Complex Systems 2 (1988) 671-704

Hard Learning the Easy Way:
Backpropagation with Deformation

Frank J. Smieja
Gareth D. Richards
Department of Physics, University of Edinburgh,
Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom

Abstract. The backpropagation algorithm for feed-forward layered
neural networks is applied to a problem domain of variable difficulty.
The algorithm in its basic form is shown to be very sensitive to step-
size and momentum parameters as problem difficulty is increased. To
counter this we suggest a way of changing them during learning for a
faster and more stable gradient descent. A technique for the deforma-
tion of the error surface is introduced as a way of using the algorithm
to learn hard problem domains by gradually changing the shape of the
error surface from a gentle to the final craggy form. This deformation
procedure is applied to a second problem domain and is shown to im-
prove the learning performance by gradually increasing the difficulty
of the problem domain so that the net may build upon past experi-
ence, rather than being subjected to a complicated set of associations
from the start.

1. Introduction

The need for a neural network to employ non-linear representations of the
tasks it is required to learn, calls for the use of hidden units (units whose
states are not clamped in any part of the learning process), and an algorithm
capable of adjusting the system’s links so that links to and from hidden
units may be updaled after each question/answer (picture) training session
such that the system may eventually associate each question with its correct
answer. Such an algorithm has recently been suggested [8], and employs
gradient descent to minimize a cost function, defined by the discrepancy
between actual network output and desired output. The performance of
this algorithm, and modifications made to it, are described in this paper
with reference to an easily defined task which the network was required to
perform. We investigate the performance of the basic algorithm during the
learning, noting the advantages of adding hidden units. We also investigate

© 1988 Complex Systems Publications, Inc.

672 Frank J. Smieja and Gareth D. Richards

general features of learning using maps in weight-space, which suggest ways
for improving the descent by changing the step-size during learning so that
momentum can safely be used.

Exploration of the characteristics of the error surface in weight space
also prompt the introduction of a technique enabling the network to learn
hard problem domains, by descending an error surface which is progressively
deformed into that of the hard problem domain from a set of simpler problem
domains. The simpler domains comprise easier parts of the hard domain.
This technique is in a similar vein to the process of gradual acquisition of more
refined skills in humans, starting from less specific basic skills. Finally, we
demonstrate another use of the deformation technique used in this paper, in
teaching a network another hard problem domain which involves descending
a treacherous error surface. After this work was completed we noticed some
similar work developed independently by Wieland and Leighton [10]. We
hope that further work in this area will help determine the class of problems
on which the deformation technique can be used.

The network used in this paper was layered feed-forward with input,
output and hidden layers. Connections were only allowed between adjacent
layers, and there were no connections within layers. The potential at unit ¢
has the form

bip = Zw:’jgjp + U; (1.1)
i

where w;; is the weight from unit j to unit ¢, g;, is the output state of unit j
for picture presentation p. U; represents the “threshold value” for unit 7. It
can be updated during the learning cycle simply by treating it as a weight
from a unit which is permanently “switched on” (i.e. its output state does
not change during each picture presentation, and has a finite value); this unit
is labelled by the index j = 0, thus U; = wigo-

The response function of the units, g;(¢;), was taken to be

gi(¢:) =2fi—1 (1.2)
with
fi=v (1.3)
for input units, and
1
fi= = (1.4)

for all other units, where v; is an input picture, and the output was taken to

be

(out)
a=t2 (=1, (1.9

Hard Learning the Easy Way 673

glx)

r T T
-8 0 6
z

Figure 1: The response function of the units g(z).

thus the output lies in the interval [0,1]. The function g; is sketched in figure
1.

The response function of the output and hidden units needs to be dif-
ferentiable if gradient descent is to be used. In fact, the derivative has the
form

.g_qg;; _y (1.6)
= 2fi(1-f;). (1.7)

The derivative reaches its maximum value for f; = 0.5 and approaches its
minimum value as f; approaches zero or one. Thus, since the amount of
change in a weight is proportional to f], weights will be changed by a greater
amount when they connect to units which have output states close to 0.
Another property of g; is that it can never reach the extreme values of 1 or
—1 unless ¢; becomes infinite. Thus for the purposes of comparing the actual
output of the network with the target values, the criterion used was that if
the output was within a certain tolerance (tol) of zero or one, then the unit
would be considered as being in the state zero or one respectively.
The cost function to be minimized (error £) is given by

E=3 E,=3% 3 %(% —t;)° (1.8)
? P

with o;, and %, representing the actual output at a unit in the output layer
and the target output for each picture respectively. Using gradient descent
the weights are updated after each set of pictures presented to the network
according to

oE

Bwij

Awij = =1 (1.9)

674 Frank J. Smieja and Gareth D. Richards
which, using the chain rule, becomes [8,5]
Aw;; = Eff‘sfpgim (1.10)
P

with &;, for unit ¢ being a term consisting of the error at the output propa-
gated back along all the weights leading from . It is given by

85" = 21, (0 — tip) (1.11)
for output units, and
65" =205, 2 Gk (1.12)
k

for the hidden units, where k labels units which unit ¢ directly connects to
in the forward direction. n is a parameter which determines the speed of the
descent for a particular gradient, and is referred to here as the step-size. A
slight modification to equation (1.10) provides a more controlled descent:

Awj(n +1) = 3 nigjp + aAwyj(n) (1.13)
p

where n indicates the number of the learning cycle, and o is known as the
“momentum” parameter.

