Complex Systems 2 (1988) 555-575

Learning by Choice of Internal Representations

Tal Grossman
Ronny Meir
Eytan Domany
Department of Electronics, Weizmann Institute of Science
Rehovot 76100 Israel

Abstract. We introduce a learning algorithm for two-layer neural
networks composed of binary linear threshold elements. Whereas ex-
isting algorithms reduce the learning process to minimizing a cost
function over the weights, our method treats the internal represen-
tations as the fundamental entities to be determined. We perform
an efficient search in the space of internal representations. When a
correct set of internal representations is arrived at, the weights can
be found by the local and biologically plausible Perceptron Learning
Rule. No minimization of any cost function is involved. We tested
our method on three problems: contiguity, symmetry and parity. Our
results compare favorably with those obtained using the backpropa-
gation learning algorithm.

1. Introduction

The past few years have witnessed a surge of interest in neural networks.
In particular, the most intriguing aspect, that of learning, has received wide
attention [1-3].

Formal Logical Neurons were first introduced by McCulloch and Pitts
[4], who have also argued that networks composed of such elements can serve
to realize any desired input-output relationship. A particularly simple im-
plementation of such a network is the single-layer perceptron introduced by
Rosenblatt [5], who also proposed a learning algorithm, that was guaran-
teed to converge to a solution (if one exists). A related learning rule was
introduced by Widrow and Hoff [1,6]. However, Minsky and Papert [7] have
demonstrated that simple single-layer perceptrons have very limited appli-
cability. On the other hand, it is known that multi-layered perceptrons can,
given a sufficient number of units, implement any binary input/output rela-
tion (predicate). Back-propagation (BP) is a learning algorithm, for multi-
layered perceptrons, proposed [8,9] and recently investigated by a number
of groups [2,10]. It uses continuous variables and a smooth sigmoid single

© 1988 Complex Systems Publications, Inc.

556 Tal Grossman, Ronny Meir, and Eytan Domany

unit input-output response function. An error function, which measures the
deviation of actual from desired output, is then minimized by the algorithm.
There is no convergence theorem for back-propagation: like any minimiza-
tion procedure it may find a local minimum that does not correspond to a
solution. Trying to avoid this problem, by using simulated annealing [11] for
example, is extremely time consuming.

In this communication we introduce [12] a learning algorithm for two-
layer perceptrons, that use binary McCulloch-Pitts neurons in their input,
internal and output layers, and a sharp single unit threshold function. Our
algorithm learns by choosing internal representations (CHIR). It differs from
back-propagation technically as well as conceptually. Whereas BP views the
weights as the independent variables of the learning process, CHIR views the
internal representations as the fundamental entities to be determined. Inter-
nal representations are the states taken by the hidden layers of the network,
generated in response to presentation of inputs from the training set. Once a
correct set of internal representations is arrived at, the weights can be found
by existing standard methods, such as the perceptron learning rule (PLR)
[5]. The CHIR algorithm is completely local, and perhaps slightly more plau-
sible biologically than back-propagation, due to the simpler computational
requirements of each unit. We present the algorithm in detail below, and also
describe its performance on three prototype problems: symmetry, parity, and
contiguity. There is no proof of convergence for our procedure. Numerical
experiments on symmetry and contiguity show that given enough time, a
solution is always found. For parity, the situation is not as clear.

To state the problem of learning in concrete terms, consider a network
of binary linear threshold elements (figure 1). Element i can be in one of
two possible states, S; = +1. A particularly simple network architecture
is presented in Fig. 1. This is a feed-forward network with N inputs, a
single output, and H hidden units. There are 2V possible input patterns,
(Si", 83", ..., S¥). The states of hidden layer units S and the output unit,
Sut are determined by the input according to the rules

S,h = sign (E?:l IfV"jS;“‘ 4 9,‘) (1.1)
S = sign (E{il w; S+ 9) v

Here W;; are the weights assigned to the connections from input unit j to
hidden unit z; w; to the connection from the latter to the output unit. The
parameters 0; (#) are biases associated with the hidden layer (output) cells.
These may be considered as weights which connect the units to a constant
input (S; = 1); from here on reference to the “weights” implies biases as
well.

A typical task of such a network is classification; divide input space into
two categories A and B; whenever a pattern that belongs to A is presented
as input, the network is required to respond by setting S°** = +1, whereas
an input from category B gives rise to $° = —1. There are 92" possible
distinct input-output mappings (predicates). Obviously, an arbitrary set of

Learning by Choice of Internal Representations 557

N

Figure 1: Feedforward network with layered architecture. State of cell
iin layer { + 1 is determined by the states of all cells of layer {. Input
patterns are presented to the bottom layer, output is read out from
the top. Each cell contains a binary variable .S'f = +1 that defines its
state.

weights and biases, when used in the dynamic rule (1), will not produce the
mapping required for our A versus B classification task. The basic problem
of learning is to find an algorithm, i.e a synaptic modification rule, that
produces a set of connections and thresholds which enables the network to
perform a preassigned task. If there are no hidden units, and input is directly
connected to output, a proper set of weights can be found in a simple, elegant
and local fashion by the PLR, described in detail below. Whenever an error
occurs, in the course of a PLR training session, weights are modified, in a
Hebbian manner [13], toward values that correct the error.

