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A bstract. We study cellular automata. with addi tive rules on finite
undi rected graphs. The addition is carried out in some finite abelian
mono id. We investigate the prob lem of deciding wheth er a given con­
figuration has a predecessor . Depending on th e underlying monoid
this prob lem is solvable in polynomial time or NP-complete. Fur­
t hermo re, we st udy the global reversibility of cellular graph automata
based on addition modulo two . We give a linear time algor ithm to
decide reversibility of unicyclic graphs.

1. Introduction

In this paper we study cellular auto mata on graphs: the vertices of the graph
are the cells and the neighborhood of a cell v consists of the vertices adjacent
to it. T he behavior of the automaton is dete rm ined by a local transit ion
rule: the state of cell v at t ime t + 1 depends only the states of the cells in
th e neighborhood of v at t ime t. We consider local rules of a very simple
algebraic nature: states are elements of a finite abelian monoid and the next
state of a cell v is the sum of the states of all neighboring cells. Any finite
abelian monoid F t hus gives rise to a class of cellular automata on grap hs.
We will always assume t hat the grap hs under consideration are locally fi nite
(i.e., the neighborhood of any ver tex is finite). A graph together wit h a finite
abel ian monoid F is called a F-au tomaton. We denote the global rule by PF.

One of the basic questions to pose about such dynamic systems is the
reversibility prob lem: Can one reconstruct every confi gurat ion X from its
successor PF(X)? Note th at the rules PF are in general locally irreversible,
i.e., different local configurat ions lead to the same state in one particu lar cell.
Globally, however , these systems may well be reversible.

In t he simplest case the states are 0 and 1 and the monoid operation
is addit ion modulo two. T he only other operation that imposes a monoid­
st ructure on {O l I} is logical or (addit ion modul o 2 may also be construed as
exclusive or ). We denote the corres ponding rules by o and Y respecti vely.
If every cell is included in its own neighborhood we write q + and y+ for
the resulting rule. It is well known that t he evolution of a one poin t seed
configurat ion on a one-dimensional cellular auto maton with rules (J and a+
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leads to rathe r surprisingly complicated patter ns with fractal dimensions
log, 3 and 10g,( l + v5). Classical cellular automata with t hese rules were
studied for example in [12J, [1 3], and [l I] . For cycles and paths see [61and
[10]. In [5] automata on trees with rule a + are int roduced. The reversibility of
these t ree automata is investigated in [1]. We develop a number of reduct ion
techniques that allow to express th e revers ibil ity of graph s under rules a and
(7+ in te rms of the reversibility of smaller graphs. Applying th ese techniques
to unicycl ic graphs we obtain a linear t ime algo rithm for the reversibility
problem of these simple graphs.

A somewhat related problem is to determine whether a given configura­
tion has a pred ecessor. This com binatori al problem is referred to as Prede­
cessor Ex iste nce Problem (P EP) in [8]. It is shown t here that P EP is solvable
in polynomial time on one-dim en sional finit e cellula r au tomata bu t becomes
NP-complete for two-dimensional automata. For additive cellular au tomata
on graphs we will see that PEP is solva ble in polyn om ial time if t he number
of sl ates is rest rict ed to two, i.e. , for th e rules (7 , (7+, V, and V+ . T he same
result holds whenever F is an ab elian group. In general , however, t he prob­
tern is NP-complet e. In fact , there is a aperiodic monoid with only three
elements for which PEP is NP-complete . For rules the a , (7+ I VI and v+ we
will show that a modified version of PEP where th e predecessor configuration
is required to ha ve the minimal number of non-zero cells is also NP-hard .

T his pap er is organized as follows. In sect ion 2 we give form al definitions
for add it ive cellula r aut omata and point out several simple properties of th ese
systems . Sect ion 3 deals with th e ex ist ence of predecessors in F-automata for
various mon oids F . Re lated results ar e also obtained in [8] . Lastly, section 4
contain s th e rever sib ility results for the modulo 2 rules. To keep thi s paper
reasonably short we will not int roduce any graph theoret ic terminology used
here. Th e reader should consult [2J or [3]. fn par ticular results about the
characteristi c pol yno mial of a graph - which will be used in sect ion 4 ­
can be found in [7].

