a competitive
activation mechanism (described in next section), however, avoids the need
for more than a million lateral inhibitory connections that would normally be
required to produce winner-take-all behavior among word nodes and among
each position-specific set of phoneme nodes.
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3. Competitive dynamics

Competitive interactions occur in many complex situations, and connection-
ist models are no exception. This section discusses the role of competition in
connectionist models, and motivates and describes the concept of competi-
tive activation mechanisms. The specific competitive activation mechanism
used in the print-to-sound model is presented, and the sense in which this
model represents an “interactive” dual-route hypothesis is explained.

3.1 Competition in connectionist models

To consider the issue of competition in connectionist models, it is useful at
this point to explain some terminology. First, it is important to appreciate
that the mechanism by which competition occurs in various complex systems
may vary from situation to situation. Direct (antagonistic) competition is
said to occur between two rivals A and B when A directly suppresses B’s
activities (e.g., wrestling match). Indirect (allocational) competition is said
to occur when two rivals require and consume the same limited resource, the
gain of one coming at the expense of the other (e.g., two animal populations
competing for the same source of food). These two mechanisms for producing
competition are not mutually exclusive.

In the following, it is assumed that each node in a connectionist model
has a numeric activation level associated with it and an activation mecha-
nism, a local algorithm that periodically updates the node’s activation level
as a function of input received from neighbor nodes. Two broad classes of
connectionist models are distinguished: neural network models and associa-
tive network models. The term neural network model is used here to refer
to connectionist models of neurophysiological systems (e.g., nodes represent
neurons, links represent synapses, activation level represents neuron firing fre-
quency, etc.) that typically adopt a distributed representation of concepts.
The term associative network model is used to refer to “spreading activation”
models developed in cognitive science and AT which have a local represen-
tation of concepts (e.g., nodes represent concepts, links represent relations
between concepts, activation level represents probability/belief/desirability
of concepts, etc.). Connectionist models involving semantic networks, and
the non-semantic print-to-sound network described in this paper, are exam-
ples of associative networks.

A long-standing issue in the development of connectionist models has been
how to integrate competitive and cooperative interactions between intercon-
nected nodes so that meaningful model behavior emerges. When external
activation is introduced into a network, some competitive influence on net-
work dynamics is necessary to focus the spread of that activation and to avoid
network saturation. In neural network models, direct/antagonistic compe-
tition has usually been used and implemented through negatively weighted
inhibitory links between competing nodes (see figure 5a) [2,25]. Having “lat-
eral” inhibitory links has proven very useful in neural network models, and is
quite plausible in models of neurobiological circuitry given the overwhelming
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a)

b)

Figure 5: (a) Two directly competing nodes labeled B and C. In-
hibitory connections, indicated by arcs with circular ends, are “lat-
eral” (rather than “forward” or “backward”) in that they are orthog-
onal to the flow of activation through this network fragment; (b) Two
indirectly competing nodes B and C without lateral inhibitory links.

neurophysiological evidence of their importance.

Many associative network models developed in cognitive psychology and
AT have relied on a similar approach by implementing competitive dynamics
as direct competition. Lateral inhibitory connections have been widely used
in associative network models, usually as a means for producing a single-
winner-takes-all phenomenon [14,20,34,57]. This phenomenon is particularly
relevant in models where there are a set of nodes which are conceived of as
being mutually exclusive alternatives to one another. When these nodes get
activated, it is desired that their initial, usually diffuse activation pattern be
transformed into an equilibrium state in which one “winner” node is fully
activated while all other competing nodes become fully inactive. In figure
5a, for example, if node B became highly activated for whatever reason, its
inhibitory connection to node C would directly suppress node C’s activa-
tion, which would also decrease inhibitory influences on node B from C, and
typically lead to a stable equilibrium with node B as the sole winner.

While lateral inhibitory links provide a useful mechanism for implement-
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ing competitive interactions between nodes in associative networks, they also
raise a number of important theoretical and practical issues. First, in con-
trast to neural network models where inhibitory links explicitly represent
inhibitory synaptic connections, it is unclear exactly what inhibitory links
represent in many associative network models of memory. Positively weighted
links in associative networks generally represent measurable, application-
specific associations between concepts. In contrast, negatively weighted in-
hibitory links are used to bring about application-independent functional
properties (competitive interactions). There is no clear analog in contem-
porary psychological theories of associative memory for the inhibitory links
that appear in connectionist models using associative networks.

This distinction can be clarified by considering associative networks in
computational models that use the more traditional symbol-processing meth-
ods of cognitive science and Al rather than spreading activation. The net-
works in these symbol-processing models generally do not include inhibitory
connections, and competitive interactions are imposed by an interpretative
program with global access to the network (e.g., intersection search, or a
generalization of it called parsimonious covering [42,43]). The point is that
competitive interactions, traditionally viewed as a functional aspect of mem-
ory in symbol-processing models, are now being routinely implemented as
a structural component of the network in connectionist models of memory.
To our knowledge, little discussion of the implications of such a revision of
network contents has occurred. For example, it is not immediately obvious
in some associative networks exactly where inhibitory links should go, let
alone how their weights should be assigned or measured [39].

Further, in many realistically sized networks of interest in cognitive sci-
ence and Al the number of inhibitory connections required to bring about
the desired competitive interactions can be enormous. For example, if there
are n nodes in a set and they must each directly inhibit one another to
produce a single-winner-takes-all phenomenon during processing, then close
to n? inhibitory connections would be required (e.g., only 1000 competing
nodes would require almost 1,000,000 inhibitory connections). Thus, scaling
up to large networks of the size often seen in cognitive science or Al models
while using inhibitory connections in this fashion would clearly require a large
number of connections and nodes with large fanouts. This is an important
consideration not only when using simulated parallelism on a sequential (Von
Neumann) machine, but also when connectionist models are implemented on
parallel computers. The limited experience to date with actual implementa-
tion of connectionist models on parallel architecture hardware suggests that
communication time between processors will be a major efficiency concern
(e.g., [5]) and that in some situations speedup is adversely affected by large
node fanouts [54].

Finally, in some important applications of associative networks a multiple-
winners-take-all phenomenon rather than a single-winner-takes-all phenom-
enon is desired as the outcome of competitive interactions. In other words,
there are situations where multiple winning nodes should be fully activated
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simultaneously while all other competing nodes should be fully inactive. Gen-
eral diagnostic problem-solving provides an example of this: a hypothesis or
solution typically consists of one or more disorders which plausibly explain
observed symptoms [42,43,38]. Implementing direct competition between
nodes representing relevant disorders in such a situation is at best prob-
lematic. If a set of competing nodes with direct, mutually-inhibitory links
between all nodes tries to sustain multiple winners simultaneously, these
winners will tend to extinguish each other’s activations. More selective use
of inhibitory connections runs into the problem that, in some situations,
two disorder nodes may be considered to be in competition, while in other
sitnations the same two nodes may not be competitors and may actually
“cooperate” to formulate a solution to a problem [39]. The competitive in-
terrelationship between disorders during diagnostic inference is not simply a
static, mutually-inhibitory relationship, but a more complex dynamic func-
tion of the network structure and the problem input (the latter being the set
of present symptoms). Thus it is at least very difficult, if not impossible, to
model these relationships through simple inhibitory links with static weights.