The most impressive aspect of this learning rule is the existence of an
associated convergence theorem, which states that if a solution to the problem
exists, the PLR will find a solution in a finite number of steps [5,7]. However,
single-layer perceptrons can solve only a very limited class of problems. The
reason for this is that of the 22" possible partitions of input space only a
small subset (less than 2V¥*/N1) is linearly separable [15]. One of the most
widely known examples of a problem that cannot be solved by a single-layer
perceptron is parity [7]: assign output +1 to inputs that have an odd number
of +1 bits, and —1 otherwise. Parity (and any other) classification task can
be solved once a single hidden layer is inserted between input and output.
This, however, makes learning difficult; in particular, the PLR cannot be
implemented. The reason for this is that in order to determine the corrective
increment of a weight W;;, one has to know the correct state of both pre and
post synaptic cells, 7 and j. For multilayer perceptrons only the states of the
input “cells” and output are known; no information regarding the correct
state of the hidden layer is a priori available. Therefore, when in the course

558 Tal Grossman, Ronny Meir, and Eytan Domany

of the training session, the network errs, it is not clear which connection is
to blame for the error, and what corrective action is to be taken.

Back-propagation circumvents this “credit-assignment” problem by re-
placing binary linear threshold elements by units with continuous valued
outputs; the discontinuous threshold function (1) is also replaced by a con-
tinuous sigmoid function. Thus one can define various cost functions that
measure the deviation of actual outputs from those required by the classifi-
cation task. The cost function depends continuously on the weights, and is
chosen so that its lowest value is obtained when each input gives rise to the
correct output. Hence the problem of learning is reduced to one of minimiz-
ing the cost function over the space of weights. Most such algorithms view
the weights as the basic independent variables, whose values determine the
internal representations as well as the output obtained in response to each
input pattern. Obviously, there is no guarantee that such a procedure will
find a global (versus local) minimum, that corresponds to an error-free net-
work. Nevertheless, back-propagation was demonstrated to yield solutions
to a variety of problems [2,8]. We note, in passing, that a new version of
BP, “back propagation of desired states”, which bears some similarity to our
algorithm, has recently been introduced [10]. See reference [14] for a related
method.

The central point of the CHIR algorithm is the notion that the internal
representations associated with various inputs should be viewed as the basic
independent variable of the learning process. This is a conceptually plausible
assumption; in the course of learning, a biological or artificial system should
form various maps and representations of the external world. Once such
representations are chosen, simple and local Hebbian learning rules, such as
the PLR, can be trivially implemented, and the problem of learning becomes
one of choosing proper internal representations. Failure of the PLR to con-
verge to a solution is used as an indication that the current guess of internal
representations needs to be modified.

The remainder of the paper is organized as follows. In section 2 we give a
detailed description of the CHIR algorithm. Section 3 contains a presentation
of results obtained with the algorithm for a variety of problems, while section
4 summarizes our findings, and discusses possible extensions.

2. The algorithm

Since one of the basic ingredients of our method is the Perceptron Learning
Rule, we briefly review the version actually implemented in the CHIR algo-
rithm. The learning process takes place in the course of a training session.
Consider j = 1,...N source units, which are directly connected to a single
target unit 7. When the source units are set in any one of g = 1,... M
patterns, i.e. S; = £f, we require that the target unit (determined using
(1)) takes preassigned values ¢f. A set of weights, W}, 67, for which this
input-output relationship is satisfied, constitutes a solution of the problem.
Starting from any arbitrary initial guess for the weights, an input v is pre-

Learning by Choice of Internal Representations 559

sented, resulting in the output taking some value S¥. Now modify every
weight according to the rule

Wi — Wi+ AW (2.1)
AW =n(l = SYE)ENEy (2.2)

where n > 0 is the step size parameter. The bias 6 gets modified by the
same rule, with £ = 1. Now another input pattern is presented, and so on,
until all inputs draw the correct output. Note that the PLR modifies weights
only when presentation of input v produces an erroneous output. When that
happens, each weight is changed, in a Hebbian fashion, towards values that
correct the error.

As explained above, without knowing the internal representations, e.g
the states taken by the hidden layer when patterns from the training set are
presented, the PLR is not applicable. On the other hand, if the internal rep-
resentations are known, the weights can be found by the PLR. This way the
problem of learning becomes one of choosing proper internal representations,
rather than of minimizing a cost function by varying the values of weights.
To demonstrate the difference between these approaches consider again the
classification problem mentioned above; the system is required to produce
preassigned output values, S7%* = £°*%# in response to p = 1,..., M input
patterns. If a solution is found, it first maps each input onto an internal
representation generated on the hidden layer, which, in turn, produces the
correct output. Now imagine that we are not supplied with the weights that
solve the problem; however the correct internal representations are revealed.
That is, we are given a table with M rows, one for each input. Every row has
H Dbits f?"‘, for it = 1,...H, specifying the state of the hidden layer obtained
in response to input pattern g. One can now view each hidden-layer cell i
as the target cell of the PLR, with the NV inputs viewed as source. Given
sufficient time, the PLR will converge to a set of weights W, ;, connecting
input unit j to hidden unit 7, so that indeed the input-output association
that appears in column i of our table will be realized. In a similar fashion,
the PLR will yield a set of weights w;, in a learning process that uses the
hidden layer as source and the output unit as target. Thus, in order to solve
the problem of learning, all one needs is a search procedure in the space of
possible internal representations, for a table that can be used to generate a
solution. This sounds, a priori, a rather hopeless undertaking; if the training
set contains all possible inputs (i.e. M = 2V), there are 272" possible distinct
internal representations (i.e. tables). Our algorithm actually searches a much
smaller space of tables; the reason for this is explained in section 4. Needless
to say, the updating of weights can be done in parallel for the two layers,
using the current table of internal representations. In the present algorithm,
however, the process is broken up into four distinct stages:

