Complex Systems 2 (1988) 649-661

Additive Automata On Graphs

Klaus Sutner
Stevens Institute of Technology, Hoboken, NJ 07030, USA

Abstract. We study cellular automata with additive rules on finite
undirected graphs. The addition is carried out in some finite abelian
monoid. We investigate the problem of deciding whether a given con-
figuration has a predecessor. Depending on the underlying monoid
this problem is solvable in polynomial time or NP-complete. Fur-
thermore, we study the global reversibility of cellular graph automata
based on addition modulo two. We give a linear time algorithm to
decide reversibility of unicyclic graphs.

1. Introduction

In this paper we study cellular automata on graphs: the vertices of the graph
are the cells and the neighborhood of a cell v consists of the vertices adjacent
to it. The behavior of the automaton is determined by a local transition
rule: the state of cell v at time ¢ + 1 depends only the states of the cells in
the neighborhood of v at time t. We consider local rules of a very simple
algebraic nature: states are elements of a finite abelian monoid and the next
state of a cell v is the sum of the states of all neighboring cells. Any finite
abelian monoid F thus gives rise to a class of cellular automata on graphs.
We will always assume that the graphs under consideration are locally finite
(i.e., the neighborhood of any vertex is finite). A graph together with a finite
abelian monoid F is called a F-automaton. We denote the global rule by pg.

One of the basic questions to pose about such dynamic systems is the
reversibility problem: Can one reconstruct every configuration X from its
successor pp(X)? Note that the rules pp are in general locally irreversible,
i.e., different local configurations lead to the same state in one particular cell.
Globally, however, these systems may well be reversible.

In the simplest case the states are 0 and 1 and the monoid operation
is addition modulo two. The only other operation that imposes a monoid-
structure on {0, 1} is logical or (addition modulo 2 may also be construed as
exclusive or). We denote the corresponding rules by o and V respectively.
If every cell is included in its own neighborhood we write o+ and V* for
the resulting rule. It is well known that the evolution of a one point seed
configuration on a one-dimensional cellular automaton with rules ¢ and &%

© 1988 Complex Systems Publications, Inc.

650 Klaus Sutner

leads to rather surprisingly complicated patterns with fractal dimensions
log, 3 and logy(1 + v/5). Classical cellular automata with these rules were
studied for example in [12], [13], and [11]. For cycles and paths see [6] and
[10]. In [5] automata on trees with rule o+ are introduced. The reversibility of
these tree automata is investigated in [1]. We develop a number of reduction
techniques that allow to express the reversibility of graphs under rules o and
ot in terms of the reversibility of smaller graphs. Applying these techniques
to unicyclic graphs we obtain a linear time algorithm for the reversibility
problem of these simple graphs.

A somewhat related problem is to determine whether a given configura-
tion has a predecessor. This combinatorial problem is referred to as Prede-
cessor Existence Problem (PEP) in [8]. It is shown there that PEP is solvable
in polynomial time on one-dimensional finite cellular automata but becomes
NP-complete for two-dimensional automata. For additive cellular automata
on graphs we will see that PEP is solvable in polynomial time if the number
of states is restricted to two, i.e., for the rules o, #*, V, and V*. The same
result holds whenever F is an abelian group. In general, however, the prob-
lem is NP-complete. In fact, there is a aperiodic monoid with only three
elements for which PEP is NP-complete. For rules the o, o, v, and v* we
will show that a modified version of PEP where the predecessor configuration
is required to have the minimal number of non-zero cells is also NP-hard.

This paper is organized as follows. In section 2 we give formal definitions
for additive cellular automata and point out several simple properties of these
systems. Section 3 deals with the existence of predecessors in F-automata for
various monoids F. Related results are also obtained in [8]. Lastly, section 4
contains the reversibility results for the modulo 2 rules. To keep this paper
reasonably short we will not introduce any graph theoretic terminology used
here. The reader should consult [2] or [3]. In particular results about the
characteristic polynomial of a graph — which will be used in section 4 —
can be found in [7].

