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Abstract . We show how the theory of latt ice gases developed by
Frisch, d'Humi eres, Hasslacher, Lallemand, Pomeau, and Rivet, can
be extended to cases involving viola.tion of semi-detailed balance. T his
allows further redu ction of the viscosit y. However , since t he univer­
sality of the distribution is lost , t he function g(p ) becomes dependent
on th e collision laws and has to be evaluated by a suit able general.
ization of the work of Henon on viscosit ies. Cases with and without
rest part icles are considered. The lat tice Boltzmann approximation is
used.

1. Introduction

Lattice gas models (see [1), [2) , and [3]) have become a very promising way
to simulate some hydrodynamic phenom ena. Indeed , the simplicity of its
formalism allows the const ruct ion of codes where no integration or partial
differential equat ions is necessary. It also led to the const ruct ion of special­
ized machines such as CAM [4) or RAP (5), which is ab le to simulate in real
t ime the evolut ion of a fluid. Using these techniques, Rivet , Henan, Frisch
and d'Humieres have already simulated fully three-d imensional external flows
(6).

For sake of computational efficiency, it has become very important to
work on optimizing the collision laws in the lattice gas models. One of
the most important control parameters of all the simulation is indeed the
Reynolds number. In the lattice gas mod els, the latter can be written as
[7) R = R.. x L x V where R.. is a coefficient which depends on the collision
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laws, and L an d V are res pectively a character ist ic length and a characteristic
velocity expressed in unit s of lattice constant an d sou nd velocity. Reaching a
given Reynolds number at given 14 and V means choosing L. The problem
is that t he number of nodes goes as L 3 and then any given com putational
quantity goes as L4. This also means that, at a given V, the computational
resources (and therefore th e efficiency) vary as R;4. T hat is why it has
become of particular in terest to increase R*_ Since this coefficient is inver sely
proportional to the viscosity, the natural idea is to diminish the viscosity. T he
latter depends on the collision laws imposed on the gas via the mean free
path: the more collisions there are, the smaller the mean free path is and the
smaller the viscosity is.

Increasing the number of allowed collisions can be done in two different
ways: either by increasing the number of part icles involved or by setting
fewer limi tations on the collision rules. Th e first way has already been used
in a very efficient manner by Henon [8] who succeeded in raising R; by a
fact or sixteen by an adequate choice of the collisions in a 25 part icles model.
However , thi s way of pro ceeding does not allow an indefinite increase in ~.

The on ly way to raise it any more is to act on the collision rules themselves.
The problem is that this can imply some drastic cha nges in the dyn am ics
and in the macroscopic behaviour of the gas . It is then necessary to choose
carefully which condit ions on the collision rules are to be dropped . In all the
models cons idered unt il now, the main three cond iti ons are t he following: the
collisions must conserve mass and momentum and they must satisfy a sort
of generaliza t ion of the micro-reversibility called the semi-detailed balance.
T he first two cond it ions are a very convenient way to ensure that the total
energy of t he gas is conserved and the refore, they seem difficult to give up.
As to the th ird one, we know already from the work of Frisch et al . [7] and of
Henon its im portance in the der ivat ion of the universality of the equilibrium
dist ributions. However , we show here that , even in mo dels involving violat ion
of sem i-detailed assumption, it is possible to give an explicit development of
the equilibrium distri butio ns at low Mach number which can be seen as a
generalizat ion of the deve lopment given in [7]. T his is done using the Bolt z­
mann approximation (as described in [7]), th e symme tries of the lat t ice and
the prope rt ies of the collision matrix which enable us to explicit ly solve the
system of equations requi red (even when it involves 24 of more unknowns).
Following these res ults, we also extend the expression of the viscosity using
the work of Henon [8]. Finally, we give the expression of the Reynolds num­
ber in our model and discuss briefly t he possib ilit ies of its max imizat ion by
a proper choice of the collision laws.

The out line of th is paper is the following: in the second part, we summa­
rize the lat ti ce gas form alism and the notat ions we are going to use; in the
third part, we compute the Reynolds number in a case without rest parti­
cle using the scheme described above ; in the fourth part , we show how this
computation can be extende d to cases involving rest part icles.
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2. General formalism a nd n ot a t ions

In t his sect ion, we summarize the general formalism of the latt ice gas. Vve
include the mathemat ical formulation of what we mean by "symmet ry of the
latt ice" and its impli cation, namely the "G-invariance" , which will be the
basis of all our computations. For a general review of the subj ect including
the descript ion of the most common lattice gas models, see the very detailed
paper of Frisch, d'Humieres, Hasslacher , Lallemand, Pom eau , and Rivet [7}.

A lat tice gas consists of part icles of mass unity moving with speed con
a D-d imensiona l lattice E (ty pically, D equals two or four) which is required
to obey some symmetries that we will descri be below. Each node in E is
connected to its b nearest neighbors by a set of b velocity vectors c, (i =
1, .. .b), so called because they represent the act ual velocit ies of the par ticles
moving from a node to its neighbor. Each c, has spatial components cio(a =
1, . .. , D )'

We adopt an "exclusion principle" which forbids two particles to be at
t he same node with the same velocity. Th erefore, each node can assume only
a finite number of states, each state being described by a b-bit binary word
S = {s. , i = 1, . . .b} where Si is equal to one if the node contains a particle
with speed c, and zero otherwise. Given an initi al configuration s(.) = {s(r..);
r -, E .C}, where s(r*) represents the st ate of the node r*, the gas will evolve
in t ime through collisions occurring at each node. A collision is defined as
the passage from an inp ut state 5 to an outp ut state Sf . The collisions are
governed by the set of a 2&X 2&collision matrix A, whose elements A(s -+ Sf )

represent the transition probability from the state s to t he state 5' . Th is
matrix is supposed to sat isfy certain propert ies that we will spec ify later.
T hanks to this collision matrix, the evolut ion of the gas can be described
in a stat ist ical way using a probabili ty dist ribu tion P(s(.) which gives t he
probability of occurrence of a configurat ion s(. ) = (s(r. ); r. E L} . The
evolut ion of P(s(.)) in tim e is t hen described by a Liouville equation (see [7J,
sect ion 3.3)

p(t. + 1,Ss'( .») = L: IIr. EcA (s(r. ) -+ s'( r.))P (t., s(.) ), (2.1)
,(.)er

where r denotes t he set of all possible configurat ions in the lat t ice and S is
the streaming operat or S : si( r.) l-+ si(r* - c. ).

Th is probability distribution enabl es us to define physical quantities of
interest, namely

(a) t he mean population in t he i th d irect ion:

Ni(t., r.) = L: si(r.)P(t.,s(.»),
,(.)er

(b) the density:

(2.2)

lIn this paper, Greek and Roman indi ces refer respect ively to coordinate and velocity
labels . Summation over repealed Greek indices, but not Roman ones, is imp licit.
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p(t .. r*) = z= Ni(t., r. ),

(c) the mean velocity :

Berengere Dubrulle

(2.3)

(2.4)

The above defines a very general class of latti ce gas models. We now need
to specify the symmetries of the latt ice and the properties of the collision
matrix A in order to make the computations more tractable.

