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Abstract. T he backpropagation algorithm for feed-forwa rd layer ed
neural networks is ap plied to a problem domain of vari abl e difficulty.
The algori thm in its basic form is shown to be very sens itive to step­
size and momentum parameters as problem di fficulty is increased. To
counter this we suggest a way of changing them during learning for a
faster and more stable gradient descent . A technique for the deform a­
tion of the error surface is introduced as a way of using t he algorithm
to learn hard problem domai ns by gr adually changing the shape of the
error sur face from a gentle to the final craggy form . This deformation
procedure is applied to a second problem domain and is shown to im­
prove the learn ing performan ce by gradually increasing the difficulty
of th e problem domain so that the net may build upon past exp eri­
ence, rather than being subjecte d to a complicated set of assoc iat ions
from the st ar t .

1. Introd uct ion

The need for a neural network to employ non-linear representations of the
tasks it is required to learn, calls for the use of hidden uni ts (units whose
states are not clamped in any part of the learning process) , and an algorithm
capable of adjusting the system's link s so that link s to and from hidden
uni ts may be updated aft er each quest ion/answer (picture) training session
such that the system may eventually associa te each question with it s correc t
answer. Such an algorithm has recent ly been suggest ed [8], and em ploys
gradient descent to minimize a cost fun ction, defined by the discrepancy
between act ual network output and desired output . The performance of
thi s algorithm , and modifications made to it, are des cribed in this pape r
with reference to an eas ily defined task which the network was requ ired to
perform . We investigat e the performance of the basic algorith m dur ing the
learning, not ing th e advantages of adding hidden units. We also invest igate
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general fea tures of lear ning using maps in weight-space, which suggest ways
for improving the descent by changing the ste p-size dur ing learning so that
momentum can sa fely be used .

Explo ra t ion of the characterist ics of the error surface in weight space
also prompt the introd uction of a tech nique enabling the network to learn
hard problem domains, by descending an er ror surface which is progressively
deformed into th at of the hard problem dom ain from a set of simpler problem
domains . The simpler dom ains com prise eas ier parts of the hard domain.
T his technique is in a similar vein to th e process of gradual acquisit ion of more
refined skills in humans, start ing from less specific basic skills. Fin ally, we
demons trate another use of t he deformation technique used in thi s paper, in
teaching a network anoth er hard prob lem domain which involves descending
a tr eachero us error surface . After this work was completed we noti ced some
similar work developed independently by Wieland and Leigbton [I OJ . We
hope that fur ther work in this area will help determine the class of prob lems
on which the deform ation technique can be used.

T he network used in th is pap er was layered feed-forward wit h input,
out put and hidden layers. Connect ions were only allowed between adjacent
layers, and th ere were no connect ions withi n layers . Th e potent ial at unit i
has the form

<Pip = L wii gip + U,
j

(1.1)

where Wji is the weight from un it i to unit i , gi p is the outp ut state of unit j
for pict ure present at ion p. U, rep resents the "threshold value" for uni t i . It
can be upd ated during the learning cycle simply by treating it as a weight
[rom a unit which is permanently "switched on" [i.e. its outp ut state does
not change during each pict ure present ation, an d has a finit e value); t his unit
is lab elled by th e index j = 0, thus U; = Wio9o.

The response funct ion of the units , 9i( tPiL was taken to be

9' ( <Pi) = 2f; - I

with

for input units, and

I
f;= l+c<l,

(1.2)

(1.3)

(1.4)

for all oth er unit s, where Vi is an input pict ure, and the output was taken to
be

9~()u t ) + 1

OJ = 2 (= j;) , (1.5)
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Figure 1: The respo nse function of the units g(x).

thus the output lies in the interval [0,1]. The funct ion gj is sketched in figure
1.

The response function of th e output and hidden units needs to be dif­
ferentiable if gradient descent is to be used. In fact, the derivative has the
form

21]

21;(1 - 1;).

(1.6)

(1.7)

The deri vative reaches its maximum value for Jj = 0.5 and approaches its
minimum valu e as Ij approaches zero or one. T hus, since th e amoun t of
change in a weight is proportiona l to ij , weights will be changed by a grea ter
amount when they connect to uni ts which have ou tpu t states close to O.
Another property of gj is that it can never reach the ext reme valu es of 1 or
- 1 un less ,pi becomes infinite. Thus for t he purposes of comparing the actual
outpu t of the network with th e target valu es, the criterion used was tha t if
the output was within a cert ain tolerance (tal) of zero or one, then t he un it
would be con side red as being in the state zero or one respectively.

