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The Non-wandering Set of a CA Map

Lyman P . Hurd
Ins titute for Adv anced Study

Princeton, NJ 08540, USA

Abstract. An example is given of a cellular automaton map F imple­
menting a binary counter whose non-wandering set , n(F), is st rictly
larger than the closure, fI(F ), of the set of points periodic under F.

1. Introduction

Cellular automata (see (2)) are shift-commut ing maps on the full shift on
k symbols. Therefore, they may be analyzed with the tools of dynamical
systems theory. See for example [4J, 161. In [3J the non-wandering set , n(F ),
and the closure, II(F L of the set of points periodic under F are calculated
for a number of cellular automaton rules. In all the examples illustrated
there for which botb II (F) and n (F ) were calculated, they were equal. Thi s
is not true in general, however. This paper gives an example of a cellular
automaton map F I for which n (F1) '" II(FIl.

2. D efinit ions

If S is a fi nite set with lSI = k , the full shift on k symbols, SZ , is the set
of functions from the integers to S. Equivalently SZ may be viewed as the
set of doubly infinite words in the symbols from S. The full shift can be
topologized by giving S the discrete top ology and S Z the prod uct topology,
or equivalently by defining a metric:

ee

d(x, y) = L: 6(x;, y;)/2Iil
i=-oo

(2.1)

where 6(a, b) = 0 if a = band 1 ot herwise.
Th ere is a na tural (left) shift map a acting on SZ defined by a(x) ; = Xi +! .

A closed, shift- invariant subset of SZ is referred to as a subshift .

D efinition 1. A cellular automaton map is a. continuous function F : SZ ---+

SZ which commutes with a,

One way of constructing cellular automaton maps is to specify an arbi­
trary function
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f : S,· +I --+ S

and allow F : S Z --+ SZ to be defined by t he rule

F(x); = f (x;_n . . . , x;+. )
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(2.2)

(2.3)

By the Hedlund-Curt is-Lyndon theorem (see [I]) all cellular automaton maps
arise in this fashion.

D efinit ion 2 . Given a. cont inuous map F on a compact m etric space, X ,
tbe periodic set of F, is denoted Per(F) .

Per(F) = {x E X sucb tbat FP(x) = x for some p > O}

T he closure of tbis set is denoted I1(F ).

11(F) = Per( F)

(2.4)

(2.5)

If X is a compact metric space, and F : X -+ X is a continuous function,
the non-wandering set (see [7]) consists of all points x E X for which the
inverse images of any neighborhood of z are not all disjoint .

D efinition 3. If F : X -+ X is a cont inuous map of a com pact met ric space,
the non-wandering set of F , denoted n (F ), consists of all points x E X such
that [or every neighborhood U of X , there exists an integer n ~ 1 such that
F-n(U) n U i' 0.

Evident ly fl (F ) 2 I1(F ) for all F .
If X = SZ , and F : X --+ X commutes with (7 , it is clear from the

definit ions that I1 (F ) and fl (F) are closed and shift-invariant (i.e., subshifts).

3 . A CA rule F1 for which fl(F1 ) i' I1(Fd

The rule F1 implements a binary counter. Due to the local nature of cellular
automata evolution, this counter does not produce a new number at every
time step, but instead takes time increasing linearly with the number of
consecutive ones which must be converted to zeros. Thus incrementing 2n
to 2n + 1 takes a single time step, whereas to get from 2n

- 1 to 2n requires
2n - 1 steps (n 2: 1). This is due to the fact that the carry bit travels with
unit speed.

The set S has five elements:

S = {W,O,I,O,c} (3.1)

The symbol "W" is a boundary marker. The symbols 0 and 1 represent
digits. The symbol 0represents a zero carrying a right-traveling signal. This
signal has the function of carrying the information that all necessary carry
operations have been executed . The c represents a 1 which is about to be
incremented to a 0 (converting the site to the left to a 1 or a c, dependent
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d, d, d3 --> d, digits remai n fixed

d, d, W --> d,

d, d, Ii --> d,

d, Ii w --> c incrementin g rule

Ii 0 d3 --> Ii righ t-moving signal

Ii ° w --> Ii
d, Ii ° --> 0

0 C d3 --> Ii carry signal

0 c W --> Ii
d, 0 c --> 1

1 C d3 --> 0

1 c W --> 0

d, 1 c --> c

otherwise --> W error condition

d, E {O, I}

Table 1: The function It : 53 -t S generating r ;
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upon it s current valu e) . The ca rry travels to th e left until it hits a zero to
turn into a 1. A signal th en t ravels to the righ t indi cating that t he opera t ion
has been compl et ed.

The local funct ion 11 5 3 -lo S generat ing F] : SZ -lo SZ is given in
Tabl e 1. The evolu tion of F1 from the configuration represent ing the value 0
is shown in Table 2.

