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The Non-wandering Set of a CA Map

Lyman P. Hurd
Institute for Advanced Study
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Abstract. An example is given of a cellular automaton map F imple-
menting a binary counter whose non-wandering set, (F'), is strictly
larger than the closure, II{ F'), of the set of points periodic under F.

1. Introduction

Cellular automata (see [2]) are shift-commuting maps on the full shift on
k symbols. Therefore, they may be analyzed with the tools of dynamical
systems theory. See for example [4], [6]. In [3] the non-wandering set, Q(F),
and the closure, II(F), of the set of points periodic under F' are calculated
for a number of cellular automaton rules. In all the examples illustrated
there for which both II(F') and Q(F) were calculated, they were equal. This
is not true in general, however. This paper gives an example of a cellular
automaton map I for which Q(F) # II(#).

2. Definitions

If S is a finite set with |S| = k, the full shift on k symbols, S%, is the set
of functions from the integers to S. Equivalently % may be viewed as the
set of doubly infinite words in the symbols from §. The full shift can be
topologized by giving S the discrete topology and S? the product topology,
or equivalently by defining a metric:

day)= 3 8(a)/2" 1)

where §(a,b) = 0 if a = b and 1 otherwise.
There is a natural (left) shift map o acting on SZ defined by o(z); = z:4;.
A closed, shift-invariant subset of SZ is referred to as a subshift.

Definition 1. A cellular automaton map is a continuous function F : S% —
5% which commutes with .

One way of constructing cellular automaton maps is to specify an arbi-
trary function
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f:8"* =8 (2.2)
and allow F : §% — S% to be defined by the rule
F(I)f = f(zi—ra'--sxi-i-r) (2.3)

By the Hedlund-Curtis-Lyndon theorem (see [1]) all cellular automaton maps
arise in this fashion.

Definition 2. Given a continuous map F on a compact metric space, X,
the periodic set of F, is denoted Per(F).

Per(F) = {z € X such that F?(z) = z for somep > 0} (2.4)
The closure of this set is denoted II(F").
II(F) = Per(F) (2.5)

If X is a compact metric space, and F': X — X is a continuous function,
the non-wandering set (see [7]) consists of all points z € X for which the
inverse images of any neighborhood of z are not all disjoint.

Definition 3. If F: X — X is a continuous map of a compact metric space,
the non-wandering set of F', denoted Q(F'), consists of all points € X such
that for every neighborhood U of z, there exists an integer n > 1 such that
FUYNU # 0.

Evidently Q(F') 2 II(F) for all F.
If X = S§% and F : X — X commutes with o, it is clear from the
definitions that [I( /') and Q(F) are closed and shift-invariant (i.e., subshifts).

3. A CA rule F; for which Q(F) # II(F)

The rule F; implements a binary counter. Due to the local nature of cellular
automata evolution, this counter does not produce a new number at every
time step, but instead takes time increasing linearly with the number of
consecutive ones which must be converted to zeros. Thus incrementing 2n
to 2n + 1 takes a single time step, whereas to get from 2" — 1 to 2" requires
2n — 1 steps (n > 1). This is due to the fact that the carry bit travels with
unit speed.
The set S has five elements:

§={W,0,1,0,c} (3.1)

The symbol “W” is a boundary marker. The symbols 0 and 1 represent
digits. The symbol 0 represents a zero carrying a right-traveling signal. This
signal has the function of carrying the information that all necessary carry
operations have been executed. The ¢ represents a 1 which is about to be
incremented to a 0 (converting the site to the left to a 1 or a ¢, dependent
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dy dy d3 — dy digits remain fixed

di dy W — dy

d dy 0 — 4

d 0 W = ¢ incrementing rule

0 0 d5 — 0 right-moving signal

i 0 W — 0

d 0 0 — 0

0 ¢ ds — 0 carry signal

0 ¢ W — 0

d 0 ¢ — 1

1 ¢ d3s — 0

1 ¢ W — 0

d 1 ¢ — ¢

otherwise — W error condition
d; € {0,1}

Table 1: The function f; : 5% — § generating F}.

upon its current value). The carry travels to the left until it hits a zero to
turn into a 1. A signal then travels to the right indicating that the operation
has been completed.