T he cost function to be minimized (error E) is given by

E =" E - ""~(o . - t· )'L...J p - L...J~ 2 l P l P
P P J

(1.8)

with Ojp and t» representing the actual ou tput at a uni t in the ou tp ut layer
and the target output for each picture respect ively. Using gradi en t descen t
th e weight s are updated afte r each set of pic tures presented to th e network
according to

BE
~Wij = -7]-­

8Wi j
(1.9)
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which, using the chain ru le, becomes [8,5]

!J. W i j = L " Sip9jP I, (1.10)

(1.12)

(1.11)

wit h Sip for unit i being a te rm consisting of the error at the output propa­
gated back along all th e weights leading from i . It is given by

d out) - u; ( )uip - ip Ojp - t i p

for out put unit s, and

d h;d) 2f'" ,
Ujp = ip L.J 9 k pUk p

k

for the hidden units, where k labels units which unit i direct ly connect s to
in t he forward di recti on . TJ is a pa ra meter which determ ines t he spee d of the
descent for a part icular gradient , and is referred to here as the ste p-size. A
slight modificat ion to equat ion (1.10) provides a more cont rolled descent:

t.w;;(n + 1) = 2:: ry6;,9;, +at.w;;(n), (1.13)

where n ind ica tes the number of the learning cycle, and Q' is known as the
"moment um" parameter.

2 . Implement a tion

Th e algori thm was imp lemented in occam 2, in real 32 bit ar it hmetic on
t ransputer ar rays. T he experiments for sect ion 3 were performed on T4 14
tr ansput ers, and th e lat er experiments in sect ion 4 were performed on TSOO
arrays using a backpropagation simula t ion program deve lope d in Ed inburgh
physics department (see for example [6,7]). T he t ransputer arrays ma ke up
th e Edinburgh Concurre nt Supercompute r Project, on which var ious other
neural networ k simulat ions have been performed using such MIMD (an d also
SIMD on the ICL DAP ) parallelizution [1 ,2].

3, Experiments with t he rounding problem

3.1 D escription of t he task

Th e learning algorit hm was ap plied to the following tas k. The network is
required , when t rained, to be ab le to round-off a set of numb ers ap plied to
its input to zeroes and ones at the output. Th ere is a correspondi ng output
unit for each inp ut unit. T he num bers applied to the input lie in the interval
[O , lI, and outs ide the range (O.5-r, O.5 + r ), where" is the param eter defin ing
the difficulty of the task. T hat is, th e problem domain to be lea rnt consists
of the following mappings for a difficulty 1':

Input Output
[0.5 + T, 1.0) 1.0
[0.0, 0.5 - 7') 0.0
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T hus the net work can be tr ained to perform tasks which require differing
levels of discernment. The eas iest task takes th e form of a one-to-one mappi ng
of binary pat terns input to output (r = 0.5) , and the greater difficulties are
found when numbers either side of 0.5 are very sim ilar and yet hav e to be
mapped to different extremes. So the closer r is to zero, th e harder it should
be for the network to adjust it s weigh ts to achieve the required funct ion.

Since th e nature of this problem is such that each element forming an
input picture is to tally ind ependent of th e other elements (i .e. this is an order
1 problem , in the term inology of Minsky and Papert [4]), th e elements in the
outpu t picture should corres pondingly he independent. The only dependence
be tween input and output is betw een elements corresponding to the same
positions in input and output pictures. With thi s restriction it is clear that
th e ne twork should tend to alte r it s weights such that it forms large weights
for non-intersecting routes from the input elements through the hid den layer
to the corresponding output elements.

The experiment was performed on a three layer network: the input layer,
which contained up to seven units; the output layer , which had t he same
num ber of uni ts as th e input layer and the hid den layer , which could contain
up to 25 un its. It is of course essent ial that the hid den laye r has at least
the same number of units as input / output in order for a solution to exist
at all. If there are mor e hidden units in the hidden layer than are required
to find a solut ion, then there are expected to be a larger number of poss ible
solut ions, and one of these will have to be chosen by the system. The choice
can depend only on the ini ti al random weights . T hus th e system can descend
into different globa l minima of the erro r surface, by start ing off at different
poin ts on the surface. The spect rum of globa l minima includes solutions
where rou tes between input / output pair involve varying numbe rs of hidden
uni ts, and also the cases where some h idden uni ts ar e not used at a ll.

It is necessary to include all pe rm ut ations of the elements of possible
input pictures in the t ra ining set. In trainin g, th e network should be taught
to round off all number s (N) in the ran ge

(0.5 + r):S N :s 1.0 and O.O :S N:S (0.5 -1·) . (3.1)

In order to ensure thi s, writ ing R+ :::: (0.5 + 1'), and R_ (0.5 - r ), the '
pictures at the input units are taken to be all th e per mutations of 0, 1, R+
and R _, with R' s only present at one of th e inputs pe r picture, an example
is given in table 1.

It can be seen that for c input units t he nu mb er of pictures required will
be

N(c) = c2' (3.2)

thus th e number of pictures requi red in the t raining set scales worse th an ex­
ponentially wit h the number of input units. This is the mai n prob lem with
teaching an ana logue neural net work to perform a funct ion which requires
it to examine each input element indivi du ally, rather than absorb an overa ll
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unit 1 un it 2 unit 3
R+ 1.0 1.0
R_ 1.0 1.0
R+ 0.0 1.0
R_ 0.0 1.0
R+ 1.0 0.0
R_ 1.0 0.0
R+ 0.0 0.0
R_ 0.0 0.0

Table 1: Part of the t rai ning set for a three input unit network. T he
rest of t he set is obtained by pe rmutations of the columns.

