
Complex Systems 2 (1988) 555-575

Learning by Choice of Internal R epresentations

Tal Grossm a n
Ronny Meir

Eytan Domany
Department of Electronics, Wejzmann Instit ute of Science

Rehovot 76100 Israel

A bstract . We int roduce a learning algorithm for two-layer neural
netwo rks composed of bina ry linear t hreshold elements. Whereas ex­
isting algorithms reduce the learning process to minimizing a cost
funct ion over the weights, our method tr ea ts the internal represen­
tat ions as the fundamental entit ies to be determined . We perform
an efficient sear ch in t he space of internal representations. w hen a
correct set of internal representa tions is arrived at, th e weights can
be found by th e local and biologically plausible Perceptron Lear ning
Rule. No minimi za tion of any cost function is involved. We tes ted
our meth od on three problems: contiguity. symmetry and par ity. Our
results compare favorably wit h t hose obtained using t he backpropa­
gation learning algo rithm.

1. Introduction

The past few years have witnessed a surge of interest in neural networks.
In par t icular , the most int riguing aspect, that of learning, has received wide
attention [1- 3J-

Form al Logical Neurons were first int rod uced by McCulloch and Pi t ts
[4), who have also argu ed th at network s composed of such elements can serve
to reali ze any desired inpu t-outpu t rela tionsh ip. A par ti cularly simp le im­
plementation of such a network is the single-layer perceptron introduced by
Rosenblatt [5] , who also proposed a learning algorithm , t hat was guaran­
teed to converge to a solut ion (if one exists ). A related learning ru le was
intr oduced by Widrow and Hoff [1,61 - However, Minsky and Papert [71 have
demonst rated th at simp le single-layer perceptrons have very limited app li­
cability. On the other hand, it is known t hat multi-layered per ceptrons can,
given a sufficient num ber of units, imp lement any binary input / output rela­
tion {pred icate). Back-propagat ion (BP ) is a learning algorithm, for mult i­
layered pe rceptrons, proposed [8,9] and recentl y investigated by a number
of groups [2,10]. It uses cont inuous var iables and a smo ot h sigmoid single

© 1988 Comp lex Systems Pu blications, Inc.



556 Tal Grossman, Ronny Meir, and Eytan Domany

uni t input-output response function. An error functi on , which measures the
devia t ion of actual from desired out put, is th en minimized by the algor ithm.
T here is no convergence theorem for back-propagat ion: like any minimiza­
t ion pro cedure it may find a local m inimum that does not corres pond to a
solut ion. Try ing to avoid this problem, by using sim ulated annealing [11) for
example, is ext remely t ime consum ing.

In thi s communicat ion we introd uce [12] a learning algorithm for two­
layer percep t rons, that use bina ry McCulloch-Pitts neurons in their input ,
internal and out put layer s, and a sha rp single unit threshold fu nct ion. OUf

algor ithm learn s by choosing internal representations (eRIR) . It di ffers from
back-propagat ion techn ically as well as concept ually. Whereas BP views the
weigh ts as the independent variables of the learning process, CHIR views the
in ternal representat ions as the fundam ental entit ies to be determined. Inter­
nal representations are the states taken by the hidden layers of the network ,
generated in response to presentat ion of inpu ts from the t raining set. Once a
correct set of intern al representations is arr ived at, the weights can be found
by exist ing standard method s} such as the perceptron learning rule (P LR)
[5J. Th e CHIR algorithm is complete ly local , an d pe rhaps slightly more plau­
sible biologically than back-propagation, due to the simpler computat ional
requireme nt s of each un it. We present th e algorit hm in detail below, and also
describ e its performance on three proto typ e problems: symmet ry} parity, and
cont iguity. T here is no proof of convergence for our pro cedure. Nume rical
experiments on symmet ry and cont iguity show that given enough t ime, a
solut ion is always found. For parity, the situation is not as clea r.

To state the problem of lear ning in concrete terms, consider a network
of bin ary linear threshold elements (figure 1). Element i can be in one of
two poss ible states} Sj = ± 1. A particularly simple network architecture
is presented in Fig. 1. T his is a feed-forward networ k with N inputs, a
single output , an d H hid den unit s. T here are 2N possible input pat tern s}
(S{"} s~n, .. '}S~) . Th e states of hidden layer units S? and the output unit}
Sou! are determined by th e input according to the rules

S~ = sign(I:f=" W;;Sjn+0;)

So. , = sign(I:~1 w;S~ + 0)

(1.1)

(1.2)

Here j1f i j are the weights assigned to the connections from input unit j to
hidden unit ij Wi to the connection from the lat ter to the output un it . The
parameters 0; (0) are biases associated with the hidden layer (output) cells.
T hese may be considered as weights which connect the uni ts to a const ant
input (So = 1); from here on reference to the "weights" implies biases as
well.

A typi cal task of such a net work is cJassiHcation; div ide input space into
two categor ies A and B ; whenever a pattern that belongs to A is presented
as inp ut} the netwo rk is requ ired to respond by setting sout = +1, whereas
an input from category B gives rise to S ou! = - 1. There are 22 N possible
distinct input-output mappings (predicates). Obviously, an arbit ra ry set of



Learning by Choice of Int ernal Representations 557

H

N

Figure 1: Feedforward network with layered architecture. State of cell
i in layer 1+ 1 is dete rmined by th e states of all cells of layer I . Input
pa t terns are presented to t he bottom layer , output is read out from
the top. Eac h cell cont ains a binary variab le sf :;: ±1 th at defines its
state.

weights and biases, when used in th e dynamic rule (1), will not produce the
mappi ng required for our A versus B classificat ion task. T he basic problem
of learn ing is to find an algori thm, i.e a synap tic modificat ion rule, that
pro du ces a set of con nections and thres holds which enables the network to
perform a preassigned task . If there are no hidden un its , an d input is directly
connected to ou tp ut , a proper set of weights can be foun d in a simple, elegant
and local fashion by the P LRl desc ribed in de tail be low. W henever an error
occurs, in the course of a P LR training session , weights are modi fied, in a
Hebbian manne r [13], toward values that correct the error.