2. D efinitions

Although the focus in this pape r is on finit e cellular automata the definitions
given in this sect ion also cover the infini te case . In what follows we always
assume that G = (V,E) is a locally finite undirected graph with out isolated
points. Loca lly finite here mean s tha t every vertex in G is ad jacent to onl y
finit ely many ver t ices. The ver ti ces of G are cons t rued as t he cells of a
cellu lar aut omaton. The nejghb orhoo d I'(v) of a cell v is defined as the set
of all vert ices u such that {u ,v ) is an edge in G. We will write f +(v) for the
closed neighborhood f (v) U {v}. Let S be the set of states and F = (5,0,0)
an abelian monoid . A configurat ion of the gra ph G = (V, E ) is a function
X V --+ S. A local configuration at v on G is a funct ion Z : f (v) --+ F .
\,Ve let CG denote the collect ion of all con figu rat ions. Any configuration X
de termines a local configura t ion X v at v, for each ver tex v, by Xv(u) := X(u),
U E I'[ v}. A local rule p is a map from local configur ati ons int o the al phabet
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S. T he additive rule determined by F has the form

PF (X") := X(u,) c X( u, ) , . .. c X (Uk)

651

where I'{v) = {Ul" .. ,ud. Note that thi s is well-defined: since 0 is assumed
to be associati ve and commutative the enum era tion of the vert ices in the
neighborhood of v plays no role. Since we allow vertices of degree 1 we need
a default value for f(v) = {u} : PF (X") := X (u). Similarly a local rule pt
is defined by using the closed neighbo rhoo d f+ (v) instead of f( v ). Now let
G = (V, E) be some locally finite graph. Define th e global rule PF : CG --; CG

by PF(X)(V) := PF(X") for all v in V .
A F-automaton is a pair (G, F) where G is a grap h and F = (5,0, 0) an

ab elian monoid: the global rule is understood to be pp. Sim ilarly a F+ ­
automaton uses ru le pt. y = pp(X) is called the successor of X (with
respect to pp) and conversely X is a predecessor of Y.

An interesting special case ar ises when the underlying abe lian monoid F
is in fact a group. In this case F is a dir ect sum of summands of the form
Z/(p') where p is a pr ime an d e 2: 1. Hence F can be thought of as a ring
F = (5, -j- , *, 0,1) and, correspondingly, Cc as a free F-module. Fur th erm ore ,
the adjacency matrix A of G can be const rued as a matrix over th e ring
F. The matrix A has as usual a 1 in position i , j iff {i ,j } is an edge in
G. However , t he entries 0 and 1 are elements of F rather than integers or
booleans, as is more com mon in gra ph-theory. Conside ring a configu rat ion X
[or the momen t to be a column vector over F it is clear that PF(X) = A · X .
Hence P is a linear operator from CG to it self. We will call addit ive rules of
this type linear rules. Let B = {{ 0, I }, V, 0) de not e the boolean monoid with
operation or, th us 1 V 1 = 1. One can expand B to the semi ring of booleans
({O, 1Lv,1\, 0, 1). Interpret ing all algebraic op erations over this semi -ring
we get V(X) = A · X. Hence rul es V as well as V+ are linear. Lastly for
n 2: 0 let In] := {I , 2, . . . , n}.

3 . Existence of Predecessor C onfigu rat ions

One of th e basic problems in the study of the evolut ion of configurations is
to determine whet her a given configur ation has a predecessor. For a number
of results on th e complexity of th is problem on classical cellula r aut omata
see [14] for infinite autom ata and [8] [or finite au to mata. Formally, define
the following combinatorial problem:

Problem: Predecessor Existence P r oblem (PEP)

Instan ce: An addit ive autom aton (G, F ) and a target configuration Y.
Question : Is th ere a configuration X such that PF(X) = Y ?

Here G is assumed to be a finite graph. As is po inted out in [8J PEP is
natu rall y in NP for finit e cellula r automata: one may guess the predecessor
configuration X and then verify in a polynom ial number of steps th at indeed
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PF(X) = Y where Y is the given target configuration. Polynomial here and
in the sequel always refers to th e size of th e instance. For our ap plications
the mo noid F will always be fixed . Hence it is convenient to assume that the
size of an instance is t he nu mber of vertices in the un derly ing gra ph G.