2. Implementation

The algorithm was implemented in occam?2, in real 32 bit arithmetic on
transputer arrays. The experiments for section 3 were performed on T414
transputers, and the later experiments in section 4 were performed on T800
arrays using a backpropagation simulation program developed in Edinburgh
physics department (see for example [6,7]). The transputer arrays make up
the Edinburgh Concurrent Supercomputer Project, on which various other
neural network simulations have been performed using such MIMD (and also
SIMD on the ICL DAP) parallelization [1,2].

3. Experiments with the rounding problem
3.1 Description of the task

The learning algorithm was applied to the following task. The network is
required, when trained, to be able to round-off a set of numbers applied to
its input to zeroes and ones at the output. There is a corresponding output
unit for each input unit. The numbers applied to the input lie in the interval
[0,1], and outside the range (0.5—r,0.5+7), where r is the parameter defining
the difficulty of the task. That is, the problem domain to be learnt consists
of the following mappings for a difficulty r:

Input Output
[0.5+1,1.0] 1.0
[0.0,0.5 —] 0.0

Hard Learning the Easy Way 675

Thus the network can be trained to perform tasks which require differing
levels of discernment. The easiest task takes the form of a one-to-one mapping
of binary patterns input to output (r = 0.5), and the greater difficulties are
found when numbers either side of 0.5 are very similar and yet have to be
mapped to different extremes. So the closer r is to zero, the harder it should
be for the network to adjust its weights to achieve the required function.

Since the nature of this problem is such that each element forming an
input picture is totally independent of the other elements (i.e. this is an order
1 problem, in the terminology of Minsky and Papert [4]), the elements in the
output picture should correspondingly be independent. The only dependence
between input and output is between elements corresponding to the same
positions in input and output pictures. With this restriction it is clear that
the network should tend to alter its weights such that it forms large weights
for non-intersecting routes from the input elements through the hidden layer
to the corresponding output elements.

The experiment was performed on a three layer network: the input layer,
which contained up to seven units; the output layer, which had the same
number of units as the input layer and the hidden layer, which could contain
up to 25 units. It is of course essential that the hidden layer has at least
the same number of units as input/output in order for a solution to exist
at all. If there are more hidden units in the hidden layer than are required
to find a solution, then there are expected to be a larger number of possible
solutions, and one of these will have to be chosen by the system. The choice
can depend only on the initial random weights. Thus the system can descend
into different global minima of the error surface, by starting off at different
points on the surface. The spectrum of global minima includes solutions
where routes between input/output pair involve varying numbers of hidden
units, and also the cases where some hidden units are not used at all.

It is necessary to include all permutations of the elements of possible
input pictures in the training set. In training, the network should be taught
to round off all numbers (V) in the range

(0547r) <N <10 and 0.0 <N < (0.5—r). (3.1)

In order to ensure this, writing R, = (0.5 +7), and R_ = (0.5 —r), the’
pictures at the input units are taken to be all the permutations of 0, 1, /2y
and R_, with R’s only present at one of the inputs per picture, an example
is given in table 1.

It can be seen that for ¢ input units the number of pictures required will

be
N(c) = 2° (3.2)

thus the number of pictures required in the training set scales worse than ex-
ponentially with the number of input units. This is the main problem with
teaching an analogue neural network to perform a function which requires
it to examine each input element individually, rather than absorb an overall

676 Frank J. Smieja and Gareth D. Richards

unit 1 | unit 2 | unit 3
Ry 1.0 1.0
R_ 1.0 1.0
R, 0.0 1.0
B 0.0 1.0
Ry 1.0 0.0
R_ 1.0 0.0
Ry 0.0 0.0
F_ 0.0 0.0

Table 1: Part of the training set for a three input unit network. The
rest of the set is obtained by permutations of the columns.

‘taste’ of the input. The latter is clearly more in the spirit of Parallel Dis-
tributed Processing [9]. However, it is beneficial to use a task which can be
defined as easily as this one. A similar (in fact worse) scaling of the training
set with network size is encountered in the parity problem [8].

3.2 Performance of the basic algorithm

The success of the algorithm in finding a solution can be demonstrated by a
plot of the progress of the total error at the output units as a function of the
training cycle. This is shown for systems 2-2-2 (2 input, 2 hidden, 2 output
units), 3-3-3 and 4-4-4 in figure 2. On each graph is plotted the progress
of total error with training cycle for each system for a certain difficulty »
(0.5, 0.01, and 0.0001), with n = 0.1 and @ = 0.6. When the error remains
essentially steady it is assumed that the algorithm is unable to converge to a
global minimum, and has settled into a local minimum. It can be seen how,
for a difficulty of 0.5, all the systems manage to locate a global minimum
within a reasonable period. The descent is marked in all the systems by a
relatively steep descent for the first 10 to 100 epochs, followed by a region of
low gradient until the end. For the second difficulty, 0.01, only two systems
manage to locate a global minimum. The descent is marked again by a steep
fall in error during the first 10 to 100 epochs, but this time the almost level
descent which follows is terminated by another relatively steep drop at 100
to 1000 epochs. The 4-4-4 curve is characterized by a rapid drop at the
end, indicating the location of a sudden steeper descent, leading ultimately
to a solution. It can be seen that the 3-3-3 system, however, does not locate
a similar feature, and is destined to remain stuck on a plateau-like surface.
With the third difficulty (0.0001) none of the systems manages to find a
solution. The relatively steep initial descents are terminated at 10 to 100
epochs by a very flat portion, which shows no sign of ending.

