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Abstract. We show how the theory of lattice gases developed by
Frisch, d’Humiéres, Hasslacher, Lallemand, Pomeau, and Rivet, can
be extended to cases involving violation of semi-detailed balance. This
allows further reduction of the viscosity. However, since the univer-
sality of the distribution is lost, the function g(p) becomes dependent
on the collision laws and has to be evaluated by a suitable general-
ization of the work of Hénon on viscosities. Cases with and without
rest particles are considered. The lattice Boltzmann approximation is
used.

1. Introduction

Lattice gas models (see [1], [2], and [3]) have become a very promising way
to simulate some hydrodynamic phenomena. Indeed, the simplicity of its
formalism allows the construction of codes where no integration of partial
differential equations is necessary. It also led to the construction of special-
ized machines such as CAM [4] or RAP [5], which is able to simulate in real
time the evolution of a fluid. Using these techniques, Rivet, Hénon, Frisch
and d’Humieres have already simulated fully three-dimensional external flows
[6].

For sake of computational efficiency, it has become very important to
work on optimizing the collision laws in the lattice gas models. One of
the most important control parameters of all the simulation is indeed the
Reynolds number. In the lattice gas models, the latter can be written as
[7] R = R, x L x V where R, is a coefficient which depends on the collision
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laws, and L and V are respectively a characteristic length and a characteristic
velocity expressed in units of lattice constant and sound velocity. Reaching a
given Reynolds number at given R, and V means choosing L. The problem
is that the number of nodes goes as L® and then any given computational
quantity goes as L*. This also means that, at a given V, the computational
resources (and therefore the efficiency) vary as R;®. That is why it has
become of particular interest to increase R,. Since this coeflicient is inversely
proportional to the viscosity, the natural idea is to diminish the viscosity. The
latter depends on the collision laws imposed on the gas via the mean free
path: the more collisions there are, the smaller the mean free path is and the
smaller the viscosity is.

Increasing the number of allowed collisions can be done in two different
ways: either by increasing the number of particles involved or by setting
fewer limitations on the collision rules. The first way has already been used
in a very efficient manner by Hénon [8] who succeeded in raising E, by a
factor sixteen by an adequate choice of the collisions in a 25 particles model.
However, this way of proceeding does not allow an indefinite increase in R,.
The only way to raise it any more is to act on the collision rules themselves.
The problem is that this can imply some drastic changes in the dynamics
and in the macroscopic behaviour of the gas. It is then necessary to choose
carefully which conditions on the collision rules are to be dropped. In all the
models considered until now, the main three conditions are the following: the
collisions must conserve mass and momentum and they must satisfy a sort
of generalization of the micro-reversibility called the semi-detailed balance.
The first two conditions are a very convenient way to ensure that the total
energy of the gas is conserved and therefore, they seem difficult to give up.
As to the third one, we know already from the work of Frisch et al. [7] and of
Hénon its importance in the derivation of the universality of the equilibrium
distributions. However, we show here that, even in models involving violation
of semi-detailed assumption, it is possible to give an explicit development of
the equilibrium distributions at low Mach number which can be seen as a
generalization of the development given in [7]. This is done using the Boltz-
mann approximation (as described in [7]), the symmetries of the lattice and
the properties of the collision matrix which enable us to explicitly solve the
system of equations required (even when it involves 24 of more unknowns).
Following these results, we also extend the expression of the viscosity using
the work of Hénon [8]. Finally, we give the expression of the Reynolds num-
ber in our model and discuss briefly the possibilities of its maximization by
a proper choice of the collision laws.

The outline of this paper is the following: in the second part, we summa-
rize the lattice gas formalism and the notations we are going to use; in the
third part, we compute the Reynolds number in a case without rest parti-
cle using the scheme described above; in the fourth part, we show how this
computation can be extended to cases involving rest particles.
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2. General formalism and notations

In this section, we summarize the general formalism of the lattice gas. We
include the mathematical formulation of what we mean by “symmetry of the
lattice” and its implication, namely the “G-invariance” , which will be the
basis of all our computations. For a general review of the subject including
the description of the most common lattice gas models, see the very detailed
paper of Frisch, d’Humiéres, Hasslacher, Lallemand, Pomeau, and Rivet [7].

A lattice gas consists of particles of mass unity moving with speed ¢ on
a D-dimensional lattice £ (typically, D equals two or four) which is required
to obey some symmetries that we will describe below. Each node in £ is
connected to its b nearest neighbors by a set of b velocity vectors c; (i =
1,...b), so called because they represent the actual velocities of the particles
moving from a node to its neighbor. Each c; has spatial components ¢;,(a =
| RPN 1) €

We adopt an “exclusion principle” which forbids two particles to be at
the same node with the same velocity. Therefore, each node can assume only
a finite number of states, each state being described by a b-bit binary word
s = {s;;1 =1,...b} where s; is equal to one if the node contains a particle
with speed ¢; and zero otherwise. Given an initial configuration s(.) = {s(r,);
r, € L}, where s(r,) represents the state of the node r,, the gas will evolve
in time through collisions occurring at each node. A collision is defined as
the passage from an input state s to an output state s’. The collisions are
governed by the set of a 2 x 2° collision matrix A, whose elements A(s — ')
represent the transition probability from the state s to the state s’. This
matrix is supposed to satisfy certain properties that we will specify later.
Thanks to this collision matrix, the evolution of the gas can be described
in a statistical way using a probability distribution P(s(.)) which gives the
probability of occurrence of a configuration s(.) = {s(r,); r, € L}. The
evolution of P(s(.)) in time is then described by a Liouville equation (see [7],
section 3.3)

P(t,+1,8¢()) = ¥ Hr*ecA(s(r,,)_.,.q'(r,,))P(t,,,s(.)), (2.1)

s(.)er

where I' denotes the set of all possible configurations in the lattice and S is
the streaming operator S : s;(r,) — s;(r. — ¢;).

This probability distribution enables us to define physical quantities of
interest, namely

(a) the mean population in the i*® direction:
Ni(tvn ri) = Z S;(P,,)P(i*, 3(-))a (22)
s(.)er

(b) the density:

'In this paper, Greek and Roman indices refer respectively to coordinate and velocity
labels. Summation over repeated Greek indices, but not Roman ones, is implicit.
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Pty ri) = Z Ni(t,,r.), (2.3)
(c¢) the mean velocity:

ufl,, )= Z c;iNi(te, 1) (2.4)

-in *)

The above defines a very general class of lattice gas models. We now need
to specify the symmetries of the lattice and the properties of the collision
matrix A in order to make the computations more tractable.