2. Definitions

Although the focus in this paper is on finite cellular automata the definitions
given in this section also cover the infinite case. In what follows we always
assume that G = (V,E) is a locally finite undirected graph without isolated
points. Locally finite here means that every vertex in G is adjacent to only
finitely many vertices. The vertices of (7 are construed as the cells of a
cellular automaton. The neighborhood T'(v) of a cell v is defined as the set
of all verlices u such that {u,v} is an edge in G. We will write I'* (v) for the
closed neighborhood T'(v) U {v}. Let S be the set of states and F= (5,0, 0)
an abelian monoid. A configuration of the graph G = (V, E) is a function
X :V — S. A local configuration at v on G is a function Z : I'(v) — F.
We let Cq denote the collection of all configurations. Any configuration X
determines a local configuration X, at v, for each vertex v, by X, {u) := X (u),
u € T'(v). A local rule p is a map from local configurations into the alphabet

Additive Automata on Graphs 651

S. The additive rule determined by F has the form
pr(X.) = X(uq) o X(ug) o...0 X(uy)

where T'(v) = {uy,...,u;}. Note that this is well-defined: since o is assumed
to be associative and commutative the enumeration of the vertices in the
neighborhood of v plays no role. Since we allow vertices of degree 1 we need
a default value for T'(v) = {u} : pp(X,) ;= X(u). Similarly a local rule pf
is defined by using the closed neighborhood I’ (v) instead of ['(v). Now let
G = (V, E} be some locally finite graph. Define the global rule pp : Cq — Cq
by pp(X)(v) := pp(X,) for all v in V.

A F-automaton is a pair (G, F) where G is a graph and F= (5,0,0) an
abelian monoid: the global rule is understood to be pp. Similarly a Ft-
automaton uses rule pf. Y = pp(X) is called the successor of X (with
respect to pp) and conversely X is a predecessor of Y.

An interesting special case arises when the underlying abelian monoid F
is in fact a group. In this case F is a direct sum of summands of the form
Z/(p*) where p is a prime and e > 1. Hence F can be thought of as a ring
F= (5,4, *,0,1) and, correspondingly, Cg as a free F-module. Furthermore,
the adjacency matrix A of G can be construed as a matrix over the ring
F. The matrix A has as usual a 1 in position ¢, 7 iff {¢,7} is an edge in
G. However, the entries 0 and 1 are elements of F' rather than integers or
booleans, as is more common in graph-theory. Considering a configuration X
for the moment to be a column vector over F it is clear that pp(X) =A-X.
Hence p is a linear operator from Cg to itsell. We will call additive rules of
this type linear rules. Let B = ({0,1},V, 0) denote the boolean monoid with
operation or, thus 1 V1 = 1. One can expand B to the semiring of booleans
({0,1},Vv, A,0,1). Interpreting all algebraic operations over this semi-ring
we get V(X) = A-X. Hence rules V as well as V* are linear. Lastly for
n 2 0let [n]:=1{1,2,...,n}.

3. Existence of Predecessor Configurations

One of the basic problems in the study of the evolution of configurations is
to determine whether a given configuration has a predecessor. For a number
of results on the complexity of this problem on classical cellular automata
see [14] for infinite automata and [8] for finite automata. Formally, define
the following combinatorial problem:

Problem: Predecessor Existence Problem (PEP)
Instance: An additive automaton {G,F) and a target configuration Y.
Question: Is there a configuration X such that pp(X) =Y?

Here G is assumed to be a finite graph. As is pointed out in [8] PEP is
naturally in NP for finite cellular automata: one may guess the predecessor
configuration X and then verify in a polynomial number of steps that indeed

652 Klaus Sutner

pr(X) =Y where Y is the given target configuration. Polynomial here and
in the sequel always refers to the size of the instance. For our applications
the monoid F will always be fixed. Hence it is convenient to assume that the
size of an instance is the number of vertices in the underlying graph G.