' taste ' of th e input. T he lat ter is clearl y more in the sp iri t of Par allel Dis­
tr ibuted Processing [9]. However , it is beneficial to use a task which can be
defined as eas ily as this one. A simi lar (in fact worse) scaling of th e training
set with network size is encountered in the parity problem [8].

3.2 P er formance of the basic alg or it h m

Th e success of th e algorit hm in finding a solution can be demo nst rat ed by a
plot of the progress of the total error at t he output units as a function of the
training cycle . T his is shown for systems 2-2-2 (2 input, 2 hidd en , 2 output
units), 3-3 -3 and 4-4-4 in figur e 2. On each graph is plotted the progress
of total erro r wit h training cycle for each system for a cer tain difficulty r

(0.5, 0.01, and 0.0001), with ,,= 0.1 and a = 0.6. When the error remains
essent ially st eady it is ass umed th at the algorith m is unable to converge to a
global minimum, and has sett led into a local minimum. It can be seen how,
for a difficulty of 0.5, all th e systems manage to locate a globa l minimum
within a reasonable period. The descent is marked in all the systems by a
relatively steep descent for th e first 10 to 100 epochs, followed by a region of
low gradient until t he en d . For the second difficul ty, 0.01, only two systems
manage to locate a global minimum. T he descent is marked again by a st eep
fall in error during the first 10 to 100 epochs, but thi s t ime th e almos t level
descen t which follows is term inated by anot her relativ ely steep drop at 100
to 1000 ep och s. T he 4- 4- 4 curve is cha racterized by a rapid drop at the
end , indi cating the loca tion of a sudde n steeper descent, leading ultimately
to a solut ion. It can be seen that the 3-3-3 system, however, does not locate
a similar fea ture, and is destined to remain stuck on a plateau -like surface.
With the third difficulty (0.0001) none of the systems manages to find a
solut ion . T he relatively steep init ial descen ts are te rmina ted at 10 to 100
epochs by a very flat portion, which shows no sign of ending.

Gr aph s were also plotted showin g the terrain in the dir ection of motion
of the system through weight space. The direct ion of motio n is defined by
th e direction of the vect or ~w(n). The terrain is map ped by calculating
the erro r at various points forward an d back from the present position on
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the error sur face, in th e direction of the next step to be taken. On som e of
these graphs an asteri sk ind icates th e present position of the system , and a
vert ical line indicates the actual step to be taken by the system. This way
of studying the error surface was suggested in [5], in which it was also shown
how an initially large value of the momentum paramet er can be dangerous ,
due to the large weight changes this cau ses at early stages of descent, when
the error surfa ce is st eep .

The top graph in figur e 3 shows a 2-2-2 system learning a mapping
of difficulty 0.0001. Th e initial descent, shown in figure 2, is reasonably
quick, but before long the error becomes quite statio nary. The graph maps
the terra in as the sys tem clearly begins to iterate to the bottom of a local
minimum . It is possible to make the system climb out of this by giving
it a large step size. However there is no reason why the direct ion it takes
should be one which brings the system to the brow of a hill, ind eed the
normal scenari o is for the system to climb up to another local m inimum, or
a plateau, and stay there (bottom grap h in figure 3).

The descent for the simplest system (2-N-2 with r = 0.5) is shown for
the first six t raining cycles in figure 4. T he terrain for the system with two
hid den units is compared with th at for the system wit h 25 hidden uni ts. It
can be seen how muc h stee per the descent is when there are a la rge number of
hidden uni ts. A direct comparison of the terrain at the start of each training
session is shown in figure 5, for three difficulti es. It can be seen that the line
is steepe r for networks with more hidden units. The reason for this can be
unde rsto od by con side ring th e first epoch of each system . If we assume that
the weight s (numbering 12 and 127 respectively) are of equal importance in
the early stages of learning, and each weight is made to change in the learning
algorithm such as to reduce the error, and if this change is small for each
weight, then since

we have

(3.3)

dE
- ex
dw

E(6Wij )2
{ij}

(3.4)

and, if t here are N weights in the syst em,

dE
dw ex .,fR. (3.5)

In figure 4 the gradient of th e lines for the first epoch are 0.64 and 2.16
for the smaller and larger systems respectively. The ratio is 3.36, and , from
the simple derivat ion leadi ng to equa t ion (3.5 ), we ex pect th e ratio to be

J127/1 2 = 3.25.

F igure 6 shows th e same sit ua t ion for a larger network . However, here
the surface is so much more mount ainous anyw ay that the beneficial effect of
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th e extra hidden uni ts is best seen by considering the cliff-like terrain of the
7-25-7 ne twork, as opposed to the valley- like terrain of the 7- 7- 7 network .
The cliff-like descent is much quicker and more penetrating.