2.1 Symmetries of the lattice

Given the definition of the lattice, specifying its symmetries is equivalent to
specifying the symmetries of the velocity set V = {c,-; =S [ .b}. In the
following we will therefore impose two conditions on V (see [8]):

i. V must be isotropic to fourth order. The meaning of this
assumption is the following: if we define a tensor of order n
(n € N) by

Tml...aﬂ = Z Ciay- - - Ciays (2'5)
then any tensor up to n equal four should be isotropic, i.e.

their components should be invariant by any rotation of the
coordinate axes. The T' are then shown to be given by:

Ta = Zcia = 03 (2‘6)
be?
Top = ZC;aCm = "5'5&5, (2.7)
Topy = Zcm CipCiy = 0, (2.8)
Tapys = Zciaciﬁchciﬂ (2.9)
1 b 4

m(%ﬂ% + bav6ps + 6as0py),

where 6,4 is the Kronecker symbol.

ii. The velocities must be interchangeable in the following sense:
defining G as the group of isometries of the lattice (therefore
leaving V globally invariant), for any set of velocities (c;, ¢;)
there is an isometry of G mapping ¢; on ¢;. A set of b tensors
= {T,-;i =5 e .b} will then be said G-invariant if any
isometry of G' which maps ¢; on ¢; maps T; on Tj;.

It can be shown (see [7]) that the combination of i) and ii) leads to the
two following properties:
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P1 Any set of G-invariant tensors of 1** order is given by

Tia = ACiy Ve, (2.10)
P2 Any set of G-invariant tensors of 2" order is given by

Tiap = ACinCip + tbag Y (a, B). (2.11)

These two properties form the basis of all our computations.

2.2 Properties of A

Since A is composed of transition probabilities, it is positive in the sense that
all its elements are positive. Due to the normalization of the probabilities, it
also obeys the relation:

YN Als—s)=1 Vs (2.12)

Furthermore, it is supposed to have three more properties, namely to conserve
mass and momentum and to be invariant under any isometry of G. Since
the particles are of mass unity, the mass, m(s), and the momentum, P(s), in
each state s can be defined as

m(s) = Zs;,
P(s) = Zs,fc,-.

Conserving the mass means that for any input state s and output state &/,
the corresponding matrix element will be non zerc if and only if m(s) equal
m(s"). This can be written as

(m(s) —m(s")A(s — s") =0 V(s,s),
or equivalently

Ssi—s)A(s = ") =0 ¥ (s,s). (2.13)

i
In a similar way, the momentum conservation can be written as:

E(s,- — )i Als = 5) =0 Va VY(ss). (2.14)

The invariance of A under the isometries of G will be formulated as:

A(G(s) = G(s) = A(s = &) VG € G, ¥(s, ). (2.15)
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Now comes the difference between our class of model and those described
in [7]. Usually a fourth constraint is imposed on the collision rules, the
semi-detailed balance. This constraint can be written as: 2

Vs Y A(S—s)=) As—s)=1, (2.16)

In this paper, we are not going to impose such a relation. What can be
expected from such a difference? As stated above, the first consequence is
that the number of possible collisions will be greatly increased. More im-
portantly, we allow now some configurations to be privileged compared with
others. To understand this point, it is useful to make an analogy with quan-
tum mechanics. Suppose that the states s refer to some “energy states” and
then, label the energy levels. A(s — s') is then the transition probability
from the s-level to the s'-level. The semi-detailed balance would ensure that
the depopulation of the s-level (3_,s A(s — s') term) is balanced exactly by
its population via the other levels (3°, A(s’ — s) term). If we drop this as-
sumption, nothing prevents some levels from being systematically “emptied”
asymptotically achieving a zero probability of occurrence after a finite time.

3. Monospeed model

In this section, we will give a method of computing the Reynolds number
in the model defined above. In general, the Reynolds number R is written
as R = %}- where L and U are respectively a characteristic length and
a characteristic speed of the fluid under consideration and » its kinematic
shear viscosity. In the lattice gas case, it has been shown in [7] that in the
case of low-speed equilibria and when the Boltzmann approximation is valid,
the Reynolds number involves a rescaled viscosity v'(p) = %% where p is the

mean density. The scaling factor g(p) is linked to the development to second
order of the mean equilibrium populations ;*? through the equation:

D
N (p,u) =d(1 + =5 Cialla + Ng(p)Qiapttatip) + O(u?), (3.1)
where
_P Ny_DD+2) WO .
d— b, N = 264 and Qsa,@ = c,ac,,; Déa,@.

We proceed therefore in the following way: first we compute the mean
equilibrium populations using the Boltzmann approximation to find the ex-
pression for g(p). Then, using the expression of the shear viscosity found by
Hénon [8] which is valid even without the semi-detailed balance, we find the
expression for the Reynolds number. Finally, we briefly discuss the maxi-
mization of this Reynolds number by a proper choice of the collisions.

Note that this semi-detailed balance is a generalization of the detailed balance (also
called micro-reversibility in collision theory) A(s’ — s) = A(s — s') Vs, s".
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3.1 Mean equilibrium populations

To derive the expression of the mean equilibrium populations, we make use of
the Boltzmann approximation. This means that we assume that the particles
entering a collision process have no prior correlations. This is a very crude
assumption which works only for mean quantities. It is then shown by Frisch
et al in [7] that this approximation leads to the lattice Boltzmann equation

Ni(ta+1,r.+¢) = Ni(t,,r.) + A'_Bal'!z

AP = 35 (s — si)A(s = SH)[IN;2 (1 - NP~ v (3.2)
s g i

The equilibrium populations are therefore the solutions of the system of b
equations

AP =0 Vi, (3.3)

Once more, this is a mathematically well-defined problem but still not very
tractable. Fortunately, the symmetries of the lattice (and especially the G-
invariance) lead us to postulate an expansion of the solutions of the form