T he most impressive aspect of this learni ng rule is the ex istence of an
assoc iated convergence theorem, which st a tes that if a solut ion to the problem
ex ists, the P LR will find a solut ion in a finite num ber of steps [5,7]. However,
single-laye r percept rons can solve only a very lim ited class of problems. The
reason for this is that of the 22N poss ible part itions of input space only a
small subset (less than 2N ' IN !) is linearly separable [151 . One of the most
wide ly known examples of a problem that cannot be solved by a single- layer
per ceptron is pari ty [7]: assign output +1 to inputs th a t have an od d number
of + 1 bits, and - 1 ot herwise. Parity (and any other ) classifica tio n task can
be solved once a single hidden layer is inser ted between input and output .
This, however, makes learning difficult; in parti cu lar, t he P LR cannot be
implemented . T he reason for th is is that in order to determ ine the correct ive
increment of a weight ~Vij lone has to know th e correct state of both pre and
post synaptic cells, i and j . For mult ilayer pe rceptrons only t he states of th e
input "cells" and output are known; no inform ation regard ing t he correct
state of the hidden layer is a pr iori ava ilab le. Therefore, when in the cou rse



558 Tal Grossman, Ronny Meir, and Eytan Domany

of the training session, the network errs, it is not clear which connection is
to blame for the error, and what corrective act ion is to be taken .

Back-propagation circu mvents this "credit-assignment" problem by re­
placing binary linear threshold elements by un its with cont inuous valued
outputs; the discontinuous th reshold funct ion (1) is also replaced by a con­
tinuous sigmoid funct ion. T hus one can define various cost funct ions that
measure the deviation of actual outputs from those requ ired by the class ifi­
cation tas k. The cost functi on depends cont inuous ly on the weights, and is
chosen so that its lowest value is obtained when each input gives rise to t he
correct ou tput. Hence the problem of learning is reduced to one of minimiz­
ing the cost function over the space of weights . Most such algor it hms view
the weights as the basic independent var iables, whose values determine the
internal representat ions as well as the output obtained in response to each
input pat te rn . Obviously, there is no guarantee that such a proced ure will
find a global (versus local ) minimum, that corresponds to an error-free net­
work . Nevertheless, back-propagat ion was demonstrated to yie ld solut ions
to a variety of problems [2,8]. We note, in passing, t hat a new vers ion of
BP, "back propagation of desired states", which bears some sim ila rity to our
algorithm , has recently been int roduced [10]. See reference [141 for a related
method.

The cent ral poi nt of the CHIR algor ithm is the not ion that the internal
representations associated with vari ous inputs should be viewed as the basic
independent variable of the learning pro cess . T his is a conceptually plausible
ass umption; in the course of learning, a biological or artificial system should
form various maps an d representations of the ex te rnal world . Once such
representations are chosen, simple and local Hebb ian learning rules, such as
the P LR, can be tr ivially implemented, and the pro blem of learning becomes
one of choosing proper in ternal representations. Failure of the PLR to con­
verge to a solut ion is used as an ind ication that the cur rent guess of intern al
representations nee ds to be mo dified .

T he remainder of the pape r is organized as follows . In section 2 we give a
detailed descript ion of the CI-II R algorit hm. Section 3 contains a presentat ion
of results obtain ed with the algorit hm for a variety of problems, while sect ion
4 summarizes our findings, and discusses poss ible extensions .

2. T he algorithm

Since one of th e basic ingredients of our metho d is the Perceptron Learning
Ru le , we briefly rev iew the vers ion actually im plemented in the CH IR algo­
rithm . T he learning process takes place in the course of a t rain ing session.
Consider j = 1, ... N source units, which are direct ly connected to a sing le
target un it i . Wh en the source units are set in anyone of f-l = 1, ... M
pat te rns, i.e. 8j = e;, we require that the ta rget unit (determined using
(1)) takes preassigne d values {f. A set of weights, Wjj,Oi, for which t his
inp ut-output relationsh ip is satisfied, const itutes a solution of th e problem .
Sta rt ing from any arbit rary init ial guess for the weights, an input v is pre-



Learning by Choice of Internal Representations 559

sented, resulting in the out put taking some value Sr- Now modify every
weight according to the rule

--+ Wi; + 6.Wi;

= 71{1 - srmmy
(2.1)

(2.2)

where 1] > 0 is the step size param eter . The bias (J get s modi fied by the
same rule , with { i = 1. Now another input pattern is presented I and so on ,
unti l all inputs draw the correct output. Note that the PLR modifies weights
only when presentation of input v produces an erroneous out put. When that
happens, each weight is changed, in a Hebbian fashion, towards values that
correct t he erro r.

