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Bid Competition and Specificity Reconsidered
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Abstract. Experiments were conducted with respect to two classi-
fier system mechanisms: the bid competition and the use of classifier
specificity in bidding and payments. The experiments employed a sim-
plified classifier system and so may not accurately reflect the behavior
of the standard system. Nevertheless, the results indicated that, in
general, (1) specificity should not be factored into amounts deducted
from a classifier’s strength, (2) the bid competition does not improve
performance and does not encourage default hierarchies, and (3) de-
fault hierarchies will form under a somewhat different algorithm than
the standard one.

1. Introduction

Classifier systems (Holland [1,2]) are inductive systems in which a population
of condition-action rules encoded as bit-strings evolves through time so as to
maximize reinforcement, or payoff, when the system responds to stimuli from
the environment. The rules, called classifiers, have a condition part consisting
of one or more taxa from {1,0, #}L, where # is a “don’t-care” symbol;
an action part consisting of a message from {1,0}"; and finally a strength
parameter that is adjusted to reflect the classifier’s usefulness in obtaining
payoff. Improved rules are discovered and multiplied, and unpromising rules
discarded, under a genetic algorithm that treats strengths as fitnesses and
applies operators patterned after those of natural genetics. Classifier systems
have relatively simple components — the classifiers — but because these pass
messages and are in a quasi-Darwinian competition, the overall behavior can
be complex.

The classifier system idea has stimulated a number of investigations of its
merit for inductive machine learning (e.g., [3-11]). Although each investiga-
tion retained most of the elements of Holland’s model, a number of modifica-
tions were explored. In particular, Wilson [6,7] exhibited successful systems
that omitted two basic elements from the reinforcement algorithm: (1) The
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restriction of the system’s controlling classifiers to a subset — selected by
a bidding competition — of all matching classifiers; (2) The factoring of a
classifier’s specificity into its bid and its payments to other classifiers. In-
stead, in Wilson’s programs, the step of computing the subset — sometimes
called the “active” set — is simply left out; and all bid-like quantities and
payments are based solely on classifier strength.

The modifications were made primarily for reasons of simplification. How-
ever, it was also felt that the narrowing of control implied by the active set
competition might serve no essential purpose. The use of specificity — a
formal quantity — in bidding and payments was thought to be at odds with
the notion that a classifier’s fitness should depend only on its ability to ob-
tain payoff. At the time, no comparisons with and without the modifications
were made: the programs worked quite well as modified. In this article, we
present research in which, using Wilson’s Boole program [7], effects of active
set competition and of specificity were investigated. Because the results ap-
pear to raise significant questions for classifier systems in general, we begin
by reviewing the reinforcement algorithm of the standard system.

2. The standard approach

For convenience, we shall refer to Holland’s [2] classifier system as the “stan-
dard” system. Holland, Holyoak, Nisbett, and Thagard [12] adds to the
standard — notably the concept of “support” — but that system will not
be discussed since there are no published reports of experimental tests. Hol-
land [13] and Riolo [10] suggest certain changes in the standard that will be
discussed later.

In each cycle of the standard’s reinforcement, or bucket-brigade, algo-
rithm:

1. Messages from the input interface are added to the current message
list, and a match set [M] is computed consisting of all classifiers whose
conditions are satisfied by messages on the list.

b

Each classifier in [M] makes a bid B equal to the product of its strength
S, its specificity o (the number of non-#’s in its condition part divided
by the condition’s length), and a small constant ¢ like 0.1.

3. A subset of [M] is chosen consisting of the high bidders. We shall
refer to this subset as [MM] or the “active” set. The competition for
inclusion in [MM] is usually made stochastic such that classifiers having
high bids are more likely to win than lower bidders. Usually, [MM] has
a fixed maximum size; if [M] is smaller than this, all members of [M]

go into [MM].

4. Each classifier in [MM] has its strength reduced by the amount of its
bid. The classifiers that sent the messages matched by a member of
[MM] have their strengths increased by the amount of the member’s
bid (it is usually divided among them).
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5. [MM]’s classifiers place their messages on the message list (the old
messages are erased).

6. Any posted messages that would trigger the output interface do so, but
with resolution of effector conflicts if necessary.