Whenever the underlying abelian monoid F is in fact a group PEP can
be solved in polynomial time. To see this recall from the introduction that
in this case py is a linear map, pr : Cg — Cq. Note that configuration ¥ has
a predecessor X iff det(A)- X = A*-Y where A is the adjacency matrix of G
(construed as a matrix over ') and A" is the adjugate of A. If det(A4) has an
inverse in F the predecessor is X = det(A)™ - A* . Y. In particular, rule pp
is surjective on G iff rule py is injective on G iff det(A) has a multiplicative
inverse in F. The same holds for the rule pk.

To see that PEP is also solvable in polynomial time for the rule V = pp
suppose we are given a target configuration Y on some graph G. Set V4 :=
M{T(z) | ¥(2) = 0}. Clearly ¥ has a predecessor under rule V iff for all
vertices z such that ¥Y(z) = 1 we have T'(z) N V4 = 0. The argument for v+
is entirely the same. '

We note in passing that in fact PEP is solvable in polynomial time for
any associative, commutative operation o on {0,1}, regardless of whether
({0,1},) is a monoid or not.

By way of contrast we will show that PEP becomes NP-complete for an
abelian monoid of cardinality three. To this end let M3 denote the three-
element abelian monoid generated by « : [3] — [3] where a(7) := max(i+1, 3).
Clearly o? = o®, thus Ma has indeed cardinality three and is aperiodic. We
will write 1 for o and 0 for a?. Note that 0 o 2 = 0, @ o o = 0. Hence for all
Z1,. . .52 in Mz we have €1 0 ... 02 3£ 0 implies x; # 0 foralli =1,..., k.
Also, 1 0 ... 0 2 = a implies z; = a for exactly one ¢ € [k] and z; = 1 for

all j # 1, 5 € [K].

Theorem 3.1. The Predecessor Existence Problem is NP-complete for M-
automata.

Proof. Membership in NP is again obvious. NP-hardness can be estab-
lished using an embedding of a version of 3SAT called One-in-Three SAT,
see [4]. An instance of One-in-Three SAT is a boolean formula @ = @1 Ay A
...A @, in 3-conjunctive normal form, using variables in X = {zy,...,7,}.
The problem here is to determine whether there exists a satisfying truth as-
signment that makes exactly one of the literals in each clause true. Suppose
clause ; is ;1 V 252 V 23 where the z; ; are literals over X.

Now define a graph G on vertices @1,. .., Zu; T1ye ooy Bpy Upy e vvy Uny U1y ey Uy
and by,...,b,. G has edges {z;,u;}, {Z;,w;}, ¢ = 1,...,n, and, for every
J =1,...,m, vertex v; is connected to those z; and Z; that correspond to

literals in the j — th clause. The target configuration Y is defined by

S e o W B s Vi b
Yiu)= { 1 otherwise.

Additive Automata on Graphs 653

Now suppose X is a predecessor of ¥ on the Mz-automaton on G. It
follows from the remark preceding the theorem that X(v) € {1,«a} for all
v. Similarly, since Y (u;) = «, exactly one of z; and Z; must be in state «
in X. Hence X can be interpreted as a truth assignment 7x. To be more
explicit, set 7x(z;) := trueiff X(z;) = «. Since Y{(v;) = a exactly one
of the literals in ¢;, j € [m], is satisfied by 7x. Conversely, any satisfying
truth assignment can be translated into a predecessor configuration. Hence
One-in-Three 3SAT is polynomial time reducible to PEP for M3 -automata.
|

As mentioned above, PEP is solvable in polynomial time in any -
automaton. For any configuration X : V — {0,..., k— 1} define the support
of X to be the cells not in state 0. We will show that it is NP-hard to de-
termine a predecessor with minimal support even on a Fy-automaton. More
precisely we will show that the following modified version of PEP is NP-
complete.

Problem: Bounded Predecessor Existence Problem (BPEP)

Instance: An additive cellular automaton (G, F), a target configuration Y

and a bound f.