The local function f; : S — S generating F} : S% — S% is given in
Table 1. The evolution of /} from the configuration representing the value 0
is shown in Table 2.

Definition 4. The point z is defined by z = .. L000WWWW ..., or more
precisely z; =0 ifi <0, 2 =0 and z; = W fori > 0.

Lemma 1. z € Q(F).

Proof. In fact z satisfies a stronger condition. Given a neighborhood U of
z, there always exists n > 0 such that F*(z) € UU. To show this we define a
series of neighborhoods of z.

Definition 5. Let B, = {z € S% such that 2; =0 for—n < i < —1, 2, =0,
and x; = W for 1 <i <n}.
Equivalently B, is the ball of radius 1/2" about z.

Every neighborhood of z contains all but finitely many B, and while the
exact time it takes the orbit to return to a given B, is somewhat complicated,
it satisfies the inequality:



552 Lyman P. Hurd

t configuration n
0l0 0 0 00 WI|oO
110 00 0 c¢c W1
2(0 00 1 0 W|[2
310 001 ¢ W|3
410 0 0 ¢c 0 W

510 01 0 0 W

610 01 0 0 W|4
710 01 0 ¢ W/[5
80 01 1 0 W|6
910 0 1 1 W7

Table 2: The Evolution of Rule Fy from the configuration z.

Fi(z) € B, for some i < 2n [log, n + 1] (3.2)
E

To complete the proof of the theorem we need to show that z ¢ II(F}) or
equivalently that there is a neighborhood of z disjoint from Per(F}).

Lemma 2. If z € By then x ¢ Per(F}).
Proof. It is useful to introduce a definition.

Definition 6. A configuration z € $Z is numerical if 2; = W for all ¢ > 0,
and there exists n < 0 such that @, € {0,c}, 2; = 0 fori > n and i <0, and
z; € {0,1} for 1 < n.

The image of a numerical configuration is numerical. Assume that z
is a numerical periodic point. The orbit of z must maintain a bounded
distance from any given non-numerical point. The rule, however, has been
set up so that the orbit of any numerical point approaches the non-numerical
configuration z' = .. .000WWW ... arbitrarily closely. Thus it follows that
no numerical point is periodic.

Ifz e B is not numerical, there are two cases. Either there is a 0 to the
left of a 1, ¢, or 0. In that case the extraneous 0 would have to hit the 1
e, or 0 to the left of site 0, causing a new W to appear which would then
propagale to the right contra,dlctmg the assumption that the orbit returns
to B infinitely often. The other possibility is that there is a ¢ to the left of
al, ¢, or 0. Either the ¢ continues to the left forever, or it will turn into a
reducmg it to the previous case. H

These lemmas combine to give the result:

Theorem 1. Q(F,) # II(F}).
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4. TFurther Discussion

With a little more work one can write down II(F) and Q(Fy). First the
periodic points form two classes. The fixed points consist of all configurations
consisting entirely of digits 0 and 1, or with 0’s and 1’s followed by W’s, or
the configuration of all W’s.

Definition 7.

K, = {z¢€ SZ such that there exists — 0o < n < co with
x; €4{0,1} forall i <n and z; = W for i > n}

The second type of periodic configuration arises from spatially periodic
words in the symbols {0, 6} for which no two of three consecutive sites have
value 0. On this subset the rule acts like the right shift, and there are periodic
points of all periods except two. The closure of this set of periodic points is
the entire subshift of finite type described as follows.

Definition 8.
K, = {z € 5% such that z; € {0,0} and Ty =y = 0= |j—k|l>2}

These cases exhaust II(F}). The remaining case for the non-wandering
set, is the case in which () is numerical for some ¢ € Z. If a numerical
configuration ¢ has infinitely many 0’s, then its orbit will eventually return
to any given neighborhood of ¢. The other possibility is that a numerical
configuration has finitely many 0’s in which case it will eventually evolve
to a configuration f the form ...111c0'WWW ... for some i > 0. All such
configurations, may be realized as limit points of configurations with infinitely
many 0’s and thus are in the non-wandering set by virtue of its being a closed
set.

Definition 9.
Ky = {z € 5% such that o'(z) is numerical for some i € Z}
The set /3 is not closed, but its closure consists of Ky U K.

Theorem 2.

IF) = KHUK,
QF) = KHUK UK,
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