Whenever the unde rly ing abelian monoid F is in fact a group PEP can
be solved in polynomial t ime. To see this recall from the int roducti on that
in this case PF is a linear map , PF : CG -+ Ca . Note th at configurati on Y has
a predecessor X iff det(A ) · X = A" · Y where A is th e adj ace ncy mat rix of G
(construed as a matrix over F) and A" is the adjugate of A. If det (A) has an
inverse in F the predecessor is X = det (A)-l . A* · Y . In part icular, ru le PF
is surjective on G iff rule PF is injecti ve on G iff det (A ) has a multiplicative
inve rse in F . T he same holds for the rule pt.

To see that PEP is also solvable in polyno mial t ime for the ru le V = PB
suppose we are given a target configuration Yon some graph G. Set \fa :=

n{f(x) I Y(x) = OJ. Clearly Y has a predecessor un der rule V iff for all
vert ices x such that Y(x) = 1 we have f ix ) n Vo = 0. The argument for V+
is ent irely the same .

VVe note in passing that in fact PEP is solvab le in polynomial t ime for
any associative, com mutat ive opera t ion 0 on {0,1}, regardless of whether
({O, l},o) is a monoid or not .

By way of contrast we will show that PEP becomes NP-complete for an
abelian mo noid of cardinality three . To this end let M 3 denote the three­
element abe lian mon oid generated by a : [3] --> [3] where a li) := max(i+l, 3).
Clearly 0:

2 = 0:
3, thus M 3 has indeed cardinality three and is aperiod ic. We

will write 1 for 0:0 an d 0 for 0: 2 . Note that 0 0 x = 0, 0: 0 0: = O. Hence for all
z i , . .. ,Xk in M 3 we have Xl 0 • •• 0 Xk ¥- 0 implies Xi ¥- 0 for all i = 1, .. . , k .
Also, X I 0 .. . 0 Xk = 0: implies Xi = 0: for exactly one i E [k] an d Xj = 1 for
allj oJi,j E [k].

T heorem 3.1 . The Pre decessor Existence Problem is N P -complete for M 3 ­

automata.

P roof. Membership in NP is again obv ious . N P -har dness can be estab­
lished using an embedding of a versio n of 3SAT called One-in-T hree SAT,
see [4] . An instance of One-in-T hree SAT is a boolean formula.ell = <P I!\ <P2!\
. .. /\ rpm in 3-conju nct ive normal form , using variables in X = {xll . . . , xn } .

T he problem here is to det ermine whether the re ex ists a sat isfying trut h as­
signment that makes exactly one of th e literals in each clause true. Suppose
clause <Pi is Zi, 1 V Zi,2 V Zi,3 where the Zi,} are literals over X .
Now define a graph G on vert ices Xll ' . . , xn , :t Il ' . ' 1 :tn, UlJ· . . , Un' VlJ · .. , Vm

and blJ ,bm . G has edges {Xi,Ui}, {Xi,Ui}, i = 1, . . . ,n, and, for every
j = 1, , m, ver tex Vj is connected to those Xi and Xi that correspond to
literals in the j - th clause. T he target configu ra t ion Y is defined by

Y (V) ={ ~ if V E { Ull' " , U n , V Il " .,vm },

otherwise.
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Now suppose X is a pre decessor of Y on the Mj-automaton on G. It
follows from the remark preceding the theorem that X(v) E {I, c] for all
v. Similarly, sin ce Y(Ui) = o , exactly one of Xi and Xi mu st be in state c¥

in X . Hence X can be interpreted as a tr uth assignment TX. To be more
explicit , set TX(Xi) := true iff X (Xi) = e. Since Y(Vj) = ex exactly one
of the litera ls in /'pj, j E [m]' is satisfied by TX' Conversely, any sa tisfying
t ruth assig nment can be translated int o a predecessor configurat ion . Hence
One-in-Three 3SAT is polynomial time reducible to PEP for M 3 -automata.