Graphs were also plotted showing the terrain in the direction of motion
of the system through weight space. The direction of motion is defined by
the direction of the vector Aw(n). The terrain is mapped by calculating
the error at various points forward and back from the present position on

Hard Learning the Easy Way 677

total error
total error

o.00 T T T

= © @ o0 1 L 10000

4 & 810 " 1
Fraining cycles [leg) training cycles

(log)

r = 0.0001

total error

3-3-3
m
e —

o.00 T

- e o 10000
(leg) rtraining cycles

Figure 2: The progress of error with training cycle. Here we show
three sizes of system at three task difficulties (7).

678 Frank J. Smieja and Gareth D. Richards

the error surface, in the direction of the next step to be taken. On some of
these graphs an asterisk indicates the present position of the system, and a
vertical line indicates the actual step to be taken by the system. This way
of studying the error surface was suggested in [5], in which it was also shown
how an initially large value of the momentum parameter can be dangerous,
due to the large weight changes this causes at early stages of descent, when
the error surface is steep.

The top graph in figure 3 shows a 2-2-2 system learning a mapping
of difficulty 0.0001. The initial descent, shown in figure 2, is reasonably
quick, but before long the error becomes quite stationary. The graph maps
the terrain as the system clearly begins to iterate to the bottom of a local
minimum. It is possible to make the system climb out of this by giving
it a large step size. However there is no reason why the direction it takes
should be one which brings the system to the brow of a hill, indeed the
normal scenario is for the system to climb up to another local minimum, or
a plateau, and stay there (bottom graph in figure 3).

The descent for the simplest system (2-N-2 with r = 0.5) is shown for
the first six training cycles in figure 4. The terrain for the system with two
hidden units is compared with that for the system with 25 hidden units. It
can be seen how much steeper the descent is when there are a large number of
hidden units. A direct comparison of the terrain at the start of each training
session is shown in figure 5, for three difficulties. It can be seen that the line
is steeper for networks with more hidden units. The reason for this can be
understood by considering the first epoch of each system. If we assume that
the weights (numbering 12 and 127 respectively) are of equal importance in
the early stages of learning, and each weight is made to change in the learning
algorithm such as to reduce the error, and if this change is small for each
weight, then since

iy

3w,-j

o 6w,-j, (33)

we have

Z—E o[> (8wi;)? (3.4)
w {7}

and, if there are N weights in the system,

dE

—_— N. 3.5

. (3.5)
In figure 4 the gradient of the lines for the first epoch are 0.64 and 2.16
for the smaller and larger systems respectively. The ratio is 3.36, and, from

the simple derivation leading to equation (3.5), we expect the ratio to be

J127/12 = 3.25.

Figure 6 shows the same situation for a larger network. However, here
the surface is so much more mountainous anyway that the beneficial effect of

Hard Learning the Easy Way

o

error
n

total

o7
-20.00

T
-13.53

T
<.

T

T T T T T

T
0.00 [X - RES] 20.00

displacement (ldwl)

5.00

417 4

.59 4

total error
©
8

0.83

000

1500.00

Figure 3: A descent into a local minimum, and an unsuccessful at-
tempt to escape from one by momentarily increasing the step size. In
the top graph each curve represents the terrain about the system for
a new cycle, with the order of the curves indicated. The direction in
weight-space plotted is that of the next weight-change (i.e. steepest

gradient).

T
1800, 00

T

1700.00

T T

|“’-w 1500, 00 2000.00

training cycles

679

680 Frank J. S'mieja, and Gareth D. Richards

3.33 L

error

Fotal

0.00 T T T T T T
-0.40 -0.27 ~0.13 0.00

displacement [(ldwl)

T T
0.13 0.27 0,40

Figure 4: Comparison of the terrain for the first six epochs of descent
in a 2-2-2 and a 2-25-2 system. The lines for the 2-2-2 system are
dashed and those for the 2-25-2 system are solid.

the extra hidden units is best seen by considering the cliff-like terrain of the
7-25-T network, as opposed to the valley-like terrain of the 7-7-7 network.
The cliff-like descent is much quicker and more penetrating.

The addition of hidden units clearly has a consistently beneficial effect
on the speed, and stability, of the descent.

In figure 7 we observe the effect of extra hidden units on the learning,
at difficulty 0.5, for different network sizes. The graphs show the number
of epochs to solution for each system size, averaged over 50-100 runs with
different random starts. The error bars give some idea of the variation in
learning time depending on a particular starting point on the error surface. It
can be seen that for each of the networks shown, there is a definite trend for
a quicker descent as the number of extra hidden units increases. Also there
is possibly a trend for the addition of one or two hidden units producing a
more dramatic effect as the network size increases. In all cases the addition
of more hidden units has less effect as the total number of units in the hidden
layer increases.

The influence of the momentum parameter is sometimes very important
for finding a solution. For example, on a run with a 7-25-7 system with
zero momentum a solution was reached after only 6 training cycles (r = 0.5),
whereas when the system was trained with a momentum of 0.6 a solution
was not found until more than 50 epochs. The descent during the initial few

Hard Learning the Easy Way 681

4
]
I

rorai error
»
]

total error

=
:

L3 T T
243 -2

e "". iy “l 3 - ..I!l -2 -0.00 T ‘.‘l! ! !.'ﬂl
displacement (ldwl) displacement (ldwl)

»

total error

.0 ¥ -‘-“a ¥ -ﬂ..ll ’ l.'ﬂ ! o
displacement (ldwl)

Figure 5: Terrain at the start of a training session for the 2-N-2
systems at three task difficulties. The value of N (number of hidden
units) is indicated on the graphs, to the far right of each line.