(a) If external payoff enters the system, it is shared by all members
of [MM].
There is some uncertainty about step Ta. A number of workers
(e.g., Goldberg [5]) have felt that step 7a is insufficiently discrim-
inating and instead have implemented the following step, which
we shall consider as replacing Ta:

(b) If, following an effector action, external payoff enters the system,
it is shared by the members of [MM] that advocated that action.
In addition, Holland [2] suggests that the whole payoff amount be
paid to each of [MM]’s classifiers, but Holland [14] advises sharing
the payoff among them. To test whether sharing or non-sharing is
better, we performed an auxiliary experiment. Because the results
were clearly in favor of sharing, sharing is used in step Tb.

The experiments in this article were done not with the standard, but with
variants of Boole, a program that generates an external action (a decision)
in one time-step and has no message list; it thus differs importantly from the
standard. However, Boole is the same as the standard in many ways, and
its behavior has the experimental advantage of being simpler to understand.
Qur results provide information about the standard, though indirectly. The
next section introduces Boole and describes Boole-1, the first variant used
in the experiments and the one most closely related to the standard system.

3. Boole

In general, Boole sees a binary input string and in one time-step produces
an action, 1 or 0, indicating whether or not it thinks the string belongs to
the concept (usually a Boolean function) that it is being given feedback to
learn. Boole’s classifiers are simple: the condition is a single taxon of the
same length as the input string; the action is either 1 or 0. The particular
reinforcement algorithm used initially in the experiments was as follows:

Algorithm Boole-1

1. A match set [M] is computed consisting of all classifiers whose condition
is satisfied by the input string. [Analogous to step (1) of the standard.]

2. Each classifier in [M] makes a bid B equal to the product of its strength
S, its specificity o, and a small constant ¢ like 0.1. [Same as the stan-
dard; our original work with Boole, as noted, did not factor specificity
into the bid].
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3. A subset of [M], termed [MM] or the “active set”, is chosen stochas-
tically such that inclusion in [MM] is more likely for higher bidders.
[Same as the standard; the original Boole did not form [MM]].

4. BFach classifier in [MM] has its strength reduced by the amount of its
bid—termed the classifier’s payout. [Since there is no message list
here, the payouts have no recipients and so vanish from the system.
This difference does not significantly affect our comparison, since the
paying classifiers pay out identically under both systems.]

5. [No messages are posted, since there is no message list.]

6. The system makes its decision (1 or 0) by selecting a classifier from
[MM] with probability proportional to classifier bids, and outputting
the selected classifier’s action as the decision. [This step is analogous
to conflict resolution in the standard.]

7. If, following the decision, external payoff enters the system, it is shared
by the members of [MM] that advocated that action. [Same as step 7b
above.]

In the standard algorithm, an indefinite number of system cycles may
oceur before an external action is generated. In all such cycles but the final
one, messages are posted to the message list and matched, but the messages
are “internal” in the sense of not triggering any external effector. Such
cycles — call them internal cycles — are absent from Boole, which chooses
an external action on every cycle and does not post internal messages.

Despite this difference, many results with Boole should carry over to
the standard. The reason is that an internal cycle of the standard closely
resembles Boole’s single cycle with respect to: (1) matching, (2) formation
of bids, (3) competition for activation, and (4) payout from a classifier’s
strength. There is a difference in that, on an internal cycle, a classifier of the
standard system shares payoff that comes from another classifier, whereas
in Boole, the shared payofl always comes from outside. The exact source
of payoft, however, does not seem critical to questions about specificity and
active set size.

4. Experiments with Boole

For all experiments, the initial population [P] contained 400 classifiers with
alleles generated from a uniform random distribution; initial strengths were
set to 100. In Step 7 of the reinforcement algorithm, the payoff for a correct
answer was 1000; for a wrong answer it was 0. The constant factor ¢ (step 2)
was set at 0.1. Specificity was calculated as described, except that, to permit
them to bid, the specificity of classifiers whose taxa consisted entirely of #’s
was defined to be 0.1 instead of 0. The discovery component, employing the
genetic algorithm, was operated essentially as described in [7], and without
significant difference from the discovery component of the standard system.
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It produced offspring at the rate of one per performance cycle, i.e., per in-
put string presentation and decision. Crossover was performed between two
offspring with probability 0.12. An offspring allele was mutated with prob-
ability 0.001. These rates had been found to produce good learning in the
previous work.

