
Complex Systems 2 (1988) 663-670

Simulating the Evolution of Behavior: the Iterated
Prisoners ' Dilemma Problem

David M. Chess'
Comp uting Systems Department, IBM T. J . Watson Research Cent er,

Post Office Box 218, Yorktown Heights, NY, USA

A bs t ra ct . A system is descr ibed in which a number of art ificial
agents (represented by simple mathematical expressions) compe te for
t he right to "re produce" (that is, to cause new agents with similar
properties to be genera ted). By simulat ing some of the essential fea­
tures of biological evolution, the system makes possible some novel
insights into the behavior of communi ties of agent s over time. The
results of Fujiki and Dickinson on the Iterated Prisoners' Dilemma
problem (IPD) are essentia lly confirmed. T he ty pical course of evo­
lution of a community of IPD players is descri bed) and possibilit ies
for further work are outlined . T his study is also relevant to machine
learning) an d adapti ve systems in gener al .

1. Introduct ion

T he theory of evolut ion provides a broad , powerful model for a process by
which complex and cap able ent it ies (includi ng hu man beings) can ar ise as the
result of uncari ng non-sentient forces;' The kinds of computations typical of
current digital com puters are paradigm ati cally non-sentient . For this reason
(and no doubt for others) there has been a continuing undercurrent of interest
in th e possibility of arr iving at complex (perhaps even intelligent) systems
by implementing evolutionary models on digital computers .

Fogel , Owens) and Walsh [3] present a system in which ent it ies modelled
as finite au tomata evolve to sat isfy certain capability criteria, and speculate
on t he implicatio ns of such systems for na tural and artificia l intell igence.
John Holland and his associates [4,5] have develop ed a powerful mathemati­
cal theory of cer tai n types of evolving systems, suitable for computer imple­
mentat ion . Dress [6] ties together the ideas of evol ut ion and neural networks,
by presen t ing a system in which networks of simulated neurons evolve to sa t­
isfy cr iteria invo lving lear ning ability . Brown [7] incorporates evolu tionary

"Network add resses: cnessetbm.ccm (inte rnet) , CHESS a t YKTVHV (Bit net).
1Richard Dawkins [l l2] is one of the primary modern expositors of this idea.

© 1988 Com plex Systems Publicati ons, Inc.



664 Davi d M. Chess

A cooperates A defects
B cooperates ptA ) ~ 1,p(B) - 1 p(A) - 2, p(B) - 1
B defects ptA) = -l,p(B) = 2 p(A) = a,p(B) = a

Table 1: p(A) and pCB) are payoffs to two players, A an d B, in th e
P risoner's Dilemma.

ideas into the construction of ru les for cellular automata. On the popula r
front, A. K. Dewdney [8J has recently tickled the general reader with ideas
about simulating the evolut ion of form (the length of a dinosaur's neck, and
of the spines on a sp iny plant) on small personal computers .

This paper prese nts some pr inciples of and results from a system which
simu lates the evolut ion of behavior in simple tasks (tasks in which the ent ities
have input sys tems that pass only small amounts of information, and output
systems t hat limi t them to a small num ber of poss ible ac t ions). Despite the
simplicity of th e tasks studied, the events that occur as the entities evolve
can be quite complex and interesting. The particular situation faced by
the entit ies described in this paper is a vers ion of the Prisoner's Dilemma
proble m.

2. T he prisoner's d ilemma

The Prisoner's Dilemma is a classic example in game theory (attributed,
probably correctly, to A. ,"V. Tucker; see for ins tance [9]). A typical Prisoner 's
Dilemma game has a payoff mat rix as in tabl e 1.

The two strategies are commonly called cooperate and defec t. T he
game is completely symmetric; each playe r receives a payoff of 1 if he and his
pa rtner bot h cooperate, 0 if both defect, - 1 if he cooperates and his partner
defect s, and 2 if he defects and his partner cooperates. In game-theoret ic
terms, defect ing com pletely dom inates cooperat ion; that is, no mat ter what
one's partn er does , one' s own payoff is higher if one defects . On t he other
hand, the highest total payoff is ob tained when both par ties cooperate, and
the pay off to each party in that case is in fact higher than if both parties
behave "rationally" and de fect .

A particularly interesting case of this sit uation is the "Iterated" Prisoner 's
Dilemm a (IP D ). In this form of the prohlem, the parties play the game a
number of times, and each party can decide how to behave according to
how the other par ty has behaved in previous encounters. Strategies for the
iterated case have been studied extensively by Axelrod [10]. In one stud y, he
solicited iterated-pn souer's -d ilemma algorithms from many sources, and ran
them in a competitive environment , in which the highest- scoring algorithms
were allowed to "reproduce," and the lowest-scoring ones were eliminated.P

T he algor ithms th at do bes t at the itera ted pr isone r's dilemma are those
which (roug hly) will cooperate with others like themselves, but will not co-

2Th is sort of competition is similar to simulated evolut ion, except that no mutations
occur; that is, no algorithms arise except those explicitly given by the humans involved .