682 Frank J. .S"mieja and Gareth D. Richards

error

Fotal

T T

-22.00 ’ -‘3'-20 ! -'.I‘e ' ‘.‘ﬂ |3:m 22.00
displacement (ldwl)

error

Fotal

- 5 » -

™) T T T T T Y St
~35.00 -21.00 ~7.00 7.00 21.00 5.0
displacement (ldwl)

Figure 6: The terrain during the first five epochs at r = 0.5. Shown
here are the 7-7-7 and 7-25-7 systems.

Hard Learning the Easy Way

3

2 INPUT NODES

i I“H{

1 ”iiiiuin
PR

M

{Iiffiiéiiii

"

H a
hidden nodes

loarning eycles lepachs)

learning cycles (epochs]

g

633

3 INPUT NODES

H

{§I§§§i§}§§!

. o
hidden nodes

S INPUT NODES

Pigure 7: The effect on learning time as hidden units are increased.
Error bars indicate the spread of learning times for different random

starts.

634 Frank J. Smieja and Gareth D. Richards

epochs was quite similar for the two cases, however, at an error of about 3.1
the second system landed on a plateau. The following 40 or so epochs were
taken up by slow progress along this plateau, until the cliff-like edge was
found. This descent was interesting, and so the surrounding terrain for the
relevant epochs was mapped out (figure 8). The graph shows how flat the
plateau is and how steep the plunge at the end is. Comparison of this graph
with the 7-25-7 descent in figure 6 shows how small a crack was actually
found by the system. It seems that the presence of the momentum caused
the system, by chance, to jump onto the plateau rather than continue with
a reasonably comfortable descent. It is this kind of unpredictable behaviour
in solving tasks such as this one which makes the gradient descent learning
algorithm unattractive. The ‘deformation’ suggested below is designed to
avoid this, and also to improve greatly on the level of difficulty which can be
solved by the system.

The learning algorithm failed to find a solution for the larger networks,
and smaller r, and just converged to local minima. Sometimes the system was
helped by interactively altering step size and momentum at various stages in
the learning. However, this was not considered to be a very satisfactory way
of pursuing a better learning procedure, since the error surface could not be
predicted for an arbitrary network at any particular point in the learning.
Below we introduce two ways of improving the performance of the algorithm.

3.3 The deformation technique

The idea of deformation is to start the system off by training it to learn a
relatively straightforward mapping task, and gradually to increase the diffi-
culty of the mapping, in such a way that the task is eventually deformed into
the task of the desired difficulty. This process can be viewed as a “topologi-
cal” deformation! of a problem which can he represented as a simple shape in
some space, into a more difficult problem whose extra difficulty is represented
by the same topological surface, forming a more complex shape in the same
space. Clearly, the class of problems which can be described in such a way
will have to be defined if this method is to have any use, but for easily-defined
tasks like the one studied in this paper, the deformation parameter is easy to
identify, and such a method would appear to be a reasonable one to adopt.
We give an example of another way of applying deformation in section 4.
The entire problem is completely defined by the error surface in multidi-
mensional weight-space. The harder the problem one requires the network
to solve, the more treacherous will be the terrain of the error surface, and
the harder it will be for the system successfully to descend into one of the
global minima of the surface. Thus one can picture the deformation proce-
dure as moulding the error surface about the point occupied by the system,
as the system descends towards the point of the final global minimum. In

lHere the use of the word topological is not meant to imply any rigid mathematical
basis for this technique. Its use is mainly as a guide to understanding how the error surface
is gradually altered.

685

Hard Learning the Easy Way

© JO 90RLINS JOLIS 9} JO Ju20sap juatpeid oy ut o8pe oYI-JIP ® jo

08 1=
00°0

- £8'2

-8y

- &7

"0197 0} 19§ seM
0 uaym parajunodud sem wapqolrd yons o) ‘neayerd mofs Suof e Jo pue oY) 0) sAWOD |1 s©

(09110 a1p3) r0Mg0u B Jo sseaford oy} moys soIndy oyJ, ‘90 = © Y}IM UIDISAS J-CF—)

uoryedo g oIndr

(P)

(®)

636 Frank J. Smieja and Gareth D. Richards

this way the system is able to avoid a lot of the treacherous terrain it would
have to descend were it started off at a random position on the final error
surface. This technique does not guarantee descent to a global minimum;
the difficulty used at the beginning, and the parameters used to vary the
deformation, need to be such that the surface can be gently deformed, with
the task required to be learnt to vary smoothly at each deformation. This
method can be compared with the simulated annealing technique [3] in which
the system is eased into a global minimum of the surface defined by the cost
function by reducing the noise of the system down to the value it has in
the actual problem. The idea here is that by starting the surface descent
at a high noise value (or high temperature), the system will tend to locate
the global minimum from the beginning, and as temperature is reduced will
remain within the basin of attraction of the global minimum. The difference
between the two is that the annealing prevents the system from becoming
trapped in local minima, while the deformation removes the need for the
system to descend a hazardous surface, by moulding the surface around the
system.

The problem at hand is clearly an ideal candidate for the deformation
method. The deformation parameter is 7, which is to be decreased in stages
from 0.5 to a final value ry.