Ni(p, U) = d + ACigUs + HQisplatip + Noaptiatis + O(u3)1 (3.4)

where

c"’é.
Qiap = CiaCip — D oeer (3.5)

and where d, A, pandn are some constants to be determined as functions of
p, the density of the gas.
By definition of p and u,

p=2_ N (3.6)

pu=Y N, (3.7)
i
d, A, and 5 are constrained to satisfy
P dD
d—-z,ﬂ—o and /\=F

The only free parameter left is g. In order to determine it, we inject the
expansions of the N; (3.4) into the system of equation (3.3) and set A; equal
to zero up to the second order. We obtain now three systems of b equations
corresponding to the setting to zero of the order zero, one, and two. In fact,
since the A; are G-invariant, all the directions are equivalent. Therefore,
these three systems simplify to three independent equations (one for each
order). The first two equations (corresponding to the zero and the first order)
have no free parameters and we will have to check that they are indeed null
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without any further condition. At this point, we expect the properties of
A to play an important role. As to the third equation, it will give us one
condition which will enable us to determine p.

Using the expansion of the NV; given above, it is shown in appendix A
that the A; can be expanded as a function of zero-, first- and second-order
tensors as

A
Ai=r + —d(l “d]tiaua (3.8)

A?
+ (2d(1 _ d) [viaﬁ + Wiap + (2([— I)Z;aﬁ] + pziaa) Uy g,

where 7, w, v, and z are respectively written:

EZ — si) A( s—%s)(lid)p(lw—d)b, (3.9)
= DT - A6 = (5 L d)p(l —d)°P.(s), (3.10)
Viag = (3.11)

2

S~ Al = a1 )5 ((2d = Do = &) S

Wiap = (3.12)

P

S — Al — ) (7)1 - d)bml_—d)Pa(s)Ps(s),

Ziap = EZ(S"‘ —ai)A(S — s')( ) ( = ) d) aﬁ( ) (313)

where p is the number of particles in the state s: p =3; s;.
In the above equations, we have used the first and second-order momen-
tum in a state s, P(s), and Y (s), defined respectively as as (see [8]):

Pals) = Z $iCias (3.14)

Yap(s) = E 5:Qiap- (3.15)

Note that Y is has a null trace:

¥ Yo =0, (3.16)
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Note also that the tensor w;,s is identically zero when the semi-detailed
balance is assumed. To prove that, we use momentum conservation to write
Wiyp a5

wion = 3 (13) (1= D' g5 Bos( A = 2) =1,

which is obviously zero if the semi-detailed balance (2.16) is valid.

We check now that the two first orders in the expansion of the A; are
null.

r; is a zero-order tensor which is G-invariant. Its valueis then independent
of the direction i and can be written as the mean over all the directions of
its components, that is,

r = lZTi
- b):g( )(l—d) Z(si—s)Asas)

Since A has been assumed to verify mass conservation (2.13), r is identically
zero.

l;o is a first-order tensor which is G-invariant. Thanks to the property
P1 mentioned above (equation (2.10), it can then be written as

o = "»’C'Cia- (3.17)

We multiply the two members of (3.17) by ¢;, and we sum over i. We obtain
then

%¢ = E Z (l_fd.)pu ~dre, ;(s'; — 8i)CiaA(s = ).

Using now the relation of momentum conservation (2.14), we see that 9 is
zero and that ¢;, is identically null as expected.

We now make use of the G-invariance to simplify the expression of the
second-order term of A;. v, w, and z being G-invariant second-order tensors,
the property P2 (equation (2.11)) enables us to write them as:

Viag = NCiaCip + 1 bap, (3.18)
Wiap = PCiaCip + ¢'bap, (3.19)
Ziag = PCiaCip + ¥'6ag. (3.20)

Summing these three relations over ¢ and using the relation of mass conser-
vation gives us three relations between the coefficients, namely

2
' c

= —5%
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and two similar equations between the four other coefficients. This means
that the three tensors v, w, and z are in fact proportional to the Q5. In
the case of v, it is easy to show that the coeflicient of proportionality 7 is
zero by multiplying the two members of the relation of proportionality by
Qiap, Summing over 7, «, and 3 and using the fact that the Y'(s) are traceless
tensors.

We are then left with a very compact expression for the A;:

(2d — 1)

22
A= (_“‘“““‘“"“;b'i" [#*Fm

X ) iedlallg.

zd(l_d) :rln[) Qmﬁ atg

Since the @Q;,pu.ug terms are not identically zero, setting to zero each A, is
equivalent to requiring the coeflicient in front of these terms to be zero, that
is, to write:

A? 2d-1) ,,
(Zd(l =gt [+ ﬁ’\ ]¢) =0. (3.21)

Using this equation and the explicit expression of A, we obtain p and then
g(p) in this case:

1
1 = dpog(p) = d.”'l)gsdb(p)(l = m%), (3.22)
where po = = ,Zfz and gsa(p) is the value of g(p) when the semi-detailed
balance holds and can be written as [7]:
D 1-24
gsav(p) = Bivi—d (3.23)

When the collisions obey the semi-detailed balance, w;,z and therefore ¢ are
zero and g(p) equals g, (p) as expected.

The expression we obtained for g(p) is quite simple but is still not very
tractable since ¢ and 1 have been obtained only implicitly through the G-
invariance. We give now an explicit expression of g(p) involving two quanti-
ties clearly dependent on the collision laws.

We multiply (3.19) and (3.20) by Q;as and sum over i, and 3 to get

N = TR T )Qusdc - () 1-ab @2
1
T —a) ee)Fals)
= ZZ:A(SQS')(%)pu—d)f’
1

T =) T PNanls) ~ Yos(s)L
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N = ZZZ i) ngA(s—»s)( 4 )(l—d)” (3.25)

1
P Yop(s)

= S Al ) - d)
ﬁ*’aﬂ(s)[yaﬁ@’) — Yop(s)] (3.26)
where
N30 % (Qiag)” (3.27)