2.1 Sy m m et r ies of the lat tice

Given the definition of the latti ce, specifying its symmetries is equivalent to
specifying the symmetries of the velocity set V = {Ci; i = 1, . . . b}. In the
following we will therefore impose two conditions on V (see [aJ) :

1. V must he isotropic to fourth order. The meaning of this
assumpt ion is the following: if we define a tensor of order n
(n E N ) by

(2.5)

then any tensor up to n equal four should be isotropic, i.e.
their components should he invariant by any rotation of the
coordinate axes. The T are then shown to be given by:

To = z= Cio = 0, (2.6)

(2.7)

(2.8)

(2.9)

be'
D(D +2)(oopo" + .o,.p, +oo,op, ),

where 60 /3 is the Kronecker symbol.
II. The velocit ies must be interchangeable in the following sense:

defining G as the group of isometri es of the lat t ice (therefore
leaving V globally invariant), for any set of velociti es (c., c. )
there is an isometry of G mapping Cj on Cj . A set of b tensors
T = {Ti; i = 1 ... b} will then be said G-invariant if any
isometry of G which maps c, on Cj maps Tj on Tj .

It can be shown (see [7]) that the combination of i) and ii) leads to the
two following properties:
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PI Any set of G-inva riant tenso rs of I ' " order is given by

P2 Any set of G-invariant tensors of 2nd order is given by

These two properties form the basis of all our computations.

581

(2.10)

(2.11)

2.2 Properties of A

Since A is composed of t ransit ion probabil it ies, it is pos it ive in the sen se that
all it s elements are posit ive. Due to the norm aliza t ion of the probabilities, it
also obeys the relation :

2: A( s --> s') = 1 V s.

.'
(2.12)

Furthermore, it is supposed to have three more propert ies, namely to conserve
mass and moment um and to be invariant under any isometry of G. Since
the parti cles are of mass unity, the mass, m(s) , and the momentum, pes), in
each state s can be defined as

m(s) = 2: s;,

P(s) = 2: s;c;.

Con servi ng the mass means that for any input state s and output state S',
the corresponding matrix element will be non zero if and on ly if m(s) equal
m(s') . This can be written as

(m( s) - m( s'))A(s --> s' ) = 0 yes ,s') ,

or eq uivalently

2:(s; - s' ;)A(s --> s' ) = 0 V(s , s').

In a sim ilar way, the momentum conservation can be written as:

2:(s; - S';)Ci. A(S --> s') = 0 V Q V (s, s') .

T he invariance of A under the isometries of G will be formu lated as:

A(9(s) --> g (s' )) = A(s --> s' ) vg E G, yes, s').

(2.13)

(2.14)

(2.15)
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Now comes the difference between our class of model and those described
in [7]. Usually a fourth constraint is imposed on the collision rules, the
semi-detailed balance. Th is const raint can he written as: 2

Vs LA(s'~ s)= LA(s~s')=1, (2.16)

" "
In this pap er , we ar e not going to im pose such a relation. What can be
expected from such a. difference? As stated above, the first consequence is
tha t the number of possib le collisions will be greatly increased. More im­
portantly, we allow now some configurations to be pr ivileged compared with
others. To understand this point, it is useful to make an analogy with quan­
tum mecha nics . Supp ose that the stales s refer to some "energy states" and
then, label the energy levels. A(s --+ s' ) is then th e transition probabili ty
from t he s-level to the s'- level. The semi-detailed balance would ensure that
th e depop ulation of t he s-Ievel (L" A(s ~ s') term) is balanced exact ly by
its popul ation via th e oth er levels (L"I A(s' -+ s ) te rm) . If we drop this as­
sumpt ion, nothing prevents some levels from being systemat ically "emptied"
asymptot ical ly achieving a zero probability of occurrence after a finite time.

3 . Monospeed mndel

In th is section, we will give a method of comp uting the Reynolds number
in the model defined above . In genera l, the Reynol ds number R is written
as R = L:U where L and U are respecti vely a characterist ic lengt h and
a characteristic speed of th e fluid under considerat ion and v its kinematic
shear viscosity. In t he lattice gas case, it has been shown in [7] that in the
case of low-speed equilibria and when t he Boltzmann approx imation is valid,
t he Reynolds number involves a rescaled viscosity v'(p) =~ where p is the
mean density. Th e sca ling factor g(p) is linked to the developm ent to second
order of th e mean equilibrium populations N/:q through th e equat ion:

where

N,"(p, u) =d(1 + ~CiOUO + Ng( p)Q,opuoup) +O(u' ),
c

(3.1)

N = D(D +2)
2<,'

and

We proceed therefore in the following way: first we comp ute t he mean
equilibrium populat ions using the Boltzmann approximation to find the ex­
pression for g(p). T hen , using the expression of the shear viscosity found by
Henon [8j which is valid eve n without the semi-detai led balance, we find the
exp ression for th e Reynolds number. Finally, we briefly discuss the max i­
mization of this Reynold s number by a proper choice of the collisions.

"Note t hat this semi-detailed ba lan ce is a generalizat ion of the det ailed balance (also
called micro-reversibili ty in collision theory) A(S' _ s) = A(s - S') VS , s'.
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3. 1 Mean equilib rium popula ti on s

To derive the expression of the mean equilibrium popu la tions, we mak e use of
the Bolt zmann approximation. This means that we assume th at the particles
ente ring a. collision pro cess have no pr ior corre lat ions. T his is a very crude
assum ption which works only for mean quantities. It is t hen shown by Frisch
et 301 in (7] that this approximat ion leads to the lat ti ce Boltz mann equat ion

Ni(l* + I , r ; + c.) = Nd t"' Jr*) + ~iBol! %

b./ "" = LL)s'; - s;)A(s ---> s') IIN/'(1- Nj)( ,-"l Vi. (3.2)
~ $' j

T he equilibrium populat ions are therefore the solutions of the system of b
equations

(3.3)

Once more, thi s is a ma th ematically well-defined probl em but st ill not very
tr actable. For tunately, the symmetries of the lat t ice (and espec ially the G­
invariance) lead us to postulate an expansion of the solut ions of th e form

N;(p, u) = d + AC;oUo + I'Q ;opu ou p + ~8opuoup + O (u 3
) , (3.4)

where

(3.5)

and where d, A, J1 and "7 are some constants to be dete rmined as funct ions of
p, the density of the gas .

By definit ion of p and u ,

P=LN;,

d, A, and 1] are const rained to satisfy

(3.6)

(3.7)

d = ~, ~ = 0 and A= dD
2 .