3.2 Competitive activation mechanisms

These difficulties with using inhibitory connections to implement competition
in associative network models motivate an alternative approach. Rather than
implementing direct or antagonistic competitive behavior through explicit
structural features of a network (inhibitory links), indirect or allocational
competition is introduced into the functional mechanism by which the spread
of activation is controlled. When this is done, the resultant connectionst
model is said to use a competitive activation mechanism [40,41].

In connectionist models using a competitive activation mechanism, as
with many past network models, each node n; transmits its activation level
a;(t) at time t to neighboring nodes via weighted links, and these neighbor-
ing nodes update their own activation level based on activations received in
this fashion. However, unlike previous models, with a competitive activation
mechanism each such neighboring node n,, actively competes for the out-
put from source node n;. Further, the ability of a neighboring node n,, to
compete for n;’s output increases as a,,(t) increases.

Many formulations of a competitive activation mechanism are possible;
one example follows. Let a;(t) and w;; be restricted to the interval [0, 1] for
all ¢, 7, and k, where w;; is the connection strength from node n; to node n;.
Note that in this example there are no inhibitory links since w;; is always a
positive number. Let the rate a;(¢) at which n,’s activation changes be given

by
a(t) = filini(t), ai(t))- (3.1)

Here, f; is a monotonically increasing function of in,(t), the total input acti-
vation to node n; at time ¢ resulting from external inputs and/or incoming
connections from other nodes. For the competitive activation mechanisms
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discussed in this paper, calculation of in;(t) for each node n; is arranged so
that 0 <in;(¢) < 1. This is achieved using

iﬂ,‘(t) = I —Hk(l =7 out,-k(t)) (32)

where out;(¢) is the output from node ny, arriving at node n; at time ¢, or
is an external input to n;. As long as each out;. value satisfies 0 < out;, <
1, equation (3.2) guarantees that the resultant in; is also restricted to this
range. Equation (3.2) can be viewed as combining individual inputs out;; in
a nonlinear, accumulative fashion. If each and every individual out;; is zero,
then so is in;. If any outy is nonzero, then in; is non-zero, and in general,
the more individual out;; values that are non-zero, the greater the resultant
in;. According to Eq. (2), in; is a monotonically increasing function of every
outy, and can be viewed as a numerical version of a logical OR operation.
The activation mechanism described so far as equations (3.1) and (3.2)
does not differ in any fundamental way from many non-competitive activation
mechanisms. To introduce allocational competition into this model, consider
the perspective of a node ny computing outy, its output to node n;. Let

Outik(t) = Cik(t) * ak(t) (33)

where ¢;.(t) is the competitive strength of node n; determining how much of
ai(t) reaches n;. As a specific example, let

iy Wik - ai(t)
Cik(t)—' Emwmk . Gm(t) (34)

where m ranges over nodes to which ny, sends connections. If the denominator
in equation (3.4) is zero then the numerator is also zero, and by definition
we let ¢;x(t) = wy in this case. Note that 0 < ¢ < 1, so by equation
(3.4), 0 < outy, < 1, and thus the total input in; received by any node n; is
guaranteed to satisfy 0 <in; < 1 (see equation (3.2) and discussion following
it). Further, it follows from equation (3.3) and (3.4) that the total output of
any node ny is 5, out,x = ap(t)-

The key point here is the appearance of a;(t) and a,,(t), the current ac-
tivation levels of nodes receiving activation from node ny, in the formula
for ¢;z. This is what makes this a competitive activation mechanism involv-
ing allocational competition. Node n; “competes” for n’s activation such
that the portion of ay it receives increases as a; increases. Conversely, if
some competitor n,, of n; receives input from n;, then by equation (3.3) and
(3.4) the amount of input that n; receives from n; will decrease as a,, in-
creases. This can be contrasted with the situation where a non-competitive
activation mechanism is used. Typically, with a non-competitive activation
mechanism, ¢ (1) = w;y;, a constant value for all time in non-adaptive net-
works, so outy(t) = wipag(t). In this case the fraction of ay(t) distributed to
node n; remains constant with time and a; is not allocated competitively to
nodes n, to which n; connects.
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Iteration A B C

0 0 0 0

5 344 022 .007
10 613 216  .013
20 865  .596 .011
40 984 937 .004
60 .998 992 .001
100 1.000 1.000 .000

Table 1: Node activations for the network pictured in figure 5b using
the competitive activation mechanism described by equations (3.2-
3.5). Derived numerically using time quantization of 0.1 unit of time
per iteration.

As a simple specific example, consider the 3-node network in Figure 5b
where all nodes start with zero activation, and a constant external input of
1.0 is applied to node A starting at ¢ = 0. Each node uses the competitive
activation mechanism described by equations (3.1-3.4) where, in equation
(3.1, we let

(.I" = [m, == ag(l —_ 1111)] (}. — ai) (35)

The first factor here, in; — a; (1 — a;), can be positive or negative, and
ranges from —1 to 41. This factor causes a; to increase whenever in; >
a; {1 — in;), and to decrease whenever in; < ¢;(1 — in;), and insures that
a; 2 0. The second factor, 1 — a;, insures that a; has 1.0 as a maximum
value. For this specific example, approximate activation of nodes with time
is given in table 1. As the external input activates node A, nodes B and
C are both initially partially activated, but as equilibrium is approached a
winner-takes-all phenomenon appears (node B fully activated, node C fully
inactivated). Although no inhibitory links exist between nodes B and C,
an indirect inhibitory interaction (“virtual lateral inhibition”) between these
nodes is apparent as a result of the allocational competition controlling how
node A distributes activation to nodes B and C.

The behavior of connectionist models using a competitive activation mech-
anism has been studied so far primarily through small scale simulations
[41,39] and limited theoretical analysis of simple networks [51]. This work has
clearly demonstrated many useful properties of competitive activation mech-
anisms: circumscribed network activation, trajectories leading to an equi-
librium point (attractor), ability of suitable formulations of a competitive
activation mechanism to produce winner-takes-all behavior in the absence of
inhibitory links, and context-sensitivity of the winner-takes-all phenomenon.
These results suggest that allocational competition can implement the types
of competitive interactions needed in many connectionist models without the
problems associated with lateral inhibitory links as outlined earlier (theoret-
ical representational issues, assignment of inhibitory weights, large number
of connections needed, etc.). However, this previous work with competitive
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activation mechanisms has only examined small, uncomplicated networks.
Not uncommonly, methods developed for use in connectionist models in the
past have been successfully applied to small, simple problems, only to have
subsequent study show that they do not scale up well to larger and more
realistic situations. The model of print-to-sound transformation described in
the next section begins to address this issue for competitive activation mech-
anisms. It demonstrates for the first time that connectionist models using
competitive activation mechanisms can be developed for networks of a size
and complexity found in typical cognitive science and Al applications.