As explained above, without knowing the internal representat ions, e.g
the states taken by t he hidden layer when patterns from the training set are
presented , the PLR is not applicable. On the ot her hand , if the internal rep­
resentations are known, the weights can be found by the PLR. T his way t he
problem of learning becomes one of choosing prope r intern al representations,
rather than of minimizing a cost funct ion by varying the values of weights.
To demonst rate the difference be tween these approaches consider again the
classificat ion problem ment ioned above; the system is required to produ ce
preass igned out put values, soul,~ = ~out ,~ , in response to Jl = 1, . . . , M input
patterns. If a solut ion is found , it first maps each inpu t onto an internal
represent at ion generated on the hidden layer, which, in t urn , produces the
correct output. Now imagine that we are not supplied with the weights that
solve the problem; however the correct internal representat ions are revealed.
That is, we are given a t a.ble with M rows, one for each inpu t . Every row has
JI bit s (;,Ii, for i = 1, .. . H , specifying the state of the hidden layer obtained
in response to inpu t pattern J1. One can now view each hidd en-layer cell i
as the ta rget cell of the PLR, with the N inp uts viewed as source . Given
sufficient t ime, the PLR will converge to a set of weights ~Vi ,j , connect ing
input unit j to bidden unit i, so that indeed the input-out put associat ion
that appears in column i of our table will be realized. In a similar fashion,
t he PLR will yield a set of weights Wi , in a learning process that uses t he
hidden layer as source and t he out put uni t as target. T hus, in order to solve
the problem of learning, all one needs is a search procedure in the space of
possible internal representations, for a table that can be used to generate a
solut ion. This sounds, a. priori, a rather hopeless under taking; if the training
set contains all possible inputs (i.e. M = 2N ) , there are 2H 2 N possible distinct
internal represent ations (i.e. tables). Our algorit hm actually searches a much
smaller space of tables; the reason for thi s is explained in sect ion 4. Needless
to say, the updat ing of weight s can be done in parallel for the two layers,
using the current tabl e of internal represent at ions. In the present algorit hm,
however, the process is broken up into four dist inct st ages:

1. se t inrep : Use exist ing couplings W ij and (Jj to generat e a table of
internal rep resentat ions {(t,,,} on the hidden layer. Th is is done simply



560 Tal Grossm an, Ronn y Meir, and Ey tan Dom any

by presenting eac h input pattern from the t raining set and calcula ting
the state on the hidden layer , using equat ion (2.1) .

2. lea r n 23: The hidden layer cells are used as source, and th e ou tput as
the target uni t of the PLR. The current table of internal representations
is used as t he training set ; the P LR tries to find appropriate weights Wi

an d 0 to obta in the desired out puts . If a solut ion is found , we st op; the
prob lem has been solved . Otherwi se we st op afte r 123 learning sweeps,
an d keep the current weights (for more details on the cho ice of this
paramet er , see remark bel ow).

3. inrep: Use the current values of Wi and () to generate a ne w t able of
intern al representati ons, which, when used in (2.2), yield s the correct
outputs. Th is is done by presenting the table sequent ially, row by
row, to the hidden layer . If for row lJ the wrong out put is obtained ,
the intern al representation ~ h,,, is changed. Hav ing the wrong output
means that the "field" prod uced by the hidd en layer on th e output un it ,
h out ,,, = L j Wj~;~'" is either too large or too sma lL We then randomly
pick a site j of the hidden layer , and check the effect of flipping the
sign (changing the "act ivity") of ~;,v on h out ,v; ifit changes in the right
direction , we replace the entry ~;,v of our table by -~J'v . Name ly,

if &h ,v t out ,v < 0 th &h,v &h,v
1 Wj<."j v en "-j -4 -I"j (2.3)

We keep picking sites an d changing the internal repr esentation of pat­
tern lJ until the correct out put is genera ted. Note that we always
genera te th e correct output thi s way, provided L j IWjl > IBout l . It is
easy to design the perceptron learning pro cess, in the learn23 stage, so
that thi s condition is satisfied. T his pro cedure end s with a modified
table which is our next guess of internal representat ions. During this
stage only the table ~;,v is changed; all weight s and thresholds remain
fixed . If weights W i j (conn ect ing inp ut to hidden layer ) can now be
foun d, so that this table is indeed the outcome of present ing all inputs
in ou r t ra ining set, we have solved the problem.

4. lea r n 12: Using the new table obtained from inrep , apply the PLR
with the first layer serving as source, treating every hid den layer site
separ ate ly as target. Actually we use a slightly modified version of
the PLR; when an input from th e train ing set is presented to th e first
layer, we first check whether the correct result is produced on the ou t­
put unit of the network. If we get wrong overall out put , we use the
PLR for every hidden unit i, modifying weights incident on i according
to (2), using column i of the table as the desired states of this unit.
If, however, presentation of an input lJ to the first layer does yield the
correct final output, we insert the current state of the hidden layer as
the internal representation associated with pattern lJ, and no learning
steps are taken. We sweep in this manner the t rainin g set , mod ify­
ing weights Wjj, (between inpu t and hidden layer ), hidden-layer biases



Learning by Cboice of Internal Representa tions

Set inr e p

Lear n 23

Foil

I nrep

Foil

Figure 2: Flow chart for t he algorithm described in t his paper. Detail s
about t he different stages are given in sect ion 2 of t he mai n text .

561

OJ, and, as explained above, internal representations. We period ically
check whether the network has achieved error-free performance for t he
entire tr aining set; if it has, learning is completed and a solut ion of the
probl em has been found. If no solut ion has been found after 112 sweeps
of the t raining set , we abort the PLR stage, and keep t he present values
of weights and thresholds.

T he algorithm starts out by sett ing 'J.Vjj and OJ randomly. T hen the init ial
guess for our table is obtained by using setinrep. Next, an at tempt is made ,
using learn23, to learn Wj and OJ failure to do so in less than 123 sweeps of
the table sends us to inrep. A new table is generated , and the coup lings
W jj, OJ are learned using learn12. Failure to achieve perfect perform ance in
112 sweeps of the training set results in freezing t he weights and restar ting
the cycle wit h set inrep , and so on. T he flow chart is given in figure 2j the
program performs a preset number of cycles before "giving up" its attempt
to find a solution.