• As mentioned above, PEP is solvable in po lynom ial time in any F k-

automaton . For any configuration X : V ---+ {O, .. . , k -I} define the support
of X to be the cells not in state O. We will show that it is NP-hard to de­
termine a predecessor with minimal support even on a Frautomaton. More
precisely we will show th a t the following mod ified vers ion of PEP is N P ­
complete.

Problem: Bounded P redecessor Existence Problem (B P E P)

Instance: An additive cellular au tomaton (G, F), a target configuration Y
and a bound (3.

Question: Is there a configuration X such that PF(X) = Y and th e support
of X has cardinality at most f3?

T heorem 3.2 . Th e Bounded Predecessor Ex istence Problem is NP-com­
plete for F 2-automata. The problem remains NP-complete even i f the target
configuration is fixed to be 1, l(v) := 1 for all v in V . The same holds Ior
Fj -autom ata.

Proof. Members hip in NP is obv ious : one may guess a predecessor X
and verify in polynomial time that indeed a(X ) = Y and that the support
of X has the desired size. To show NP-hardness we will embed th e combi­
natorial prob lem 3SAT, see [4] . An instance of 3SAT is a bool ean formula in
3-con junctive normal form and one has to dec ide whether the formula is sat­
isfiable. So let.p = 'PIA <{J2A ... A'Pm be a boolean formula in 3-con ju nct ive
normal form using variables in X = {Xl,' . . , X n } . Suppose again that clause
'Pi is Zi ,l V Zi,2 V Zi,3 where the Zi ,j are literal s over X. T he arg um en t is very
similar for ru les o and a+, we will therefore only show how to construct a
Fj-automaton. The un derlying graph G has vertices Xl, "" X n , XI, ... , Xn

and there is an edge between Xi and =h These vertices are the t ruth sett ing
vertices . Furthermore , for each of the clauses 'P i in .p, j E [m], G contains a
component Hj that is connected to some of the truth set t ing vertices but to
no other components . T he gene ric component H contains three a-vert ices,
seven b-ver t ices and is shown in figure 1.

In addition to the edges shown there is an edge between any two of the
b-vertices; so the subgraph induced by these vert ices is a J(7 ' ~ T he connect ing
edges be tween Hi an d the tr uth set ting vertices are defined as follows: th ere is
an edge between ai, II and zi ,II' j E [m] and IJ E [3]. T he target configurat ion
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a-vertices

•

Figure 1: A component of t he graph used to im bed 3-SAT .

Klaus Sutner

is fixed to be 1, 1 (v) = 1 for all v in V. Lastly define t he bound to be
f3 := n +m.

Let us identify a configuration X : V --+ {O,l} with the set of vertices
{v E V I X(v) = I }. Observe that for any predecessor X of 1 under rule
a+ and any vertex x we have IX n r+(x)1 is odd , Hence X contains either
Xj or Xi, i E [nL but not bot h. X may th erefore be interpreted as a t rut h­
assignment ax for CP. To be more ex plic it, set Q'X(Xi) := true iff Xi is in X .
Sinc e bi ,1 is ad jacent only to vertices bj,lJ . . . , bj ,6 an od d number of th ese
verti ces must belong to X in each component Hj , j E [m ]. Now suppose
tha t X has in addit ion sup port of card inality at most f3 = n + m . Since
IXn {Xl ,' .. , Xn , Xl, ' .. , Xn } I = n it follows t hat exactly one of the b-vertices
in H j is in X for all j E [m), But then , by the definition of Hj l at least one
of the a-vertices in H j must be adjacent to a t rut h-setting vert ex z in X .
Thus ax(cp;) = tr ue for all j E [m] and ax sa t isfies <1>. Conversely, if <I> is
sat isfiable, it is easy to define a predecessor of 1 with support of cardinality
f3 = n + m . T hus <I> is sat isfiable iff G has a predecessor of 1 with support of
cardinality n + m and we are th rough. •

We note that for any loca lly finite graph G th e "all -ones" configura tion
1 has a predecessor under rule (]"+ 1 see [9]. Finding minimal predecessors
therefore is NP-hard on a a +-automaton even if the target configuration is
fixed and known to have a predecessor.