3.3 Activation rule for the print-to-sound connectionist model

We now consider the specific competitive activation rule used in the print-
to-sound model. All nodes in the associative network follow a similar “rule”
in updating their activation and output levels during a simulation. This rule
involves strictly local computations as determined by equations (3.1-3.4) af-
ter adjustment of these equations to accommodate the complexities arising
from having multiple routes and paths through a network composed of mul-
tiple classes of nodes (grapheme, word, and phoneme nodes). The exact
form of this rule (described below) was determined initially in an intuitive
fashion, and then modified based on preliminary simulations using a small,
abstract network. The purpose of these initial exploratory simulations with
a prototype network was to produce a specific competitive activation mecha-
nism that provided clear-cut winner-takes-all behavior (i.e., correct “winner”
nodes that had activation above .99 and all “loser” nodes with activation be-
low 0.01). The network used in this preliminary work had only 16 word nodes
with an average of about 3 graphemes/phonemes per word. There were 4
possible graphemes and 4 possible phonemes per position in a word, and
9 arbitrarily-weighted connections between these graphemes and phonemes.
The activation rule described below is the best of the limited number of vari-
ations examined during this exploratory work. In the following, “preliminary
simulations” refer to simulations done with this small network.

Starting with a;(0) = 0.0, each node in the print-to-sound model uses the
following specific version of equation (3.1) to update its activation level:

ft,’ - k," [il].' - 2{!{ (]. - i]]l')] (I - a,—) (3.6)

This is the same as equation (3.5) except that two constants have been in-
troduced. The value 2a;(1 — in;) in the second factor is used rather than
a;(1 — in;) as in equation (3.5) because in the preliminary simulations this
alteration was observed to result in much cleaner winner-takes-all behavior.
The other new constant k; was 1.0 for phoneme and grapheme nodes. For
word nodes, the value of k; was a logarithmic function of p;, a node’s prior
probability.> We introduced k; to allow analysis of word frequency effects.

ISpecifically, k; is an increasing function of p;, the prior probability of the i*" word,
given by k; = .45log(p; - 10%). The prior probabilities of words used in the print-to-sound
lexicon ranged from about 1 x 107% to 1815 x 10=%. The natural logarithm function is
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Input to all nodes is based on equation (3.2), but the details of how this
was achieved differ depending on whether the node involved is a grapheme,
word or phoneme node. In the particularly simple case of a grapheme node
g; (figure 4a), only a single “external input,” designated out,,, is present, and
equation (3.2) simplifies to in; = outy,. In the simulations the value of in;
for grapheme g; indicates the presence (in; = 1.0) or absence (in; = 0.0) of
the grapheme represented by node ¢;. In this special case, with a constant
in; = 1.0, the activation rule (equation (3.6)) simplifies to a@; = 1 — a; having
solution @; = 1 — e ! fort > 0. Thus a; initially increases rapidly then
progressively more slowly as a¢; asymptotically approaches 1.0. Input to a
grapheme node is thus so simple that it directly indicates whether the node
should turn on or off.

For word and phoneme nodes the situation is more complex because these
nodes receive inputs along multiple paths (figures 4b, 4c). The input along
any single path is again determined using equation (3.2), but inputs along
different paths may provide conflicting information about whether or not
the receiving word or phoneme node should be activated. Further, input
along each path changes continually and sometimes dramatically during a
simulation as nodes on that path compete for available output from nodes
sending them activation. It is therefore useful to compute the total input
in; to a word or phoneme node using an input combining function of the
individual inputs as determined for each individual path using equation (3.2).
A similar approach has been used by others, such as with “conjunctive” or
“sigma-pi units” [47,20, p. 73]

For word nodes, each node w; receives inputs via n paths (figure 4b)
where 1 is the number of grapheme/phoneme positions in the word repre-
sented by node w;. Fach path-specific input in;, is determined by equation
(3.2): in;, = 1 — (1 — outy). Initially, we combined these individual
path-specific inputs ing, by taking the resultant in; in equation (3.6) to be
the average of the n path-specific inputs. This insured that each word node
receiving any input at all would become at least partially activated. Limited
exploratory simulations with the small, abstract network described earlier in-
dicated that using a different input-combining function (product rather than
average) for the second occurrence of in; in equation (3.6) produced cleaner
winner-takes-all behavior among word nodes, so this latter function was used
in the print-to-sound model. In retrospect, this improved performance makes
sense because it results in a larger subtrahend in the first factor in equation
(3.6) when any grapheme in a word is missing, thereby lowering that word
node’s activation and hence its ability to compete.

For phoneme nodes, each node p; receives inputs via two separate pos-
ition-specific paths (figure 4c). These are designated in;y for the path in
the lexical route, and in;g for the path in the GPC route. Both in;w and

used because of the large ratio between these two endpoints; multiplication of p; by 10° is
used so k; > 0 for all words, and scaling by .45 makes k; values for low frequency words
lie around 1.0, the value of k; used for grapheme and phoneme nodes, and k; for high
frequency words lie between 2.0 and 3.5.
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in;g are calculated using equation (3.2), and can differ from one another
greatly in value (e.g., in irregularly spelled words). We wished to resolve
such conflicting inputs in a symmetric fashion such that a phoneme node
did not have to be concerned about the class of nodes (words or graphemes)
responsible for input along a path (i.e., substituting in;s and in; for each
other in the input-combining function should result in the same function).
Initially, we combined these path-specific inputs using simply

injanp = ingw - ingg, (3.7)

reasoning that both the lexical routes and the GPC route connections should
be active in order for phoneme p; to be activated. The product in equation
(3.7) can be viewed as a numerical version of a logical AND operation. While
this works reasonably well when input graphemes form a word, the prelimi-
nary simulations revealed that if input graphemes are non-words then clear-
cut winner-takes-all phonemes usually did not occur. The reason for this is
that word nodes only partially match the input graphemes of a non-word and
thus are weakly activated, so in;y is usually small. While a large lexicon hav-
ing more partially-activated word nodes during a simulation could improve
this situation, we elected instead to use a more complex input-combining
function. The revised input-combining function first determines resultant
input to be proportional to the extent that input is arriving at p; via both
routes (using in;anp ), but as p;’s activation level increases, the resultant in-
put gradually shifts to become proportional to the extent that either input
route is active (using in;or). This is done as follows. Recalling that equa-
tion (3.2) can be viewed as a numerical version of a logical OR operation,
analogously let

inior = 1 — Mg (1 — ing) (3-8)

where R is W or G.* The input combining function for phonemes as used in
the full print-to-sound model is then

in; = inanp (1 — @;) + injor a;. (3.9)

Note that this behaves precisely as described above. Initially a;, the activa-
tion of the ¢*® phoneme node p;, is very small, so in; = in;sxp. Subsequently,
as p; becomes more activated, in; gradually shifts progressively closer to being
IN;0R-

Finally, for all nodes in the network the output out;; from node n; to
node n; is determined by equations (3.3) and (3.4). This is done separately
for each path to which a node sends output. Each grapheme node g sends
output via connections in two paths (in the lexical and GPC routes; see figure
4a). Output from g is divided up competitively according to equations (3.3)
and (3.4) among the connections to word nodes, and separately is divided up

1t follows that injop = 1 —1; (1 — out;;), where k ranges over all input connections
to p; from both graphemes and words.
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competitively among the connections to phoneme nodes. Stated otherwise,
phoneme nodes do not directly compete with word nodes, nor vice versa,
in extracting their share of g’s output, so the two routes do not compete
against each other for g’s output. A similar situation holds for each of the
position-specific path outputs from a word node to phonemes in the sense
that phoneme nodes in one path (e.g., those in P3 in figure 3) do not compete
against phoneme nodes in other paths (e.g., P4).