Th is is a fairly complete account of our proced ure. T here are a few details
that need to be added .

(a) Th e "im patience" pa.rameters, 112 and Iss , which are rat her arbi­
t rary, are introduced to guarant ee tha t t he PLR stage is abo rte d
if no solution is found . This is necessary since it is not clear that a



562 Tal Grossman, Ronny Meir, and Eytan Domany

solut ion exists for the weights , given the current tabl e of internal
representat ions . T hus, if th e PLR stage doe s not converge within
the t ime limit specified, a new table of internal representations
is formed. The parameters have to be large enough to allow the
PLR to find a solut ion (if one exist s) with sufficiently high prob­
ability. On the other hand, too large values are wasteful, since
they force the algorithm to execute a long search even when no
solution ex ists . Therefore th e best values of the impatience pa­
ramete rs can be det ermined by optimizing the pe rformance of the
network ; our ex pe rience indicates, however , that once a "reason­
able" ran ge of values is found , performance is fairly insensiti ve to
the precise choice.

(b) Stochasticity : While using t he PLR, we randomly choose which
pattern is presented next from the t raining set. Sequential pre­
sentat ion of patterns may cause the "de term inist ic" algorithm de­
scribed above to enter a cycle [16]. It is possibl e to introduce
st ochas ticity in a different manner , so that sequentia l pr esenta­
t ion of the train ing set does not generate cycles. This can be done
by flipping an entry in our table in a st ochas t ic fashion, e.g. with
pro bability

P(~; ," -> -~;,") = exp(-w;~;'"CU'," j T)j2 cosh(w;jT)

When th e "temperarure't-Iike pa ramete r, T, is set to zero, we
recover the version described above. W hen T is non- zero there is
a finit e prob ability to flip an internal un it even if doing so pull s
the out put in the wrong directi on . We do not report here detai ls
of t he effect of T > O.

(c) Treating Mul tiple Outpu ts: A simple modificat ion of the inrep
pr ocedure provides a different way to avoid cycles, as well as a
method appli cable to deal with mult iple output architectures. In
the version of inrep described above, we keep flippi ng t he intern al
represe ntations unt il we find one t hat yields the correct output,
i.e. zero erro r for the given pat tern. Inst ead, we can allo w only
for a pre-specified number of at tem pt ed flips, and go to the next
pattern even if zero error was not achieved . In th e modified ver ­
sion we also int roduce a slight ly differen t cr iterion for accepting
or rejecting a flip. Having chosen (at random) a hidden un it i,
we check the effect of flippin g the sign of ~F'v on the output error
(and not on th e out put field, as descri bed above). If t he output
error is not increased , the flip is accepted and the tabl e of int er­
nal rep resentation s is changed accordingly (other vari ants of this
accep tance crit er ion are also possible) .

This version of the algorithm is app licable for mul tiple-output
architectures, an d will be described elsewhere . Here we report
only investigatio ns t hat use the previously describ ed "rest r ict ive"



Learning by Cboice of Internal Representations 563

version of inrep.

(d) Integer weight s: When using binary units, sett ing 11 = ~ ens ures
that .6.WiJ = 0, ±l, and one can use integer 'JiVi ,;'s withou t any
loss of generality. Thus, the algori thm can be fully im plemented
using only integers, which is an important ad vantage in many
ap plications.

(e) Optimi zation: The algorit hm described uses several param eters,
which should be optimized to get the best pe rform ance. These
param eters:

112 and /23 · see sect ion (a ) above .
T ime limit - upper bound to the total numb er of training
sweeps.
T (temperature, defined for th e stochastic version of inr ep]
PLR t raining parameters - i.e t he increm ent of th e weights
and threshold s during the PLR stage. In the PLR we used
valu es of ~ ce 0.1 (see equa t ion (2.3, 2.4)) for th e weights, and
TJ ~ 0.05 for t hresholds, whereas the initial (random) values
of all weights were taken from th e interval (-0.5, 0.5) , and
th resholds from (- 0.05, 0.05). In th e integer weights program,
describ ed above, these param eters are not used .

3. P erformance of t he algo r it h m

Many worke rs, in presenting their results concern ing learni ng in neural net­
works, do not rep ort t he success rates of th eir algorithms. It is th us very
difficult to judge the quali ty of different learnin g algorithms, since it is usu­
ally not clear whether th e results given are typ ical , representat ive or rare.
T hus, it is important to discuss criteria for assessing the success of a learning
algorithm.

T he task of learni ng in the ty pe of network we have been discussing is
to produce couplings and thresholds which yield the desired input/output
rela t ions. In our algorit hm, as in many others , there are several param eters
which affect the performan ce. For a spec ific learning task and a set of param­
eters (denoted by A), complete characterizat ion of the learning algori thms'
performa nce is given by P (t , A ), th e prob abili ty that th e algorith m finds a
solut ion in less than t "t ime" steps. One can est imate this function, by plot­
t ing the dist ribu tion histogram of the "t ime" needed to reach a solut ion (see
figure 3). This can be obtained by per forming the learning man y t imes , each
wit h different initial couplings and thresholds . For any practi cal applica t ion
of a lear ning algorithm a t ime limit must be exte rn ally spec ified . Thus, th e
quantity of interest is the pro bability of an algorithm to converge within the
given ti me limit . Of course when th e success rate is 100%, the calculat ion of
th e average is sufficient.