Theor-em 3.3 . The Bounded Predecessor Existence Pro blem is NP- com ple te
for B -automata as well as for B+ -eutom ste .

P roof. Membersh ip in NP is again obvious. As in the last argument let
us identify a configuration X : V --; {O, I} with the set of vertices {v E V I
X (v) = 1}. Note that X is a dominating set for G iff V+(X) = 1. Hence it is
NP-complete to decide whether there is a configurat ion X whose support has
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cardinality at most f3 such that V+(X) = 1, see [41 . The argument for rule V
again uses an imbeddingof 3SAT . Assume the notat ion from the las t theorem
and let G be the graph of t heorem 3.1. Th e target configuration is 1 and the
bound is n, the number of variables in <1> . Now suppose X is a predecessor of
1 on G under rule V of cardinality at most n . We must have X n I'[Ui) '" 0
for all i E [n]. Hence, as in theorem 3.1, X contains either X i or X i but not
both and can therefore be interpreted as a truth assignment which clearly
sat isfies <1> . Conversely, any satisfying truth ass ignment is readily converted
into a predecessor of 1 of cardinali ty n and we are through . •

4. R eversibility and Reductions

We now turn to the que stion wheth er t he evolut ion of configurat ions on
some addit ive automaton is reve rsible. In other words, given some monoid
F = (S,o) and a graph G, when is the map PF : CG ..........Jo CG injecti ve? Note tha t
for finite G revers ibili ty is equivalent with surj ectivity. Thus the ex istence
of predecessors in finite reversible cellular automata is t rivial. By way of
contra st th e infinite one-dimensional pa th P00 toge ther with, say, rule a- is
irr eversible. Nonethe less a simple compactness argu ment shows that any
configurat ion on thi s automaton has a predecessor .

T his sect ion is devoted to the devel opment of me thods that hel p to de­
termine the revers ibility with respect to th e linear rules (J and (J+ . For very
special graphs that correspo nd to the grid of cells in t radit ional finite cellul ar
automata such as rectangular gr ids, cylinders , and tori, one can exploit th eir
geometric pro perties to explicitly determine their reversibilit y at least [or
rul e (J . For example it is shown in [10] that th e dim ension of the kern el of a­
on a n X m grid graph is gcd(m +1, n +1) - 1. Hen ce every configuration on
such a grid has either no predecessor or 2gcd (m +l ,n + l ) - 1 predecessor s. VVe are
currently unabl e to obtain a corresponding resul t for rule a-+ even for this
class of graphs .

A different line of approach is to establish reduction tec hniques that allow
in certain cases to express the reversibilit y of a grap h G in terms of the
reversibil ity of a smaller graph H. To thi s end recall that the characteristic
polynomial <I!(x ; G) of a graph G is defined as <I! (x ; G) := IxI - Af where A is
th e adjacency matrix of G. <I>( x; G) is a polynomial with integer coefficien ts
of degree IV) and it follows from the symmetry of A th at all eigenvalues of
A are real; t hus all t he roots of 1> (x; G) are real algebraic number s. 1>z(Xj G)
will denote the im age of <I> (x; G) under th e na tural quot ient map Z --+ F 2 ,

so 1> z(x; G) is the determinant of A + xl computed over Fz. Then clea.rly
1>z( Xj G) has a roo t 1 [resp ectively 0] over F z iff G is irr ever sible under rule
a + [respectively c ]. Let us adopt th e following notational convention: the
t riple equality sign:= indicates that an equation holds over F 2 • As usual we
will wri te G ~ v for the graph obtain ed from G by dele t ing the vert ex v an d
G - e for th e graph obtained from G by delet ing the edge e. The following
two results a re simple corollaries to t heorem 3.2 and 3.4 in [7].