C

T he only free parameter left is jl. In order to determine it , we inject the
expansions of the N, (3.4) into the system of equ at ion (3.3) and set b.; equal
to zero up to th e second order. V\'e obtain now three syste ms of b equations
correspond ing to the set t ing to zero of the order zero, one, and two. In fact,
since the 6 1 are G· invar iant, all the directions are equivalent. T here fore,
th ese three systems simplify to three independ ent equations (one for each
order) . Th e first two equations (corres ponding to the zero and the first order)
have no free parameters and we will have to check that t hey are indeed null



584 Berengere Du brulle

without any further condition. At this point, we expect the properties of
A to play an im portant role. As to the th ird equation, it will give us one
condition which will enable us to dete rmine p.

Using the expansion of the Ni given above, it is shown in appendix A
that the /). j can be expanded as a function of zero-, first- and second-order
tensors as

6.; = Tj

where r 1 w , v, and z are respect ively written:

t;a =L:L:(s'; - solA (s --> s' )( : d)' (1 - d)' Pats ),
8 8 ' 1

(3.9)

(3.10)

(3.11)

E L)s'; - s;) A(s --> s')<1"- 1(1 - d),- , -1 L: (2d - 1)s , - d')~ .aP,
J &' k

(3.12)

~ ~(s'; - s;)A(s --> s') C: ) P(l - d)' d( l ~ d{a(S)PP(s ),

Z;aP = EE(s'; - s;)A (s --> s') ( l: ) P(1 - d)' d( l ~ d)YaP(s ). (3.13). .'
where p is the number of particles in the state s: p = Li Si-

In the above equations, we have used the first and second-order momen­
tum in a state s, P (s ), and Y (s), defined respectively as as (see (8)):

Note t hat Y is has a null trace:

EYaa = o.
a

(3.14)

(3.15)

(3.16)
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Note also that th e tensor Wiap is identi cally zero when t he semi-detailed
balance is assumed. To prove that, we use momentum conservation to write
WicrlJ as

which is obv iously zero if the semi-detailed balance (2.16) is valid.
We check now that th e two first orders in the expansion of the 6, are

null.
ri is a zero-order tensor which is G-invariant. Its value is then independent

of the direction i and can be writ te n as the mean over all th e di rect ions of
its components , that is,

1
r = bI: r;

•
{- I: I: (1~ d)P{1 - d)' D s'; - s,)A(s ~ s')

$ .s' I

Since A has been assumed to verify mass conservat ion (2.13), r is identically
zero.

u; is a first-order tensor which is G· invariant. T hanks to the prop erty
PI mentioned above (equat ion (2.10), it can then he written as

(3.17)

We mult iply the two members of (3.17) by Cio and we sum over i , We obtain
then

Using now the relati on of momentum conservat ion (2.14), we see that 1/J is
zero and th at t io is ident ical ly null as expected.

\Ve now make use of the G-invariance to simpl ify th e exp ression of the
secon d-order te rm of ~i ' V , W, and z bei ng G-invariant second-order tensors,
th e property P2 (equat ion (2.11)) enables us to write them as:

(3.18)

(3.19)

(3.20)

Summing these three relat ions over i and using t he relation of mass conser­
vat ion gives us three relations between the coe ffi cients, namely

, c'
~ = - D~'
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and two similar equations between the four ot her coefficients . This means
that the three tensors v , w, and z are in fact proportional to the QiO'P' In
the case of v, i t is easy to show that the coefficient of proportionality 1] is
zero by multiplying the two m em ber s of the relation of proportionality by
Qio:lh sum ming over i, a , an d (3 an d using the fact that the Y(s) are traceless
tensors.

Vie are then left wit h a very compact expression for the ~i :

(
,\' [(2d-l) '] )

L'>i = 2d(1 _ d) 4> + I' + 2d(1 _ d)'\ ,p QioPUoUp ,

Since the Q icw{3UoU/3 terms are no t ident ica lly zero, setting to zero each 6.; is
equ ivalent to requiring the coefficient in front of these term s to he zero , that
is, to write:

(
,\' [(2d - 1) ,] )

2d(1 - d) 4> + I' + 2d(1 _ d)'\ ,p = o. (3.21)

Using this equat ion and th e explicit expression of A, we obtain j.L an d th en
g(p) in this case :

(3.22)

where J10 = D(~t2) and 9sdb(p) is the value of g(p) when the semi-det ailed
balance holds and can be written as [7J:

(3.23)

When t he collisions obey the semi-detailed balance, Wia{3 and th erefore ¢ are
zero and g(p) equals g'db(P ) as expected .

The exp ress ion we obtained for g{p) is quite simp le but is still not very
tractable since 4> and ,p have been obtained only imp licitl y through the G­
invariance. We give now an exp licit expression of g(p) invo lving two quant i­
t ies clearly dependent on the collision laws.

We multiply (3.19) and (3.20) by QioPand sum over i ; .» and f3 to get

N 4> = LL2.)S'i - s;)QiopA(s ~ s') ( 1 ~ d) P(1- d)'
s 8 ' 1

1
d(l - d/o(s)Pp( s)

= LLA(s ~ s' ) ( ~d) P(I-d)b
8 8' 1

d(1~ d/o(s)Pp(s)[Yop(s') - Yop(s)],

(3.24)
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N,p = LLL(s'; - s;)Q;apA(s ---> S')(I: d) P(l - d)' (3.25)
s a' ~

1
d(l _d{aP(S)

= L L A(s ---> s')(~)(1 - d)'
s a' 1 -

d(1 ~ d{ap(S)[Yap(s') - Yap(s)J (3.26)

where

(3.27)

Thanks to the properties of isotropy of the lat tice, N is easily com puta ble.
It is

N = bc4(D - 1)
D

Following Henon in [8], we make use of the follo wing quantit ies:

1' 1 = 2(D ~ l)bc< Z;~ A( s ---> s' )d
P

-
1

(1 - d),-p-l LLYaP'( s) ,
a p

1' 5 2(D ~ l)bc4 2,=~ A(s ---> S'JdP-l

(1 - d),- p-l LLPa(s)Pp(s)Ya p(s) ,
a p

1'6 = 2(D ~ l)b c< Z;~ A(s ---> s' )d
P

-
1

(1 - d)' - P- l LLPa(s' )Pp(s')Yap(S')'
a p

1'7 2(D ~ l)bc' Z;~ A (s ---> s' )dP
-

1

(1 - d)' - P-l L LYaP(s)Yap(s' ),
a p

where Pa and YaP are given respectively in (3.14) and (3.15).
We can then write ¢ and 'IjJ as

1> = 2(1'6 - 1'5)'

,p = 2(1'7 - I'd·

J-Ll was already computed in [8]; it is

(3.28)

(3.29)

(3 30)

(3.31)
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1
1'1 = 2'

j).s is com puted in ap pe ndix B; it is

1
1', = 2(1 - 2d).