T he question now arises as to how to measur e t ime in our (an d similar)
algorit hms . Since learn ing usually takes place by cont inually present ing the



564 Tal Grossman, Ronny Meir, and Eytan Domany

0 .2 0

0. 15

0 .10

0 . 05

100 200 300

n o. of pr esentations
400

Figure 3: Contiguity : Histograms of t he number of t rain ing sweeps
(pat te rn pr esentations) needed to solve the "4 or mor e" predicate,
wit h N = H = 8 cells. T he horizontal axis is t he number of presen­
tations t, while the vert ical axis indicates the fract ion of cases solved
wit hin each time int erval. We present results for It2= 20 and h3 = 5.

net work wit h pat terns to be learned, a possible definit ion of "time" is just
the number of t imes the training set has been presented. In the CHIR al­
gorithm, th ere are 112 +123 such pattern presentation sweeps in each cycle.
One should keep in mind however, that various algorithms perform different
computations during each presentation, and therefore th is characterization
is not the best possible. Nevertheless, it does elim inate the need to int rodu ce
ad-hoc measures t hat may bias the resu lt in various ways.

Since, however , various algorithms often do not converge to a solution
within the t ime limi t speci fied, th e ques t ion arises as to how to take th is
fact into account in evaluating per formance. Clearly, calculat ing averages
(and in general higher moments) that take into account only the cases where
the algorit hm succeede d in finding a solut ion is not satisfactory. Another
possibi lity is to calculate the inverse average rate T, defined as [19]:

(
I n )-1

T = -L J'i
n i=l

where

(3.1)



Learning by Choice of Internal Representations

r . _ {1/t i if run i is successful
I - 0 ot herwise

565

(3.2)

In equation (3.2) t ; is the tim e needed In solve the problem , i.e the total
number of pattern presentations, as discussed above. Such a measure will be
dominated by the short , "lucky" runs, even when they are rare ; the penalty
for long unfr uitful search is small.

It seems to us that a better characteri zati on of the success of t he algorithm
is tm 1 the median "t ime" taken to solve the prob lem . The median measures
the ti me needed, for a success rate of at least 50%, and can be obtained from
simulations, ru n over many different initial conditions. However, a success
rate of at least 50% is required. In all (but two) cases reported below we
indeed had success rat es of more th an 50%; thi s allowed us to calculate the
median run ning t ime in each such case. In add ition, we have also plotted
distri but ion histogr ams, as described above. For two cases (see Parity) when
it was impractical to achieve a success rate of more than 50%, we repo rted
the time needed for a 10% success rate.

Turning now to describe our results, we present our findings for three
problems.

3.1 Co ntiguity

Thi s prob lem has been studied quite extensively in the recent literature [17].
It is suitable for a network that makes binary decisions; a st ring of N digits
is presented to the input layer, and the system has to give a yes/ no answer
regard ing the number of clumps (i.e. contiguous blocks) of -l- L's. For exam­
ple, determin e whether the inpu t does or does not have more t han n such
blocks; this is called the "n-or-more" predicate. These problems have a sim­
ple "human" or geometric solut ion, based on edge detection. Some of the
questio ns raised have to do with the ability of the network to find such a
solution, and the const raints that one may have to impose on the learn ing
process to guide it towards it. These quest ions were raised mainly to ad­
dress the issue of general izat ion in a controlled, quant itative fashion. Here
we st udied the efficiency of the learn ing process, using an exh austive set of
inpu ts as the train ing set . We wanted to compare performance of our algo­
rith m, measured, as explained above, with backpropagation. Also, we were
interested in the manner that learning time scales with problem size.

As the first test , we tau ght a network with N = H = 8 cells to solve the "4
or more" problem, using the entire space of 256 possible inputs as our t raining
set . In figure 3 we present a histogram based on 500 trials [i.e. init ial choices
of weights). The horizontal axis indicates t, the number of training sweeps
(presentat ions of the training set ) needed to achieve perfect performance.
We have included in this count presentat ions to both the input and hidden
layers. T he vert ical ax is indicates the percentage of cases for which learning
was completed in the corresponding numb er of t raining sweeps. In the cases
sum mar ized in the histogram of figure 3, each learning cycle contained 112 =
20 presentat ions of all inputs to the first , and 123 = 5 presentations to the



566 Tal Grossman, Ronny Melr, and Ey tan Dom any

second (hidde n) layer. For this set of pa rameters a. solution was found in aJl
500 cases in less than 100 lear ning cycles (t < 2500 sweeps) . T he ave rage
number of presentat ions of the t raining set was t = 79 ± 3. T his set of
parameters was found to be close to optimal, and was used always (unless
otherwise stated). The effect of choosing the imp at ience param eters was also
studied . We found that. if 112 is increased for fixed [23 , t decreases init ially,
but then leve ls off. If we keep 112 fixed, per formance becomes worse as / 23

Increases.
We also t rain ed the network to solve a slightly different problem; the «2

vers us 3" clumps pred icate. For this pro blem we used all possible inp ut s
that have 2 or 3 clumps as our t raining set . Keep ing N fixed , we varied
JI and plot, in figure 4, the median number of training passes needed to
learn , tm , as a function of H . Again, 500 cases were used for each dat a
po int. For com parison we also present results rep orted by Denk er et a1.
[17], who studied the sa me problem using an efficient cost function for back­
propagation . T he results of th is compar ison are ra ther interesti ng. First , we
note that CHIR learns much fas ter than backpropaga t ion . More imp ortant
is the depend ence of tm on H . Our algor ithm exh ibits a decrease of tm with
increasin g H ; adding (poss ibly unn ecessar y) hidden units does not hinder
learning. Backpropagation ex hibits increas ing t m with hidden layer size.