Question: Is there a configuration X such that pp(X) =Y and the support
of X has cardinality at most 37

Theorem 3.2. The Bounded Predecessor Existence Problem is NP-com-
plete for Fy-automata. The problem remains NP-complete even if the target
configuration is fixed to be 1, 1(v) := 1 for all v in V. The same holds for
F§ -automata.

Proof. Membership in NP is obvious: one may guess a predecessor X
and verify in polynomial time that indeed ¢(X) = Y and that the support
of X has the desired size. To show NP-hardness we will embed the combi-
natorial problem 3SAT, see [4]. An instance of 35AT is a boolean formula in
3-conjunctive normal form and one has to decide whether the formula is sat-
isfiable. So let @ = ¢ A waA ... Ap,, be a boolean formula in 3-conjunctive
normal form using variables in X = {z;,...,2,}. Suppose again that clause
@i 1s 2;1 V 2;2 V 2;3 where the z; ; are literals over X. The argument is very
similar for rules o and o%, we will therefore only show how to construct a
Ff-automaton., The underlying graph G has vertices y,...,%n, B1,. .., 3n
and there is an edge between z; and z;. These vertices are the truth setting
vertices. Furthermore, for each of the clauses ¢; in @, j € [m], G contains a
component H; that is connected to some of the truth setting vertices but to
no other components. The generic component H contains three a-vertices,
seven b-vertices and is shown in figure 1.

In addition to the edges shown there is an edge between any two of the
b-vertices; so the subgraph induced by these vertices is a K7. The connecting
edges between H; and the truth setting vertices are defined as follows: there is
an edge between a;, and z;,, j € [m] and v € [3]. The target configuration

654 Klaus Sutner

a-vertices

Ky

Figure 1: A component of the graph used to imbed 3-SAT.

is fixed to be 1, 1 (v) = 1 for all v in V. Lastly define the bound to be
Bi=n4+m.

Let us identify a configuration X : V' — {0,1} with the set of vertices
{v € V| X(v) = 1}. Observe that for any predecessor X of 1 under rule
ot and any vertex z we have | X NT't(z)| is odd. Hence X contains either
@; or T;, ¢ € [n], but not both. X may therefore be interpreted as a truth-
assignment ay for ®. To be more explicit, set ax(z;) :=true iff z; is in X.
Since b;7 is adjacent only to vertices b;1,...,b;6 an odd number of these
vertices must belong to X in each component H;, ;7 € [m]. Now suppose
that X has in addition support of cardinality at most 3 = n + m. Since
I XN {z1,...s%n, Tty .-y En}| = n it follows that exactly one of the b-vertices
in H; is in X for all j € [m]. But then, by the definition of I}, at least one
of the a-vertices in H; must be adjacent to a truth-setting vertex z in X.
Thus ax(p;) = true for all § € [m] and ay satisfies ®. Conversely, if © is
satisfiable, it is easy to define a predecessor of 1 with support of cardinality
3 =n-+m. Thus ® is satisfiable iff G has a predecessor of 1 with support of
cardinality n + m and we are through. B

We note that for any locally finite graph G the “all-ones” configuration
1 has a predecessor under rule o, see [9]. Finding minimal predecessors
therefore is NP-hard on a ¢*-automaton even if the target configuration is
fixed and known to have a predecessor.

Theorem 3.3. The Bounded Predecessor Existence Problem is NP-complete
for B-automata as well as for BT -automata.

Proof. Membership in NP is again obvious. As in the last argument let
us identify a configuration X : V — {0,1} with the set of vertices {v € V|
X(v) = 1}. Note that X is a dominating set for G iff V*(X) = 1. Hence it is
INP-complete to decide whether there is a configuration X whose support has

Additive Automata on Graphs 655

cardinality at most 8 such that V*(X) = 1, see [4]. The argument for rule vV
again uses an imbedding of 3SAT. Assume the notation from the last theorem
and let G be the graph of theorem 3.1. The target configuration is 1 and the
bound is n, the number of variables in ®. Now suppose X is a predecessor of
1 on G under rule V of cardinality at most n. We must have X N (w;) # §
for all 7 € [n]. Hence, as in theorem 3.1, X contains either z; or #; but not
both and can therefore be interpreted as a truth assignment which clearly
satisfies @. Conversely, any satisfying truth assignment is readily converted
into a predecessor of 1 of cardinality n and we are through. B