Simulating the Evolution of Behavior 665

operate wit h others which do not cooperate . Axelrod summarizes the char­
acteristics of successful algorithms; three of the mos t important are that they
are

N ice Will begin by cooperat ing, and not defect if the partner is also Nice.

Provocable Will not conti nue to cooperat e with a partner that defect s too
often.

Forgiving Will eventually retu rn to cooperat ion if a formerly-defecting part­
ner begins to coop erate.

The simplest successful algorithm is "T it-for-Ta t" (TFT), which begins by
coope rating, and continues by doing each turn what its partner did last turn.
It has all three of Axelrod's desirable qualities, and does very well at the task.
A community of TFT players will always cooperate wit h one another, but
since each one will retal iate immediat ely in response to defection, a defector
cannot prosper by exploiting any of them.

3 . The IPD a nd evolu t ion

The iterated prisoner's dilemma is a simple game, with few inputs (essentiall y
only th e memory of prio r rounds), and a single binary output (Cooperat e or
Defect) . Algorithms to play th e gam e are thus simple to represent, and lend
themselves well to efficient implementat ion in a digital computer . On the
other hand, the game has interest ing and non-t rivial proper t ies, as well as
(at least metaphorical) relevance to a var iety of human problems. Enti ties
rep resented by IP D algorithms are therefore very good candidates for th e
com puter simulation of evolution.

Fujiki and Dickinson [11] pre sent an evolutionary system in which a sub­
set of LISP S-expressions are used to rep resent IPD players. In th eir expe r­
iments, th e algorithms that evolved included a variant of Tit-for-Tat, which
would defect only if it s partner defected twice consecut ively," and a nice-but­
unforgiving algorithm, which would cooperate as long as its par tner never
defect ed , bu t which would always defect if its partner ever had .

4 . The system

The system described in the present paper uses expressions in integer arith­
meti c to represent IPD algorithms. Each ent ity is an arithmetic expression
in terms of three variables:

3In fact , it would also defect on t he last round of a gam e. It is int eresti ng to note th at
a popula tion of T it-far-Tat players can be successfully invaded by a new "spec ies" which
plays TFT until the last round , and t hen defects. T his population can in tu rn be invaded
by a species which plays TFT until the second-to-lest round , and then defects, and so
on . At some point on th is "slippery slope" of invasions , there will be a pop ulation which
can be invaded by a pair of pure TFT players; in thi s sense, fit ness (or "invadability" ) is
intransitive in the IPD; every strategy in the set containing TFT and its "defect at the
end" var iants can be invaded by at least one of the ot hers.



666 David M. Chess

Lest/Time: What act ion the partner took last round (set to 1 if the
act ion was Coope rate, -1 otherwise)

Defed Coun t: How many times in the past the par tner has defected

CoopCount: How man y t imes in the pas t the part ner has cooperated

Each variable may appear more than once , or not at all, and the expres­
sions a re not necessarily linear in any of them . To deter mine an entity 's
behavior for the cur rent round , the express ion represent ing the entity is eval­
uated for the current values of the variab les, and the ent ity's behavior is
taken to be Defect if the value of t he express ion is less than 0, and Cooper­
ate otherwise.

The sim plest expressions corres ponding to some fam iliar IPD playe rs are

Tit-for-Tat : (LastT ime )

Nice but Unforgiving: (0 - De!ectCount)

A lways Cooperate: (1)

Always Defect : (-1)

although mu ch more complex expressions are possible; for instan ce,

(37 * LastTime + (DefeetCou nt - Defect Count)

6 * LastTime * LastTime)

is behaviorally equivalent to simply (LastTime), and is therefore a repre­
sent at ion of T it-for-Tat. Ot her more complex expressions represent more
complex behaviors; a randomly generated expression is likely to represent
more or less irrat ional behavior.