1. setinrep: Use existing couplings W;; and 0; to generate a table of
internal representations {¢/”} on the hidden layer. This is done simply

560

Tal Grossman, Ronny Meir, and Eytan Domany

by presenting each input pattern from the training set and calculating
the state on the hidden layer, using equation (2.1).

. learn28: The hidden layer cells are used as source, and the output as

the target unit of the PLR. The current table of internal representations
is used as the training set; the PLR tries to find appropriate weights w;
and f to obtain the desired outputs. If a solution is found, we stop; the
problem has been solved. Otherwise we stop after I,3 learning sweeps,
and keep the current weights (for more details on the choice of this
parameter, see remark below).

. inrep: Use the current values of w; and 8 to generate a new table of

internal representations, which, when used in (2.2), yields the correct
outputs. This is done by presenting the table sequentially, row by
row, to the hidden layer. If for row v the wrong output is obtained,
the internal representation ¢** is changed. Having the wrong output
means that the “field” produced by the hidden layer on the output unit,
ho¥k =3 wjff'" is either too large or too small. We then randomly
pick a site j of the hidden layer, and check the effect of flipping the
sign (changing the “activity”) of EJ}-L’” on ho“b¥: if it changes in the right
direction, we replace the entry f;"" of our table by —f;"". Namely,

if wiP¥ €74 < 0 then £ — —gh (2.3)

We keep picking sites and changing the internal representation of pat-
tern » until the correct output is generated. Note that we always
generate the correct output this way, provided 3, |w;| > [0°%]. Tt is
easy to design the perceptron learning process, in the learn23 stage, so
that this condition is satisfied. This procedure ends with a modified
table which is our next guess of internal representations. During this
stage only the table (;’;-"" is changed; all weights and thresholds remain
fixed. If weights W;; (connecting input to hidden layer) can now be
found, so that this table is indeed the outcome of presenting all inputs
in our training set, we have solved the problem.

. learn12: Using the new table obtained from inrep, apply the PLR

with the first layer serving as source, treating every hidden layer site
separately as target. Actually we use a slightly modified version of
the PLR: when an input from the training set is presented to the first
layer, we first check whether the correct result is produced on the out-
put unit of the network. If we get wrong overall output, we use the
PLR for every hidden unit :, modifying weights incident on ¢ according
to (2), using column ¢ of the table as the desired states of this unit.
If, however, presentation of an input » to the first layer does yield the
correct final output, we insert the current state of the hidden layer as
the internal representation associated with pattern v, and no learning
steps are taken. We sweep in this manner the training set, modify-
ing weights W;;, (between input and hidden layer), hidden-layer biases

Learning by Choice of Internal Representations 561

Figure 2: Flow chart for the algorithm described in this paper. Details
about the different stages are given in section 2 of the main text.

f;, and, as explained above, internal representations. We periodically
check whether the network has achieved error-free performance for the
entire training set; if it has, learning is completed and a solution of the
problem has been found. If no solution has been found after I,; sweeps
of the training set, we abort the PLR stage, and keep the present values
of weights and thresholds.

The algorithm starts out by setting W;; and §; randomly. Then the initial
guess for our table is obtained by using setinrep. Next, an attempt is made,
using learn23, to learn w; and #; failure to do so in less than I3 sweeps of
the table sends us to inrep. A new table is generated, and the couplings
W,;, 0; are learned using learnl2. Failure to achieve perfect performance in
1,, sweeps of the training set results in freezing the weights and restarting
the cycle with setinrep, and so on. The flow chart is given in figure 2; the
program performs a preset number of cycles before “giving up” its attempt
to find a solution.

This is a fairly complete account of our procedure. There are a few details
that need to be added.

(a) The “impatience” parameters, Iy; and I3, which are rather arbi-
trary, are introduced to guarantee that the PLR stage is aborted
if no solution is found. This is necessary since it is not clear that a

562

Tal Grossman, Ronny Meir, and Eytan Domany

solution exists for the weights, given the current table of internal
representations. Thus, if the PLR stage does not converge within
the time limit specified, a new table of internal representations
is formed. The parameters have to be large enough to allow the
PLR to find a solution (if one exists) with sufficiently high prob-
ability. On the other hand, too large values are wasteful, since
they force the algorithm to execute a long search even when no
solution exists. Therefore the best values of the impatience pa-
rameters can be determined by optimizing the performance of the
network; our experience indicates, however, that once a “reason-
able” range of values is found, performance is fairly insensitive to
the precise choice.