Thanks to the properties of isotropy of the lattice, N is easily computable.
It is

be'(D —1)
R S 2
. (3.29)
Following Hénon in [8], we make use of the following quantities:
s D 7 -1
P = m ; g A(S — 8 )dp (329)
)PS5 Yap?(s)
o B
s = —D—- z Z Afs — §)dr?
° 2(D — )bt 544
(L= d)’ ™ 323" Pals)Pa(s)Yap(s),
a g
b = o ST Al - et
¢ 2(D — 1)bct
d)'=! Z ZP (s")Yan(s),
= ——— NP1
Hr 2(D—1)bc4 ;?A(S &)
{1 e d)b_p_l Z Z Yaﬁ(‘s)Yaﬂ(S’)a
o B
where P, and Y,z are given respectively in (3.14) and (3.15).
We can then write ¢ and 9 as
¢ = 2(pue — ps), (3.30)
% =2(ur — ). (3.31)

i1 was already computed in [8]; it is
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pl = 5. (3.32)
15 1s computed in appendix B; it 1s
1
Note that ps vanishes for d = 1 which is easily understandable. At this

point, the density of particles equals the density of holes and ps is just pro-
portional to the sum over all the states s of the moment of fourth-order
3w 25 Pals)Ps(s)Yas(s). This quantity is independent of the collision laws
and therefore, when the density of particles equals the density of holes, it
should be invariant by duality (hole-particle exchange). Through this trans-
formation a state s = {s;;¢ =1...b} goesto § = {1 —s;;¢=1...b} and
therefore, P, (s) goes to —F,(s) and Y,5(s) goes to —Y,5(s). So, to be invari-
ant by duality, g5 must be null. The second-order tensor P,(s)Ps(s)Yas(s)
(no summation) will henceforth be denoted PPY.
Using (3.32) and (3.33), we can now write ¢ and ¢ as

{1 — 2d
Hs
= 2p; — 1. (3.35)

We can now give a physical interpretation of ¢ in term of the collision laws.
We introduce the following notation:

A(Q) = ﬁ' g; A(S o Sl)dp_] (336)
BT ZﬁZ[Qaa(S) — Qapls)];

o=

)(#s - ), (3.34)

and
=3 5422,43—»5 P71 — ”P*lngaﬁ(s) (3.37)

where ) represents any s dependent second-order tensor. A((Q)) represents
the transfer of () through the collisions and ) is a sort of mean value of Q
over the whole lattice. Using this notation, we can then write:

4= -2 ST

We see that ¢ is proportional to the amount of PPY transferred through
the collisions. This amount is zero when d = % because of the duality in-
variance at this point; it is also null when the collisions obey semi-detailed
balance. Reciprocally, we can infer that if we chose the collision laws so that
they transfer totally PPY, we will obtain the same expansion for the mean
equilibrium populations as those obtained with the semi-detailed balance as-
sumption. Therefore, the IV; will obey (to second-order) the Fermi-Dirac
distribution (see [7]):

(3.38)
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1

iy i i 3.39
1 +exp(h + qc;) ( )
Expressing ¢ and 1 in term of pg and g7, we can now write g(p) as
29545 (p) ((1 —2d)p7 — #e)
_ . 3.40
ool =57 B et (3.40)

3.2 Viscosity

Making some small adjustment required by the violation of semi-detailed
balance, we find after Hénon in [8] that the viscosity is

= 3.41
R ET) (341
( 1
- P
2T, Lo Als = ) (75) (1 — d) 35 Yan(8) [Yas(s') — Yas(s)]
i
2
which can be written using ¢ as
Tc? 1 1
IO AP L Q. 3.42
09 %2 P
This can therefore be written using p7:
2
Fe 142, (3.43)

T vy

We can note that, contrary to the case when semi-detailed balance holds, we
can not insure that the viscosity should be always positive. We will come
back to this point in the conclusion.

3.3 Reynolds number

In order to find the Reynolds number, we need now to define the charac-
teristic length and the characteristic velocity of the flow. A natural unit of
length is the lattice constant (distance between adjacent nodes). As in [T7],
we then have a natural unit of velocity: the speed necessary to travel the
lattice constant in a unit time. In these units, we denote the characteristic
length and velocity of the flow l; and wy. Moreover, since we operate in
an incompressible regime, the velocity ug should be small compared to the
sound velocity ¢,. It is therefore useful to express the Reynolds number in
terms of the Mach number

M==2 (3.44)
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Combining all the results above, we obtain
R= MloR*(po), (3.45)

where

4(D + 2) guas(po) (#a =1 ?do)f“)_

Ri(po) = cs s 1—9d, 27 + 1 (3'46)

The function g,g is given by (3.23). pe and p; are given by (3.28).
As in the case with the semi-detailed balance assumption, R, contains all
the local information.

3.4 Maximization of the Reynolds number

From the equations (3.45) and (3.46), it is clear that the Reynolds number
is strongly dependent on the collision laws via the two coefficients pg and pr.
To try to maximize R, it is therefore tempting to write it as

R = k(do) F (16, pr), (3.47)

where k(dp) is a function of dy only and F is the function of two variables:

X - 2d0)Y), (3.48)

2Y +1

and then to study F' to find the values of X and ¥ maximizing this function.
There are two problems to this approach: first, this function turns out to
have no actual extrema (there are no values of X and Y such that the two
first partial derivatives of F' are zero). Second, pg and p; may not vary
independently with respect to the collision laws. In other words, certain
choices of these collision laws may fix both pg and pr. For example, if we
try to maximize F' by setting 7 equal to the critical value —1 with a set of
collisions verifying:®

F(X,Y) = (

Yop(s) + Yap(s) =0, (3.49)

we will also consequently fix the value of yg to be —3(1 — 2d). Then, the
value of F in that case is just —3(1 — 2d).

Such a difficulty arose because (3.49) does not allow any further condi-
tions on the collision laws.* To fix independently pg and ji7, we need therefore
to be able to impose some more global conditions, acting on groups of con-
figurations. This means that there will be probably no obvious choice of
the collisions and that only some numerical simulations can show in which
direction to go.

INote that this condition corresponds to the collision laws maximizing the
Reynolds number in the cases where semi-detailed balance holds (see [8]).

4Remember that A, the collision matrix, is 2° by 2" and that the relations of normal-
ization and conservation of mass and momentum impose already 2% 4 2b conditions.
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However, it seems reasonable to think that the variations of the Reynolds
number are governed mainly by the viscosity. A first approach to the problem
of maximization of R could then consist of focusing only on minimizing the
viscosity and hoping that this procedure will not minimize g(p) at the same
time. Such a procedure was applied recently with an optimized collision table
computed by Hénon which minimizes the viscosity in the model described
in this section. It led to a R equal to 17.22 obtained for a density of
0.42. This represents already a gain of a factor 2.5 compared with the value
Rmax = 757 obtained with optimized collision rules obeying the semi-detailed
balance. This proves the possibilities offered by our model. However, its
implementation using these optimized rules has not yet been done and is
still in progress.