3.3.1 Deforming the error surface for the rounding problem

The difficulty can be varied continuously in the rounding problem, so one
needs to determine the change in r required as a function of r. For a problem
with a discrete set of difficulty levels it may be a simpler matter to determine
such a schedule. Initially r was changed by a constant factor (0.99) each
time. It was found that the factor was required to be closer to unity as the
r decreased in order that the system remained near enough to the bottom of
a “ravine-like” structure in the error surface so that it did not break out of
it into some local minimum. Thus it is necessary to find some way of getting
the r-change to cause an alteration in the error surface which is sufficiently
small that the new error is not significantly different from that attained after
completion of learning for the old r. The expression derived below informs
us of the change in position of the system on the error surface (E) after it
has been deformed due to a change in r.

The error defined in equation (1.8) is rewritten as

E = ZZE@ (3.6)

1
where E,‘ = 5 (t"p — 0,',,)2 3 (3.7)
After a difficulty has been learnt the system is able to round numbers out-
side that r to zero or one respectively (within a tolerance tol). Thus for a
single output unit and a single picture the maximum error at the end of a
deformation cycle is given by

Hard Learning the Easy Way 687

Eoae = %(tol)"’. (3.8)

It is wished to control the change in r such that the error at this output unit
increases by the same (tolerable) amount each time. The assumption is that
the error at the other units, and for other pictures, will behave similarly, or
at least no worse than that at the output unit with the maximum error.

In deriving the expression for %ﬂ for a three-layer network we use the
following notation:

input units are labelled by the subscript n
hidden units are labelled by the subscript j
output units are labelled by the subscript 1.

Thus
E,‘p =, E,’(Og) (39)
dropping the subscript p, and so
sp = Big, (3.10)
do;
where
30‘
3.11
=29, iR
for fixed values of the weights. Similarly
Z ag, 59, (3.12)

Using equations (1.2) and (1.5), eqns. (3.11) and (3.12) become

So; = Y {wijoi(1—0;)ég;} (3.13)
7
bg; = Y {wjﬂ(-’i"'l).z(l—_gi),sgn}) (3.14)
From the definition of E; we have
5E,‘ o [t (t,' - 0,‘) 60,‘ (3.15)
= —\/2E; bo;. (3.16)

Due to the pictures that are presented to the system, ég, is only non-zero
for one of the input units per input picture, and always has the values:

§gn = +2r for ti,=1 (3.17)
6gn = —2r for tiy =0. (3.18)

688 Frank J. Smieja and Gareth D. Richards

picture | §°%¢ F i
Ry 0.00988 | 0.002445
R_ -0.00988 | -0.002446

Table 2: Values of § for r = 0.011 for the system in figure 1.
Now, substituting eqns. (13) and (14) in eqn. (16) we find

OF; —\/2E; 0;(1 — 0;) Z{wijm iju5gn} (3:19)

2

~28; (1 - 2E:) So{(L+ 95)(1 - g5)wiswsaboc} or, (3:20)

where §,,; is here the Kronecker delta. Hence the change in error with r is
given by:

% — 25, (1 —\RE;) zjj{(1 —) wijwinb} (3.21)

In other problems the variation might be more obvious. (For example, a
basic picture of an article of clothing might be shown, followed by a set of
progressively more unusual or highly decorated versions of such an article. In
learning to recognize a whole range of clothing, the basic object is understood
first, in its essence, rather than presenting the whole set all at once and
expecting the net to organize sensibly from the start.) In the simulations
below, equation (3.21) was used in determining the amount by which r should
be changed after each stage in the deformation had been successfully learnt.
The maximum tolerable error change (§E) was taken to be 0.0005 for all
simulations (with tol = 0.1), however this value is not critical.?

3.4 Speeding up the descent (using momentum safely)

The deformation process was very successful in allowing networks to solve
tasks of much greater difficulty (ro = 0.0001), however it became clear that
the updating procedure for the weights became more inefficient as r was
decreased. This can be demonstrated with a simple example where the net-
work has one unit in each of its three layers (see figure 9). The system has
just learned at the deformation stage of 0.005, and is about to start error
propagation at the next r of 0.004881. The numbers which are presented
are: 0.504881 (R,) and 0.495119 (R_), with the state of the threshold unit
always at 1.0. The total error at the output unit at the end of the last r is
0.01. Tables 2 and 3 show the &’s and gradients at this point in the training
of the system.

21t is important for §E not to exceed an upper limit (so that the system stays in the
ravine), while an optimum value is determined by the minimum number of cycles required
to learn at the new r.

Hard Learning the Easy Way 689

0.00021 120.8

-0.0022 G)

Figure 9: Example of the weight situation in a 1-1-1 system at a
particular point in the learning. The numbers on the lines indicate
weight values and those in the circles label units.

690 Frank J. Smieja and Gareth D. Richards

weight | gradient
wae | -0.000001
Wa1 0.0000477
wsp | +1.0E-08
Wag 0.00200

Table 3: Gradients for the weights in the system in figure 1 (r =
0.011).

Tt can be seen how inefliciently the large weights are updated. The reason
for this small update, despite the comparatively large §’s, is contained in the
expression for the gradients

dE
S @)
p

Bw,-_,-

The values of the §’s remain similar as r is decreased, since the deformation
ensures the system remains close to the tolerance error, while the values
gip decrease with decrease in r. Thus the time (in learning cycles) taken to
learn each new r unavoidably increases as the system learns to round numbers
closer to 0.5. This is a feature of the kind of task studied, and shows the
inefficiency of this method of back propagation for such a task, as the input
pictures (which are to be distinguished by different mappings) become more
alike. Steps were taken to try to speed up the learning, and it was found that
the acceleration provided by the momentum parameter was very effective —
provided the acceleration was suitably controlled. The method of controlling
the speed of descent will be described below, after an example of a hazard
which exists during gradient descent in a valley.