The addi tion of hidden units clearly has a consistently beneficial effect
on the speed, and st ability, of the descent .

In figure 7 we observe the effect of extra hidd en units on the learning,
at difficult y 0.5, for different network sizes. T he graphs show the number
of epoch s to solution for each system size, averaged over 50- 100 runs with
different random st ar ts . The error bars give some idea of the variat ion in
learning time de pend ing on a particular start ing poin t on the error surface. It
can be seen that for each of the networks shown, there is a definite t rend for
a quicker descent as th e number of extra hidden units increases. Also there
is possibl y a trend for th e addit ion of one or two hidden units producing a
more dramatic effect as the network size increases. In a ll cases the addi tion
of more hid den units has less effect as the total number of units in t he hidden
layer increases.

The influence of the momentum param eter is somet imes very impor tant
for find ing a solution . For example, on a run with a 7- 25-7 sys tem with
zero moment um a solut ion was reached after only 6 t ra ining cycles (r = 0.5) ,
whereas when the system was trained with a momentum of 0.6 a solut ion
was not found until more than 50 epochs . The descent during the initial few
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ep ochs was quite simi lar for the two cases, however, at an error of ab out 3.1
the secon d system landed on a plateau. The following 40 or so ep ochs were
taken up by slow progress along th is plateau, unti l the cliff-like edge was
found. This descent was interesting, an d so the su rrounding terrain for the
relevant epochs was mapped out (figure 8). The graph shows how flat the
plateau is and how steep the plunge at th e end is. Comparison of th is graph
with the 7-25-7 descen t in figure 6 shows how small a crack was actually
found by the system. It seems th at the presence of the momentum caused
the system, by chance, to jump onto the plateau ra ther than continue with
a reasonably comfortable descent. It is th is kind of unpredictable behaviour
in solving tasks such as this one which makes the gradient descent learning
algorithm unat t racti ve. The 'deformation' suggested b elow is designed to
avoid this, and also to improve greatly on the level of difficult y which can be
solved by the system.

The learning algorithm failed to find a solut ion for the larger networks,
and smaller r-, and just converged to local minima. Sometimes the sys te m was
helped by interactively altering step size and momentum at var ious stages in
the learning . However, this was not cons idered to be a very sat isfactory way
of pur suing a better learning procedure, since the error surface could not be
predicted for an ar bitrary network at any par t icul ar point in t he learning.
Below we introduce two ways of improving the performance of the algorithm.

3.3 T he deformation technique

The idea of deformation is to start the sys tem off by training it to learn a
relat ively straightforward mapping task, and gradually to inc rease the diffi­
culty of the mapping, in such a way that the task is eventually deformed into
the task of the desired difficulty. This process can be viewed as a "topologi­
ca l" defo rmat ion ' of a problem which can be rep resented as a sim ple shape in
some space, into a more difficu lt problem whose extra difficul ty is represe nted
by the same to pological surface, form ing a more comp lex shape in the same
space. Clearly, t he class of problem s which can be desc ribe d in such a way
will have to be defined if this m ethod is to have any use, but for eas ily-d efined
tasks like the one studied in this paper, t he deformation parameter is easy to
identify, an d such a me thod would appear to be a reasonable one to adopt.
vVe give an example of another way of applying de formatio n in section 4.

The entire problem is completely defined by the erro r surface in multidi­
men sional weight-space. T he harder the problem one requires the network
to solve, the more treacherous will be the te rrain of t he error su rface , and
the harder it will be for the system successfully to descend into one of the
global mi nima of the surface. Thus one can picture the deform ation proce­
dure as mo ulding the error su rface about the point occ up ied by the system,
as the system descends towards the p oint of the final global m inimum . In

1 Here the use of the word topological is not meant to imp ly any rigid mathemat ical
basis for this technique. Its use is main ly as a guide to understanding how the error surface
is gradually altered.
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this way the system is able to avoid a lot of the treacherous te rrain it would
have to descend were it started off at a random posit ion on the final error
surface. Th is techniqu e does not guarantee descent to a global minimum;
the difficulty used at the beginning, and the parameters used to vary the
deformation, need to be such that the surface can be gently deformed, with
the task required to be learnt to vary smoothly at each deformation . This
method can be compared with the simulated anneal ing technique [3] in which
the system is eased into a global minimum of the surface defined by the cost
functi on by reducing the noise of the system down to the value it has in
the actual problem. Th e idea here is that by starting the surface descent
at a high noise value (or high temp erature), the system will tend to locate
the global minimum from the beginning, and as temperature is reduced will
remain within the basin of at t ract ion of the global minimum. Th e difference
between t he two is tha t the annealing prevents the system from becoming
trapped in local minima, while the deformation removes the need for the
system to descend a hazardous surface, by moulding the surface around the
system.

The prob lem at hand is clearly an ideal cand idate for the deformation
method. T he deformation parameter is T , which is to be decreased in stages
from 0.5 to a final value TO.