Stochasticity: While using the PLR, we randomly choose which
pattern is presented next from the training set. Sequential pre-
sentation of patterns may cause the “deterministic” algorithm de-
scribed above to enter a cycle [16]. It is possible to introduce
stochasticity in a different manner, so that sequential presenta-
tion of the training set does not generate cycles. This can be done
by flipping an entry in our table in a stochastic fashion, e.g. with
probability

P(EM — —£P") = exp(—wil™ € IT)/2 cosh(w;/T)

When the “temperature”-like parameter, T, is set to zero, we
recover the version described above. When T is non-zero there is
a finite probability to flip an internal unit even if doing so pulls
the output in the wrong direction. We do not report here details
of the effect of T' > 0.

Treating Multiple Qutputs: A simple modification of the inrep
procedure provides a different way to avoid cycles, as well as a
method applicable to deal with multiple output architectures. In
the version of inrep described above, we keep flipping the internal
representations until we find one that yields the correct output,
i.e. zero error for the given pattern. Instead, we can allow only
for a pre-specified number of attempted flips, and go to the next
pattern even if zero error was not achieved. In the modified ver-
sion we also introduce a slightly different criterion for accepting
or rejecting a flip. Having chosen (at random) a hidden unit 4,
we check the effect of flipping the sign of £ on the output error
(and not on the output field, as described above). If the output
error is not increased, the flip is accepted and the table of inter-
nal representations is changed accordingly (other variants of this
acceptance criterion are also possible).

This version of the algorithm is applicable for multiple-output
architectures, and will be described elsewhere. Here we report
only investigations that use the previously described “restrictive”

Learning by Choice of Internal Representations 563

version of inrep.

(d) Integer weights: When using binary units, setting n = % ensures
that AW;; = 0, 1, and one can use integer W;;’s without any
loss of generality. Thus, the algorithm can be fully implemented
using only integers, which is an important advantage in many
applications.

(e) Optimization: The algorithm described uses several parameters,
which should be optimized to get the best performance. These
parameters:

I5 and ;3 - see section (a) above.

Time limit — upper bound to the total number of training
sweeps.

T (temperature, defined for the stochastic version of inrep)

PLR training parameters — i.e the increment of the weights
and thresholds during the PLR stage. In the PLR we used
values of 5 ~ 0.1 (see equation (2.3, 2.4)) for the weights, and
7 =~ 0.05 for thresholds, whereas the initial (random) values
of all weights were taken from the interval (—0.5,0.5), and
thresholds from (—0.05, 0.05). In the integer weights program,
described above, these parameters are not used.

3. Performance of the algorithm

Many workers, in presenting their results concerning learning in neural net-
works, do not report the success rates of their algorithms. It is thus very
difficult to judge the quality of different learning algorithms, since it is usu-
ally not clear whether the results given are typical, representative or rare.
Thus, it is important to discuss criteria for assessing the success of a learning
algorithm.

The task of learning in the type of network we have been discussing is
to produce couplings and thresholds which yield the desired input/output
relations. In our algorithm, as in many others, there are several parameters
which affect the performance. For a specific learning task and a set of param-
eters (denoted by A), complete characterization of the learning algorithms’
performance is given by P(t, A), the probability that the algorithm finds a
solution in less than { “time” steps. One can estimate this function, by plot-
ting the distribution histogram of the “time” needed to reach a solution (see
figure 3). This can be obtained by performing the learning many times, each
with different initial couplings and thresholds. For any practical application
of a learning algorithm a time limit must be externally specified. Thus, the
quantity of interest is the probability of an algorithm to converge within the
given time limit. Of course when the success rate is 100%, the calculation of
the average is sufficient.

The question now arises as to how to measure time in our (and similar)
algorithms. Since learning usually takes place by continually presenting the

564 Tal Grossman, Ronny Meir, and Eytan Domany

.Jl}l{ll

||||¥||||l|

0 100 200 300 400 500
no. of presentations

Figure 3: Contiguity: Histograms of the number of training sweeps
(pattern presentations) needed to solve the “4 or more” predicate,
with N = H = 8 cells. The horizontal axis is the number of presen-
tations ¢, while the vertical axis indicates the fraction of cases solved
within each time interval. We present results for I12 = 20 and I3 = 5.

network with patterns to be learned, a possible definition of “time” is just
the number of times the training set has been presented. In the CHIR al-
gorithm, there are I;5 + I3 such pattern presentation sweeps in each cycle.
One should keep in mind however, that various algorithms perform different
computations during each presentation, and therefore this characterization
is not the best possible. Nevertheless, it does eliminate the need to introduce
ad-hoc measures that may bias the result in various ways.