4. Model involving a rest particle

In this section, we present the method of computation of the Reynolds num-
ber when one rest particle is present. For this purpose, we first need to
generalize the model described in the previous section into a model including
two different velocities. Then we compute the scaling factor g(p) and the
viscosity to generalize the expression of the Reynolds number obtained be-
fore. At the same time, we show that the results we obtained in the present
section are consistent with those obtained in the third section and by other
authors who made the semi-detailed balance assumption.

4.1 Formalism

We use the same lattice as in section 3. In addition to the b physical direc-
tions, we add a fictitious direction linked to the presence or the absence of a
rest particle. T', the set of all the configurations, is then formed with b+ 1
bit words. For convenience, we note the different states S:

S = (s4,8), (4.1)
where

5:{5,-,1':1...6;.5,-:001‘ 1}
labels the moving particles and

8 =0orl
labels the rest particle. The collision matrix elements are written:

A(S — 5 = A((s*,s) — (5%, 5’)). (4.2)
In the following, it will be useful to make use of the quantities:

A((0,5) = (0,8) = A (s > ), (4.3)
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.A((l, s)— (1, 3')) = At*(s = &), (4.4)
A((1,8) = (0,8)) = A+ (s — &), (4.5)
A((0,5) = (1,8)) = A (s = &), (4.6)

and
At(s =) =AM (s =)+ AT (s = &), (4.7)
A (s—=s)=AF(s—=s)+A (s = ). (4.8)

Finally, we adopt the notation

I = x for the “rest” direction

= 1 for the b “moving” directions,
in order to write, for a set of b+ 1 quantities
Q={QuI=x1...b}

and

We need now to generalize the concept of G-invariance. An isometry of a
lattice is now a transformation which leaves the * coordinate invariant and
is an isometry with respect to the b other coordinates. A set of b+ 1 tensors
T = {T_;, To= %, 1 .b} is then G-invariant if any isometry mapping c; in c;
maps T; in T; while leaving T}, unchanged. With the convention ¢, = 0, we
can then transform the properties P1 and P2 of the section 2 in:

P’1l Any G-invariant set of 1%*-order tensors is given by
Tfur = )‘Icl’a Va: (49)
P’2 Any G-invariant set of 2"d-order tensors is given by

Tiaﬁ = AC;OC“; + f-"‘tan-ﬁ v (0.', 16)3 (4.10)
where respectively p; = p, or p,, for the rest or moving directions.

The properties of isotropy (2.6) to (2.9) are then easily generalized by replac-
ing everywhere i by I. So are the properties of A and the equation governing
the mean equilibrium populations which consists now of the system of b+ 1
equations

AN) = T 3(S'T—SDAS = SHINS (L= N (4.11)
s s J
= 0 VL

Once more, the A; are G-invariant which lead us to postulate the following
expansion for the Np:
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Ni(p,u) = d + ACiatta + pQingtatis + Noaptiatis + O(u?), (4.12)
N.(p,u) = dy + Dbapuaus + O(u®). (4.13)

There are now six parameters to be determined. Because of the definition of
p and u

p=Y Ny, (4.14)
I

pu = EN;(:;, (4.15)
1

these parameters are constrained to satisfy three conditions:

bd + d,=p, (4.16)
pD

» o= £,

bp + n.=0.

The problem becomes now to find the solutions of three systems of b + 1
equations involving only three independent parameters. Fortunately, we can
make use of the symmetries of the lattice and of the properties of A to
simplify this problem. By G-invariance, the b A; are equivalent. Because
of the properties P'l and P'2, we expect them to be zero with at most one
condition at the first order and two at the second order. Moreover, the
relation of mass conservation implies:

A+ A =0. (4.17)

We expect therefore the three systems to give at most four independent
constraints on the parameters. This is still one too many but we will certainly
be able to use the momentum conservation as in the section 3 to solve the
difficulty. We now verify these remarks by computations.

We first need to expand the A; up to the second order. Decomposing the
summation on I according to the cases involving or not a rest particle, they
can be written as

Av= (4.18)
S35 — s [NeAt + (1= M)A TIN;»(1 = Ny,
= (4.19)

(s — i) [Nt + (1= N)AT] TIN; (1 = Nj) ),
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where we have set AT(s — §') = A%*... etc to simplify the notations.
Thanks to the results of the section 3, we already know the expansion of
TT;N;%(1 — Nj-)(l_""). Using (4.13), we can also easily expand the term be-
tween braces. Note that it involves no first-order term, which simplifies the
final computation.

The zero order gives the b+ 1 equations:

AL = ZZ — 5.)[dA* + (1 - d,)A7] (%d)p(l —d)’, (4.20)

A = (4.21)

P

IDYCERI VSRS () a-af v

In fact, as we have seen before, the last b equations are equivalent and they are
linked to the first one by mass conservation. This system is then equivalent
to only one of its equations, the first one for exemple, which involves only d
and d,. Using the first equation of the system (4.16), these parameters are
then determined by the system:

bd +d, = P, {4.22)

P

25 (=8 [dA* +(1—d,)A7] (-l-fl_—d) (1-d)=o0.

Note that this is not a linear system in d so that it can have more than one
solution. This was pointed out by Hénon who constructed an example where
there are indeed three solutions [9].

The treatment of the first order is exactly the same as in the section 3
except for the ¢ being replaced by /. This means that this order is identically
zero without any further condition; this is good since we had no degree of
freedom for the first-order parameter A.