Definition 4. The point z is defined hy z = . .. ooliwwww.. ., or more
precisely Zj = 0 if i < 0, eo = IT and Z j = W for i > O.

Lemma 1. z E n{F,) .

P roof. In fact z sat isfies a st ronger condit ion . Gi ven a neighbor hoo d U of
a, th ere always exis ts 11. > 0 such th at F]T1(Z ) E U . To show this we define a
series of neighborhoods of z .

Definit ion 5. Let B n = {x E SZ such tha t Xi = 0 for -n :s i::; - 1, X o = 0,
and Xi = W [or 1 SiS n} .

Equiva.Jen tly B n is the ball of radius 1/2n about z .

Every neighborhood of z contains all but finit ely many Bn and while the
exact t ime it takes the orbit to return to a given Bn is somew hat complicated,
it satisfies th e inequali ty:
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t configurat ion n

0 0 0 0 0 0 W 0

1 0 0 0 0 c W 1

2 0 0 0 1 0 W 2

3 0 a a 1 c W 3

4 a a a c a w
5 a a 1 0 a w
6 a a 1 a 0 w 4

7 a a 1 a c W 5

8 a a 1 1 0 W 6

9 a a 1 1 c W 7

Table 2: The Evolut ion of Rule F1 from the configuration z.

•
F; (z ) E s; for some is 2n [log, n + l J (3.2)

To complete the proof of the theorem we need to show tha t z 'Ie lI(F, l or
equivalently that there is a neighborhood of z disjoint from Per(Fd .

Le m ma 2. If x E B1 then x 'Ie Per (FJl .

Proof. It is useful to int roduce a definit ion.

Defini t ion 6. A con figuration x E SZ is numerical if Xi = W for all i > 0,
and there ex ists n :s 0 such that X n E {O,c}, Xi = 0 for i > n and i ::; 0, and
x; E {u.I} for i < n.

The im age of a numeri cal configuration is numerical. Assume that x
is a numerical periodic point. The orbit of x must maintain a bounded
distance from any given non- numerical point . The rule , however, has been
set up so that the orbit of any numerical point approaches the non-numerical
configuratio n z' = .. .OOOWWW ... arbit ra rily closely. Thus it follows that
no numerical point is period ic.

If x E B 1 is not numerical, t here are two cases. Either th ere is a 0 to the
left of a 1, C, or 6. In that case the extra neo us 0 would have to hit the 1,
C, or 6 to t he left of site 0, causing a new W to appear which would then
propagate to the right contradicting the assumptio n that the orbit returns
to B 1 infinitely often. T he ot her poss ibility is t hat there is a C to the left of
a 1, c, or O. Either the c continues to the left foreve r, or it will turn into a 0
red ucing it to the previous case . •

These lem mas combine to give the result:

Theorem 1. f!(F1l 'I lI( Fr).
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4. Further Discussion

553

Wit h a litt le more work one can write down II(F,) and n(Fr). First the
pe riod ic poi nts form two classes. T he fixed points consis t of all con figurations
consist ing ent irely of digits 0 and 1, or with D's and 1'$ followed by W's, or
the configuration of all W's.

Definit io n 7.

](1 = {x E SZ such tha t there exists - 00 :S n ::; 00 wit h

Xi E {O,l} [or all i <n and Xi= W fori 2: n}

The second type of periodic configuration ar ises from spatially periodic
words in th e symbols {O,O} for which no two of three consecutive sites have
value O. On th is subset the rule acts like the right shift , and t here are periodic
points of all periods exce pt two. The closure of th is set of peri od ic points is
t he entire su bsh ift of finite ty pe descr ibed as follows.

Definitio n 8.

](, = {x E SZ such that Xi E {O,O} and Xj = Xk = 0,* Ij - kl > 2}

T hese cases exhaust II(F} ). T he rem aini ng case for the non- wandering
set, is the case in which O'i(x) is nu meri cal for some i E Z . If a numerical
configuration c has infini t ely many D's, t hen it s or bit will eventually ret urn
to any given neighborhood of c. T he oth er possibili ty is th at a numerical
configuration has finitely many D's in wh ich case it will eventually evolve
to a configu ration ( the form .. . 11lcOiWW W . . . for some i 2: o. All such
configurations, may be realized as limit po ints of configurat ions with infinitely
many D's an d thus are in the non-wande ring set by virtue of its being a closed
set.

Defin it io n 9.

](3 = {x E SZ such that O"i(x) is numerical for some i E Z}

T he set J( 3 is not closed, but its closure consists of ](1 U ](3 -

'I' heorem 2.

II (F, )
n (F,)

J{, U J{,

J{, U J{, U J{3
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