To further invest iga te the size dep end ence of our algorit hm, we also stud­
ied the 2 versus 3 predicate for networks with N = H uni ts, in the range
5 ::; N ::; 10. Resu lts for the med ian number of passes needed to solve
are given in Fig. 5. No backpropaga t ion data are available for comparison
regarding this scaling . We found that tm increases ex ponent ially with N ini­
t ia lly, bu t levels off and decr ease s for N = 10. T his decrease is stat ist ically
significant; it may be due to the fact that we kept the "problem size" (e.g. 2
versus 3) fixed , while the inpu t size (N ) was increased. Typ ica l CP U-t imes
for these networks, for N = H = 8, 9, 10 were 1.2, 3, and 10 sec/cycle , re­
spec tively, on an IBM 3081. We imposed a cutoff of 200 on the number of
cycles allowed; for all sizes studied solut ions were found in th e maj ori ty of
cases for less then 200 cycles. Therefore tm does not depend on th e cutoff.

3.2 Symmetry

T he second problem we invest igated was that of sym metry {IB]. In this case
the output should be- l if the inpu t pattern is symmetric aroun d its center
and - 1 otherwise. The minimal number of hidden layer uni ts needed to solve
this pro blem is H = 2.

To study the dependence of the learni ng t ime on the problem size, we
present in figure 6 the median number of pat tern presentations need ed to
solve the problem as a functi on of the size of the inp ut layer. T he num ber of
hidden layer units was fixed at H = 2, ind ependen t of the inpu t field size N .
In the cases present ed the system was tr ained over the complete set of 2N

inp ut s, and t he resu lt s were averaged over 500 cases . The param eters used
were 112 = 10 and 123 = 5. T he maximum allowed num ber of cycles was 200.



Learning by Choice of Tnternal Representations 567

400

x BP
)00

o CHIR

200

100

H
Figu re 4: "2 VB 3" problem: Median numb er of sweeps t -«, needed to
t rain a. network of N = 6 input units, over an exhausti ve training set,
to solve t he II 2 vs 3" clumps pred icat e, plotted against the number of
hidden unit s H . Results for back-p ropagat ion [17] (x) and t his work
(0) are shown. We always find a solutio n in less than 200 cycles; each
point uses 500 cases.

For N ::; 6 the network always found a solution , while it had over 90% success
for N = 8, 10. vVe note that using the back-propagation algorithm we have
not been ab le to find a solution in hundreds of attempts for this architec ture,
although a solution has been repor ted in reference (18). However , we did not
make an exhaustive check of parameter space for t he BP algorit hm .

Next, we investigated the dependence of the learning t ime on t he number
of hidden units for the case N = 8. Figure 7 depicts the dependence of the
number of pattern presentation s on H , for the case where t he syste m was
taught 240 out of t he 256 possible pat terns. As we see the learning ti me
increases from H = 2 to H = 3 and then decreases rapidly for H = 4,
from where it also decreases, but more slowly. Decrease of learning ti me for
increasing H was also seen in our study of cont iguity. 'vVe note th at addition
of many unnecessary hidden units does not hinder the learning ability of our
algorithm, but does not seem to help either (for the present task).

Finally, we checked the "rule extract ion" ability of the netwo rk. By th is
we mean the followi ng: a fract ion f of all possible input patterns const itutes
the training set, used to teach the network. Subsequently, the network is



568 Tal Grossman, Ronny Meir, and Eytan Domany

4 6

N
8 10

Figure 5: "2 vs 3" problem: Median numb er of sweeps tm 1 needed to
train t he network using an exhau stive training set , for t he "2 ver su s
3" predicate, plotted ver su s network size (N = H ).

tes ted on the patterns it has not been taught. In Fi g. 8 we present the
ru le ex trac tion score S (fraction of correct scor es on patterns not in the
t raining set) as a functio n of f , for a fixed input size N = 8, with varying
H = 2,3,4,5,6,8. As can be seen in the figure, the number of errors in the
output is, to a good ap proxim at ion , independent of H.

4. Parity

In the Parity prob lem one require s sout = 1 for an even number of +1 bits
in the input , and -1 otherwi se. This problem is considered com putat iona lly
ha rde r than the other two, since t he output is sensit ive to a change in the
state of any single input un it . Tesauro and Janssen [19] used BP to teach
ne tworks to perform this task, and studied how training time scales with the
input size N . In order to compar e perfo rmance of th e CHIR algorithm to that
of BP , we studied the Parity pro blem , using networks with an archi te cture
of N ; 2N : 1, as chosen by Tesauro and J anssen [19].

We used the integer version of our algorithm, bri efly describ ed above. In
this version of t he CHIR algor ithm the weights and thresholds are integers,
and the increment size, for both thresholds an d weights, is unity. As an
ini tial condition , we chose th em to be + 1 or - 1 randomly. In the simulation
of th is version, all possible input pattern s were present ed sequent ially in a



Learning by Choice of Internal RepresentaUons

Figur e 6: Symmetry : Median numb er of sweeps t -«, needed to t rain
the network using an exhaustive training set , versus number of inputs
N, with a fixed number H = 2 of hidden unit s .

569

fixed order (within th e perce ptron learning sweeps).

T he results are presented in figure 9 and in table 1. For the sake of com­
pari son with BP, we also pre sent the performance crit er ion used by Tesauro
and Janssen [19] - the inverse average rate T , defined in equatio n (2.2). For
all choices of the parameters (112 , 123 ) , that are ment ioned in the table, our
success ra te was 100%. Namely, the algorit hm did not fail even once to find a
solut ion in less than the maxim al number of training cycles tm a:n specified in
t he table. Note that BP doe s get caug ht in local minima, but th e percentage
of such occurrences was not reported . In addit ion to the inverse rate, we give
also t he average and the median num ber of presentations needed for learn­
ing. It is interesting to note th at these num ber s decr ease when we increase
N from 8 to 9.