Figure 10 shows how the system climbs up a valley using gradient descent
by bouncing from one wall to the other. The explanation for this effect, which
ultimately leads to the system hanging on a flat region outside the valley, is
that the step size at the first (lowest) point is just too big at that point on
the valley wall to produce a weight change which will send the system down
the valley. Thus the system finishes at a point higher up on the opposite
valley wall. It might be expected that with its next step the system would
have rectified this, there being less chance of the weight change being so large
that the same occurrence is repeated. However, this is hardly ever the case,
due to the effect of deformation on the shape of the valley. This will be
illustrated below.

The above “valley ascent” was found to be most undesirable (the outcome
is that the system arrives at the top of the valley and gets stuck on a level
plane) and decided the fate of all system sizes below a certain value of 7.
To combat this it was decided to reduce n at the point this behaviour was
detected. Thus now becomes dependent on the direction in weight space.
The onset of the valley ascent is marked by two weight changes in opposite
directions, the second of which has a greater magnitude than the first. When
this is detected 7 for that weight is reduced.

Hard Learning the Easy Way 691

0.013

0.0t1

0.010

error

0.008 4

Fotal

- —

0.005

0.003 T T T T T T T T T T 1
-0.0100 ~0.0067 -0.0033 0.0000 0.0033 0.0087 0.0100

a threshold weight

Figure 10: Ascent from an error minimum using the gradient descent
algorithm. The scenario begins at the lowest point shown, with each
following calculation causing an increase in the total error.

692 Frank J. Smieja and Gareth D. Richards

Momentum was found to be indispensable as a way of speeding up descent
of slightly sloping regions (which characterize error surface in the directions
of the heavy weights), and also for descent down valley walls when step size
is small. However, it is important to ensure that momentum is ‘switched off’
whenever the descent reaches a stage at which it crosses the valley bottom
(adding the previous weight change after this would result in ascent of the
opposite wall). This is recognized by the gradient having the opposite sign
on opposite valley walls.

By carefully controlling the speed of descent in this way, it was possible
to solve tasks down to very small values of r (10~7-10%), for all the systems
studied.

3.5 The shape of the error surface at various stages of deformation

In order to investigate the shape of the error surface as the system made
its way down to a global minimum, for a particular stage in the deforma-
tion, maps were plotted in different weight directions (i.e. the learning was
halted and a particular weight was varied to observe the variation in error
produced). The various cross-sections (figures 11, 12, and 13) reveal three
different landscapes, characterizing three different types of weight. These
are the threshold weights, the heavy weights (forming the non-intersecting
paths), and the remaining weights. Also shown is the changing shape of the
error surface as deformation proceeds. It can be seen that at very low values
of r the environment in the direction of a threshold weight becomes more
and more crevasse-like. Herein lies the reason for the valley ascent described
in the previous section; as r is decreased the valley into which the system
descended at the beginning of the deformation (the initial problem) is trans-
formed into one with progressively steeper walls. If at any point the system
should now climb up a little bit, future gradient calculations would produce
enormous weight changes, thus sending the system bouncing from wall to
wall up the valley, eventually to leave it stranded on a level plane.

The form of the error surface in the other directions in weight space, as
the deformation proceeds, is also interesting. The heavy weight directions
reveal a gently sloping error surface, which becomes flatter as the deformation
continues, as would be expected. The error surface in the directions of the
remaining weights is somewhat surprising. It hardly changes from its original
shape of a gentle flat-bottomed valley, even when r gets as low as 1075,
Evidently the learning procedure is not as sensitive to the value of these
weights as it is to the threshold weights.

It becomes apparent from the maps how effective, and desirable, the
deformation technique is. A system starting off at » = 1073, for example,
never finds the crevasse-like structure into which it has to descend, and even
if it did would have extreme difficulty in remaining in it. The deformation
process makes things easier for the algorithm at the start, and then ‘eases’
the system into the difficult terrain characterizing the original problem.

The maps also show that it is the threshold weights which are the ones

Hard Learning the Easy Way 693

1.20 9 ~=0.4

1.00 r=t-02 => E-07

0.80

error

0.60

Fotal

0.40

0.20 1

0.00 T T T T T T
=10.00 -6.67 -3.33 0.00 3.3 6.67

small (non threshold) weight

1
10.00

Figure 11: Error surface in a small (non threshold) weight direction,
at different stages of deformation (). The learning is halted at a
particular 7, the value of the weight is varied and the new error at
each value calculated.

694 Frank J. Smfeja. and Gareth D. Richards

1.10
r=1.0E-06
o r=1.0E-04
0.92 r=2.0E-04
r=1.0E-05
0.73
C
D -1
[&%
C
]
0.55
©
5 =
'_
0.37
1 r=0.001
0.18
] - =R
0.00 T T T T T T T T = T r=0.1
-0.10 -0.07 -0.03 0.00 0.03 0.07 0.10

Threshold Weight

Figure 12: Error surface in a threshold weight direction, at different
stages of deformation.