Theorem 4. 1. Deleting a Vertex
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If v is any vertex of G then
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~2(X ; G) '" X~2(X; G - v ) + L ~2(X ; G - v, w) .
UlEr(v)

In particular let v be a cut point of degree m and let the components of
G - v be G, + ...+ Gm. Let o; denote the grap h obtai ned from G, by
deleting the vertex adjacent to v. Then

~2(X ; G) '" x II ~2 ( X; G;) + L ~2 (X ; Gil II ~2(X; Gj ) .

iE[mJ ' Elm) i=Ji

Theor em 4.2. Deleting an Edge
If e is the edge between vertex t1 an d w then

~2 (X ; G) '" ~2 (X ; G - e) +~2 (X ; G - v, w).

Here as well as in the sequel we assume for the sake of consiste ncy that
the empty graph I<o with no ver tices is reversible under both rules. We begin
wit h a brief comment on rule o , It is easy to see t hat for any graph to be
reversible under rule a all th e neighborhoods must he distinct , i.e., for all
vertices x # y we must have I' [z] # r(y). Thus a graph with, say, double
endpoints is always irreversible for rule a, As an immediate consequence of
theorem 4.1 we have the following lemma.

Lemrna 4.1. Deleting an Endpoint
IfG has an endpoint v, adjacent to some vertex w , then G is reversible under
rule a iff G - v, w is reversible under rule a.

Rep eat ed applica t ion of this lemma shows that path Pm is reversible iff
m is odd. Note that cycles are always irreversible with respect to a. Now
suppose G is acyclic and repeatedly apply lemma 4.3 unt il the resu lting graph
H does not allow ant further reductions . It is easy to see tha t H is either
empty or consists of a number of isolated points. In the former case H and
the refore G are reversib le, in the latter case they are irreversible. In fact thi s
reduct ion process can eas ily be carr ied out in D(n) steps where is the number
of vertices in G. We will describ e the corresp ondin g and more complicated
algor ithm for rule q+ below (see th eorem 4.4) and therefore omit a detailed
descrip tion of the method for rule a . Th e algorithm can also be used to
determine the reversibili ty of unicyclic graphs (graphs containing only one
cycle): in this case H may also consist of a cycle . G is then irreversible.
Hence we have the following result .

T heorem 4.3. T here is a linear time algorit hm to det ermine whether a
unicycJic graph is rev ersible un der rule a .
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The situat ion is slightly more compli cated with respect to rule c-" . There
are several reduction techniques t hat allow to delete certain po ints and / or
edges in a graph without changing it s reversibility with resp ect to rule 17+ .

We will only prove lemma 4.2, the argument in any other case is ent irely
similar . We begin with rule a+.

Lemma 4.2. Let G be a graph that is obtained Itotn some other graph H
by subdividing edge e = {a , b} into a 4-path a,u ,v ,w ,b. Then G is reversible
under rule 0-+ iff H is reversible under rule 0"+ .

Proof. It suffices to show th at <1>,(1 ; G) '" ili ,(1; H ). Using theorem 4.1
and 4.2 we get ili,(x; G) '" xili,(x; G - v ) + ili,(x ; G - u , v ) + ili , (x; G - v,w )
'" x' ili,(x ;G-u, v)+xili,(x; G-a, u , v)+ <I>,(x ;G-u, v) + x<l> , (x ;G-u, v,w)+
cJ)'2(x ; G - a, u , v , w)
'" (x ' + 1)ili, (x; G - u ,v) +x'ili,(x; G - a, u , v , w) +xili,(x;G - a ,u , v, w , b) +
X<I>2 (X; G - u , V, w) + <I>2(Xj G - U,tz , V,w)
'" (x'+ 1)(ili, (x; G-u , v) + ili,(x ;G-a, u, v, w))+x(ili,(x; H -a , b)+ili, (x ;H­
e))
'" (x' + 1)(ili,(x ;G - u , v) + ili,(x; G - a, u , v , w )) + x ili,(x; H ).
Substi tuting x = 1 we obtain <1>,( 1; G) '" ili,(1; H ) as desired.•

The next lemma summ ar izes two reductions applicable to end po ints in a
graph. A vertex wit h degree 2 is called a pre-endpoint if it is adjacent to an
endpoint.

Lemma 4.3. Deleting Double Endpoints I Delet ing a Pre-En dpoin t
If G has endpo ints U,V , both adj acent to w, then G is reversible under rule
0-+ iff G - u , v is reversible under rule 0-+.
If G has a pre-endpoint v adjacent to endpoint u and some otber point w,
then G is reversible under rule 0-+ iff G - u, v, w is reversible under rule (7+ .