The learning task in all experiments was the 6-bit Boolean multiplexer
[15], a rather intricate function whose disjunctive normal form is as follows:

’ ! r 7
F = z'oz' 125 + 20123 + 202724 + 202175,

where zp...z5 are the left-to-right bits of the input string. In each experi-
ment, input strings were generated randomly and presented to the system.
The system’s decision was correct if it equaled the value of F' for that input
string, otherwise not.

One measure of system performance that was used was the percentage
of correct decisions over the preceding 50 trials—termed average score. The
other measure used had more to do with the content of what was being
learned. It was called the solution count, and measured the percentage of
the population that consisted of instances of the following set of classifiers
(the “/” separates taxon from action):
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Examination will show that each matches exactly eight of the 64 possible
input strings and recommends the right answer each time. Furthermore, the
eight matched sets are disjoint—they partition the input space. There does
not seem to exist a more efficient, complete set of “solution” classifiers. We
named the set [S6] and used the percentage of its instances in [P] as a measure
of the system’s progress in evolving correct, maximal generalizations.

4.1 Experiment 1
4.1.1 Procedure and results

The first experiment used the above Boole-1 algorithm, that is, the algo-
rithm deemed closest to the standard. The idea was to perform such an
experiment as a baseline, then, with modifications, to proceed to further
experiments that the results would indicate. Experiment 1’s further pur-
pose was to investigate the effect of active set size by varying the maximum
number of classifiers allowed (in step 3 of Boole -1) to become members
of [MM]. Starting with the same random population, separate experiments



710 Stewart W. Wilson

Exp. 1 -- 'Standard’ Classifier System
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Figure 1: Results of experiments under algorithm Boole-1, the “stan-
dard”, for different active set ([MM]) sizes. Upper four curves rep-
resent moving averages of percentage correct decisions over past 50
trials for [MM)] sizes as shown. The curve at bottom is the solution
count, or percentage of the population consisting of instances of the
“solution set” [S6], for [MM] equal to 5. For other [MM] sizes, solution
counts were negligible or zero.

were carried out in which [MM]’s maximum size was, respectively, 5, 10, 20,
and unlimited. Then the series was performed again using a different initial
population. Each experiment ran to 20,000 problems (trials). For each set-
ting of [MM]’s size, the average of the results of the two runs was plotted in
Figure 1.

Learning under the Boole-1 algorithm was decidedly poor. The average
score did not get above 80% for any setting of [MM]’s size and in fact stayed
essentially flat in each plot after 1000 problems. There was a trend toward
higher average scores with smaller [MM] size. In addition, a few solution
classifiers were evolved at the smallest [MM] size. Examination of the fi-
nal populations revealed heavy overgeneralization. Under small [MM] size,
among the strongest classifiers were some that were correct three-fourths or
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five-eighths of the times they matched: classifiers like 0 #£ # 0 # # / 0 and
# # H# # #0 /0, respectively. Other classifiers were either correct half
the time, such as 1 # # # # # / 0, or wrong more than half the time,
such as # # 1 # # # / 0. In general, the populations contained almost
no perfectly correct classifiers, either members of the solution set, or more
specific than those. The two runs with unlimited active set size produced
almost totally degenerate populations: one ended up with 398 instances of

# #  # # # /1 and two instances of # # # # 0 # / 1.

4.1.2 Discussion

Under our assumption that Boole-1 can tell us about the standard algo-
rithm, the results of this experiment suggest that rampant overgeneralization
and consequent mediocre performance may occur under the standard algo-
rithm. There has been some informal indication (e.g., [13]), that this can be
the case. Here, we should like to pin down just what factor is causing the
overgeneralization and find the simplest way to correct it.

Goldberg [5] pointed out that under steady-state payoff conditions, the
strength of a classifier would approach (in the present notation) S = R/co,
where R is the mean payoff to the classifier. This suggests that if two classi-
fiers C1 and C2 receive equal mean payoffs, their steady-state strengths will
nevertheless be unequal if their specificities differ. In particular, the more
general classifier will be stronger by the ratio of the two specificities. While
that implies a bias in favor of generalists, it is still not clear why the bias
should tend to produce a rout.