Berengere DubruJIe

(3.32)

(3.33)

Note that I-Ls vanishes for d = ~ which is eas ily underst an dab le. At this
po int) the density of pa rt icles equals the density of holes an d 11-5 is just pro­
portional to the sum over all t he states s of th e moment of fourth-order
I:a I:~ Pa(s)P~{s)Ya~(s) , This quant ity is independent of the collision laws
and therefore, when th e de nsity of part icles equals the density of holes, it
should be invariant by dual ity (hole-parti cle exchange) . T hrough this trans­
format ion a state s = {Sji i = 1 . . . b} goes to s = {I - s.; i = 1 . . .b} and
therefore, Pa(s) goes to -Pats) and Ya~(s) goes to -Ya~(s). So, to be invari­
ant by dual ity, 1', must be null. The second-orde r tens or Pa(s)P~ {s) Ya~(s)

(no summation) will henceforth be denoted PPY.
Using (3.32) and (3.33), we can now write 1> and 1/J as

(I - 2d)
1> = (1'6 - 1'5),

1',

1/J = 21'7 - I.

(3.34)

(3.35)

'INe can now give a phys ical interpretation of ¢ in te rm of t he collision laws.
We int rodu ce the following notation :

and

6.(Q) = 2(D~I)b",~ ~A(s ..... s')dP-l

(1- d),-p-l LDQa~{ s ) - Qa~ ( S' ) ] ,
a ~

(3.36)

where Q represents any s dependent second-orde r tensor. .6.(Q) represents
th e transfer of Q through the collisions an d Q is a sor t of mean value of Q
over the whole lat tice . Using t his notation, we can then write:

(3.38)

\IVe see that 4> is proportiona l to t he amount of P P Y transferr ed through
the coll isions. This amount is zero when d = ! because of the duali ty in­
variance at th is point; it is also null when th e collis ions obey semi-detailed
balance. Recipr ocally, we can infer that if we chose the collision laws so that
they transfe r totally PPY, we will obtain the same expansion for the mean
equilib rium popul ations as those obtained wit h the semi-detai led balance as­
sumption . The refore, the N, will obey (to second-order) t he Fermi -Dirac
distribution {see (7]):
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I
N, = :-I"""'+-e-x-p(""h-+:--q-c,')

Expressing ¢ an d 1/J in term of J.L6 and 117, we can now write g(p) as

g(p) = 2g,,,(p) (I - 2d)1'7 - 1'6) .
I - 2d 21'7 - I

589

(3.39)

(3.40)

3.2 Viscosity

Making some small adjust ment required by the viola tio n of semi-de tailed
balance, we find afte r Henon in [8] that th e viscosity is

T C'

V = "(Do-+--2"'") (3.41)

( -
I

which can be written using .,p as

T C2 1 1
v = (D + 2)( -;j; - ;)

This can th erefo re be written using J-L7:

T C' I + 21'7
v = .

2(D + 2)1 -21'7

(3.42)

(3.43)

We can note that , contrary to the case when semi-detailed balan ce hold s, we
can not insure that the viscosity should be always positi ve. We will come
back to this point in th e conclusion.

3.3 R eynold s number

In order to find t he Rey nolds num ber, we need now to define the charac­
teri sti c length and the chara cteri stic velocity of the flow. A na tural uni t of
length is th e latti ce constant (distance between adjacent nodes). As in [7L
we then have a natural unit of velocity : the speed necessary to t ravel the
lat tice constant in a unit tim e. In these units, we denote th e characterist ic
length and velocity of th e flow 10 and Uo. Moreover, since we operate in
an incompressible regime , the velocity Uo should be small compared to the
sound velocity Cs. It is therefore useful to express the Reynolds numb er in
terms of the Mach number

M = uo.
c,

(3.44)
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Combining all the results above, we obtain

where
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(3.45)

(3.46)"( ) _ 4(D + 2) g,db(PO) (1'6 - (1 - 2do)1'7)
..14 Po - c, .

TC2 1 - 2do 2P.1 + 1

The function g,db is given by (3.23) . 1'6 and 1'7 are given by (3.28).
As in the case with t he semi-detailed ba lance assumption, R, contains all

th e local information .

3.4 Maximization of the Reynolds number

From the equations (3.45) and (3.46), it is clear that the Reynold s numher
is st rongly depende nt on th e collision laws via the two coefficients /16 and /17­
To t ry to maximize R, it is therefore tempting to write it as

(3.47)

(348)

where k(do) is a function of do only and F is the funct ion of two variables:

F(X Y) = (X - (1 - 2do)Y)
, 2Y +I '

and then to st udy F to find the values of X and Y max imizing thi s function .
There are two problems to this approach: first, t his function turns out to
have no act ual extrema (t here are no values of X and Y such that the two
first partial derivat ives of F are zero) . Second, J.l6 and J.l7 may not vary
independently with respect to the collision laws . In other words, certain
choices of th ese collision laws may fix both J.l6 and J.l7. For example, if we
try to maximize F by setting J.l7 equal to the critical value - ! with a set of
collisions verifying:"

Yap(S) +YaP(s') = 0, (3.49)

we will also consequently fix the value of 1'6 to be -HI - 2d). Th en, the
value of F in that case is just - HI - 2d).

Such a difficulty arose because (3.49) does not allow any fur ther condi­
tions on the collision laws." To fix independent ly 1J6 and J.l7 J we need therefore
to be able to impose some more global condit ions, act ing on groups of con­
figurat ions. This means that there will be probably no obvious choice of
the collisions and that only some numerical simulat ions can show in which
direct ion to go.

3Note t hat t his condition corresponds to the collision laws maximizing the
Reynolds numb er in the cases where semi-det ailed balance holds (see [8]).

"Remember that A, th e collision matrix, is 2b by 2b and that the relati ons of normal­
ization and conservat ion of mass and momentum impose already 2b + 2b condit ions .
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However, it seems reasonable to think that the variations of t he Reynolds
numbe r are govern ed mainl y by th e viscosity. A first approach to th e problem
of m aximization of R could th en consist of focusing onl y on minimizing t he
viscosity and hoping that t his procedure will not minimize g(p) at the same
time. Such a proced ure was appli ed recently with an optimized collision table
computed by Hen ou which min imizes th e viscosity in the model described
in th is sect ion . It led to a R,:ax equal to 17.22 obtained for a den sity of
0.42. T his represents al ready a ga in of a factor 2.5 com pared wit h the value
R,::ax = 7.57 obtained with opt imized collision rules obeying the sem i-detai led
balance. T his proves the possibilit ies offered by our mode l. However , its
impl ementa tion using these opt imized rules has not yet been done and is
st ill in progress.

4. Mod el involv ing a rest particle

In this section, we present t he method of computation of the Reynolds num­
ber when one rest par ticle is present. For thi s purpose, we first need to
general ize the model describ ed in the pre vious sect ion into a model including
two different velocit ies. Then we compute the scaling factor g(p} and th e
viscosity to generalize the expression of th e Reyno lds number obtained be­
fore. At th e sam e time, we show that the resu lts we obtained in th e present
sect ion are consistent wit h those obtained in the third section and by ot her
au thors who mad e the semi-detailed balance assumption.