4. Reversibility and Reductions

We now turn to the question whether the evolution of configurations on
some additive automaton is reversible. In other words, given some monoid
F= (5,0} and a graph G, when is the map pp : Cq — Cq injective? Note that
for finite ¢ reversibility is equivalent with surjectivity. Thus the existence
of predecessors in finite reversible cellular automata is trivial. By way of
contrast the infinite one-dimensional path P, together with, say, rule o is
irreversible. Nonetheless a simple compactness argument shows that any
configuration on this automaton has a predecessor.

This section is devoted to the development of methods that help to de-
termine the reversibility with respect to the linear rules ¢ and ¢*. For very
special graphs that correspond to the grid of cells in traditional finite cellular
automata such as rectangular grids, cylinders, and tori, one can exploit their
geometric properties to explicitly determine their reversibility at least for
rule o. For example it is shown in [10] that the dimension of the kernel of o
on anxm grid graph is ged(m +1,n+ 1) — 1. Hence every configuration on
such a grid has either no predecessor or 25°4n+1n+1)=1 hredecessors, We are
currently unable to obtain a corresponding result for rule o+ even for this
class of graphs.

A different line of approach is to establish reduction techniques that allow
in certain cases to express the reversibility of a graph @ in terms of the
reversibility of a smaller graph H. To this end recall that the characteristic
polynomial ®(z; &) of a graph G is defined as ®(z; &) := |z/ — A| where A is
the adjacency matrix of G. ®(z;) is a polynomial with integer coeflicients
of degree |V| and it follows from the symmetry of A that all eigenvalues of
A are real; thus all the roots of ®(z; () are real algebraic numbers. ®,(z; @)
will denote the image of ®(z; () under the natural quotient map Z — Ty,
so @y(x; G) is the determinant of A 4+ xf computed over Fy. Then clearly
Oy(z; () has a root 1 [respectively 0] over F, iff G is irreversible under rule
a* [respectively o |. Let us adopt the following notational convention: the
triple equality sign = indicates that an equation holds over F5. As usual we
will write ¢ — v for the graph obtained from G by deleting the vertex v and
G — e for the graph obtained from G by deleting the edge e. The following
two results are simple corollaries to theorem 3.2 and 3.4 in [7].

Theorem 4.1. Deleting a Vertex

656 Klaus Sutner

If v is any vertex of G then

By(2;G) = 2Pa(2;G—v)+ Y. @3(2;G — v, w).
wel(v)

In particular let v be a cutpoint of degree m and let the components of
G —v be Gy +---+ G,,. Let G; denote the graph obtained from G; by
deleting the vertex adjacent to v. Then

Dy(z;G) =z [] ®a(z;G) + Y ®Ba(z; G7) [@2(2; Gy).

i€[m] i€[m] i#£]

Theorem 4.2. Deleting an Edge
If e is the edge between vertex v and w then

Dy(2;G) = Dy(2; G — €) + Po(z; G — v, w).

Here as well as in the sequel we assume for the sake of consistency that
the empty graph Ky with no vertices is reversible under both rules. We begin
with a brief comment on rule o. It is easy to see that for any graph to be
reversible under rule o all the neighborhoods must be distinct, i.e., for all
vertices z # y we must have I'(z) # T'(y). Thus a graph with, say, double
endpoints is always irreversible for rule o. As an immediate consequence of
theorem 4.1 we have the following lemma.

Lemma 4.1. Deleting an Endpoint
If ¢ has an endpoint v, adjacent to some vertex w, then (¥ is reversible under
rule o il GG — v, w is reversible under rule o.