Repeated applica t ion of the above reducti on rules shows that th e path
on m points Pm is reversible with respect to rule (1+ iff m ¢. 2 (mod 3) .
T he cycle on m point s em is reversible with respect to rule (7+ iff m ¢. 0
(mod 3).

Call a graph G (1+-irreducible iff none of the above reductions (4-pat h,
double endpoint, pre-endpoint ) can be appli ed to it . For th e spec ial CA"l.Se
where G is acycli c note that none of th e redu ctions introduces cycles, hence
the graph remains acycli c. The next proposition descr ibes shows the only
irreducible connected acycl ic graphs are the empty graph, isolated poi nts and
single edges ](2.

Lemma 4.4. Let T be non-em pty, irreducible and acyclic. Then T consists
excl usively of isolated point s and isolated edges (i.e., copies of ](1 and [(2)'

P roof. Suppose T is irreducible, acyclic, and not empty. Let d be the
diam ete r of T and pick a pat h Vo , VIJ V2, ... , Vd . If d ~ 1 th ere is nothing to
show, so suppose d :::: 2. Since Vo is an endpoint adjacent to VI it follows
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from the irreducibility of T that no other vertex ad jacent to Vt can be an
endpoint . But VO,VllV2, ..• , Vd is a path of maximal length in T , hence V I

mu st be a pre-endpoint. This contradicts the irr educibility of T . •
Connected acyclic graphs are usually referred to as t rees and correspond­

ingly acy clic gra phs as forests . Hence we have the following corolla ry.

Corollary 4. 1. A tree T is reversible under rule u+ iff it is redu cible to a
forest of isola ted points.

In [1) Andrasfai gives an algorithm to determi ne reversibility of a t ree
under rule u+ that has quadratic runn ing tim e. Our next result shows that
in [act a linear algo rithm ex ists.

T heorem 4.4. There is a linear time algorithm to determi ne wheLheJ'a tree
is reversible under rule a+.

P roof. According to the last coro llary it suffices to show that one can im­
plem ent a reduction procedure to delete double endpoints and pre-endpoints
in linear t ime. So let T = (V, E ) be a tree represented by its adjacency list s.
In a precomputation the algori thm first determines th e degree d[v) for each
vertex v an d th e set VI of all endpoints . This can clearly be accomplished
in O(n) steps where n := IVI. The algorithm then successively de letes all
endpoints . To be more explicit, suppose x is an endpoint and y is adj acent
to x. Then x is delet ed and th e degree of y decremented. To find doubl e
endpoints, vertex y is marked when x is encountered and deleted. If later
ano ther endpoint x ad jacent to y is found , V is unmarked. Unmarked ver­
tices can also be subject to a pre-endpoint reduction (which occurs whenever
dry] = 1). In short the algorit hm can be described as follows.

while 1It ¥ 0 d o
pick an endpoint x from Vi, let y be the ver tex adjacent to Xj

if y is marked with , say, x
t hen

delete x and x, unmark y;
dry] := dry] - 2;
if dry] = 1 t he n add y to 1It;

e lse
dry] ~ 3:mark y with X;
d[y] = 21et z be the other vertex y is adjacent to

delete vertices X,V,z ;
for all vert ices u adjace nt to z, u i:- y do

diu] := d[u)- 1;
if dIu) = 1 t hen add u to 1It;
if u is marked with x then unmark u,
add x to Vi i

d[yl = i, return( "irrevers ible" );
return( "reversible" );
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Figure 2: The cogwheel denoted by a{Ja{Jo{Joo .
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The algorithm uses a bit-vector to keep track of delete d ver t ices and two
arrays for the degree and markings. VI. is im plemented as a stack or queue.
It is easy to see that its total running t ime (includ ing the precomputation)
is O(n). •