Hard Learning the Easy Way 695

Error

Total

0.00 T

T T 1
weS wel0

wHeovy Wéighr[w]

Figure 13: Error surface in a heavy weight direction, at different stages
of deformation.

696 Frank J. Smieja and Gareth D. Richards

most crucial for the stability of the system, and that even a very small devi-
ation from zero causes several outputs to be totally wrong — that is, close to
1 when the target is 0 (each of these ‘flippings’ is characterized by an extra
error of 0.5). It is the form of the response function which produces the level
planes after these flippings.

3.6 Hidden unit redundancy

With the addition of more hidden units, it becomes difficult to analyse the
patterns of heavily weighted routes from input to output, since this fypically
includes more than one path for each input/output pair. Thus it is useful
to represent the system graphically, to provide an indication of the routes
taken. After each learning cycle, when the weights were updated, the in-
tensities of lines on the graphics screen, representing weights, were updated.
The intensities were normalized to the weight with the greatest (absolute)
value. On the screen negative weights were blue, and positive weights green.
This provided us with 125 different intensities in each colour, a reasonable
indication as to the relative strengths of the weights. Weights of negligible
size compared with the larger weights have negligible intensities. Analyses
of various sizes of system showed that one frequently obtained hidden units
with negligible weights to and from all output and input units. An example
is shown in figure 14, a screen dump of a 5-15-5 network which has learned
down to a range of 10~*. Similar patterns are observed in other networks
with large numbers of hidden units. It appeared that such occurrences were
the results of competition between two or more input/output routes of sim-
ilar strength resulting in a draw, with the weights concerned subsequently
becoming negligible compared with weights in other routes, and the routes
themselves thenceforth abandoned.

4. Using deformation to learn noisy patterns

We applied the deformation technique introduced in the last section to an-
other problem domain. The purpose is to demonstrate another type of de-
formation parameter — degree of noise in binary images — and to illustrate
how the technique produces much faster and more controlled learning.

The network used has a 45-10-45 architecture. The input and output
layers are to be viewed as 5 by 9 arrays of pixels. The input units themselves
take on only the binary values 1 or 0. The training set consists of a set of
noisy images of digits which are to be mapped to their corresponding clean
images at the output. The difficulty of the problem is a function of the
amount of noise present in the inputs, since the greater the noise the less the
basic structure of the digit is seen. Thus one can imagine the error surface
becoming very hazardous at various points, especially when the training set
contains digits already very highly correlated without noise.

The training schedule is clear: teach the network first of all the clean im-
ages (i.e. N-H-N encoding), and then introduce noise at the input patterns,

Hard Learning the Easy Way 697

Pounding Networlk

8.84% ©.488 ©.8801 8.47F B8.501

1.8 8.a8 2.999 .88 @.8998

Figure 14: Screen dump from a graphics display, during the training
of a 5-15-5 system. The numbers at the top and bottom of the net-
work indicate the progress of the rounding. The presence of dominant
weights and redundant units can clearly be seen.

698 Frank J. Smieja and Gareth D. Richards

% noise | final % patterns
error correct

5 20.018 | 80
10 20.021 | 80
15 20.027 | 80
20 20.032 | 80

Table 4: Performance of the basic algorithm.

until the desired noise value is obtained. That is, the final operation of the
net is to be one in which for any digit corrupted by noise of value less than
or equal to n%, a clean image of a digit will be produced at the output. For
relatively large noise values it may be the case that the noisy image of a
particular digit is “closer” (in terms of a distance measure the net is using)
to another digit. In this case the net should produce as output the second
digit. The network can be viewed as a device (characterized by a particular
noise tolerance n) which cleans up noisy images by producing at output the
digit which is closest, in terms of general structure, to the input image.

It is clear that the error surface for such a functionality is necessarily very
highly structured and will contain many crevices and steep descents.

First we observe the performance of the basic algorithm on the 5%, 10%,
15%, and 20% noise domains. Each training set consists of ten examples of
each digit, that is 100 patterns in all. The learning parameters used here and
in all subsequent runs are o = 0.9, 5 = 0.1, tol = 0.15.

The network was not able to achieve 100% success in any of the noise
categories. (a run was terminated after 10,000 epochs, when the rate of
change of error was slower than one part in a thousand per epoch). Table
4 shows the performance of the network in terms of the percentage patterns
correct, We show in figure 15 typical ways in which the network got stuck.
The figures show the input, hidden and output unit states for a particular
pattern in the training set. In one case all the mappings were correct apart
from all the 1’s with one pixel wrong, and all the 2’s with the same three pixels
wrong. This type of error is similar to the “flipping” in the last section, and
is due to the large gradients in the error surface. Clearly, certain patterns are
very similar to each other, and the net is most likely to descend into a local
minimum giving rise to mixture states. The minimum the net is required to
reach probably becomes either narrower or further away (or both), the more
noise that is present.

Next three deformation procedures were tried. The first involves the
sequence clean — 10% — 20%, and the second used the sequence clean
— 5% — 10% — 15% — 20%, and the third clean — 20%. It was not
attempted to find an optimal deformation schedule for learning up to the
20% noise training set. These experiments were done to demonstrate the
suitability of the deformation procedure for this type of problem. It is not
even necessary to use such a hard problem; as was suggested above the idea

Hard Learning the Easy Way 699

=
5

Figure 15: Examples of where the basic algorithm got stuck in the
learning of noisy digits. The input units are at the top and the outputs
should show the letters “2” and “1” respectively. Such errors were
made even at the 5% noise level shown here.