3.3. 1 Deforming t he er ror su r face for t he rou n d ing p r oble m

Th e difficulty can be varied continuously in the roundi ng prob lem, so one
needs to determine the change in r required as a funct ion of r . For a problem
with a discrete set of difficulty levels it may be a simpler mat ter to determ ine
such a schedule. Init ially r was changed by a constant factor (0.99) each
lim e. It was found that the facto r was required to be closer to unity as the
T decreased in order that the system remained near enough to the bottom of
a "ravine-like" structure in the error surface so that iL did not break out of
it into some local minimum. Thus it is necessary to find some way of get t ing
the r -change to cause an alteration in the erro r surface which is sufficient ly
small th at the new error is not significantly different from that at tained after
complet ion of learning for the old T. T he expression derived below informs
us of the change in posit ion of the system on the error surface (E) aft er it
has been deformed due to a change in T.

Th e error defined in equa tion (1.8) is rewrit ten as

E = E EEip (3.6)
p

where e; 1 2 (3.7).- 2(t ip - Oip) .

After a diffi culty has been learn t the system is able to round num bers out­
side that r- to zero or one respectively (wit hin a tolerance tol) . Thus for a
single output unit and a single pict ure the maximum error at the end of a
deformation cycle is given by
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(3.8)

It is wished to cont rol the change in r such that the error at this output unit
increases by the same (to lerable) amount each time. The assumption is that
the error at the other units, and for oth er pict ures, will behave similarly, or
at least no worse than that at the out put unit with the maximum error.

In deriving the expression for~ for a three-layer netwo rk we use the
following notation:

input units are labelled by the subscript n

hidden units are labelled by the subscript j

output units are labelled by the subscript i.

T hus

E;p = E;(o; )

dropping the subscript P, and so

where

Bo,
00; = L:-og;

; f}g;

for fixed values of the weights. Similarly

f}g
og; = L:-f}'ogo·

n. gil

Using equations (1.2) and (1.5), eqns. (3.11) and (3.12) become

(3.9)

(3.10)

(3.11)

(3.12)

hOi (3.13)

L:{W' (9; + I)( 1 - 9;)og }
n In 2 Jl,'

From the definit ion of Ej we have

oE; = - (t; - 0;) 00;

-Iii 00;.

(3.14)

(3.15)

(3.16)

Due to the pictures that are presented to the system , ogn is only non-zero
for one of the input units per input picture, and always has the values:

+2,.
- 27'

for

for
lj= n = 1

l i=n = O.

(3.17)
(3.18)
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picture 8"" Ohid

R;. 0,00988 0,002445
R -0,00988 -0,002446

Table 2: Values of 6 for r = 0.011 for the system in figure 1.

oE; =

Now, subs tit ut ing eqns . (13) and (14) in eqn. (16) we find

Jo;;; { (I +g )(I- g ) }
-V2Ei oi(l - OJ)~ Wij ) 2 J ~Wjn6gn

= - 2E; ( I - J2i) 2:{(I + gj )(1 - gj )WijWjnOn;) or,
J

(3,19)

(3,20)

where 6ni is here the Kronecker delta. Hence the change in error with r is
given by :

aa~i = -2Ei (I - J2i) 2:{(I - gJ) WijWjnOn; } '
J

(3,21)

In other problems the variation might be more obvious. (For example, a
basic picture of an article of clothing might be shown, followed by a set of
progressively more unusual or highly decorated versions of such an article. In
learning to recognize a whole range of clothing, the basic object is understood
first , in its essence, rather than presenting the whole set all at once and
expect ing the net to organize sensibly from the start.) In the simulations
below, equation (3.21) was used in determining the amount by which r should
be changed after each stage in the deformation had been successfully learnt.
Th e maximum tolerable error change (8E) was taken to be 0,0005 for all
simulations (with tol = 0.1), however this value is not critical.?

3.4 Speeding u p t he descent (using m omentum safely)

The deformation process was very successful in allowing networks to solve
tasks of much greate r difficulty (ro = 0,0001), however it became clear that
the updating procedure for the weights became more ineffi cient as r was
decreased. This can be demonstrated with a simple example where the net­
work has one unit in each of its three layers (see figure 9). The system has
just learned at the deformation stage of 0.005, and is about to start error
propagation at the next r of 0.004881. The numbers which are presented
are : 0,504881 (R;.) and 0.495119 (R_), with the state of the t hreshold unit
always at 1.0. The total error at the output unit at the end of the last T is
0.01. Tables 2 and 3 show the o's and gradients at this point in the training
of the system,

21L is impo rtant for fJE not to exceed an upper limit (so that the syste m stays in the
ravine), while an opt imum value is determined by the minimum number of cycles required
to learn at the new r.
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3

Figure 9: Example of the weight situation in a 1- 1-1 syst em at a.
particular point in the learning. The numbers on the lines indicate
weight values and those in the circles label units.
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weight grad ient
w,o -0.000001
w,. 0.0000477
W30 + 1.0E-08
W" 0.00200

Table 3: Gradients for t he weight s in the system in figure 1 (r
0.011).