3.4 Independent versus interactive routes

We are now in a position to clarify the sense in which the two routes in
the print-to-sound model are interactive. As described above, an individual
activated grapheme g effectively distributes two identical ”copies” of its ac-
tivation along its outputs, one to phoneme nodes and one to word nodes.
From g’s local perspective, events along the GPC route do not affect the
total amount or distribution of activation being sent along the lexical route,
and vice versa. Further, there is no direct or “lateral” influence of the GPC
and lexical routes upon one another. Thus, if in addition no retrograde in-
fluences were present (i.e., influences flowing from phonemes back through
the network), the two routes in the print-to-sound model would represent an
independent dual-route theory of information processing.

The most common way that retrograde influences are implemented in con-
nectionist models is through “backward” connections over which activation
flows in a reverse direction. For example, such reverse connections were used
as a critical aspect of the interactive activation model of letter perception
in context [34,46]. If reverse connections were present in the print-to-sound
network described in this paper, then the two routes involved could be charac-
terized as representing a directly interactive dual-route theory. The qualifier
“directly interactive” is used in the sense that such connections would permit,
for example, phoneme nodes to increase or suppress directly the activation
levels of word nodes or grapheme nodes. In such a situation, the activation
of phoneme nodes by grapheme nodes via the GPC route could directly exert
an influence on the activation of word nodes in the lexical route, making the
two routes strongly interactive.

The print-to-sound model described in this paper involves two routes of
information flow which are neither independent nor directly interactive. They
are not directly interactive in that no reverse connections exist that permit
phoneme nodes to directly influence activation levels of word or grapheme
nodes. However, neither are the two routes completely independent. Al-
though there is no reverse flow of activation, there is limited reverse flow of
information that steers and focuses the foward flow of activation. Nodes dis-
tributing their activation in a forward direction are influenced in the manner
in which their activation is parcelled out to receiving nodes by the activation
levels of those receiving nodes (see discussion of competitive activation mech-
anisms above). Activation of a phoneme node via, for example, the lexical
route can influence how much activation that phoneme node receives from a
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grapheme node via the GPC route, but does not influence the activation of
the grapheme node itself. We thus say that the network of the print-to-sound
model represents an indirectly interactive dual-route model. The two routes
do not compete against each other for grapheme node activation, but each
route does influence how the other route’s competition is resolved.

4. Model performance

The print-to-sound connectionist model involves a large associative network
based on the best published empirical data known to the authors [26,21,56].
Nevertheless, the scope of the network is significantly circumscribed in obvi-
ous ways: no semantic component is present, the lexicon is limited in size,
and no word-specific morphological, syllabic or segmentation information is
used. The print-to-sound model should thus be viewed as only a first ap-
proximation to print-to-sound transformation, and its evaluation necessarily
could have only limited goals. One goal was to establish whether a compet-
itive activation mechanism could produce suitable winner-takes-all behavior
among word nodes and phoneme nodes in the absence of lateral inhibitory
connections. As explained earlier, previous work with competitive activation
mechanisms has used only relatively trivial networks. It was not obvious a
priori that this approach could be scaled up to the complex print-to-sound
network involving conflicting input signals to phoneme nodes arriving over
two separate routes.

The second goal was to examine qualitatively how the performance of an
indirectly interactive dual-route model would correlate with published data
on reading aloud single words and non-words. As discussed earlier, skilled
adult subjects read aloud regular words faster than exception (“irregular”)
words in the lower frequency range, and read all types of words faster than
non-words. The issue here is whether or not a dual route model is at least
consistent with these findings and other relevant performance data.

In the following, we briefly summarize word regularity as it relates to
the print-to-sound model, and give an example of the model’s performance
during a single simulation. Following this the results of limited but systematic
simulations with the intact and “damaged” model are presented.

4.1 Regularity metric

The notion of word regularity or irregularity, or of “exception words,” is
complex and controversial. The traditional notion of regularity assumes a
single preferred pronunciation for letters and multi-letter graphemes. A set
of rules can be formulated that captures reasonably well the normal cor-
respondences between letters and sounds [55]. Recently, however, the idea
of rule-based grapheme-to-phoneme correspondences has been challenged by
the notion that pronunciation may be based on associations between sounds
and print segments of various sizes that are probabilistically derived from
known words [37]. Values for rule-based correspondences and for word-based
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correspondences often coincide, and there is some evidence that words in
which they do coincide are read most easily and quickly [23]. Nonetheless,
these two types of “regularity” can be manipulated independently when the
size of the segment to be pronounced is larger than a single grapheme [31].
Various arguments have been advanced favoring both types of “regularity” as
the determinant of ease of pronunciation and there has even been a proposal
that pronunciation latencies reflect an interaction of the two [45]. Most of
these arguments are based on the reading of monosyllabic words; two-syllable
words could only be expected to involve even more complexity.

Given the difficulties involved in characterizing word regularity, a sim-
ple regularity metric was adopted for this study based on the frequency of
grapheme-to-phoneme correspondences in a word. This metric is a compro-
mise between the two positions summarized above in that it maintains the
grapheme as the unit size (as does the rule-based position) but it computes
probabilities of correspondence based on the number of words in which a
particular correspondence occurs (as does the “word-based” position.) The
intent was not to dictate what “regularity” should be, but to provide an
objective quantitative estimate of the strength of particular correspondences
for unbiased comparison with simulation results.

Perhaps the simplest word regularity metric of this sort would be the aver-
age of the grapheme-phoneme correspondence (GPC) frequencies occurring
in a given word. However, such a metric ignores the fact that many En-
glish words considered to be “irregular” have a single very uncommon vowel
correspondence (e.g., “many”). Thus, the metric described here weights low-
frequency GPC’s more heavily in forming the average. Let prob; be the
relative frequency with which the grapheme-to-phoneme correspondence in
the ¢*® position in a word occurs in English [4]. Then the regularity of the
kt word, designated Ry, is given by

* ,(1.05 — prob;)prob;
31 ,(1.05 — prob;)

where n is the number of grapheme-phoneme positions in the word. In aver-
aging the individual prob; values, this formula weights each by 1.05 — prob;,,
thus giving lower frequency prob;’s a higher weight. The value 1.05 was used
rather than 1.0 so that all GPC frequencies are counted, albeit slightly, in
this average, even those with prob; = 1.0.

By =

(4.1)

Applying the word regularity metric Ry described by equation (4.1) to
the model’s lexicon of 1030 words from the Toronto Word Pool, prior to
running the simulations whose results are described below, convinced the
authors that this metric provided a coarse but reasonable measure of word
regularity. For example, consider the three words in table 2. The highly
regular word “needle” has Ry = 0.99, the less regular word "disturb” has
R;. = 0.41, and the very irregular word “onion” has R, = 0.12.