T he cur rent system uses a fixed numb er of ent it ies, which are initiali zed to
random exp ressions of th e variab les (the expressions are stored intern ally as
parse t rees) . In each generation the entities are grouped into pairs, and each
pair plays a few unscored "startup" rounds of the game , followed by a number
of scored rounds. When all pairs have played , the lowest-scoring ent it ies are
replaced by copies of t he highest-scoring ones. To introd uce variation, the
copying process is imp erfect . During a copy, there is a small chance that some
subt ree of the source exp ression will be replaced by a randomly-generated
new subtree when copied to th e destin at ion. Unlike Fujiki and Dickinson 's
system, this system has nothing corresponding to genet ic "crossing-over" or
"inversion. "



Simula ting the Evolution of Behavior

5. R esults

667

A ty pical ru n of the system displays four dist inct ive stages. In the first , which
might be called the "Era of Exploi tation," habitu al defectors domi nate. T his
is because, in the typical random mix with which th e system st ar ts, most
entities are either pure defectors, pure cooperators, or errat ic players whose
behavior is effect ively random . In a pop ulation wit h this mix, the defect ors
do very well, at the expense of the cooperators espec ially, bu t also at the
expense of th e errati c players.

The second stage appears when virtually all of the "exploi tab le" players
(the pu re coop erator s and the erra t ics) have been eliminated . In this stage,
most of the interactions are between pairs of pure defectors, and total scores
tend to be low. This st age might be called the "Nadir."

The third stage begins as rat ional ent ities (t hose wit h some of Axelrod's
desirable qualit ies) begi n to mult iply. If some of these were present at the
beginn ing, and survived th e Era of Exploitation, th e third stage will beg in
almost as soon as th e Nadir is reached. If not , the Nadir will conti nue unti l
two or more arise by mu tation. In any case, duri ng this stage, which might
be called th e "G rowth of Trust," exploiters begin to be eliminated by rational
ent it ies. The growth of rational ent it ies te nds to be geome tric, since every
t ime two rat ional ent it ies meet , they will cooperate, scoring higher than
any pure defector can , and will th erefo re pro duce more rational offspring for
the next generati on. In th e next generation, th e probability of two rational
ent it ies meeting will be that much higher , and th e effect will snowball.

Eventually, all th e pure defector s from the Nadir stage have been elim­
inated, and (except for "sports" which appear by mutation) all the entit ies
in th e system are rational. At this stage, which might be called "Equilib­
rium," cooperation is th e rule, and total scores are high. En tities observed in
this stage are pr imarily Ti t-for-Tat players and Nice-but-Unforgiving play­
ers. Some examples of Tit-for-Tat players present in the equ ilibr ium stages
of ty pical ru ns of the system are

LastTime

(LastTime + LastTime)

(DefectCou nt mod 7) * LastTime

Some Nice-but-Unforgiving players are

(-28 * DefectCount )

«CoopCount - 13) - CoopCount) * Defect Count

(LastTime - DefectCount)

Wh en a defecto r ari ses by muta tion in the equilibr ium stage, it is quickly
eliminated, since as soon as it is paired with a rational ent ity, that pair will
score only th e defect -defect payoff, while the other ent it ies are scoring t he
cooperate-coopera te payoff. Wh en a coope ra tor ar ises by mutatio n, it can



668 David M. Chess

survive for a longer ti me, but eventually it will b e paired with a newly-arisen
defector, and eliminated.

Studies with th is system therefore essentially confirm the work of Fujiki
and Dickinson, and of Axelrod. In both the Fujiki and Dickinson work an d
the present work, the Forg iving characteristic of Axelro d did not playa large
role. Unforgiv ing algorithms did as well as forgiving ones ; algori thms in the
equilibrium states were Nice and Provocable, bu t many were not Forgiv­
ing. T his is almost certainly because of the sim plicity of the systems, an d
the comparatively shor t ru ns. The Forgiving characteristic is most useful
when a signi ficant number of ot her entit ies in the system employ complex
"feeling-a uf ' strategies and will revert to cooperat ion when an initial defec­
tion provokes retaliation. Such complex be haviors have not been observed
in the present system, so the Forgiv ing characteristic has probably not been
selected [or.

6 . Notes and furt her work

T he bas ic result s of th is work, including the stages of evol ution and the
behaviors observed in equ ilibrium, are quite robust . That is) they are not
essentially changed by varying var ious parameters of the system. Essentially
identical results were obtained with various settings of para meters such as
mutation rate , number of entities in the system) details of the payoff matrix)
number of rounds of iteration in the IPD) and so on." The same resul ts were
also achieved when the entities were cons trained to be expressions linear in
each of the three variables. T hese facts, and the fact that the independent
work of Fujiki and Dick inson also produced very similar resul t s) suggests that
the observed phenomena ate truly essent ial to the IPD itself) and not simply
art ifacts of the implementat ion .