Repeated application of this lemma shows that path P, is reversible iff
m is odd. Note that cycles are always irreversible with respect to o. Now
suppose (7 is acyclic and repeatedly apply lemma 4.3 until the resulting graph
H does not allow ant further reductions. It is easy to see that H is either
empty or consists of a number of isolated points. In the former case H and
therefore ¢ are reversible, in the latter case they are irreversible. In fact this
reduction process can easily be carried out in O(n) steps where is the number
of vertices in GG. We will describe the corresponding and more complicated
algorithm for rule o below (see theorem 4.4) and therefore omit a detailed
description of the method for rule . The algorithm can also be used to
determine the reversibility of unicyclic graphs (graphs containing only one
cycle): in this case H may also consist of a cycle. G is then irreversible.
Hence we have the following result.

Theorem 4.3. There is a linear time algorithm to determine whether a
unicyclic graph is reversible under rule o.

Additive Automata on Graphs 657

The situation is slightly more complicated with respect to rule *. There
are several reduction techniques that allow to delete certain points and/or
edges in a graph without changing its reversibility with respect to rule o*.
We will only prove lemma 4.2, the argument in any other case is entirely
similar. We begin with rule &*.

Lemma 4.2. Let G be a graph that is obtained from some other graph H
by subdividing edge e = {a, b} into a 4-path a,u,v,w,b. Then G is reversible
under rule ot iff H is reversible under rule o™.

Proof. It suffices to show that @,(1; G) = ®,(1; H). Using theorem 4.1
and 4.2 we get ®y(z; @) = 2@5(z; G —v) + o2 G — u,v) + o (z; G — v, w)
= 220y (x; G—u,v)+ady(z; G—a, u, v)+Po(x; G—u, v)+2Psy(z; G—u,v,w)+
Oy(z; G — a,u,v,w)
= (£2+ 1)@2(3; G- u, ’U) +a:2@2(:t; G- a,u, 'U,UJ) +$‘I)2(3:; G- a,u,v,w, b) o
2®,y(z; G — u,v,w) + Po(z; G — a,u,v,w)
= (z2+1)(B3(2 G—1t,0) + Oy(z; G0, 1, 0,0))+2(@s(z; H—a, b)+o(a; H—
e))
= (22 + 1)(®2(z; G — u,v) + Oa(z; G — a,u,v,w)) + 2@y (x; H).
Substituting = 1 we obtain ®;(1; G) = ®,(1; H) as desired. B

The next lemma summarizes two reductions applicable to endpoints in a
graph. A vertex with degree 2 is called a pre-endpoint if it is adjacent to an
endpoint.

Lemma 4.3. Deleting Double Endpoints / Deleting a Pre-Endpoint

If G has endpoints u,v, both adjacent to w, then G is reversible under rule
ot iff G — u,v is reversible under rule ot.

If G has a pre-endpoint v adjacent to endpoint u and some other point w,
then G is reversible under rule o* iff G — u,v,w is reversible under rule a*.

Repeated application of the above reduction rules shows that the path
on m points P, is reversible with respect to rule ot iff m # 2 (mod 3).
The cycle on m points C,, is reversible with respect to rule ot iff m # 0
(mod 3).

Call a graph G o*-irreducible iff none of the above reductions (4-path,
double endpoint, pre-endpoint) can be applied to it. For the special case
where G is acyclic note that none of the reductions introduces cycles, hence
the graph remains acyclic. The next proposition describes shows the only
irreducible connected acyclic graphs are the empty graph, isolated points and
single edges K.

Lemma 4.4. Let T' be non-empty, irreducible and acyclic. Then T consists
exclusively of isolated points and isolated edges (i.e., copies of Ky and I;).

Proof. Suppose T is irreducible, acyclic, and not empty. Let d be the
diameter of T' and pick a path vg,vy,vq,...,vg. If d < 1 there is nothing to
show, so suppose d > 2. Since vy is an endpoint adjacent to vy it follows

658 Klaus Sutner

from the irreducibility of 7' that no other vertex adjacent to v, can be an
endpoint. But vy, vy, vs,...,vs is a path of maximal length in T, hence v;
must be a pre-endpoint. This contradicts the irreducibility of 7. B

Connected acyclic graphs are usually referred to as trees and correspond-
ingly acyclic graphs as forests. Hence we have the following corollary.