It should be noted that the regularity metric Ry is based on an input
string that is already parsed into letter segments (graphemes). Thus it does
not capture possible irregularities that might result from a mis-parsed letter
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“needle” “disturb” “onion”

i | GCP; Prob; | GPC; Prob; | GCP; Prob;
1|N—=n 1.0 D—d 1.0 O — uh+ 0.007
2|EE —see 098 |[I—-ih 072 |N—n 0.967
3|D—4d 1.0 S—s 087 |[I—y 0.008
4 | LE —ul 1.0 T—t 097 | O — uh- 0.269
5 U—e 008 |[N—n 0.975
6 R—r 1.0

7 B—b 1.0

Table 2: Examples of words and the frequencies of their grapheme-
phoneme correspondences to illustrate the word regularity metric Ry.

string. For example, "design” might be thought of as irregular because of the
silent Gj; in the system developed here (following [26]) GN is considered to
be a grapheme with high probability (=1.0) of pronunciation as /n/. Since
the print-to-sound model discussed in this paper starts with a segmented
input string, a regularity metric based solely on the probability of graph-
eme-to-phoneme correspondences was deemed the most appropriate one to
use,

4.2 An example simulation

The print-to-sound model was implemented using MIRRORS, a general pur-
pose software environment for developing connectionist models [16,17]. All
simulations were run on a single-processor DEC MicroVAX /2 under Unix
using single-precision arithmetic. A time step of 0.1 was used during numeric
calculations. Input characters were manually grouped into graphemes.

A single brief example of a representative simulation with the print-to-
sound model is given here to illustrate its ability to activate correctly word
and phoneme nodes with a very sharply defined winner-takes-all performance.
A sequence of five graphemes, O N I O N, representing an irregular word
(R). = 0.12), serves as input to the model. The overall network structure for
this input has already been seen (figure 2). Table 3 gives activation levels as
a function of time for selected nodes in the network. The symbol “-” means
“Inactive” (a; < .001) and the symbol “****” means “saturated” (a; > .99).
Each 10 iterations (first column in table 3) represents one unit of simulated
time.

Grapheme nodes quickly become saturated (second column). While a fair
number of word nodes are activated early in the simulation, activations for
only two of these word nodes are given here (columns 3-4). These nodes
represent the target word “onion” and one of its orthographic neighbors,
“union,” which has four of five graphemes in common with the target word.
These are the most highly activated word nodes during this simulation. Early
in the simulation, the node representing the orthographic neighbor “union”
is more activated than the node for “onion.” However, eventually “onion”
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/n/s

Iterations | Grapheme Words Phonemes
“onion” | “union” | fub-/;  Jub+/i [ /ih/s [y/a

0 N N - “ , _ A

10 651 .063 134 .001 - 001 -

20 878 241 164 .002 - 001 -

30 .958 .383 097 .001 - - -

40 R 657 023 - - - 253

50 KAk .884 .002 - 272 - .G58

60 FTHEE 967 - . 722 - 875

70 Gk o - - 879 - 956

80 ARASE kk - - 966 - 985

90 Hokskok soksok ) _ s sk } s

.029
166
360
613
803
942
979
Hokok ok
okkok

Table 3: Activation of selected nodes in the print-to-sound network
following input of the grapheme sequence O N I O N starting at
t = 0. Subscripts of phonemes indicate their positions. The entry “-”
indicates a node is inactive (g; < .001) and the entry “****” indicates
a node is fully active (a; > .99).

dominates and becomes fully activated, while activation of all other word
nodes (both those shown here and all others) dies out. The clear-cut winner-
takes-all behavior arises completely through allocational competition, with
"onion” eventually dominating because of its perfect match with the input
graphemes in this case. The larger early activation of the node representing
the orthographic neighbor “union” arises primarily as a word frequency effect.
The prior probability of “union” (p; = 182 x 107%; k; = 2.34) is much larger
than that of “onion” (p; = 15 x 107%; k; = 1.22). Thus, even though the
“union” node does not initially receive as much input from graphemes on all
paths as the “onion” node does, it activates more quickly initially due to the
larger k; in equation (3.6).

The last three columns in table 3 illustrate activations of selected pho-
neme nodes. Allocational competition results in clear-cut, winner-takes-all
activation of exactly those phoneme nodes representing the correct pronunci-
ation of the word “onion.” Activation of phoneme nodes is slower than that of
word nodes because, especially early on, their activation depends on receiving
significant input from both the lexical and GPC routes (equations (3.7,3.9)).
The rightmost column illustrates the mapping of grapheme N5 to phoneme
/n/s in the fifth position. In this case, the GPC route connection N5 — /n/,
in the final position has the large weight .975 (table 2). Further, the most
highly active word nodes (“onion” and “union”) both have a /n/s in their
phonemic realization. Thus, /n/5 receives reinforcing input simultaneously
from the lexical and GPC routes, and rapidly activates with little significant
competition. In contrast, in the third position grapheme I3 connects to six
phonemes (figure 3). Activation levels for two of these phonemes, /ih/5 and
/y/a, are given in table 3. Weights on the GPC route connections are .716
for I3 — [ih/3 and .008 for I3 — [y/s, the latter being the correct phonemic
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realization of I3 in “onion.” The very low weight on the GPC connection to
/v/s and support for /ih/; from the word route (e.g., from “prison,” “exist,”
etc., in this case) result in the slow activation of /y/s relative to /n/s; see
table 3. However, a clean winner-takes-all activation of /y/, still eventually
occurs. A similar situation holds for /uh-/; and /uh+/, (table 3).

4.3 Simulations with intact model

To examine word frequency and regularity effects on the model’s perfor-
mance, data consisting of four sets of words with 16 words per set were used
to test the model. Words for each of these sets were selected from those in
the associative network’s lexicon based on word frequency (high vs. low) and
regularity (very regular vs. very irregular). One test set consisted of only
high-frequency regular words; another of only high-frequency irregular words;
a third of only low-frequency regular words, and the fourth of low-frequency
irregular words. Word frequency was obtained from the Kucera and Francis
[33] norms given in the Toronto Word Pool [21]. Word frequency ranged
from 1 x 107° to about 1800 x 10~% with a median of 30 x 10~° and a mean
of 77 x 107° for the 1030 words in the model’s lexicon. “High-frequency”
words were arbitrarily defined as those having frequencies in the top quarter
of all frequencies (> 80 x 107°) and “low-frequency” words as those with
frequencies in the bottom quarter of all frequencies (< 18 x 10~%). High- and
low-frequency regular words were selected by starting at the top of a regu-
larity ranking of the 1030 words based on Ry and systematically selecting
16 words which met the word frequency criteria stated above. In a similar
fashion, high and low-frequency irregular words were selected by starting at
the bottom of the regularity ranking of the 1030 words.