700 Frank J. Smieja and Gareth D. Richards
% noise | final | accumulated | % patterns
error | epochs correct
0 0.467 | 1051 100
10 1.021 | 1430 100
20 0.608 | 2351 100

Table 5: Deformation schedule 1.

% noise | final | accumulated | % patterns
error | epochs correct

0 0.467 | 1051 100

5 1.122 | 1300 100

10 1.021 | 1562 100

15 0.302 | 3361 100

20 1.505 | 15,000 99

Table 6: Deformation schedule 2.

is more to build on current more general knowledge in a sensible way. We
show below that deformation enables the network to find very good minima
in a hazardous error surface. Deformation may help even when a global
minimum may not exist (i.e. in the cases when there are conficting members
present in the training set), by keeping track of the optimal minimum using
previous knowledge. Tables 5, 6, and 7 show the performance of the net for
each deformation schedule. Using the first schedule the network was able to
learn successfully all the training sets. Typical mappings for the 20% noise
network are shown in figure 16. Using the second or third schedules the net
was not able to complete the learning, but the local minima in which it got
stuck are much lower than for the basic net. Actually nearly all the patterns
were correct. We show an example of an incorrect mapping in figure 17. The
optimum deformation schedule lies somewhere between the second and third
schedules tried above.

Looking at figure 16 again, it can be seen how the net performs the
mapping of apparently quite different noisy images of the same digit, by
responding to the features in the image which are most typical of the digit.
This can be seen in the activations in the hidden layer for patterns in the
same digit class. This representation in the hidden layer is then used to
reproduce the digit at the output layer. Without this two-level processing
capability networks would not be able to perform most interesting tasks
involving extraction of the relevant information from the activations at the
input.

5. Summary

We have used the rounding problem to investigate various aspects of the
learning procedure of a feed-forward net. This problem domain was useful
in that its difficulty could be continuously varied. The basic algorithm was

Hard Learning the Easy Way 701

HEEon BR L iy
B RR R RRE
ks Lk ik b
MEE R N

Figure 16: Examples of the successful hard mappings learnt by the
network using the deformation technique. Shown here are four exam-
ples of mappings of noisy versions of the digits “2”, “3”, and “6”. The
noise here is 20%.

Frank J. Smieja and Gareth D. Richards

MRS MR N

Figure 17: The incorrect mapping at which the net using the defor-
mation technique got stuck. In one instance of mapping of noisy 6s
the net maps to a “5”. Note how this error shows up in the hidden
layer. All other patterns were successfully mapped at this noise value
of 20%.

Hard Learning the Easy Way 703

% noise | final | accumulated | % patterns
error | epochs correct

0 0.344 | 1160 100

20 1.563 | 5000 99

Table 7: Deformation schedule 3.

found to experience much difficulty as the problem difficulty was increased.
Observation of the characteristics of the error surface led to the development
of the deformation procedure and a reliable way of varying the step-size dur-
ing learning so that momentum could be used more effectively in accelerating
the gradient descent. With these modifications to the training procedure the
net was seen to complete learning to a satisfactory level for all the systems
considered. The scaling of the learning procedure to larger networks was
favourable (in terms of epochs taken, not training set size and actual com-
pute time), and it was found that extra hidden units speeded up the learning.
It was also noticed that sometimes hidden units were not used very much,
pointing to a redundancy among units.

An example of another application of the deformation technique was given
in the association of sets of noisy images of digits with their clean images.
Use of the deformation technique was shown to improve vastly on the basic
learning algorithm. This example also demonstrated the way in which the
network uses the hidden units to represent the salient features of an image,
so that it can produce the required mappings.

The lesson to be learned from the success of techniques like deformation,
is that however attractive pure self-organization may sound, it is emminently
more sensible and worthwhile to place at least a few basic constraints on a
network during the learning, to retain a little control in the outcome of net
learning.

Acknowledgements

The authors would like to thank David Wallace for suggesting the rounding
experiment, and Elizabeth Gardner for many useful discussions.

References

[1] B.M. Forrest, D. Roweth, N. Stroud, D.J. Wallace, and G.V. Wilson, “Imple-
menting Neural Network Models on Parallel Computers”, Computer Journal,
30 (1987) 413-419.

[2] B.M. Forrest, D. Roweth, N. Stroud, D.J. Wallace, and G.V. Wilson, “Neural
Network Models”, Proceedings of Vector and Parallel Processors in Compu-
tational Science III, Liverpool (August 1987)

[3] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by Simulated
Annealing”, Science, 220 (1983) 671-680.

704 Frank J. Smieja and Gareth D. Richards

[4] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry (MIT Press, 1969).

[5] D.C. Plaut, S.J. Nowlan, and G.E. Hinton, Experiments on Learning by
Back Propagation, Carnegie Science Department, Carnegie-Mellon Univer-
sity, preprint no. CMU-CS-86-126 (June 1986).

[6] G.D. Richards and F. J. Smieja, ECS Newsletter (March 1988).
[7] G.D. Richards, ECS Note ECSP-UG-T7.

[8] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning Internal Rep-
resentations by Error Propagation”, Nature, 323 (1986) 533.

[9] D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, Parallel
Distributed Processing, vols. 1 and 2 (MIT press, 1986).

[10] A. Wieland and R. Leighton, “Shaping Schedules as a Method fo Acceler-
ated Learning”, presented in the First Annual Meeting of the INNS, Boston
(September 1988).