It can be seen how ineffi ciently the large weight s are upd at ed. Th e reason
for this small update, despite the com para t ively large 6's , is contained in the
expression for the gradients

(3.22)

T he values of the 6's remain similar as r is decreased , since the deformation
ensures the system remains close to the tolerance error, while the values
9ip decrease with dec rease in T. T hus the t ime (in learn ing cycles) taken to
learn each new r unavoidably increases as the system learns to round numbers
closer to 0.5. T his is a feature of t he kind of task st udied, and shows the
inefficiency of this method of back propagation for such a task, as the input
pictures (which are to be distin guished by different mappin gs) become more
alike. Steps were taken to try to speed up the learning, and it was found that
the accelerat ion provided by the momentum par ame ter was very effective­
provided the acceleration was suitably cont rolled. The met hod of controlling
the speed of descent will be described below, after an exam ple of a hazard
which exists during gradient descent in a valley.

Figure 10 shows how t he system climbs up a valley using gradient descent
by bouncing from one wall to the ot her. T he explanat ion for th is effect, which
ult imately leads to the system hanging on a fl at region outside the valley, is
that the step size at the first (lowest) point is just too big at that point on
the valley wall to produ ce a weight change which will send the system down
the valley. T hus the system finishes at a point higher up on the opposite
valley wall. It might be expected that wit h its next step the system would
have rect ified th is, there being less chance of the weight change being so large
that the same occurrence is repeated. However, this is hardly ever the ease,
due to the effect of deformat ion on the shape of the valley. This will be
illust rated below.

Th e above "valley ascent" was found to be most undesirable (the outcome
is that the system arrives at the top of t he valley and gets stuck on a level
plane) and decided the fate of all system sizes below a certain value of 7' .

To combat this it was decided to reduce 1] at the point t his behaviour was
detected. Thus 1] now becomes dependent on the direction in weight space.
Th e onset of the valley ascent is marked by two weight changes in opposite
direct ions, the second of which has a greater magni tud e than the first . When
th is is detected 1] for that weight is reduced.
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Figure 10: Ascent from an error minimum using th e gradient descent
algori thm. The scenario begins at th e lowest point shown, with eac h
following calculation causing an increase in t he total error.
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Mom entum was found to be indispensable as a way of speeding up descent
of slightly sloping regions (which characte rize error surface in the direct ions
of the heavy weights), and also for descent down valley walls when step size
is small. However , it is important to ensure that moment um is (switched off'
whenever the descent reaches a stage at which it crosses t he valley bottom
(adding the previous weight change after thi s would result in ascent of the
opposite wall). T ills is recognized by the grad ient hav ing the opp osite sign
on opposite va lley walls.

By carefully controlling th e speed of descent in this way, it was possible
to solve tasks down to very small values of r (10-7- 10- 8 ) , for all the systems
st udied.

3 .5 T he shape of t h e e r ror surface at various stages of deformation

In order to invest igat e the shape of th e error surface as the system made
its way down to a global minimum, for a par t icular stage in t he deforma­
t ion, maps were plotted in different weight direct ions (i.e. the learni ng was
halted and a parti cular weight was varied to observe the variat ion in error
produced). T he var ious cross-sect ions (figures 11, 12, and 13) reveal three
different landscap es, cha racterizing three different ty pes of weight . These
are the threshold weights, th e heavy weight s (formi ng the non-inte rsecting
paths) , and th e remaining weights . Also shown is the changing shape of the
error surface as deform ation pro ceeds. It can be seen that at very low values
of t- the environm ent in the direct ion of a threshold weight becomes more
and more crevasse-like. Herein lies t he reason for the valley ascent describ ed
in the previous sect ion; as 7' is decreased the valley into which th e system
descended at th e beginn ing of the deform ati on (t he initi al problem) is t rans­
formed in to one with progressively steepe r walls. If at any point the system
should now climb up a little bit, future gradient calculations would produce
enormous weight changes, thus sending the system bouncing from wall to
wall up the valley, eventually to leave it st randed on a level plane.

The form of th e error surface in the oth er direct ions in weight space, as
the deform atio n proceeds, is also interest ing. The heavy weight direct ions
reveal a gently sloping error surface, which becomes flat ter as the deform ation
continues, as would be expected. Th e error surface in the di rect ions of the
remaining weights is somewhat surprising. It hardly changes from its original
shape of a gentle fla t-bot tomed valley, even when r gets as low as 10-6 •

Evidently the learni ng procedure is not as sensit ive to the value of these
weights as it is to the th reshold weights.

It becomes apparent from the maps how effect ive, an d desirable, the
deformation technique is. A system st art ing off at l ' = 10- 5

, for example,
never finds th e crevasse-like st ruct ure into which it has to descend , an d even
if it did would have extreme difficulty in remaining in it. The deform ation
process makes things eas ier for the algorit hm at the start, and th en 'eases'
the system into t he di ffi cult terrain characte rizing the original problem.