The range of word frequencies for the set of low-frequency, irregular words
was 3x 1075 to 15 107 with a mean of 10.2x 10~°. The set of low-frequency,
regular words had similar values with word frequencies ranging from 4 x 106
to 18 x 1079 and a mean of 10.8 x 107%. The set of high-frequency, irregular
words had word frequencies of 114 x 1079 to 1236 x 107® with a mean of
377 x 107%, while the set of high-frequency regular words had a frequency
range of 94 x 107 to 831 x 10~® and a mean of 190 x 10~%. To achieve
more similar means between the two sets of high-frequency words, the four
words with the highest frequencies in the irregular word set were omitted
and replaced with four newly selected irregular words which were obtained
by continuing up the lexicon list (from the bottom of the regularity ranking
based on Rj) and selecting the next four words with frequencies exceeding
80 x 107%. The new mean for this set of 16 words was then 189 x 10~¢, which
was very similar to the mean frequency for the high-frequency, regular words
of 190 x 1078, The four sets of test words which were used to evaluate the
print-to-sound model are listed in the appendix.

In all 64 runs where a word contained in the model’s lexicon was intro-
duced as input, the correct set of phonemes eventually attained 1.0 activa-
tion, and all remaining phoneme nodes in each of the phoneme sets had 0.0
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Figure 6: Mean activation of phoneme nodes for the four classes of
test words as a function of time.

activations. Thus, clear-cut winner-takes-all behavior for the correct pho-
neme node always occurred with these simulations in a fashion similar to
that demonstrated with “onion” above (table 3).

Measurements were recorded with the print-to-sound model of the time
required for the correct set of phoneme nodes in each of the 64 words to at-
tain 0.25, 0.50, 0.75 and 0.999 activation. These data were averaged for the
16 words in each data set. Figure 6, based on these averages, shows clearly
that phonemes for low-frequency irregular words had a delayed activation
rate compared to phonemes in the other three sets of words. Phoneme acti-
vation levels of “winning” nodes followed a sigmoid curve in asymptotically
approaching a value of 1.0.

Let variable ¢ 5 represent the time (iterations) required for a word’s pho-
neme nodes or a word node to attain a 0.50 activation level. Variable ¢4
provides a representative value (see figure 6) or “time constant” for statis-
tical analysis of the differences in rate of phoneme activation. Averaged ts
values are presented in table 4 (columns 3-4) for each of the four sets of test
words where k; is based on word frequency.

A one-way analysis of variance with two factors (regularity and frequency)
assessed by contrast was used to evaluate the timing data for the four sets
of words in table 4. To compensate for a rather large variation in standard
deviations among the data sets, log time was used as the dependent variable.
The main effects of regularity (F' 3,60 = 48.96, p < 0.0001), frequency (F
3,60 = 106.46, p < 0.0001) and interaction of regularity and frequency (F
3,60 = 17.70, p < 0.0001) were all highly significant. Based on the Student
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Using Word Frequencies | Ignoring Word Frequencies
Word Group n phonemes word phonemes word

is + sd ts + sd i_5 + sd t_5 + sd
High frequency | 16 | 27.9 £ 0.73 | 18.8 &£ 1.29 | 32.5 & 1.08 | 25.1 £ 1.61
Regular
High frequency | 16 | 30.6 £ 2.39 | 18.9 + .89 | 38.7 £ 5.00 | 26.8 £ 3.10
Trregular
Low frequency | 16 | 33.3 £ 2.50 | 26.1 & 4.06 | 31.6 & 0.74 | 23.8 £ 1.53
Regular
Low frequency | 16 | 46.7 & 9.45 | 35.3 & 14.27 | 40.3 & 4.59 | 25.7 £+ 2.91
Irregular
Non-words 10 | 66.6 £ 12.55 NA 68.6 £ 11.79 NA

Table 4: Mean times for phoneme and word nodes to attain 0.50
activation in five different word groups with two different methods of
spreading activation. Columns labeled “word” refer to the word node
representing the external input of a sequence of graphemes.

Newman Keuls test (a post hoc multiple comparison test), no significant
difference was found in the mean t 5 values of phonemes for high-frequency
regular versus high-frequency irregular words; however, the mean ¢ 5 values
of phonemes for low-frequency regular words versus low-frequency irregular
words were significantly different (p < 0.005). Thus, the interaction effect of
regularity and [requency is quite evident in that high-frequency regular and
irregular words had very similar phoneme activation times (27.9 and 30.6,
respectively), whereas low-frequency regular words had significantly faster
phoneme activation times than low-frequency irregular words (33.3 versus
46.7).

The mean word ¢ 5 value for high-frequency regular words (18.8 iterations)
was very similar to the mean word ¢ 5 value for high-frequency irregular words
(18.9 iterations). Unexpectedly, the mean word 15 value for low-frequency
regular words (26.1 iterations) was significantly less (p < .005) than that of
low-frequency irregular words (35.3 iterations). It had been anticipated that
these latter two values would be approximately the same since only word
frequency and activated word nodes representing competing orthographic
neighbors (and not regularity) should influence the rate of word node acti-
vation in the model. To establish whether this unanticipated finding with
word activations was responsible for the results described in the preceding
paragraph, the four low-frequency irregular words with the largest word ¢ 5
values were omitted from the original set of 16 low-frequency irregular words
to create a modified test set. The new mean word ¢ 5 value for this modified
test set containing 12 words from the original low-frequency irregular word
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set was 27.8 iterations, which is very similar to the mean word ¢ 5 value of
26.1 iterations for the set of 16 low-frequency regular words. Repeating the
simulations with the modified test set, the mean ¢ 5 value for phonemes was
42.7 £ 6.27. This is still significantly greater than the mean phoneme ¢4
value of 33.3 & 2.5 for the low-frequency regular word set. This is an impor-
tant point: it indicates that the slower activation times for phoneme nodes
of low-frequency irregular words versus regular words was not primarily the
result of differences in rates of word activations, but rather of differences in
regularity of the words in the data set.

Three of the four “outlier” words in the low-frequency irregular word set
(which had word t; values of 45, 54, 56 and 70 iterations while the mean
for the remaining 12 words was 27.8 iterations) had very low frequencies
(3 x 107 and 4 x 107°) and had orthographic neighbors with very high
frequencies; thus, the rate of word node activation for these particular words
was significantly slower than for the remaining words in the data set. The
fourth outlier word, “resort,” had a moderately low frequency (12 x 107%)
but its orthographic neighbor “report” was a very significant competitor
(because it shared 5 of 6 graphemes with “resort” and had a high frequency
of 174 x 107%), so the rate of word node activation for “resort” was quite
slow. In the relatively small set of 16 words, the low-frequency regular words
did not happen to have any distinct outliers. If a larger lexicon was used and
the data sets contained more words, the mean word £ 5 values for these two
data sets would probably be very similar.