Expanding the quantity [T;(s) and using the expansion of N, (4.18), we
obtain the system governing the second order:

AM = ZZH&)(S) (5 — 8.) [ AT + (1 - d,)A7] (4.23)
¥ T (%d)p(l — d)(s's = 5.)[AY = A7|mbapuaus,

AP = ZZH” = ) [dAT + (1 - d)A7] (4.24)
+ ):Z,(m) (1= d)'(s's = ) [A* — A | mbaguoy Vi,
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where
%) = eta-a (4.25)

[d u'-"'uﬁ Z Z(sl (sk - d)cjackﬁ

k 1<k
gt Z(sj — d)Qjap + Mtala Z(Sj = d)aor.@] ’
i i

Thanks to the G-invariance, we can write A; = (¥¢;aCig + @nbap)tatp and
A, = ¢.dapusug. Moreover, mass conservation relates 1, ¢,,, and ¢.. The
system of b+ 1 equations is then equivalent to only two equations (which is
the number of free parameters):
A, = 0, (4.26)
A; = 0, for 1 = 1 for example.
Adding to them the the last equation of (4.16), we obtain the system of three
equations linear in g, 7, and 7,:

A, + B+ C*'u= D", (4.27)
A'n, + B'p+C'u=D',
s + bﬂ =0.

The expression for the coefficients is given in the next page. To make the
most of the G-invariance, we divide the first equation by b and we add the
second one; the final equation involves now some quantities we can write
schematically as: X* + 1X*. Thanks to the G-invariance and to the mass
conservation, these quantities can be written as:

;o1

X'+ EX* = Px Qiapllats. (4.28)
Because of the mass conservation, A! and B!, which are composed of zero-
order tensors, must satisfy A' = —1A* and a similar equation for B. This
means that ¥4, = ¥g = 0. The system becomes

A+ B'n+C*'un = D7, (4.29)

1!)0# = ¢D7
ne+byp = 0.

Expressing the D! in term of the C?, F!, and BT and solving the system, we
obtain finally g,  and 5, which are

. P2 1 p
b= dLYG) [1 - Zd)%]

7 = a2 [ : (C*d’"" )+§B*],

(4.30)

bd Br—ba |T=20)\C ¥o
* _na_ 2 G(P) 1 *¢F I e
= M e [(1—2d) (c i ) £ DB]

where
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D?1-—2d

G(p) = A 1—d (4.31)

We can note that the p obtained above is very similar to the one obtained

in the monospeed case. Thanks to (4.28), we can indeed express ¥¢ and ¥p
in terms of the collision laws as

Nyp = ¥ 3 [dA +(1-d)A7 (4.32)

(I_EE)P(I— )d(l )P ' (8) Pa(s)[Yap(s') — Yap(s)),

Nyo = LN [dA"+(1-d)a7] (4.33)
(7550 = 0 s Von(e V() — Yon()L
where
R ] (4.34)

D

In this case, the collision matrix A(s — s') of the monospeed model has
been replaced by an effective collision matrix [d*A’* +(1-— d,,)A’]. From its
expression and the properties of the A*, it can be shown that this matrix
satisfies all the properties of A: it is positive, it satisfies the relation of
normalization, it conserves mass and momentum and it is invariant under
any isometry in G. But it depends now on the density of the rest particles
which means that we have a new degree of freedom to vary. This will be
important in the maximization of the Reynolds number.

Expression of the coefficients

£ = T(r5) a- 0
[A+ s A_] Ja,gu,,uﬁ

B = % (;f—)’(l ~ ()
5,5"

[d.A* + (1 - d)A- ]Z sy "ﬁu""”

B = §(1_i§) (1 —d)’(s's — 5)
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[d AT+ (1-d)A” ]Z Jd?;uaw;

C* = S(h-s)[dAat+(1-d, A-](—) (1-aP

IJ

1
-Td)z sJ-QJ-apuau,g

Ci = Z(s, —s;)[d.A* +(1-d,)A" ]( ) (1-d)*
m‘; $;Qjaptatig

Dt = - Z(sx — At + (- d)a) () -y
d2(1 2 _1%:(81 d)(sk — d)cjackﬁuaup

D' = —Z(s,——s, [d At 4(1—d)A" ](_dd.)p(l_d)b

s,8'

d?(l — d)2 =3 2 (8 — d)(sk — d)cjaChptiatiy

i<k

F* = Z(s —s*)[d A++( d*)A_](%i

8,3’
1
m % 8;5kCiaCrplialp

) (1 - a)f

Fio= Y= s)[doA* + (1 - d)A7] (+=) (1 -

8,8

1
Sy o 8;8kCiaCrplialig
d(l—d)jz'k:’ AT

597

We show now that the results obtained above are consistent with previous
results. We write explicitly the expansion of the N; as

by
([1 w*]Qm.B + ch EE+ 1[1 + wuléag)uaug]
2 E,
% = e ans (- )g

where

pm = bd density of the moving particles,
=y density of the rest particle,

1+ wﬂ]éaguoug]

(4.35)
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T
Wy = =24 v’ (4.36)
D 1 LUF 5
1.B*
E* = —Eﬁ. (4.38)

With this expansion, we recover two limiting cases: the case with the semi-
detailed assumption and the monospeed case,

If we make the semi-detailed assumption, all the configurations must be
equivalent which implies

d, = d, (4.39)
A* + B*=0,
Yp = F*=0.

Using these results, we get therefore

1
E.=-=E
»=3 =E,
and then,
N o= 8 1+£-€-c-u+(~”—)2G() (4.40)
' F T b TN '
¢t E
(Qiaﬁ' F DEFL léaﬁ)uauﬁ]
Ry ¢ 1
N* = d* 1= T 1 Yafla
[ (pm) Glo) 5 dent ua]

This is indeed the expansion obtained by D’Humiéres et al. [10].
The monospeed case corresponds to d, = 0 and to
At (s = §) = AT =) =A"T(s—=s)=0
AT (s = §") = A(s— &)

]

This implies:
E-k
E*+1
[dA* +(1-d)A"] = A(s— ),

=0, (4.41)

which enables us to recover the monospeed case described in section 3.
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We need now to compute the viscosity in this model. This is done in a
way very similar to the monospeed model [8] in appendix C. The result is,
as expected, a generalization of the formula (3.42)

v = D+2(x ) (4.42)

_ e 1 1
T D+2 ["E B 2] :
Note that the recipes given in (4.41) ensure that this expression is indeed
consistent with the monospeed viscosity.
We can now use the similarity between the monospeed case and the case
involving a rest particle to give an expression of the Reynolds number in term

of quantities dependent on the collision laws. It is, using the same notation
as in section 3:

R = MIgR,(po), (4.43)

where, in this case,

4(D +2) guas(0) (us” -1 M)#"”) (4.44)

_ . (Po
R*(PO)*C (Pm) id l—zdo 2"=ff+1

The subscript ef f in p7 and pg means that they have been computed with
the effective collision matrix |[d,A* + (1 — d*)A’] instead of A(s — s').