The maps also show that it is the threshold weights which are the ones
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most crucial for the stability of the system, and that even a very small devi­
ation from zero causes several out puts to be totally wrong - that is, close to
1 when the target is 0 (each of these ' f li ppings' is char acterized by an ext ra
error of 0.5). It is the form of the response funct ion which produces the level
planes afte r t hese flippings.

3 .6 Hidden unit redundancy

With th e addi t ion of more hidden units, it becomes difficult to analyse th e
patterns of heavily weighted routes from input to output, since this typically
includes more th an one path for each inpu t /output pair. Thus it is usefu l
to represent the system graphically, to provide an indication of th e routes
taken. After each learning cycle, when the weights were updated , the in­
tensit ies of lines on the graphics screen, representing weight s, were updated .
T he intensit ies were norm alized to the weight with the greatest (absolute)
value. On th e screen negative weight s were blue, and positive weights green.
This provided us with 125 different int ensi ties in each colour, a reasonable
indi cation as to the relat ive st rengths of the weights. Weights of negligible
size comp ared with th e larger weights have negligib le int ensitie s. Analyses
of vario us sizes of system showed that one freque nt ly obtained hidden units
with negligible weights to and from all output and input units . An example
is shown in figure 14, a screen du mp of a 5- 15- 5 network which has learned
down to a range of 10- 4 • Similar patterns are obser ved in other network s
with large numbers of hidden units. It appe ared tha t such occurrences were
the results of com pe t it ion between two or more input/output rou tes of sim­
ilar st rength result ing in a draw , with the weights concerned subsequently
becoming negligible compared with weights in ot her rou tes, and the routes
them selves thencefort h abandoned.

4. U sin g deformation to le arn noisy patterns

\\'e applied the deformation techn ique introduced in the last sect ion to an­
oth er probl em doma in. T he purpose is to demonstrate another type of de­
formation parameter - degree of noise in binar y images - and to illustrate
how the technique produces muc h faster and more controlled learni ng.

Th e network used has a 45-10-45 architect ure. The input and output
layers are to be viewed as 5 by 9 arrays of pixe ls. T he input units themselves
take on only th e binary values 1 or O. T he training set consists of a set of
noisy images of digits which are to be mapped to their corresponding clean
images at the output. T he difficulty of the problem is a funct ion of the
amount of noise present in the inputs, since the greater the noise the less the
basic structure of the digit is seen. Thus one can imagine the error surface
becoming very hazardous at various points, especially when the training set
contains digits already very highly correlated wit hout noise.

Th e training schedule is clear: teach the network first of all the clean im­
ages (i.e. N- H-N encoding), and then introduce noise at th e input patterns,
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Rounding Ne~work

8 . B.B 8 .•88 8. B8 1 8 .•7B 8 . B81

1.8 8 .88 8.888 8.88 8.888

Figure 14: Screen dump from a graphics display, during the training
of a 5- 15- 5 system . T he numbers at the to p and bottom of the net­
work indicate the progress of the rounding. The presence of dominant
weights and red unda nt units can clea rly be seen.
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'70 noise final 'Yo patterns
error correct

5 20.018 80
10 20.021 80
15 20.027 80
20 20.032 80

Table 4: Performan ce of t he basic algori thm.

unti l the desired noise value is obtained. T hat is, the final operation of the
net is to be one in which for any dig it corr upted by noise of value less than
or equal to n%, a clean image of a digit will be produced at the output . For
relat ively large noise values i t may be the case that the noisy image of a
par ticular digit is "closer" (in te rms of a. distance measure the net is using)
to ano ther digit. In this case the net should prod uce as output. the second
digi t. Th e network can be viewed as a device (characte rized by a particular
noise tolerance n ) which cleans up noisy images by producing at output the
digit which is closest , in terms of general st ructure, to the input image.

It is clear th at t he error surface for such a functionalit y is necessarily very
highly st ruct ured and will contain many crevices and steep descents.

Fir st we observe the performance of the basic algorithm on t he 5%, 10%,
15%, and 20% noise domains. Each tr aining set consists of ten examples of
each digit , tha t. is 100 patterns in all. The learning parameters used here and
in all subsequent run s are ex = 0.9, ." = 0.1, tol = 0.15.

The network was not able to achieve 100% success in any of the noise
categories. (a run was term inated after 10,000 epochs, when the rate of
change of error was slower than one part in a tho usand per epoch). Table
4 shows the performance of the network in terms of the percent age patterns
correct. We show in figure 15 typical ways in which the networ k got stuck.
Th e figures show the input , hidden and outpu t unit states for a par ticular
pattern in the training set . In one case all the mappings were correct apart
from all the l 's with one pixel wrong, and all the 2's with the same three pixels
wrong. This typ e of error is similar to th e "flipping " in the last sect ion, and
is due to the large gradients in the error surface. Clearly, cer tain pat terns are
very similar to each other, and the net is most likely to descend into a local
min imum giving rise to mixture st ates. The minimum the net is required to
reach probably becomes either narrower or furth er away (or both ), the more
noise that is present.