4.1 Formalism

We use the same lat ti ce as in sect ion 3. In add it ion to the b physical direc­
t ions, we add a ficti tious direct ion linked to the presence or the absence of a
rest part icle. I' , the set of all the configurations, is then formed wit h b+ 1
bit words . For conven ience, we note th e different states S :

S = (s. , s) ,

where

S = {8j, i = 1 ... b;s , = 0 or I}

labels the moving part icles and

8*=001' 1

labels the rest part icle. T he collision matrix elements are writ ten:

A(S -+ S') = A ((s. , s ) -+ (s'.,s') ) .

In th e following, it will be useful to make use of the quan ti ties:

A (O , s) -+ (O, s')) = An(s -+ s'),

(4.1)

(4.2)

(4.3)
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A ((1, s ) --> (1,5')) = A++(s --> 5') ,

A ((l , s) --> (0,5')) = A+-(s --> 5'),

A((O ,s) --> (l ,s')) = A-+(s --> s' ),

and

A+(s --> s') = A++(s --> s' ) + A+- (s --> s'},

A-(s --> s') = A-+(s -+ 5') + AU (s -+ s') .

Finally, we adopt the notation

I * for the "rest" direct ion

= i for the b "moving" directions,

in order to write, for a set of b+ 1 quantities

Q= {Q I; I=*,l.. .b}

and
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(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

E= E E ·
I * i

We need now to generalize the concept of G· invariance . An isometry of a
lattice is now a transformation which leaves the * coordinate invariant and
is an isometry with respect to the b ot her coordinates. A set of b+ 1 tensors
T = {TI l I= *,1 . .. b} is then G-invariant if any isomet ry mapping c, in Cj

maps T, in Tj while leaving T* unchanged. With the convent ion c, = 0 , we
can then transform the properties PI and P 2 of the sect ion 2 in:

P i! Any G·invariant set of pt-order tensors is given by

P '2 Any G-invariant set of 2nd-order tensors is given by

Tl oP = ),Clo CIP + !"ooP V(a,{3),

(4.9)

(4.10)

where respectively III = Pr or Ilm for the rest or moving directions.

T he properties of isot ropy (2.6) to (2.9) are then easi ly generalized by replac­
ing everywhere i by 1 . So are the propert ies of A and the equat ion governing
the mean equi librium populations which consists now of the system of b+ 1
equat ions

!'.1(N) = E E (S'1 - SI) A(S -+ S')IINJ
s' (l- NJ)(I-S,) (4.11)

$ $ ' J

o VI .

Once more , the /:). 1 are G-invariant which lead us to postulate the following
ex pansion for the N1:
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N,(p, u) =d +AC,.U. +"Q,. pu.uP+~6.pu.up +O(u3
) ,

N.( p, u) = d. +~.6.pu.up +O(u3
) .
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(4.12)

(4.13)

There are now six parameters to be deter mi ned . Beca use of t he definition of
p and u

(4.14)

(4.15)

these parameters are const rained to satisfy th ree condit ions:

bd + dk = PI (4.16)

A
pD

=
be' '

b~ + n, = o.
T he probl em becomes now to find the solut ions of t hr ee sys tems of b + 1
equat ions involving only three independent parameters. Fortunately, we can
make use of th e symmetries of the lattice and of the proper t ies of A to
simplify t his problem. By G- jnvafiance , th e b 6. j are equivalent . Because
of th e proper ti es P' l and P'2, we expect them to be zero wit h at mo st one
cond itio n at the first order and two at th e second order. Moreover, the
relat ion of mass con servation implies:

D.. +L:;D.i = O. (4.17)

We expect th erefore the three syst ems to give at most four indep end ent
constraints on th e parameters. This is st ill one too many but we will certainly
be able to use the momentum conservation as in th e section 3 to solve the
difficulty. We now verify these remarks by computat ions.

We first need to expand the 6.1 up to th e second order. Decomposing the
summation on I according to the cases involving or not a rest pa rticle, they
can be written as

6.* =

L:; L:;(s'. - s.) [N. A++ (1 - N. )A-j II N/ ' (1 - Nd'-"),
s s ' j

/). j =

L:;L:;(S'i - s.) [N.A+ + (1 - N. )A-j II N/ ' (1 - Nj)P-.,l,
/I /I ' j

(4.18)

(4.19)
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where we have set A+(s -Jo s') = A+ . . . etc to simpli fy the notat ions.
T han ks to t he resu lt s of the section 3, we already know the expansion of
TIj N/ J(l - Nj ) (l- .sj) . Using (4.13), we can also eas ily ex pand th e term be­
tween braces. Note that it involves no first-order te rm, which simplifies the
final computat ion.

The zero or der gives the b+ 1 equatio ns:

1'>;<0) = (4.21)

I:2)S'i - Si) [d*A + + (1 - d*)A-]C: J (1 - d)' Vi.
, s

In fact, as we ha ve see n before, th e last bequat ions are equivalent and they a re
linked to the first one by mass conservat ion. T his system is the n eq ui vale nt
to only one of it s equat ions, t he first one for exemple, whi ch involves on ly d
and d*. Using the first equat ion of the syst em (4.16), t hese parameters are
then determined by the system:

bd + d* = p, (4.22)

Note that this is not a linear system in d so tha t it can have more than one
solu tion . T his was pointed out by Henon who constructed an example where
there are indeed three solut ions [9] .

T he treatment of the first order is exactly the same as in the sect ion 3
except for the i being replaced by I. This means th at this order is identically
zero wit hout any fur ther cond ition; t his is good since we had no degree of
freedom for the first -order parameter >. .

Exp anding the quant ity n j (s) and using th e expansion of N* (4.18), we
obtain the system govern ing the second orde r:

1'>*(2) = I:I:rr
(2)

(s)(s'*- s, ) [d*A+ + (I - d*)A - ] (4.23)
8 8 ' j

+ I:I: ( :d)P(I-d)'(s'*-s*)[A+ -A-b*8apuaup ,
8 8 1 1

1'>/2) I: I: rr (2)(s) (S'i - Si) [d*A+ + (1 - d*)A -] (4.24)
s s' j

+ I:I:( I : d) P( I - d)'(s' i - Si) [A+ -A- b *8apuaup Vi,
, "



Metho d of Comp utation of the Reynolds Number 595

where

rt\s)
j

(4.25)

..'
[d(1 _ d)u. up~ E (S j - d)(Sk - d)Cj.CkP

+I'u.up ~=<Sj - d)Qj. p+ ~U.U. 2:) Sj - d)b. p].
j j

Thanks to the G·i nvar iance, we can wr ite D. j = ( T!J ciaCi(i + <Pmocrf) )uo 'U/3 and
6.* = ¢T8a{JUQul3' Moreover, mass conservation relat es ¢, 1>ml and <Pr . The
system of b+ 1 equat ions is then equivalent to only two equations (which is
the number of free parameters) :

S ; = 0, (4.26)
6.i = 0, for i = 1 for example.