To maximize R, we need then to do the same thing as in the monospeed
case but we have now another degree of freedom which is the density of the
rest particles. It appears in two different ways: through the ratio -£ and in
the effective collision matrix. We can therefore expect the onairnigation of
the Reynolds number to be more efficient. This is not surprising since it is
just a consequence of the fact that more collisions are allowed when a rest
particle is present.

5. Conclusion

We have shown that, within the (lattice) Boltzmann approximation, it is
possible to extend the general theory developed by Frisch et al. [7] to cases
involving violation of semi-detailed balance and that it seems a very promis-
ing way of increasing the Reynolds number. Moreover, whereas it has been
shown by Hénon in [8] that the viscosity is always positive when the semi-
detailed balance is assumed, this need not be true anymore with the viola-
tion of semi-detailed balance. It is not clear whether our model can already
achieve arbitrarily small or even negative viscosities (which would imply the
existence of a phase transition) and only numerical simulations and compu-
tations will enable us to clarify this point. However, as we have seen, it is
very difficult to foresee how to chose the collision rules to reach the smallest
possible viscosity. This may require a somewhat empirical exploration which
is still in progress.
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Appendix A.

We give here the detailed computation of the expansion of the A; given in
the section 3.
The first step is to expand up to the second order the quantity:

[I(s) = HN Ny, (A1)

Using s; = 0 or 1 and (3.4), we have

Il

N5 (1 — Ny s;N; + (1 —s;)(1 - N,) (A.2)
sjd + (1 —s;)(1 — d) + A(2s; — 1)c;u
+u(28; — 1) Qiaptiatis + O(u®)

. dsJ( d)(]—:zJ

Il

[1 L (‘EJ d))().cju + #Qiaﬁuauﬁ)}
+0(u?)

We can now put this result in (A.1) to get the three leading orders in the
expansion of [];(s) which are respectively:

0O-order term

P

1% =( dd) (1-d) (A.3)

: 1-—
i

with p = 3; ;.

1**-order term

M6 = (1) 1 - e (Sl - e (A9

i
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md_grder term

2 d P b /\2
H( &) = ("1_:1) (1—d) [wuuuﬁ

22 (85 = d)(sx — d)cjacrp
k g<k

+ gyt Do — Qs ]

Thanks to the relations

ZC,‘ :0,

E Qia,@ = 01
i

the terms independent of s can be eliminated in (A.4) and in (A.5).

Finally, we make use of the relation

2D (85 = (s — d)cjacra

k J<k

1 1
= § ZJ;Z(S} — d)(sk — d)cjuchs — 5? (s — d) cracig
F
1
= 522 Si%CiaCks
P

—= E (d® + (1 — 2d)s1)(Qrap + 6043),
to write the 2*-order term as:
(2 d \?
0% = (=) a-2*
J
[ (a1 d2)125
2 =y oo 2\ (24 = Vs = & 75605

/\2
2d2( uauﬁzzsjskcmckﬁ

-+

-+

b edD
(d(l —3) T aBa—dp )”a”ﬁzk?Skaaﬂ]-
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(A5)

(A.8)

In order to make the notation more compact, we introduce the following

quantities [8]:

(s) =2 siCia,

(A.10)
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YC{,@(S) = ZSiQiaﬁa (Al].)

which represent respectively the first- and second-order moment in the state
s.

Substituting these quantities in (A.3), (A.4), and (9) and coming back to
the definition of the A;, we obtain the expansion in (3.8) of (3.32) of section
3.

Appendix B.

In this section, we compute the value of the coefficient s defined in (3.32)
of section 3.
Using (3.28), it can be written as

D

52 famila s 1
fo = D1 B
SN A(s = )P —d) P Y0 PaPaYap
] s' a g
1 D

d(1 —d) (D — 1)2bc*

X z QiapCiaCrp E ( ) —d)’s sjskZA (s — 8.

af 1,5,k

The sum on §' is one because of (2.12). The sum on s can be written as

Zs sjsk( ) 1—d) 2= Z Zssj.sk( dd)p(l—d)b,

51=0 sn=0

or, using p = 3 ; 84,

(II 3 dm(1 - ay=) S s (1 - d)f=" (B.2)

m#i, 5,k sm=0 8;=0
1 1
Z 5;d% (1 — d)t_’i Z spd®* (1 — cl)“’".
5;=0 55=0
Three cases are to be distinguished:

ifi =7 ==k, (B.2)is d (the sum on s; is d, the sum on s; for j # 2 is
1).

ifi=j#k orj=k#iork=1i+#j, (B.2)isd%
ifisjand 5k and k #£14, (B.2) is &2

The sum on ¢, j, k needs then to be decomposed in three kinds of terms:
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Sy = Zz::g:_:, (B.3)

K(5) = E\;g, (B.4)

Loz ZE Z (B.5)
1 gFik#Fig

Therefore, p5 becomes:

1
= e d*(K(i N4+ Kk df’L] B.
i 2Nd(1—d)[d82+ (KG)+ K@)+ K (k) + (B.6)
> Quapeintip:
a8
For convenience, we decompose L and the K thanks to .S; and the quantities
5:0)=33%, (B.7)
i k=g
%=TT5. (B.8)
iodok

This decomposition is
K@) = Si(i)— 5, (B.9)
L= Sot25 = (Si(0) + 5i6) + 5:(8)).

The term between braces of (B.6) is then

Sy + (1 —d)(Si(6) + () + Su(k)) (B.10)
+ d(1 = d)(1 — 2d)S,.

We can now use the relations
Zan‘g =0 and ZC;,, = 0,
to set to zero the S; and Sy terms. We obtain finally
1
Us = (1 — Qd)gjngQ{aﬁCjQCkﬁ. (Bll)

Coming back to the definition of S, and using (2.9), we can easily compute
this quantity. The final result is

S?Qiaﬁcjozckﬁ =N,

and therefore

1
ps = 5(1 —2d).
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Appendix C.