To confirm that the phoneme activation timing patterns described above
were due to word frequency effects and not to some other unanticipated
factor, all 64 simulations were also run using &; = 1.0 for all words (see section
3 for a description of k; in equation (3.6)). In this situation word frequencies
are completely ignored by the model and can have no impact on simulation
results. The ¢ 5 results of these simulations are presented in the rightmost
two columns of Table 4. In this situation, activation of phoneme nodes of
high-frequency irregular words (t5 = 38.9) was no longer similar to that of
high-frequency regular words (¢ 5 = 32.5) but was much more similar to that
of low-frequency irregular words (5 = 40.3). In contrast to the previous
simulations which included word frequencies, analysis of variance of average
phoneme { 5 values now indicated that only the main effect of regularity (F'
3,60 = 84.06, p < 0.0001) was highly significant whereas the main effects of
frequency (£ 3,60 =0.12, p < .73) and interaction of regularity and frequency
(F' 3,60 = 2.28, p < .14) were not significant. Based on the Student Newman
Keuls test, when k; was constant (k; = 1.0) a significant differencein ¢ 5 values
of phonemes was found for regular words versus irregular words (p < 0.005)
while no significant difference was observed in {5 values of phonemes for
high-frequency versus low-frequency words. As anticipated, the ¢ 5 values for
word activation were approximately the same among all four word groups
(rightmost column, table 4).

The performance of the print-to-sound model was also tested using non-
words as input. The set of non-words consisted of arbitrarily selected, two-
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syllable words which were not contained in the model’s lexicon. In about
half the cases of attempted runs with non-words, one and sometimes two
or three phonemes never attained full activation because equilibrium was
achieved without resolution of a single winner among two or three competing
phonemes. For those ten non-words for which winner-takes-all behavior was
attained for all phonemes, the mean ¢ 5 value for phonemes was 66.6 when
k; was based on word frequency and 68.6 when k; was constant (see bottom
row, Table 4). In both instances, these were signficantly greater t 5 values
than for the four sets of test words.

A major factor which appeared to influence t 5 values for phonemes of non-
words was the graphemic/phonemic profile of the non-word’s orthographic
neighbors contained in the 1030-word lexicon. For example, using graphemes
of the non-word “lament” as input (considered a “non-word” since it is not
contained in the model’s lexicon) produced significant activation of such or-
thographic neighbors as "latter,” “moment,” “patent,” and “talent.” Because
these activated words have several conflicting phonemes, more time is re-
quired for a winning phoneme to emerge from the competition.

Often for vowel graphemes (which generally had lower connection weights
to phonemes than consonant graphemes), orthographic neighbors of non-
words influenced the selection of the winning phonemes more strongly than
did the probabilities of grapheme-to-phoneme correspondences. For example,
using the graphemes of the ‘non-word’ “cargo” as input resulted in significant
activation of the orthographic neighbor “carbon.” As a result the winning
phoneme for the second grapheme A was fah/, the second phoneme in “car-
bon,” even though the probabilities (connection weights) for realization of
grapheme A as phonemes /ae/ (probability .54), /uh-/ (.19) and /ay/ (.13)
all significantly exceeded the probability of /ah/ (.08).

4.4 Simulations with lesioned model

As noted in section 2, part of the support for the dual-route hypothesis of
reading aloud comes from studying patients with various forms of acquired
dyslexia. The print-to-sound connectionist model described in this paper
cannot be related directly to some of the data from these studies because of
its circumscribed nature (no semantic influences, no incorrect segmentation of
letters into graphemes, etc.). However, it is possible to examine the behavior
of a “damaged” model where only one of its two routes is functioning usefully.
After completing the simulations described in the previous section, a number
of simulations were undertaken where either the lexical or the GPC route was
rendered nonfunctional.

Some aspects of “phonological dyslexia” were simulated by disabling the
GPC route of the model while leaving the lexical route intact. This was
implemented by always setting in;z in equations (3.7) and (3.8) to a constant
value of 0.5 for the GPC route for all phoneme nodes in each of the phoneme
sets. That is, input from grapheme nodes in G} (first instance of a grapheme
set) to each of the phoneme nodes in P, (first instance of a phoneme set)
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was clamped at a constant 0.5; the input from grapheme nodes in G to each
of the 48 phoneme nodes in P, was clamped at 0.5, etc. This universal 0.5
input to phonemes along the GPC route could be interpreted as meaning “no
information,” so the lexical route entirely determined phoneme activation. In
other words, for a given phoneme set, the lexical route inputs forming in;u
were the sole source of determining which phoneme became the “winner.”

The graphemes of the original set of 64 words were again used as input
and simulations were run until a phoneme node in all positions attained
0.999 activation. For all 64 words the correct set of phoneme nodes became
fully activated in the same winner-takes-all manner as was observed with the
original intact model. The mean {5 value for the 16 high-frequency regular
words was 38.2 iterations which was very close to the mean t 5 value of 38.3
iterations for the 16 high-frequency irregular words. Likewise, the mean {4
value for the 16 low-frequency regular words (47.3 iterations) was very similar
to the mean t 5 value for 13 low-frequency irregular words (50.6 iterations).
Thus, as might be anticipated with only the lexical route intact, only word
frequency and not regularity affected the time for phoneme activation in these
simulations. This result is consistent with reported behavior of phonological
dyslexic patients, who are unaffected by regularity but read high-frequency
better than low-frequency words (e.g., [22]).

Five of the original ten non-words which previously had winning phonemes
attaining an activation level of 1.0 with the intact model were arbitrarily se-
lected. Their graphemes were also used as input to the lesioned model. In
this case, only partial activation of phonemes occurred when the network
reached equilibrium (less than 10~2 change in any phoneme activation over a
period of 50 iterations). The phonemes which were partially activated never
exceeded 0.30 activation and most were less than 0.20. These phonemes
corresponded to phonemes of words in the model’s lexicon which were ortho-
graphic neighbors of the input non-word. Often there were several such words
which became partially activated, hence two and sometimes three phonemes
in a given phoneme set would remain partially activated at equilibrium, with
no clear winner-takes-all phenomenon. For example, using the graphemes
of the non-word "compile” as input (since “compile” is not contained in the
1030-word lexicon of the model it is considered to be a “non-word”) produced
partial activation of several of its orthographic neighbors such as “combine,”
“compel,” and “hostile.” Thus, when the network reached equilibrium, par-
tial activation was found for both /p/ and /b/ in the fourth phoneme posi-
tion, both /eh/ and /ai/ in the fifth phoneme position and both /1/ and /n/
in the sixth phoneme position.

Some aspects of “surface dyslexia” were simulated by disabling the lexical
route of our original model while leaving the GPC route intact. This was
implemented by clamping in;,, to a constant 0.5 in equations (3.7) and (3.8)
as input to all phonemes nodes from word nodes. In this situation the graph-
eme-to-phoneme route inputs in;; were the sole source of determining which
phoneme became the “winner” in each phoneme set.

Graphemes for the entire original set of 64 test words were again used as
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input to the model. For all of the regular words, the correct set of phonemes
became totally activated in the usual winner-takes-all manner. The mean 7 5
value for phonemes of the 32 regular words was 27.1. Graphemes for irregular
words also produced winner-takes-all behavior, but did not activate the cor-
rect set of phonemes. Rather, the fully activated phoneme nodes were those
which had the highest probability among all of the possible grapheme-to-pho-
neme correspondences. For example, using the five graphemes D ESI G N
of the word “design” as input resulted in the winning phonemes being /d eh s
ith n/, the set of phonemes with the highest conditional probabilities, instead
of the correct /d ih z ai n/. Table 5 lists nine examples of irregular words and
the “regularized” winning phonemes (versus the correct phonemes) when run
with this model. The mean phoneme { 5 value for the 32 irregular words was
28.4. These “regularization” errors are precisely the type of error produced
when surface dyslexics attempt to read irregular words (e.g., [7]).