Since, however, various algorithms often do not converge to a solution
within the time limit specified, the question arises as to how to take this
fact into account in evaluating performance. Clearly, calculating averages
(and in general higher moments) that take into account only the cases where
the algorithm succeeded in finding a solution is not satisfactory. Another
possibility is to calculate the inverse average rate 7, defined as [19]:

where

Learning by Choice of Internal Representations 565

(3.2)

o 1/t; if run 7 is successful
e 0 otherwise

In equation (3.2) ¢; is the time needed to solve the problem, i.e the total
number of pattern presentations, as discussed above. Such a measure will be
dominated by the short, “lucky” runs, even when they are rare; the penalty
for long unfruitful search is small.

It seems to us that a better characterization of the success of the algorithm
is 1,,, the median “time” taken to solve the problem. The median measures
the time needed, for a success rate of at least 50%, and can be obtained from
simulations, run over many different initial conditions. However, a success
rate of at least 50% is required. In all (but two) cases reported below we
indeed had success rates of more than 50%; this allowed us to calculate the
median running time in each such case. In addition, we have also plotted
distribution histograms, as described above. For two cases (see Parity) when
it was impractical to achieve a success rate of more than 50%, we reported
the time needed for a 10% success rate.

Turning now to describe our results, we present our findings for three
problems.

3.1 Contiguity

This problem has been studied quite extensively in the recent literature [17].
It is suitable for a network that makes binary decisions; a string of N digits
is presented to the input layer, and the system has to give a yes/no answer
regarding the number of clumps (i.e. contiguous blocks) of +1’s. For exam-
ple, determine whether the input does or does not have more than n such
blocks; this is called the “n-or-more” predicate. These problems have a sim-
ple “human” or geometric solution, based on edge detection. Some of the
questions raised have to do with the ability of the network to find such a
solution, and the constraints that one may have to impose on the learning
process to guide it towards it. These questions were raised mainly to ad-
dress the issue of generalization in a controlled, quantitative fashion. Here
we studied the efficiency of the learning process, using an exhaustive set of
inputs as the training set. We wanted to compare performance of our algo-
rithm, measured, as explained above, with backpropagation. Also, we were
interested in the manner that learning time scales with problem size.

As the first test, we taught a network with N = H = 8 cells to solve the “4
or more” problem, using the entire space of 256 possible inputs as our training
set. In figure 3 we present a histogram based on 500 trials (i.e. initial choices
of weights). The horizontal axis indicates {, the number of training sweeps
(presentations of the training set) needed to achieve perfect performance.
We have included in this count presentations to both the input and hidden
layers. The vertical axis indicates the percentage of cases for which learning
was completed in the corresponding number of training sweeps. In the cases
summarized in the histogram of figure 3, each learning cycle contained I, =
20 presentations of all inputs to the first, and [;3 = 5 presentations to the

566 Tal Grossman, Ronny Meir, and Eytan Domany

second (hidden) layer. For this set of parameters a solution was found in all
500 cases in less than 100 learning cycles (¢ < 2500 sweeps). The average
number of presentations of the training set was ¢ = 79 + 3. This set of
parameters was found to be close to optimal, and was used always (unless
otherwise stated). The effect of choosing the impatience parameters was also
studied. We found that if I, is increased for fixed I53, ¢ decreases initially,
but then levels off. If we keep [}, fixed, performance becomes worse as I3
increases.

We also trained the network to solve a slightly different problem; the “2
versus 3”7 clumps predicate. For this problem we used all possible inputs
that have 2 or 3 clumps as our training set. Keeping N fixed, we varied
H and plot, in figure 4, the median number of training passes needed to
learn, t,,, as a function of H. Again, 500 cases were used for each data
point. For comparison we also present results reported by Denker et al.
[17], who studied the same problem using an efficient cost function for back-
propagation. The results of this comparison are rather interesting. First, we
note that CHIR learns much faster than backpropagation. More important
is the dependence of #,, on H. Our algorithm exhibits a decrease of ¢, with
increasing H; adding (possibly unnecessary) hidden units does not hinder
learning. Backpropagation exhibits increasing ¢,, with hidden layer size.

To further investigate the size dependence of our algorithm, we also stud-
ied the 2 versus 3 predicate for networks with N = H units, in the range
5 < N < 10. Results for the median number of passes needed to solve
are given in Fig. 5. No backpropagation data are available for comparison
regarding this scaling. We found that {,, increases exponentially with N ini-
tially, but levels off and decreases for N = 10. This decrease is statistically
significant; it may be due to the fact that we kept the “problem size” (e.g. 2
versus 3) fixed, while the input size (N) was increased. Typical CPU-times
for these networks, for N = H = 8,9,10 were 1.2, 3, and 10 sec/cycle, re-
spectively, on an IBM 3081. We imposed a cutoff of 200 on the number of
cycles allowed; for all sizes studied solutions were found in the majority of
cases for less then 200 cycles. Therefore ., does not depend on the cutoff.

3.2 Symmetry

The second problem we investigated was that of symmetry [18]. In this case
the output should be-l if the input pattern is symmetric around its center
and —1 otherwise. The minimal number of hidden layer units needed to solve
this problem is H = 2.

To study the dependence of the learning time on the problem size, we
present in figure 6 the median number of pattern presentations needed to
solve the problem as a function of the size of the input layer. The number of
hidden layer units was fixed at H = 2, independent of the input field size V.
In the cases presented the system was trained over the complete set of 2V
inputs, and the results were averaged over 500 cases. The parameters used
were I1, = 10 and Iz = 5. The maximum allowed number of cycles was 200.