We now expand the last result to unicyclic graphs. It is easy to see
tha t reducing a graph with respect to double-end point or pre-endpoint re­
ductions results in an irr educibl e graph whose connected components ar e
isola ted points, /(2'S and po ssibly one cogwheel. A cogwheel is a unic ycli c
connected gra ph whose ver tices all have degrees I , 2, or 3, an d the degree
2 and 3 verti ces all lie on the cycle. Hence the endpoints are at tached to
the degree 3 points. It is convenient to rep rese nt a cogwheel by a word over
the alp habet {Q" ,.B}: symbol a correspond s to a degree 2 vertex and .B cor­
responds to a degree 3 po int with it s attached endpoint . Thus the word
{3a.{3a.{3a.a.a. represents the cogwheel shown in figure 2. This representa tion
is unique up to shift and reversal , for t he sake of sim plici ty we will ident ify
a word with its equivalence class under these op erations. Using t heorem 4.1
an d 4.2 it is st raightforwar d - though somewhat ted ious - to verify that de le­
tion of any of th e following five subwords does not affect the reve rs ib ility of
a cogwheel with respect to rule {7+: e o c-, {3{3, (a{3)' , (aa {3)', (a{3aa{3)'.

Thus one may delete three consec ut ive degree 2 poin ts from a cogwheel
without affecting its reversibility und er rule a + (thi s is simply lemma 5.3) .
For consistency let us say that the cogwheel cor responding to the empty word
e is ir rever sible. For late r reference let

R := [ o c c , (3{3, (a{3)' , (aa{3 )' , (a {3aa{3)').

W in {a, {3 l' is reducible to W' iff W ' can be obtained from W by finit ely
many deletions according to 4.10. W is irredu cible iff W cannot be redu ced
to any W' shorte r t han W . Note that in general a word W can be red uced
to to several different irreducible words. For examp le, ltV = aaa{3a.B{3 can
be reduced by to both a(3 and aa(3 . It is not hard to see th at an y irred ucible
cogwheel must be one of the following:



660

e
a

fJ
aa

afJ
aafJ
afJaafJ
(afJaafJ)'

J(Jaus Sutner

Strictly speaking, t he firs t five words denote multi-graphs . However, as
far as reversibility is concern ed, one may simply remove double edges to
obtain corresponding gra phs. Of these irred ucible gra phs only e , fl, af3 and
cxa(3 are ir revers ible under ru le a+1 all others are reversible. T hus W is an
irreversible cogwheel iff ltV reduces to one of s , (3, af3 and cro:(:J .

Nex t we will show that one can construct an irreducible cogwheel from a
given one in O(n) steps where n is t he number of points in the graph. Hence
we have the following extension of theorem 4.4.

T heorem 4.5. There is a linear time algorithm to determine whether a
unicyc1ic graph is reversible under rule a+.

Proof. We may use the algorithm of theorem 4.4 to red uce the given
graph to a cogwheel in linear t ime . T he cogwheel is represented by a word
W E {O', ,B}* as des cribed ab ove. Now consider the following finite t ransition
eystem R. ~ has as set of states Q all the prefixes of irreducible words. The
tr ansit ion funct ion is define by

8 fJ .- { qfJ if qfJ E Q,
(q, ).- p if qo rt Q V 3w E R(pw = qfJ).

Since no word in R is a pos t fix of another S is well-defined and ~ is
determinist ic. The init ial state is qo = c. A straightforward induct ion shows
t hat W red uces to 8(qo, W) . Thus if 8(qo, W) is irred ucible we are done; W
is irr ever sib le iff S(qo, W) is one of z, ,B, cr.,B, and cra,B. On the other hand,
if S(qo , VV) is still reducible, one can determ ine a corresponding irreducible
word by a simple table look-up. For example, let W = afJafJafJaa. The
8(qo, W) = afJaa which furt her redu ces to fJ .

Hence one can determi ne reversibility of Wand therefore reve rsib ility of
G in linear time. T his finishes the argument. •

It seems rather difficult to characterize general graphs containing many
cycles with respect to reversibil ity under rules o and c -". It would be inter­
est ing to know whether there is a fast algorithm - say linear in the size of
the graph G - th at can determ ine the reversibility of o and (7+ on G. Note
that his excludes the br ute force solution of computing the determinant of
the adjacency and neighborhood mat rices over F2 •
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