Adding to them the the last equat ion of (4.16), we obtain the system of three
equat ions linear in Il, '1, and 7]*:

A*~* + B*~ +C*I' = D* , (4.27)
A i

1]* + B ifJ+ CiJ.l.=D i
,

~* + in) = o.
The expression for the coefficients is given in the next pag e. To make the
most of the G-invariance, we divide the first equat ion by b and we add the
second one; the final equat ion involves now som e quant ities we can write
schematically as: Xi + 'lX*. Thanks to the G-invariance and to the mass
conservation, these quantities can be written as:

. 1
X · + /;x* = ,pxQ;.pu.up. (4.28)

Because of the mass conservation, AI and B 1, which are composed of zero­
order tensors, must sat isfy Ai = -lA* and a similar equation for B . This
means that 1/JA= 1/J8 = O. The system becomes

A*~*+B*~+ C*I' D* , (4.29)

.pel' = .pD,

~* + in) = o.
Expressing the n I in term of the C I , F I , and BI and solving the system, we
obtain finally Jl, ", and tt« which are

I' d(~)'G(P) [I-(1 ~2d) ~;] ' (4.30)

~ d(.E...)' G(p) [ 1 ( C* .pP _ F *) + c' B*]
bd B* - bA* (I - 2d) .pc D '

ry* - bd( .E...)' G(p) [ 1 ( C* VJP _F*) + C' B*]
bd B* - bA* (I - 2d).pc D'

where
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(4.31)G( ) = D'1 - 2d
P 2c4 1 - d

We can note that the Jl obtained above is very similar to the one obtained
in the monospeed case . Thanks to (4 .28), we can indeed express 1/Jc and tPF
in terms of the collision laws as

N ,pF = L:L: [d. A++ (1 - d, )A- j (4.32)
• s'C:d) ' (l - d)' d(1~d/. (s)Pp(s)[Y. p(s' ) - Y. p(s)],

N ,pc

where

L:L:[d, A++(1- d, W ]. .'C:J(l -d)'d(1~ d)Y. p(s)[Y. p(s') - Y. p(s)],

(4.33)

N = bc4 (D - 1)
D . (4.34)

In this case , the collis ion matrix A(s ~ s') of the monospeed mod el has

been replaced by an effective collision matrix [d*A+ + (1 - c4)A- ] . From its
expression and the properties of the A+ I it can be shown that this matrix
satisfies all the properties of A: it is positive , it satisfies the relation of
normalization, it conserves mass and momentum and it is invariant under
any isometry in G. But it depends now on the density of the rest particles
which means that we have a new degree of freedom to vary. This will be
important in the maximization of the Reynolds number.

Expression of the coefficients

A' = L:(1: J(1 - d)'(s', - s.) [A+ - A-j 6. pu.up
.5,.5'

Ai = L:C: d)'(1- d)'(S'i - Si)
.5,.5'

[A+ - A-j 6. pu.up

B' L: (1 : J (1 - d)'(s', - s,)
.5,.5'

[" A++ (1 - d )A- j '" s , 6. pu.up
"* ' 7 'd(1 -d)

E' = L: (1: ) '(1 - d)' (S'i - s,)
s ,.s'
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[ + _j '" 6opuoup
d,A + (I - d,)A 'r"d(1 _ d)

C' = L:(s', - s,)[d, A++ (1 - d,)A- j(I: /(1 -d)'
",,'

I
d(1 _ d)yS;Q;opuoup

C i L:(S'i - Si) [d.A++ (I - d, )A-](1 : / (1 -d)'
.,,'

I
d(1 _ d)Ys; Q;opuoup

D' = - D s', - s,)[d. A++ (1- d.W](I: / (1- d)'
',s'

A'
-"-"-"-""", L:(s; - d)(Sk - d)C;oCkPUoUP
d"( I -d) ;<k

D i = - D S'i - s;J[d,A+ +(I - d,)A-j (I: /(1 -d)'
I,'"

A'
_-.:.:-_~, L:(s; - d)(Sk - d)C;oCkPUoUP
d"(1 - d) ;<k

F* = L:(s', - s,l[d,A+ + (1- d,)A-j (I : /(1 - d)'
IJ,"

I
d(1 _ d)~Sj SkCjQCk(3U(X U{3

J,k

F i = L:(S'i -si ) [d, A+ + (I- d,l A-](1 :/(I - dl'
",,'

I
d(1 _ d) L: S;SkC;oCkPUoUP

) ,k

VYe show now that the results obtained above are consistent. with previous
results. V"'e write explicitly the expansion of the N[ as

Ni = d [1+ ~ ..L + (..L)'C(p) (4.35)
C Pm. Pm

([I - W,lQioP+ ~ E:~ I [I + w..16op)uoup] ,

N. = d. [1 - (..L)'C(p) ~ ( ..!'- -I) E E. 1[1 + W"J6oPUoUP]'
Pm Pr * +

where

Pm = bd density of the moving particles, .

p; = d. density of the rest particle ,
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1 ,pF
w, = (1 - 2d) ,pc '

D 1 [c , ,pF F']
w.. = c'B ' (1 - 2d) ,pc - ,

1 B'E --- ­
* - bA* ·
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(4.36)

(4.37)

(4.38)

With this expansion, we recove r two limi ting cases : the case with the semi­
detailed assumpt ion and the monospeed case.

If we make the semi- detailed assumption, all the configurations must be
equivale nt which implies

d, d,
A' + B* = 0,

,pF F' = O.

(4.39)

Using these results, we get therefore

1
E, = b == E,

and then,

Ni = d [l+~ Lci .U+(L)'G(p)
C Pm Pm

(QiaP +~ E~ 10ap)UaUP]

N, = d, [1 - ( :: ) 'G(P)~ E ~ 1 0apUaUP]

This is indeed the expans ion obtained by D'Humieres et al. [10].
The monospeed case corresponds to d* = 0 and to

(4.40)

A+-(s ---> s')

A --(s ---> s')

This implies:

A++(s ---> s') = A-+(s ---> s') = 0,

A(s ---> s' ).

E'
E' +1

[d,A+ + (1 - d,W]

0,

A(s ---> 5'),

(4.41)

which enables us to recover the monospeed case described in section 3.
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(4.42)v =

We need now to compute t he viscosity in this model. Thi s is done in a
way very similar to th e monos peed mod el (8] in appendix C. The result is,
as expected , a generalization of t he formula (3.42)

TC2 1
D + 2(X - 2)

; :2[-;c- ~]
Note that the recipes given in (4.41) ensure that thi s express ion is indeed
consistent with th e monospeed viscosity.