Next three deformation procedures were t ried. T he first involves t he
sequence clean --+ 10% --+ 20%, and the second used the sequence clean
--; 5% --; 10% --; 15% --; 20%, and the t hird clean ..... 20%. It was not
attempted to find an optimal deformation schedule for learn ing up to the
20% noise training set . These experim ent s were done to demon strate the
suitability of the deforma tion proced ure for this ty pe of problem. It is not
even necessary to use such a hard problem ; as was suggested above the idea
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EfEII

Figure 15: Examples of where the bas ic algorithm got stuck in the
learning of noisy digits . T he inpu t uni ts are a t the top an d the outputs
should show th e let ters "2" and "I" respecti vely. Such errors were
made even at th e 5% noise level shown here.
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I % noise final accumulated % patterns
error epochs correct

0 0.467 1051 100
10 1.021 1430 100
20 0.608 2351 100

Table 5: Deforma t ion schedule 1.

% noise fina l accumulated '70 patterns
error ep oc hs correct

0 0.467 1051 100
5 J.122 1300 100
10 1.021 1562 100
15 0.302 3361 100
20 1.505 15,000 99

Table 6: Deformation schedule 2.

is more to build on current more general knowledge in a sensible way. We
show below th at de format ion enables the network to find very goo d minima
in a hazardous error surface. Deformation may help eve n when a global
minimum may not ex ist (i .e. in the cases when there are conficting members
present in the training set), by keepi ng t rac k of the opt imal m inimu m usi ng
previous knowledge. Tables 5, 6, and 7 show the performance of the net for
each deformat ion schedule. Using the first schedule the network was able to
learn successfully all the t raining sets. Typical mappings for the 20% noise
network are shown in figure 16. Using the secon d or third sched ules the net
was not ab le to complete the lear ning, but the local minima in which it got
stuck are much lower than for the basic ne t. Act ually nearly all the patterns
were correct . We show an example of an incorrect mapp ing in figure 17. The
optimum deformation schedule lies somewhere between t he second and third
sched ules tried above.

Looking at figure 16 again, it can be seen how the net pe rforms the
mapping of apparent ly qu ite different noisy images of the same digit, by
responding to the feat ures in th e image which are most typical of the dig it.
This can be seen in the activations in th e hidden layer for pat terns in the
same digi t class. T his rep resentat ion in the hidden layer is then used to
reproduce t he dig it at the output layer. Without th is two-level processing
capability networks would not be able to perform most interesting tas ks
involv ing extraction of the relevant infor mation from the activations at th e
input.

5. Summary

vVe have used the round ing pro blem to invest igate various aspects of the
learning procedure of a feed-forward net. This problem domain was useful
in that it s difficulty could be cont inuously var ied. T he bas ic algorithm was
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Figure 16: Exam ples of t he successful hard mappings learnt by the
network using the deformation techniq ue. Shown here are Iour exam­
ples of mappings of noisy versions of the digits "2", "377

, and "677
• The

noise here is 20%.
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Figure 17: T he incorrect map ping at which the net using the defor­
mation technique got st uck. In one instance of mappin g of noisy 6's
the net maps to a "5" . Note how this erro r shows up in t he hidden
layer. All other patterns were successfully map ped at this noise value
of 20%.
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% noi se final accum ulated % pattern s
error epochs correct

0 0.344 1160 100
20 1.563 5000 99

Tabl e 7: Deform ation schedule 3.
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fou nd to ex perience much difficu lty as t he problem difficu lty was inc reased .
Observation of the characterist ics of the error su rface led to th e development
of the deformation pro cedure and a reli able way of var ying the step-size dur­
ing learning so t hat mome nt um cou ld be used more effect ively in accelerating
the gradient descent. With these modifi cat ions to the t ra ining procedure the
net was seen to complete learni ng to a sat isfact ory level for all the systems
considered . The scaling of th e learn ing procedure to larger networks was
favourabl e (in terms of epochs taken, not t raining set size and actual com­
pu te t im e) , and it was found that extra hidden units speeded up the lear ning.
It was also noticed t ha t sometimes hidden units were not used ver y m uch,
pointing to a redundancy among units.

An exam ple of ano t he r ap plication of the de form a ti on technique was given
in the ass oc iat ion of se ts of noisy im ages of digit s with t hei r clean images .
Use of t he deformation t ech nique was shown to im prove vastly on the basic
learning algorit hm . This exam ple al so demonstra ted the way in which t he
network uses the hidde n uni ts to represent the sa lient features of an im age,
so th at it can produce the require d mappings .

T he lesson to be learn ed from the success of techniques like de form a tion,
is that however attractive pure self-organizat ion may sound, it is emminen tly
more sens ible and worthwhile to place a t least a few basic constraints on a
network during t he learning, t o retain a li t tle cont rol in t he outcome of net
learning.
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