In this appendix, we compute the viscosity in the case where a rest particle
is present. To do that, we follow the method used in [8] which consists of
five steps:

1. Define a steady, homogeneous state, with linear shear velocity field.
2. Write equations for collisions.

3. Write equations for propagation.

4. Solve these equations to determine the structure of the steady state.

5. Compute the momentum flux and the viscosity.

Appendix C.1 Steady state

We choose the steady state which is obtained by perturbation of the equilib-
rium state at null speed. The mean population of the node z is then given
by

N;:d;+(;(.r) With CI < 1. (C])

Because of the definition of the density, ¢ satisfies:
2 Ga=0. (C.2)
T
We assume that the mean velocity, defined as
pu = Z crNy, (C.3)
T
takes the form:

By= ; Topzg (@=1...D). (C.4)

The T,z are the components of the velocity gradient:

_ Ou,

Lo ="
? ail',g

(C.5)

It is then natural to suppose that the (; are also a linear function of the z,
(see [8]):

C[ = kf'@ﬂf'@ -+ €r. (CG)
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We insert this expression in (C.3) and (C.2) to get the relations

Yag = 0, (C.7)
E;c!a = 0 Ve,
IEf:km = - Y&,
ZI:CIakIﬁ = plap Va,f.

We get therefore (D 4+ 1)* equations. Since we have (D +1)(b+ 1) unknowns
in the problem, we need to find some more equations to solve it. This is done
requiring that the populations N; must be invariant under the evolution
operator, that is, under the operations collision plus propagation.

Appendix C.2 Collision

As in the section 4, the collision equation is
N’I _ A’I = ZZ(SIJ _ SI .A(S . S')HNJSJ(]- _ )(1 -5y) (C 8)
= 0 VI.

We put in this equation the expression of the Ny and we use the fact that
they are the solution of (C.8) at zero speed and the G-invariance to eliminate
a constant term. We get to first order:

o=l = ZZ( ) (1 - (e — s) [4* - A7] &, (C.9)
+ 2 (s — s [dAt + (1 - d)AT]
(1= )7 3o (s - d)G,

(e

EZ( ) (1-d)’(si—s)[a*—Aa7]¢.  (Ca0)
+ ZZ si)[dAt + (1 - d)A7]
P71 - apr > (55— d)¢;

Appendix C.3 Propagation

For a steady state, the probability of arrival of a particle at a node equals
the probability of leaving the previous node:

Ni(z 4 7¢;) = N'i(z). (C.11)
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We substitute the expression of the N; in this equation to get:
G(z) = Ciz) = —7 kac,—a. (C.12)
Since the rest particle does not propagate, we must have

N,(z) = N',(x). (C.13)

This means that the ¢, must obey the relation:
() — ¢'4(z) = 0. (0.14)

From the mass conservation, we deduce that the (; verify:

Z[Cz z)] = 0. (C.15)

Appendix C.4 Computation of the solutions

We now combine the collision equations with the propagation equations to
get b+ 1 complementary equations, namely

= —Zz(l_ ) (- (s — o) [4% - 4] . (C.16)
+ DX n) )[dAT + (1 —d,)A7]
dp_l 6_p_ E(s.ﬂ CJ?

ThiaCia Zz( ) (1-df(si—s) [A* 47| (CaT)
& ZZ (s — s:)[duA™ + (1 — d)A7]
P71 = d)F7t 3o (s; — )

It would be hard to solve this problem without guessing the form of the
solutions. Fortunately, we can use the results in the monospeed case to
search for solutions of the form

k[a, = I(a + LaﬁC]ﬁ. (018)
We replace this definition (C.18) in (7) to get:
Ky = 0 Vo (C.19)
pD p D
Laﬁ = = 2TD,,3 d Tuﬁ ch ,@,

where p,, = bd. Note that if we combine now the expression obtained for the
L,g and the relation (C.15), we obtain
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ZTau =0

which is not surprising since the flow is incompressible.

We need now to check that the solutions we have guessed are solutions
of the system (C.17) and (C.16). We plug (C.18) into it and we separate
the constant terms from the terms which are linear in x. Thanks to the
G-invariance and to the momentum conservation, it can be shown that the
terms linear in z, which involve only L.z, are identically null. The constant
terms give b+ 1 equations for the ¢ :

- —ZZ( ) (1-d) (s —s.) [t — A e (C.20)
3 Z(s » = 8)[dAT +(1-d,)A7]

dp_ b-p-l Z(SJ d)ej,
2 L tacs = LT (155 LY (1= (e =52 (C.21)
[A+ s A ] €

+ LY =) [deAt + (1~ d)A7]
(1= dP Y (s — d)eg

As in the monospeed case, the form of this system suggests using a “theory
of linear response” that is to write that the perturbation, represented by the
¢, is proportional to the excitation term:

D

€ = __gdleﬂﬁQfaﬂ'l (0-22)
c* P

e, = 0.

Note that these expressions are consistent with the system (C.7).
We put these relations in the system (C.21) and use the notations used
for the computation of the equilibrium population; we obtain

0 = xc*o,pTa,g, (0.23)
_Taﬁci&ci,@ = XclaﬁTaﬁ- (024)
Using the G-invariance, we can write
e = ¥Qisp+ $bap, (C.25)
;.a = Pubap.

Using the mass conservation, we get b+ ¢, = 0. This implies that ¥ is in fact
1o with the notations of the section 4. If we use now the incompressibility
relation, we find that the system is equivalent to only one equation:
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1
X =—— C.26
X === (€.26)
We can now write the expansion of the Ny as
D p
N,- = d [l + -(-!'E;):( ialf — TXQm.G) o) ] (027)

Ny = ds

Since the rest particle does not propagate, it is normal that its expansion
does not differ from the steady state at null speed.

Appendix C.5 Computation of the viscosity

As in [8], the components of the tensor momentum flux are
1
F‘r5 = Z Ci~Cis [N,(I) + ETk;.C;] - (028)

We substitute the expansion of the N; and the k; given by (C.26) and (C.18)
and we use the isotropy relations (2.6) to (2.9) to get

2
Pmc” 2prc?
prc?
Fo = —E - Ta=T) (1 #9)
The second equation proves that the shear viscosity is
_prc? 1

_ pTc 1 1
T D42 v 2|
Since the kinetic viscosity is %, we find the result given in section 4.
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