We can now use th e similarity between the monospeed case and t he case
involving a rest part icle to give an expression of the Reynolds number in term
of quant it ies depend ent on th e collision laws. It is, using th e same not at ion
as in section 3:

R = M loR,( po) , (4.43)

where, in this case ,

(4.44)R,(Po) = e, (.!!2..)4(D + 2) 9,db (pO) (I'~ff - (1 - 2d)I';fJ).
Pm Te' 1 - 2do 21';fJ + 1

T he subscript e f f in J.l7 and f6 mean s that they have been computed with
the effect ive collision mairix td*A + + (1 - d*)A -] instead of A( s -+ S' ).

To maximi ze R, we need the n to do the same th ing as in th e monospeed
case but we have now another degree of freedom which is the density of th e
rest part icles. It appears in two different ways: through the ra t io ;;;; and in
the effect ive collision matrix. We can th erefore expect the maximizat ion of
the Reynolds number to be more efficient. Thi s is not surprising since it is
just a consequence of the fact that more collisions are allowed when a rest
particle is present .

5. Conclusion

V.le have shown that , within the (lattice) Boltzmann approximation , it is
possible to extend the genera l t heory developed by Fr isch et al. [71 to cases
involving violat ion of semi-detailed balance and that it seem s a very promi s­
ing way of increasing the Reynolds number. Moreover , whereas it has been
shown by Henan in [8] that the viscosity is always posit ive when the semi­
detailed balance is assu med, this need not be t rue anymore with th e viola­
t ion of semi-detailed balance. It is not clear whet her our model can already
achieve ar bit rar ily small or even negat ive viscosit ies (which would imply the
existence of a phase t ransit ion) and only numerical simulat ions and compu­
tatio ns will enabl e us to clarify this point. However , as we have seen, it is
very difficult to foresee how to chose the collision rules to reach the smallest
possible viscosit y. Thi s may require a some wha t empirical exp lorat ion which
is st ill in progress.
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Appendix A .

We give here the detailed computation of the expansion of the tJ. j given in
the section 3.

The first step is to expand up to the second order the quantity:

IT (s) '" IT N/ i(1 - N;)(I- ' i l
;

Using 5i = 0 or 1 and (3.4) , we have

(A.I)

si N; + (I - s; )(1 - N;)

si d + (I - s;) (1 - d) + ),(2s; - I)c;u
+I' (2s; - I )Q'apuaup + O(u3

)

d" (I _ d)( l-' i)

[
(s;-d) l

1 + d(l _ d) (>,c;u + I'QiaPUaUp)

+O(u3
)

(A2)

\IVe can now put this result in (A.I) to get the three leading orders in the
expansion of flj (s) which are respect ively:

O-order term

IT (O)(s ) = (_d_)'(1 _ d)'
. I -d

J

with P = Li si .

1" cor d e r term

(I) (d)' ,),IT (8) = -- (I - d) d( d) u .(L;(s; - d)c;) .
; I- d 1 - ;

(A.3)

(A.4)
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2nd_order term

601

rr('\ s)
i

d P b ).2

( I-d ) (I-d) [d'( I_d)'uOuP

~~(Sj - d)(s. - d)CjoCkP
k j<k

+ d(1~ d)UoUp~)Sj - d)Qjo P']

(A.5)

Thanks to the relations

~Ci = O,

the terms indep endent of S can be eliminated in (A.4) and in (A.5) .
Finally, we make use of the relation

(A.6)

(A.7)

~~(Sj - d)(Sk - d)CjoCkP (A.S)
k i<k

~ ~~(Sj - d)(Sk - d)cjoCkP - ~~ (Sk - d)'CkoCkP
2 k j 2 k

1
-2 L: 2: Sj Sk Cj a Ck/3

k j

1 c'- 2'~(d' + (1 - 2d)Sk)(QkoP+ n 8op),
k

to write the 2nd-order term as:

(A.9)

In order to make the notat ion more compact, we intro duce the following
quan tit ies [8J:

(A.l 0)
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(A.l1 )

which represent respectively the first- and second-order moment in the state
s.

Subst it uting tbese quantities in (A.3) , (A.4), and (9) and coming back to
the definit ion of the 6 i, we obtain th e expansion in (3.8) of (3.32) of section
3.

Appendix B.

In this section, we compute the value of the coefficient J.! s defined in (3.32)
of sect ion 3.

Using {3.28L it can be written as

J.Ls =
D

2(D - l)bc'

L:L:A(s --4 s' )dp-l ( l - d),-p-l L:L:PoPpYop
5 5 ' 01 (J

(B.1)

=
1 D

d(l - d) (D - 1)2bc"

( d) p ,L:L:Q ioPC; o CkP L: -=d (1 - d) Si S; S , L:A( s --4 s').
0:(3 i,j,k ", Is'

The sum on s' is one because of (2.12). The sum on s can be written as

Of, using p = L i S i,

(II t d' m(l - d)l - 'm) ts,d"(l - d)l- '.
m #a,J ,k Sm=O 8; = 0

1 1

L:Sid"~ (1 - d)l- ', L: skd" (l - d)l- ', .
5J'= 0 5,,=0

(B.2)

Three cases are to be distinguished:

if i = j = k, (B .2) is d (the sum on S j is d, the sum on Sj for j ¥- i is
1).

if i = j oJ k or j = k oJ i or k = i oJ i , (B.2) is d'.

if i oJ j and j oJ k and k oJ i, (B .2) is d3
.

The sum on i ,i, k needs then to be decomposed in three kinds of term s:
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S, == 2:: 2:: L,
i j=i k=j

I«i) == 2:: 2:: 2::,
i j::j:.i k= j

L == 2:: 2:: 2:: .
i #i k:#i,j

Therefore, f.ls becomes:
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(B.3)

(B A)

(B.5)

1'5 = 2Nd(~ _ d) [dS'+ d' (I« i) + I<(j) + I« k)) +d
3
L] (B.6)

L: QiOt{3Cja Ck/3'
o,P

For convenience, we decom pose L an d the J( thanks to 32 and the quantities

S,(i) == 2:: 2:: 2::,
i j k=j

Thi s decomposition is

I«i) SI(i) - s"
L = So+ 2S, - ( S, (i ) +S,(j) +S, (kl).

The term hetween braces of (B.6) is t hen

d3 S0 + d'(1 - d)( S, (i ) + SI(j ) + S,(k ))

+ d(l - d)(l - 2d)S, .

We can now use the relat ions

L: Q iaP = 0 and L: Cia = 0,

to set to zero the SI and So terms. We obtain finally

(B.7)

(B.8)

(B.9)

(B.10)

1
1'5 = (1 - 2d)2NS,QioPCjo CkP ' (B.ll)

Coming back to the definition of S, and using (2.9), we can easily compute
this quant ity. The final result is

S 2QiaPCjOtCk/3 = N ,

and therefore

1
1'5 = 2: (1 - 2d).
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Appendix C.