Corollary 4.1. A tree T is reversible under rule o* iff it is reducible to a
forest of isolated points.

In [1] Andrasfai gives an algorithm to determine reversibility of a tree
under rule o that has quadratic running time. Our next result shows that
in fact a linear algorithm exists.

Theorem 4.4. There is a linear time algorithm to determine whether a tree
is reversible under rule o,

Proof. According to the last corollary it suffices to show that one can im-
plement a reduction procedure to delete double endpoints and pre-endpoints
in linear time. So let T' = (V, E) be a tree represented by its adjacency lists.
In a precomputation the algorithm first determines the degree d[v] for each
vertex v and the set V] of all endpoints. This can clearly be accomplished
in O(n) steps where n := |V/|. The algorithm then successively deletes all
endpoints. To be more explicit, suppose z is an endpoint and y is adjacent
to . Then z is deleted and the degree of y decremented. To find double
endpoints, vertex y is marked when z is encountered and deleted. If later
another endpoint # adjacent to y is found, y is unmarked. Unmarked ver-
tices can also be subject to a pre-endpoint reduction (which occurs whenever
d[y] = 1). In short the algorithm can be described as follows.

while V; # 0 do
pick an endpoint ¢ from V;, let y be the vertex adjacent to z;
if y is marked with, say, =

then
delete z and Z, unmark y;
dly] := dfy] - 2;
if d[y] = 1 then add y to V;;
else

dly] = 3:mark y with z;
d[y] = 2det z be the other vertex y is adjacent to
delete vertices z,y,z;
for all vertices u adjacent to z, u # y do
dlu] ;= d[u] — 1;
if d[u] =1 then add u to V;
if u is marked with Z then unmark u,
add z to V;
d[y] = 1; return(“irreversible”);
return(“reversible”);

Additive Automata on Graphs 659

Figure 2: The cogwheel denoted by afafafaa.

The algorithm uses a bit-vector to keep track of deleted vertices and two
arrays for the degree and markings. V) is implemented as a stack or queue.
It is easy to see that its total running time (including the precomputation)
is O(n). #

We now expand the last result to unicyclic graphs. Tt is easy to see
that reducing a graph with respect to double-endpoint or pre-endpoint re-
ductions results in an irreducible graph whose connected components are
isolated points, K,’s and possibly one cogwheel. A cogwheel is a unicyclic
connected graph whose vertices all have degrees 1, 2, or 3, and the degree
2 and 3 vertices all lie on the cycle. Hence the endpoints are attached to
the degree 3 points. It is convenient to represent a cogwheel by a word over
the alphabet {e, 8}: symbol a corresponds to a degree 2 vertex and / cor-
responds to a degree 3 point with its attached endpoint. Thus the word
Pafaflacc represents the cogwheel shown in figure 2. This representation
is unique up to shift and reversal, for the sake of simplicity we will identify
a word with its equivalence class under these operations. Using theorem 4.1
and 4.2 it is straightforward — though somewhat tedious — to verify that dele-
tion of any of the following five subwords does not affect the reversibility of
a cogwheel with respect to rule o aaw, 88, (af)?, (aaf)?, (aBac)?.

Thus one may delete three consecutive degree 2 points from a cogwheel
without affecting its reversibility under rule o (this is simply lemma 5.3).
For consistency let us say that the cogwheel corresponding to the empty word
¢ 1s irreversible. For later reference let

R = {aaa, BB, (af)*, (eaf)’, (afaap)’}.

W in {ea, }* is reducible to W' iff W' can be obtained from W by finitely
many deletions according to 4.10. W is irreducible iff W cannot be reduced
to any W' shorter than W. Note that in general a word W can be reduced
to to several different irreducible words. For example, W = acaaffaff can
be reduced by to both aff and eeaf. It is not hard to see that any irreducible
cogwheel must be one of the following:

660 Klaus Sutner

€ aff

o aaf

B afaaf
aa (afaaf)?