Graphemes for the same five non-words used with the “phonological
dyslexia” model were again used as input. These simulations also produced
winner-takes-all behavior with a “regularized” pronunciation. Just as with
irregular words, fully activated phoneme nodes were always those which had
the highest probability among all GPC frequencies. The mean phoneme ¢ 5
value was 27.9.

5. Discussion

The print-to-sound connectionist model described in this paper is based on
an indirectly interactive dual-route associative network derived from data
published in the psychological literature. A competitive activation mecha-
nism obviates the need for inhibitory connections between nodes represent-
ing mutually-exclusive outcomes (word and phoneme nodes). The results
of studying this model are of interest both because of their implications for
implementing competitive dynamics in connectionist models and because of
the support they provide for an interactive dual-route hypothesis.

Testing of the intact model with graphemic input corresponding to 64
words of varying frequency and regularity always resulted in clear-cut winner-
takes-all behavior by correct nodes in every case. Testing the model with in-
put graphemes forming “non-words” sometimes resulted in one or two pho-
neme positions failing to establish a clear “winner” at equilibrium. This
occurred when the partially activated word nodes in the model’s limited
lexicon conflicted concerning the correct phoneme and the winner was “too
close to call.” In other studies with competitive activation mechanisms, it has
proven possible to sharpen competitive effects and force selection of a winner
in close outcomes by suitable alterations of the activation rule [41,38]. It
is likely that such an approach could be used to improve the print-to-sound
model’s performance with non-word graphemic input, but this possibility was
not explored in the current study.

These results provide encouragement concerning the direct applicability
of competitive activation methods to the large, complex associative networks
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Word APPROVE
Graphemes A PP R OE V
Winning Phonemes | ae P by o) v
Correct Phonemes | uh- P T 00 v
Word BEHIND
Graphemes B E H I N D
Winning Phonemes | b eh h ih n d
Correct Phonemes | b ih h al n d
Word DECLARE
Graphemes D E C L AE R
Winning Phonemes | d eh k 1 ay T
Correct Phonemes | d ih k 1 eh 1
Word DESIGN
Graphemes D E S I GN
Winning Phonemes | d eh s ih n
Correct, Phonemes d ih Z ai n
Word MAJOR
Graphemes M A J 0 R
Winning Phonemes | m ae  dj 0 r
Correct Phonemes | m ay dj er r
Word MONKEY
Graphemes M 0 N K EY
Winning Phonemes | m o n k ee
Correct Phonemes | m uh+ ng k e
Word REMIND
Graphemes R E M I N D
Winning Phonemes | r eh m ih n d
Correct Phonemes r ih  m  al n d
Word TREASURE
Graphemes iy R EA S UE R
Winning Phonemes | t T ee s yu ot
Correct Phonemes t r eh zh er r
Word UNION
Graphemes U N I 0 N
Winning Phonemes | uh+ n ih o n
Correct Phonemes | yu n y  uh- n

Table 5: Phoneme activation patterns for irregular words when only
the GPC route is intact.
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of interest in cognitive science and Al Previous connectionist models have
avoided diffuse network saturation as activation spreads throughout a net-
work in a variety of ways. In some cases, decay has been used [18]. More
commonly, lateral inhibitory links have been added to an otherwise excita-
tory network [14,20,34], perhaps reflecting the rather discouraging observa-
tion that “lateral inhibition seems to have fewer disadvantages” than alter-
native mechanisms [57, p. 55]. Competitive activation mechanisms offer a
third alternative with some significant advantages: lateral inhibitory links
are unnecessary (over one million avoided in the print-to-sound network),
multiple fully-active “winners” can be sustained when appropriate, etc. (see
section 2). Of course, much work remains to be done to extend this ap-
proach. Important issues needing study in future research include how to
combine competitive activation methods with symbol-processing approaches
[29], gating of node output on semantically labeled links (e.g., inheritance
in semantic category hierarchies), and methods for systematically deriving
competitive activation rules.

The print-to-sound transformation model is also of interest because of its
ability to replicate, at least qualitatively, a number of previously-observed
behavioral phenomena. This is particularly striking in the context of the
restricted nature of the implementation (only 1030 words in the lexicon, no
segmentation analysis, etc.). When words are treated as if they all have the
same frequency, the model “pronounces” (generates phonemic representation
for) regular words more quickly than irregular words. In contrast, when word
frequency is factored in as an influence on word activation, only those irreg-
ular words having a low frequency are found to be “pronounced” slower than
regular words; high-frequency irregular words are pronounced at the same
rate as regular words. All of these results are consistent with observations
made with normal readers [49,28].

Only a few other connectionist models of print-to-sound transformation
have been reported to date and most of these are quite different in their goals
and methods. For example, NETtalk is fundamentally different in that it uses
a distributed representation of information, does not use a competitive ac-
tivation mechanism, does not explicitly represent a dual-route network, and
applies error backpropagation to learn connection weights [50]. The most
similar previous work known to the authors is Brown’s word naming model
[6]. It is difficult to compare Brown’s model with the one described here
because very little information on the actual implementation of his model is
presented. However, Brown’s model differs from ours in that it uses explicit
inhibitory connections, and rather than using grapheme-to-phoneme corre-
spondences, it maps multiple input segments (single, double, triple letters)
into various phonological codes. In addition, the lexicon it uses is limited to
an unspecified number of four-letter words with frequencies of either “high”
or “low.”

There are currently a number of hypotheses concerning the cognitive
mechanisms involved in reading aloud. Many of these involve what appear
to be complex interactions, such as the relationship between frequency and
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regularity in determining reading times, as discussed above. The nature
of these interactions are difficult to determine simply from experimentation
with research subjects. One of the values of detailed computational mod-
els of cognitive processes is that they both force one to be explicit about
an implementation and permit one to determine whether or not anticipated
behaviors truly can arise from a given manipulation. It is precisely in this
sense that the correspondence of the behavior of the print-to-sound model
to a number of phenomena observed in both normal and dyslexic readers
provides support for the general consistency of the dual-route hypothesis.
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Appendix
High-frequency | High-frequency | Low-frequency | Low-frequency
Regular Irregular Regular Irregular
Indeed Design Daylight Accord
Meeting Union Frighten Approve
Simple Future Plainly Odor
Maybe Above Feeble Onion
Feeling Unit Needle Idle
Little Foreign Ample Array

Middle Report Lazy Torture
Highly Private Apple Absorb

Training Open Swiftly Armor
District Behind Railway Treasure
Clearly Market Dismay Depart

Standing Labor Lately Resort
Inside Major Kitten Monkey
Likely Color Upright Vapor
Nearly Forward Whistle Declare
Figure Record Invade Remind
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