Learning by Choice of Internal Representations 567

tm -1 T I T T T T ' T T T 1 l T T T T l T T T T I T T T T l T ‘-
woob- \X_/ i
[% BP .
300— .
i ¢ : CHIR 1
200/— -]
4 /
100 -
—l_l i 1 1 1 L I 1 1 1 1 [1 1 1 1 I 1 1 1 1 ! 1 1 1 L l_l_jj
== 4 5 6 7 8

H

Figure 4: “2 vs 3” problem: Median number of sweeps 1,,,, needed to
train a network of N = 6 input units, over an exhaustive training set,
to solve the “ 2 vs 3” clumps predicate, plotted against the number of
hidden units H. Results for back-propagation [17] (x) and this work
(¢) are shown. We always find a solution in less than 200 cycles; each
point uses 500 cases,

For N < 6 the network always found a solution, while it had over 90% success
for N = 8,10. We note that using the back-propagation algorithm we have
not been able to find a solution in hundreds of attempts for this architecture,
although a solution has been reported in reference [18]. However, we did not
make an exhaustive check of parameter space for the BP algorithm.

Next, we investigated the dependence of the learning time on the number
of hidden units for the case N = 8. Figure 7 depicts the dependence of the
number of pattern presentations on H, for the case where the system was
taught 240 out of the 256 possible patterns. As we see the learning time
increases from H = 2 to H = 3 and then decreases rapidly for H = 4,
from where it also decreases, but more slowly. Decrease of learning time for
increasing H was also seen in our study of contiguity. We note that addition
of many unnecessary hidden units does not hinder the learning ability of our
algorithm, but does not seem to help either (for the present task).

Finally, we checked the “rule extraction” ability of the network. By this
we mean the following: a fraction f of all possible input patterns constitutes
the training set, used to teach the network. Subsequently, the network is

568 Tal Grossman, Ronny Meir, and Eytan Domany

T T 11T
[

103

Illlllli
1 .q Il!l!ll

10°

T llalul
L ||||||!

1ol

100 Lo IR (.| L v g e F oo b @ ¥opoy

Figure 5: “2 vs 3” problem: Median number of sweeps t,,, needed to
train the network using an exhaustive training set, for the “2 versus
3" predicate, plotted versus network size (N = H).

tested on the patterns it has not been taught. In Fig. 8 we present the
rule extraction score S (fraction of correct scores on patterns not in the
training set) as a function of f, for a fixed input size N = 8, with varying
H = 2345,6,8. As can be seen in the figure, the number of errors in the
output is, to a good approximation, independent of H.

4. Parity

In the Parity problem one requires S°% = 1 for an even number of +1 bits
in the input, and —1 otherwise. This problem is considered computationally
harder than the other two, since the output is sensitive to a change in the
state of any single input unit. Tesauro and Janssen [19] used BP to teach
networks to perform this task, and studied how training time scales with the
input size N. In order to compare performance of the CHIR algorithm to that
of BP, we studied the Parity problem, using networks with an architecture
of N : 2N : 1, as chosen by Tesauro and Janssen [19].

We used the integer version of our algorithm, briefly described above. In
this version of the CHIR algorithm the weights and thresholds are integers,
and the increment size, for both thresholds and weights, is unity. As an
initial condition, we chose them to be +1 or —1 randomly. In the simulation
of this version, all possible input patterns were presented sequentially in a

Learning by Choice of Internal Representations 569

PR | e e S S N TR S N ST S R S I

109 - =

tm I]
102 - 3

ol = E

100 ol] jire e B § l LY O | l I W | I T I I | l 1

2 4 6 8 10
N

Figure 6: Symmetry: Median number of sweeps i,,, needed to train
the network using an exhaustive training set, versus number of inputs
N, with a fixed number H = 2 of hidden units.

fixed order (within the perceptron learning sweeps).

The results are presented in figure 9 and in table 1. For the sake of com-
parison with BP, we also present the performance criterion used by Tesauro
and Janssen [19] — the inverse average rate 7, defined in equation (2.2). For
all choices of the parameters (I5, I53), that are mentioned in the table, our
success rate was 100%. Namely, the algorithm did not fail even once to find a
solution in less than the maximal number of training cycles £,,4., specified in
the table. Note that BP does get caught in local minima, but the percentage
of such occurrences was not reported. In addition to the inverse rate, we give
also the average and the median number of presentations needed for learn-
ing. It is interesting to note that these numbers decrease when we increase
N from 8 to 9.

Using integer weights makes it easy to study their distribution and the
number of bits needed for their specification. This is an interesting question,
and quite relevant for several applications, e.g. when designing a “hardware
implemented” network, like a VLSI chip. For the trained N : 2N : 1 systems,
we calculated the standard deviation of the weights distribution, as well as
the maximal absolute value of weight that occurred in a trained system.
These results are presented in table 2. According to these results 8 bits per
weight suffice to solve the parity problem for N < 9. Even though scaling

570 Tal Grossman, Ronny Meir, and Eytan Domany

[I T T T T [T T T T I T T T T I I-
tm [X -
i N=28 4
300 _
;B M = 240]
200}— ad
100}— =
I A X X]
- X -
‘-I 1 1 1 1 L I 1 1 1 L] 1 L 1 1 l i
R 4 6 8
H

Figure 7: Symmetry: Average number of sweeps t,,, needed to train
the network, vs the size of the hidden layer H for N = 8. We used
240 out of the 256 possible inputs.

of the weight distribution’s width with N cannot be determined accurately
from this data, it appears to increase as a small power of size.