T he system as it ex ists today can be used to study tasks other than
the IPD. Studies are currently in progress on other simple game-theoretic
tasks , such as coordi nation and anti-coordinat ion problems, and var iations
on the Prisoner's Dilemma. The system has also been extended to include
more complex entit ies) faced with more complex env ironments) an d capa­
ble of more complex behaviors. One study involves en tities which pe rce ive
an env ironment containing bot h "food" and ot her entit ies, and which have
a var iety of behaviors to choose from, including moving towards or away
[rom any object in the environment, attempting to "eat" any object in the
environment, and so on .

All the behaviors so far st udied are fixed at the entity level; that is) an
entity will always behave th e same way when given the same input) and
no learning occurs in an ind ividual entity (although the system as a whole

"Most of the studies were done in a system with 100 entities, 5 non-scored rounds,
50 scored rou nds, a mutation probabi lity of 0.3% at each node in a parse tree, and the
replacement of the 10 lowest-scoring entities by copies of the 10 highest- scoring ones at
the end of each generation. T he syst em used for most of the work was an IBM PC/AT ,
running softwa re written in mr.,'1 PC Pascal.



Simulating the Evolut ion of Behavior 669

may be said to he learning). One obvious extension to the system would
be to implement entit ies which store the resul ts of previous behaviors and
use some sort of pat tern-matching algorit hm to choose a new behavior based
on t he sto red memor ies. Evolution would then occur on the higher-level pa­
rameters governing t he behavior of the memory and of the pattern -matching
algorithms. It is an open quest ion whether t he sort of evolut ion describ ed
above can produ ce interest ing examples of more complex behaviors in feasible
amounts of run time.

7. Conclus ions

The system describ ed here confirms some previous work on the evolutio n of
Iterated Pri soners' Dilemma players, and describ es the stages of evolution
through which the players typically pass. Because of the obvious biologi­
cal, and even hum an, analogies that they suggest, systems like this can he
excit ing to work with, and it is important to avoid exaggerat ion. Evolving
systems are not necessarily intelligent systems; the t ime requ ired for any
current system to evolve a database program , let alone a nat ural-language­
understanding program , would be prohibit ive.f On the other hand, these
systems represent an approach to the production of behavior which is both
differen t from trad it ional program- development approaches, and similar to
t he processes that produced (for example) all of us. Continuing research into
t hem cannot fail to produce wort hwhile insights, both into the theory of the
tasks studied (such as the IPD), and into the mechan ics of t he evolut ionary
process itself.

R eferences

[1] Richard Dawkins, Tlle Selfish Gene, (Oxfo rd University Press, New York,
1976).

[2] Richard Dawkins, Tlle Blind Watc1lmaker, (Norton, New York, 1986).

[3] Lawrence Fogel, Alvin Owens, and Michael Walsh , Ar tificial Intelligence
tllroug/l Simulated Evolut ion, (J ohn Wiley an d Sons, New York , 1966).

[4] John H. Holland , Adaptation in Na tural and Artificial Systems , (U niversity
of Michigan Press, Ann Arbor, 1975).

[5] John H. Holland , "Genetic Algorithms and Classifier Systems: Foundations
and Future Direct ions" in Genetic A lgorithm s and their Ap plications: P ro­
ceedings of t ile Second Interna.tional Conference on Genetic Algoritllms , ed.
John J. Grefenstet te, (Lawrence Erlb aum Associa tes, P ublishers , Hillsdale,
New Jersey) 82-89.

[6] W . B. Dress, "Dar winian Op timization of Synthetic Neural Systems," ICNN
SaIl Diego IEEE, (J une 21, 1987) 1-7.

5See [I2} for some thoughts on the relationship of evolut ion to art ificial int elligence.



670 David M. Chess

[7] David B. Brown, "Competition of Cellular Automata Rules," Compl ex Sys ­
tems, 1 (1987) 169-1 80.

[8] A. K. Dewdney, "Computer Recreations," Scientiiic American, (Febr uary,
1988) 128-1 31.

[9] Mort on D. Davis, Game Th eory , (Basic Books , New York, 1970).

[10] Robert Axelrod, The Evolution of Coopera tion, (Basic Books, New Yor k,
1984) .

[11] Cory Fujiki and John Dickinson , "Using the Genetic Algorit hm to Generate
LISP Source Code to Solve the Prisoner 's Dilemma" in Genetic Algorithms
and their Applications: Proceedings of tlle Second Int ernational Conference
Oil Genet ic Algoritllms, Joh n J . Grefenstette, ed., (Lawrence Erlb aum Asso­
ciat es, Pu blishers, Hillsdale , New Je rsey) 236- 240.

[12] A. J . Fena nzo, Jr., "Dar winian Evolution as a Paradi gm for AI Resear ch,"
ACM SIGART Newslet ter, 97, (July 1986) 22- 23.