Strictly speaking, the first five words denote multi-graphs. However, as
far as reversibility is concerned, one may simply remove double edges to
obtain corresponding graphs. Of these irreducible graphs only &, 3, af and
aafl are irreversible under rule o, all others are reversible. Thus W is an
irreversible cogwheel iff W reduces to one of ¢, 3, o3 and aaf.

Next we will show that one can construct an irreducible cogwheel from a
given one in O(n) steps where n is the number of points in the graph. Hence
we have the following extension of theorem 4.4.

Theorem 4.5. There is a linear time algorithm to determine whether a
unicyclic graph is reversible under rule o,

Proof. We may use the algorithm of theorem 4.4 to reduce the given
graph to a cogwheel in linear time. The cogwheel is represented by a word
W e {a, f}* as described above. Now consider the following finite transition
system R. R has as set of states @ all the prefixes of irreducible words. The
transition function is define by

| qo ifgoeQ,
5((1,0)-—{1, if go ¢ Q V3w € R(pw = qo).

Since no word in R is a postfix of another § is well-defined and R is
deterministic. The initial state is g5 = €. A straightforward induction shows
that W reduces to 6(go, W). Thus if §(gy, W) is irreducible we are done: W
is irreversible iff 6(gy, W) is one of ¢, 8, af, and aafB. On the other hand,
if §(go, W) is still reducible, one can determine a corresponding irreducible
word by a simple table look-up. For example, let W = afafafiaa. The
5(qo, W) = afaa which further reduces to f.

Hence one can determine reversibility of W and therefore reversibility of
G in linear time. This finishes the argument. B

It seems rather difficult to characterize general graphs containing many
cycles with respect to reversibility under rules ¢ and ¢*. It would be inter-
esting to know whether there is a fast algorithm — say linear in the size of
the graph G — that can determine the reversibility of & and o+ on G. Note
that his excludes the brute force solution of computing the determinant of
the adjacency and neighborhood matrices over Fs.

References

[1] B. Andrasfai. “Cellular automata in trees”, Finite and Infinite Sets 37, Col-
loquia Mathematica Societatis Janos Bolyai, Eger, Hungary, 1981.

Additive Automata on Graphs 661

[2] C. Berge, Graphs and Hypergraphs (North-Holland, 1973).
[3] N. Christofides, Graph Theory (London: Academic Press, 1975).

[4] M. R. Garey and D. S. Johnson, Computers and Intractability (Freeman,
1979).

[5] A. Lindenmayer, “Mathematical models for cellular interactions in develop-
ment”, J. Theoret. Biol. 18, 1986, 280-299.

[6] O. Martin, A. M. Odlyzko, and S. Wolfram, “Algebraic properties of cellular
antomata”, Commun. Math. Phys. 93, 1984, 219-258.

[7] A. J. Schwenk and R. J. Wilson, “On the eigenvalues of a graph” in Se-
lected Topics in Graph Theory, eds. L. W. Beineke and R. J. Wilson, editors
(Academic Press, 1970).

[8] K. Sutner, “The complexity of finite cellular automata”, submitted.
[9] K. Sutner, “Linear cellular automata and the Garden-of-Eden”, to appear.
[10] K. Sutner, “On o-automata”, Complex Systems 2:1, 1988, 1-28.

[11] M. Sved, “Divisibility — with visibility”, Mathematical Intelligencer 10:2,
1988, 56-64.

[12] S. Wolfram, “Statistical mechanics and cellular automata”, Rev. Modern
Physics 55:3, 1983, 601644,

[13] S. Wolfram, “Geometry of binomial coefficients”, American Mathematical
Monthly 91, 1984, 566 — 571.

[14] T. Yaku, “The constructibility of a configuration in a cellular automaton”,
Journal of Computers and System Science 7, 1973, 481-496,