With H = N (instead of 2N), the parity problem becomes much harder.
In fact, NV is the minimal number of hidden units needed to solve this problem.
Performance of the integer algorithm for this architecture is given in table
3. The success rate here is smaller, as shown in the table. For N = 6,7, the
success rate is less than 50% and therefore it was not possible to calculate the

median. Instead, we give the number of presentations needed for a success
rate of 10%.

5. Discussion

We have presented a learning algorithm for two-layer perceptrons, that
searches for internal representations of the training set, and determines the
weights by the local, Hebbian perceptron learning rule. Learning by choice of
internal representation may turn out to be most useful in situations where the
“teacher” has some information about the desired internal representations.
For example, when one is aware of a partial set of features that are likely to
be relevant for solving the desired classification task. We demonstrated that
our algorithm works well on three typical problems. Comparisons with back-

Learning by Choice of Internal Representations 571

N n (L12, 123) tmez Median Average 7(Inv. Rate)
3 200 (84) 10 3 6 3

4 200 (9,3)(6.6) 20 4 9 4

5 300 (12,4)(96) 40 8 22 6

6 200 (12,4)(10,5) 120 19 84 9

7 210 (124)(155) 240 290 380 30

§ 100 (20,10) 900 2900 4000 150

9 80 (20,10) 600 2400 2900 1300

Table 1: Parity with N:2N:1 Architecture: median, average, and in-
verse rate 7. n is the number of cases run for each N. When two
choices of the parameters ([13, I23) are given, they were both simu-
lated with similar results for both. The success rate was 100% in all
cases, and the statistical errors were around 10%.

o max «a max
1.1 4 1.9 6
1.1 5 25 9

4 6 3.8 15
23 11 5.8 23
3.8 17 1.7 39
5.1 20 16.8 52
6.1 26 21.9 77

© 0o~ Utk |z
—
B

Table 2: Weight Distribution in Parity N:2N:1 architecture. o is the
standard deviation of the weight distribution, while “max” denotes
the maximal weight obtained. The first pair of columns refer to Wi,
the second to Was.

N n (112, I23) tmaz Success rate Median® 7
37200 (6,6) 30 0.6 %0 10
4 400 (9, 3)(6 6) 120 0.65 240 34
5 130 (96 240 0.78 750 120
6 200 (18,6)(1510) 900 0.23 2800% 3900
7 120 (20,10)(15,10) 1200 0.13 4300 7700

Table 3: Parity with N:N:1 Architecture: success rate, median time,
and inverse rate 7.

*For N = 6,7 we give the number of presentations required for a 10%
success rate (instead of the median).

572 Tal Grossman, Ronny Meir, and Eytan Domany

T L] I T T T T '[T T T T l T T T T] L T T T t T
1 00:_ N=28 =] —
S [o mez %)
0.98— £ =
[Al ¢ i
: + H=4 e D :
0.96— 5 H=5 & -
- N o]
| & H=6 ¢ i
0_94:_22 H=8 +]
C &]
L o1 ’
0 92_—- =
0.90— % -
1 1 I 1 1 L 1 | 1 1 L 1 I 1 1 1 1 I 1 L L 1 I 1
0.6 0.7 0.8 0.9 1

Figure 8: Symmetry: Rule extraction score § (fraction of correct
scores on patterns not taught) for the symmetry problem, versus f,
the fraction of input states (out of 2V) used in the training set, for
fixed N = 8 input units and varying H. We used 500 cases for each
point.

propagation were also made. It should be noted that one training sweep
involves much less computations than that of back-propagation. We pre-
sented also results concerning the manner in which training time varies with
network size; non-monotonic size dependence was found, with significant
variation from problem to problem. For the symmetry problem we also in-
vestigated the capacity of the algorithm for “rule extraction”.

As mentioned above, the CHIR algorithm searches for a correct internal
representation in a space much smaller than that of all 2#M possible tables.
The reason for this is the following. We alternate between two sets of tables
that are obtained in two distinct ways. All tables generated by the setinrep
procedure belong to the first set, denoted by 7', the set of all possible Targets.
These are the tables that can be obtained by presenting the training patterns
as input, and using the dynamic rule (1) with all possible assignments of
weights W; ;. The number of tables in T' is less than (2V°/N!# which for
large M is much smaller than the total number of possible tables. Tables
obtained using inrep belong to a second set, denoted by S (for Source). This
set contains all tables that can give rise, using all possible w;, to the correct
output. The tables that solve the learning problem constitute the set TS

Learning by Choice of Internal Representations 573

4

10 1 T l T T T T T T T 1 T T T T | T T T T E T 1?
T c b
[O BP 0]
109 L + -
- + CHIR o g

. 0]
108 | L P o]
F O E

C (] N

[O ¥ :
ot = + .
- 4 + 3

- + -
100 1 1 I 1 1 L 1 I L 3 L 1 I 1 1 1 1 I i 1 1 L | 1 1

2 4 6 8 10
N

Figure 9: Parity: Inverse rate, 7 (defined in equation (2.2)), versus
problem size, for N : 2N : 1 architecture. Open squares are the
results reported using the BP algorithm [19], while the + signs give
our results.