Using integer weights makes it easy to study their distribu tio n and t he
number of bits needed for their specification. This is an int eresting quest ion,
and quite rel evant for several ap plications, c.g. when designing a "hardware
implemented" network , like a VLSI chip . For the trained N : 2N : 1 systems,
we calculated the st andard deviat ion of the weights distribution, as well as
the maximal absolute value of weight th at occurred in a trained system.
These resu lts are present ed in table 2. Accord ing to these results 8 bits per
weight suffice to solve the par ity prob lem for N :S 9. Even though scaling



570 Tal Grossman, Ronny Meir, and Eytan Domany

t m
I I I I

X
N = 8

300 I- X -
M = 240

2 00 I- -

100 -

X X X
X

I I I I ,
0

6 82 4

H

Figure 7: Symmetry: Average number of sweeps tm 1 needed to train
the network , vs the size of the hidden layer H for N = 8. We used
240 out of t he 256 possible inp uts.

of the weight dist ribut ion's width with N can not be determined accurately
from this data, it appears to increase as a small power of size.

W ith H = N (instead of 2N), t he parity pro blem becomes much harder.
In fact , N is the minimal numb er of hidd en units needed to solve th is problem .
Performance of th e integer algorithm for this architect ure is given in table
3. Th e success rat e here is sma ller, as shown in th e table. For N = 6,7, the
success rate is less t han 50% and th erefore it was not possible to calculat e the
median. Instead , we give the num ber of presentat ions needed for a success
rate of 10%.

5. Discuss ion

We have presented a learning algorithm for two-layer per ceptrons, that
searches for internal representation s of th e t raining set, and determines the
weights by the local , Hebbian pe rceptron learning rule. Learning by choice of
internal representat ion may turn out to be most useful in situations where t he
"teacher" has some information abo ut the desired interna l representations.
For example, when one is aware of a partial set of features that are likely to
be relevant for solving the desired classification task. We demonst rated that
our algorit hm works well on three typical problems. Comparisons wit h back-



Learning by Choice of Internal Representations

N n (I12 ,1,,) tm ax Median Average -rf lnv . Rate)

3 200 (8,4) 10 3 6 3
4 200 (9,3)(6,6) 20 4 9 4
5 300 (12,4)(9 ,6) 40 8 22 6
6 200 (12,4)(10,5) 120 19 84 9
7 210 (12,4)(15,5) 240 290 380 30
8 100 (20,10) 900 2900 4000 150
9 80 (20,10) 600 2400 2900 1300

Table 1: Parity with N:2N :1 Architecture: median, average, and in­
verse rate T. n is the number of cases run for each N . When two
choices of the parameters (/12 , 123) are given, they were both simu­
lated with similar results for both. The success rate was 100% in all
cases, and the statistical errors were around 10%.

N o max a m ax

3 1.1 4 1.9 6
4 1.1 5 2.5 9
5 1.4 6 3.8 15
6 2.3 11 5.8 23
7 3.8 17 1.7 39
8 5.1 20 16.8 52
9 6.1 26 21.9 77

Table 2: Weight Distribution in Parity N:2N :1 architecture. a is the
standard deviation of the weight distribution, while "max" denotes
the maximal weight obtained. The first pair of columns refer to W12 ,

the second to W23 .

N n (I,2, 123) tm ax Success rate Median" T

3 200 (6,6) 30 0.62 60 10
4 400 (9,3)(6,6) 120 0.65 240 34
5 130 (9,6) 240 0.78 750 120
6 200 (18,6)(15,10) 900 0.23 2800* 3900
7 120 (20,10)(15 ,10) 1200 0.13 4300* 7700

Table 3: Parity with N:N:1 Architecture: success rate , median time,
and inverse rate T.

*For N = 6,7 we give the number of presenta tions required for a 10%
success rate (instead of the median).

571



572 Tal Grossman, Ronny Meir, and Eytan Domany

_I 8 I I I I

l. 00
_ N . -

S
0 H=2 )I(

0.9 8 - of> -
c H~3 ,:E
+ H= 4. + 0

0 .96 - n H~o ffi -

0 0
e H=6

0 . 94 _ t • H~8 + -
of>

l:S -0 . 92 -

0 .9 0 - ~ -
I I I 1 I

0 .6 0 .7 0 .8 0 .9 1

f
Figur e 8: Sym metry : Rule extraction score S (fraction of corr ect
scores on patterns not taught) for the symmetry problem, versus f ,
t he fraction of input states (out of 2N) used in t he t raining set , for
fixed N = 8 input units and varying H. We used 500 cases for each
point .

propagation were also mad e . It should be no ted t hat on e training sweep
involves mu ch less comp ut ations than that of back-propagat ion. We pre­
sented also result s conce rn ing t he manner in which training t ime varies wit h
network size; non-monoton ic size depend ence was found, with significant
variation from problem to prob lem. For the symmetry problem we also in­
vest igated the capacity of the algorithm for "rule extract ion".

As me nt ioned above, the CHIR algorit hm searches for a correct internal
representation in a space much smal ler than that of all 2H M possible tables.
The reason for this is the following. We alte rnate between two sets of tables
that are obt ained in two distin ct ways. All tables generated by the setinrep
procedure belon g to the first set, denoted by T , the set of all possib le Targets.
T hese are the tables that can be obtained by present ing the training pattern s
as input, and using th e dynamic rule (1) with all possib le assignm ents of
weights Wi,j. T he number of tables in T is less than (2N

'l / N !)H1 which for
large M is much smaller th an the total number of possible tables. Tables
obtain ed using inrep belong to a second set , denoted by S (for Source ). Thi s
set contains all tables t hat ca n give rise, using all possible Wi , to the correct
output. Th e tables th at solve the learning problem const it ute the set r nS



Learning by Choice of In ternal Representations 573

T

T

o BP

103 -
+ CHIR

T

o
o

I

o

o

I

o

+

+

I

o

I

2

o

+ +

I
4

+
+

I
6

N

+

I
8

I
10

Figure 9: Parity: Inverse rate, T (defined in equation (2 .2)), versus
problem size, for N : 2N : 1 architec t ure. Open squares are the
resul ts reported using t he BP algorit hm [19], while the + signs give
our resul ts .