Borengh e Dubrulle

In this appendix, we com pute the viscosity in th e case where a rest particle
is present . To do th at, we follow the method used in [8] which consists of
five steps :

1. Define a steady, homogeneous state, with linear shear velocity field.

2. Wri te equations for collisions.

3. Write equat ions for propagation.

4. Solve th ese equat ions to determ ine th e struct ure of the st eady state.

5. Compute th e momentum flux and th e viscosity.

A ppend ix C.1 St eady state

Vlfe choose the steady state which is obtained by perturbation of the equilib­
rium state a t null speed. The mea n populat ion of t he node x is then given
by

(C.I)

Because of the definitio n of the density, ( sa tisfies:

(C .2)

We assume t hat the mea n velocity, defined as

takes the form:

U a = 2:: Tapxp (0' = I ... D).
p

The To p are the components of the velocity gradient :

aUa
TaP = axp'

(C.3)

(CA)

(C.5)

It is then natura l to suppose that th e ( 1 are also a linear funct ion of the Xo

(see [8]):

( J = kJPx p + f J . (C.6)
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We insert this expression in (C.3) and (C.2) to get the relations
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(C.g)

L <I = 0, (C.7)
I

~tlC/~ 0 Vcr,
I
Lkl P 0 V(3,

/

L clakllJ pTQp Vcr, (3 .
I

We get therefore (D + 1)' equat ions. Since we have (D + 1)(b+ 1) unknowns
in the problem , we need to find some more equations to solve it. This is done
requiring that the populations NT must be invariant under the evolut ion
operator, that is, under the operations collision plus propagation .

Appendix C .2 Collision

As in the sect ion 4, the collis ion equation is

N' I - NI = LL(S'/- SIlA (S ..... S')IINJ
s' (1 - NJ )(l-S,l (C.S)

II a' J

o VI .

Vve put in this equation the expression of the N] and we use the [act that
they are the solution of (C .S) at zero speed and the G-invariance to eliminate
a constant term. We get to first order:

d •LL C_d) (1 - d)'(s'. - s. ) [A+ - A-j (.
, "

+ LDs'. - s. ) [d. A+ +(1 - d. )A- j
, "

d· - I ( l - d)'- '-l L (Sj - d)(j ,
j

('; - (i LL (1: J(I- d)' (S'i - sol [A+ - A- j c,
, "

+ LDs'i - si)[d.A+ + (1- d. )A- j
, "

dP- 1(1 - d)' - ' - l L (Sj - d)( j'
i

(C .10)

A ppendix C.3 Propag ation

For a steady state, the probability of arrival of a particle at a node equals
the probability of leaving the previous node:

Ni(x + Tei) = N'i(X). (C.ll)
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We subst itute the expression of the N1 in th is equat ion to get:

Since the rest particle does not propagate, we must have

N*(x) = N'*(x).

Thi s means that the (* must obey the relation:

(* (x) - (' *(x) = O.

From the mass conservat ion, we dedu ce that the (i verify:

D(;(x ) - (! (x) ] = O.

(C.12)

(C.13)

(C.14)

(C.15)

Appendix CA Computation of the so lutions

We now combine the colli sion equations with the propagation equation s to
get b+ 1 complementary equations, namely

o -LL(l:J(l - d)' (s'* - s*l[A+ -A-](*
e .'

+ L D s'* - s*) [d*A+ + (1 - d*)A-]
• s'

d"- l (l - d),- , -I L(s; - d)(;,
i

Tkioc;o = LL (1:J'(l - d)' (s'; - s;) [A+ - A- j ( *. .'
+ LDs'; - s;) [d* A+ +(1 - d*)A- j

s "

d,-I(l - d),- , - I L(s; - d)(;.
;

(C.16)

(C.17)

It would be hard to solve this problem without guessing the form of the
solutions. Fortunately, we can use the results in the monospeed case to
search for solutions of the form

k 1a = J( a + Lape / j3.

We replace thi s definition (C.18) in (7) to get:

(C.18)

OVa,
pD p D= -b 2To~ = d- , Top

C Pm C
Vo: 1 {3,

(C.19)

where Pm = bd. Note that if we combine now the expression obtained for the
L c< fJ and the relation (C.15), we obtain
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which is not surprising since the flow is incompressible .
We need now to check that the solutions we have guessed are solutions

of the system (C,17) and (C,16), We plug (C,18) into it and we separate
the constant terms from the terms which are linear in x. Thank s to the
G-invariance and to the mome ntum conservation, it can be shown that the
terms linear in z , which involve only L aP' are identi cally null. Th e constant
terms give b+ 1 equations for the £.[ :

o = - L::L:: ( ~ J(1 -d)'(s'. - s.) [A+ - A-] ..
s &' 1

+ L::D s'. - s. ) [d. A++ (1 - d. )A-j
, "

dP-1(1_ d)b-p-l L:: (Sj - d)' j ,
j

(C,20)

= L::L:: (1 ~J(I- d)b(s'i - s.)
, "
[A+ - A-j ..

+ L::Ds', - s;)[d.A++ (I-d. )A-j
, "

(C,21)

dP-I(I- d)b-P-I L::(Sj - d)' j'
i

As in the monospeed case, the form of this syst em suggests using a "theory
of linear response" that is to write that the perturbation , represented by the
€, is proportional to the exc itat ion term:

r D P
t j = - -,d -XTot/JQi OlPl

C Pm
.. = 0,

(C,22)

Note that these expressions are cons istent with the sys tem (C.7) .
We put these relations in the system (C.21) and use the notations used

for the computation of the equilibrium population; we obtain

o »c:QpTQ13 1

XCiot/)Top.

(C,23)
(C,24)

Us ing the G· invariance, we can write

C~p = .pQ,oP+ '/J6oP, (C,25)
C: {J = "'.bap .

Using the mass conservation, we get b¢+ ¢. = O. This implies that t/J is in fact
tPc with the notations of the sect ion 4. If we use now the incompressibility
relat ion, we find that the system is equi valent to only one equat ion:
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1
X=-1/Jc'

'l\'e can now write the ex pansion of the N] as

Berengere DubrulJe

(C.26)

(C.27)

Since the rest particle does not propagate , it is normal that its expansion
does not differ from the steady state at null speed.

App endix C. S Com putat ion of the v iscosity

As in [8], the components of the tensor momentum flux are

F" = 2:: ch c;, [N;(x ) + ~Tk;. c;] .
,

(C.28)

(C.29)

We subst itute the expansion of the N; and the k, given by (C.26) and (C.18)
and we use the isotropy relations (2.6) to (2.9) to get

Pmc2 2prc2

= D- D + 2T"
p-rc2 1

= - D +2 (X- 2)(T, , - Th )

~ =

The second equation proves that the shear viscosity is

pTC2 1
D +2 (X - 2)

~r:22 [-;c- ~] .
Since the kinetic viscosity is ; , we find the result given in section 4.
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