(see figure 10). Our algorithm takes a table £ € T, and checks (using
learn23) whether it does or does not belong also to S. If ¢t ¢ S, a new table
s € S is generated and we check (using learn12) whether it belongs also to
T or not. If not, a new table ¢ is generated, and the procedure is repeated.
This way our search is limited to subsets that are much smaller than the set
of all possible tables. Note that in the course of learning the weights change,
and this change will, in general, give rise to a new guess for our table that
differs from the previous one (e.g. t* #).

An appealing feature of our algorithm is that it can be implemented in
a manner that uses only integer-valued weights and thresholds. Thus, the
state of the network at each given time is given by a point in a discrete
weight-space. This discreteness makes the analysis of the behavior of the
network much easier, since we know the exact number of bits used by the
system in constructing its solution, and do not have to worry about round-off
errors. From a technological point of view, for hardware implementation it
may also be more feasible to work with integer weights. Moreover, biological
evidence suggests that nervous systems are not capable of fine-tuning their
connections in a smooth way, as is required by the BP and other algorithms.
Tt is thus more realistic to allow the weights to take on only a discrete set of

574 Tal Grossman, Ronny Meir, and Eytan Domany

Entire Space

“Correct Tables”

Tigure 10: Search in the space of tables: Tables that solve the learning
problem constitute the set § (| 7. Both 5 and T' are much smaller
than the set of all possible 2M# tables of internal representations.
Our algorithm searches for a correct table by alternatively generating
tables in § and T'; see text for details.

possible values. Of course, one would like this set to be as small as possible,
thus rendering the most compact and efficient solution; however, this is a
rather stringent condition which is difficult to realize in general.

We are extending this work in various directions. The present method
needs, in the learning stage, M H bits of memory: internal representations
of all M training patterns are stored. This feature is biologically implausible
and may be technologically limiting; we are developing a method that does
not require such memory.

The algorithm presented in this paper is tailored for a system comprising
a single layer of hidden units and a single output. Generalizing it to networks
with multiple outputs is not entirely straightforward, due to the fact that in
the inrep stage the hidden units may get conflicting instructions from the
different output sites (this fact has been realized by Plaut et al. [10] in their
related learning algorithm). We did, however, succeed to solve this problem
(see point (c) in section 2, and found that a network with multiple outputs
did function well on various problems of the same kind as discussed above.
This extension will be described elsewhere. It appears that the modification
needed to deal with multiple outputs also enables us to solve the learning
problem for network architectures with more than one hidden layer.

Other directions of current study include extensions to networks with
continuous variables, and to networks with feed-back.

Learning by Choice of Internal Representations 575

References

[1] T. Kohonen, Self Organization and associative Memory, (Springer Verlag,
1984).

[2] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, 2 vols. (The MIT Press, Cam-
bridge, MA, 1986).

[3] R. P. Lippmann, IEEE ASSP Magazine, 4 (1987) 4.
[4] W. S. McCulloch and W. Pitts, Bull. Math. Biophys., 5 (1943) 115.

[5] F. Rosenblatt, Psych. Rev., 62 (1958) 386; Principles of neurodynamics,
(Spartan, New York, 1962).

[6] B. Widrow and M. E. Hoff, WESCON Conv. Record IV (1960) 96.
[7] M. Minsky and S. Papert, Perceptrons, (MIT, Cambridge, 1969).

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature, 323 (1986)
533-536.

[9] D. B. Parker, MIT technical report, TR-47 (1985).

[10] D. C. Plaut, S. J. Nowlan, and G. E. Hinton, Technical Report CMU-CS-
86-126.

[11] S. Kirkpatrick, C. D. Gelatt and M. P. Vechi, Science, 229 (1983) 4598.

[12] A preliminary version of this work was presented at the Neural Network for
Computing meeting, Snowbird 1988.

[13] D. O. Hebb, The organization of Behavior, (John Wiley, New York, 1949).
[14] Y. Le Cun, Proc. Cognitiva, 85 (1985) 593,

[15] P. M. Lewis and C. L. Coates, Threshold Logic, (Wiley, New York, 1967).
[

16] Note that in the “inrep” stage we choose randomly the hidden layer site,
whose internal representation we attempt to change. However, there may
arise situations in which this stochasticity is insufficient (e.g. when there is
only one “wrong” site).

[17] J. Denker, D. Schwartz, B. Wittner, S. Solla, J. J. Hopfield, R. Howard, and
L. Jackel, Complex Systems, 1 (1987) 877-922.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, in volume 1 of reference
[2], page 318.

[19] G. Tesauro and H. Janssen, preprint 1988.