(see figure 10). Our algorit hm takes a table t E T, and cbecks (using
learn23) whether it does or does not belong also to S . If t rt. S, a new table
s E S is generated and we check (using learn12) whe ther it belongs also to
T or not . If not, a new table t' is generated, and the procedure is repea ted .
This way our search is limi ted to subsets th a t are mu ch smaLler than the set
of all possible tables. Note that in the course of learn ing the weights change,
and thi s change will, in gene ra l, give rise to a new guess for our table that
differs from the previous one (e.g. t' it).

An ap peali ng featu re of our algorithm is that it can be im plemented in
a manner tha t uses only integer-valued weights and thres holds. T hus, the
state of the ne twork at eac h given t ime is given by a point in a discre te
weight-space. This discreteness makes the ana lysis of the behavior of t he
network m uch eas ier, since we know the exact number of bits used by the
system in constructing its solution, and do not have to worry about rou nd -off
errors. From a techn ological point of view, for hardware im plementat ion it
may also be more feas ible to work with integer weights . Moreover, biological
ev idence suggests that nervous systems are not capable of fine-tuning their
connections in a smooth way, as is required by the BP and other algorithms.
It is thus more realist ic to allow the weights to take on only a discrete set of



574 Tal Grossman, Ronny Me;r, and Eytan Domany

Entire Space

w Correct Tables"

Figure 10: Search ill tue space of ta bles: Tables th at solve t he learn ing
problem constit ute t he set S n T. Bot h S and T are much smaller
th an the set of all possible 2M H tables of internal repr esentations.
OUI algorithm searches for a corr ect table by alternatively generating
t ables in Sand T j see text for details.

possible values. Of course, one would like t his set to be as small as possible,
thus ren der ing the most compact and efficient solut ion; however , t his is a
rather st ringent condit ion which is d ifficult to realize in general.

Vve are ext ending thi s work in various direct ions. Th e present meth od
need s, in th e learning stage, M H bits of memory: internal representat ions
of all M training pa tterns are stored . Th is feat ure is biologically implausible
and may be technologically limiting. we are developing a method that does
not require such memory.

The algorith m presented in this paper is tailored for a system comprising
a single layer of hidd en units and a single output . Generalizing it to networks
wit h multip le outputs is not entirely st raightforward, due to the fact t hat in
the inrep stage the hidden units may get conflict ing inst ructions from the
different out put sites (this fact has been realized by Plau t et al. 110J in their
related learni ng algorithm) . We did , however , succeed to solve this problem
(see point (c) in sect ion 2, and found that a network with multipl e outputs
did functi on well on various proble ms of the same kind as discussed above.
This extension will be described elsewhere. It appears th at the modi fication
needed to deal with mult iple outputs also enables us to solve t he learni ng
problem for network architectures with more than one hidden layer.

Other directions of current study include extensions to networks with
continuous variables, and to networks with feed-back.



Learning by Choice of Internal Representations

References

575

[1] T . Kohonen , Self Organization and associative Memory, (Springer Verlag,
1984) .

(2] D. E. Rumelhart and J. 1. McClelland, Parallel Distributed Processing: Ex­
plorations in the Microst ructure of Cognition, 2 vols. (The MIT Press, Cam­
bridge, MA, 1986).

[3J R. P. Lippmann, IEEE ASSP Magaz;ne, 4 (1987) 4.

[4J W. S. McCulloch and W. Pitts, Bull . Math. Biophys ., 5 (1943) 115.

[5] F. Rosenblatt , Psych. Rev. , 62 (1958) 386; Principles of neurodynami cs,
(Spartan , New York, 1962).

[6J B. Widrow and M. E. Hoff, WESCON Cony. Record IV (1960) 96.

[7J M. Minsky and S. Papert, Perceptrons, (MIT , Cambridge, 1969).

[8] D. E. Rumelhart, G. E. Hinton , and R. J . Williams, Nat ure, 323 (1986)
533-536 .

[9J D. B. Parker , MIT technical report , TR-47 (1985) .

[10] D. C. Plaut , S. J. Nowlan, and G. E. Hinton, Technical Report CMU-CS­
86-126.

[11] S. Kirkp atri ck, C. D. Gela" and M. P. Vechi, Science, 229 (1983) 4598.

[12] A preliminary version of this work was presented at the Neural Network for
Computing meeting, Snowbird 1988.

[13} D. O. Heb b, The organization of Behavior, (John Wiley, New York, 1949).

[14] Y. Le Cun, Proc. Cognitiva, 85 (1985) 593.

[15] P. M. Lewis and C. L. Coates, Threshold Logic, (Wiley, New York, 1967) .

[16] Note that in the "inrep" stage we choose randomly the hidden layer site,
whose internal representation we attem pt to change. However , there may
arise situations in which this stochasticity is insufficient (e.g. when there is
only one "wrong" site).

[17] J. Denker, D. Schwartz, B. Wittner, S. Solla, J. J. Hopfield, R. Howard, and
L. J ackel, Complex Systems, 1 (1987) 877-922.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, in volume Lof reference
[2], page 318.

[19] G. Tesauro and H. Janssen, preprint 1988.