The explanation may be as follows. Suppose that C2 is a more specific
version of C1 (that is, C1 with some #’s switched to 1 or 0). There will
then be situations in which C1 and C2 share payofl. Suppose, for simplicity,
that no other classifiers participate in these situations. Then CI and C2 will
each get half of the payoff, i.e., R is the same for both of them. From the
last paragraph, however, Cl will tend toward a higher steady-state strength,
which must result in C1’s having more offspring than C2. Consequently, on
the next occasion that Cl and C2 share payoff, it is more likely they will
be joined by a second copy of Cl than by a second copy of C2. But this
means that C2 will get only one-third of the available payoff, instead of half
of it, while the two copies of Cl together get two-thirds. The change in the
payofls further alters the strengths in favor of the more general concept, and
the cycle repeats. Eventually Cl and its offspring drive out C2 and its. C1
can even afford to be overgeneral — that is, wrong in some (other) situations
— if the additional #’s increase its margin over C2 by more than the cost of
the errors.

We hypothesize that a competitive mechanism of this sort is responsible
for the overgeneralization in Experiment 1. The basic cause is that specificity,
a formal factor, intervenes between a classifier’s mean payoff and its steady-
state strength — so that, as a result of reproduction, payoff and strength
cannot form a stable relationship. The extent of the overgeneralization will
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depend on the degree to which a gain in numbers for the C1 concept can
take payoff away from the C2 concept. Note, however, that if the size of the
active set [MM] is N, the payoff ratio in favor of C1 cannot exceed N to one.
Consequently, less overgeneralization should occur when [MM]’s size is small
— as indeed the experiment indicates.

What is the remedy for the overgeneralization? Certainly it is not to
restrict [MM]’s size, for learning is still poor when the size is 5 (further ex-
periments showed no improvement for smaller values). In addition, classifier
systems’ emphasis on concurrent processing would not be served by reducing
the size. The right solution would seem to be to change the way specificity
is handled. In particular, we shall retain specificity in the bid calculation
(step 2), but eliminate it from the calculation of a classifier’s payout (step
4). The bid per se affects the probability of entry into the active set and has
no direct effect on strength. In contrast, if specificity is eliminated from a
classifier’s payout, then Goldberg’s equation becomes S = R/c and strengths
will be stably related to payoffs. The changed algorithm is as follows:

Algorithm Boole-2

Same as Boole-1, except step 4 now reads:

4.  Each classifier in [MM] has its strength reduced by a payout equal to
c times the strength (where ¢, as before, is a small constant like 0.1).

4.2 Experiment 2
4.2.1 Procedure and results

This experiment used Boole-2. All parameter values were the same as in
Experiment 1. Five runs for each setting of [MM]’s size were performed (each
run used a different random initial population); the results were averaged and
are plotted in Figure 2. There is a striking difference from Figure 1. The
upper set of curves plots average score, which, except when [MM] size is
5, rises within 10,000 problems above 90%. The lower set of curves shows
strong rises in the solution count, in contrast to no such rise in Experiment 1.
Clearly, leaving specificity out of the payout calculation — the sole difference
between the two experiments — has had a major effect.

Figure 2 also exhibits a reversal in the trend with [MM] size: the worst
curves occur for size 5, the best for the case when the active set size is not
limited. The implication, at least from this experiment, is that in terms of
performance and discovery of solution classifiers, step 3 of the reinforcement
algorithm does not buy anything. That is, no purpose seems to be served by
restricting the system’s controlling classifiers to a high-bidding subset of the
match set; instead, it appears better to eliminate the bid competition and
let all members of the match set participate in the decision. Extended to the
standard classifier system, this result suggests that all matching classifiers
should get to post their messages.
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Exp. 2 -- No specificity in payout
100

80

60

40

20

Solution Count, Average Score (%)

0 10 20 30 40
Number of Trials (10°)

Figure 2: Results of experiments under algorithm Boole-2, which
omitted specificity from payout, for different active set sizes. As in
Figure 1, upper four curves represent average score; lower curves are
solution count.
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4.2.2 Discussion

Why does small [MM] size slow down learning? Note that only classifiers that
get into [MM)] pay out from their strengths and receive payoff. That is, they
are evaluated, whereas the remaining members of [M] are not. Consequently,
if the size of [MM] is small, the overall rate of evaluation of the classifier
population is reduced. Each time a classifier is evaluated, its strength tends
toward a more accurate estimate of the classifier’s typical payoff (divided by
¢). High evaluation rates thus mean that the genetic algorithm has more
accurate fitness information to work with. Conversely, low rates can mean
inaccurate information, so that, for example, poor classifiers over-reproduce
and good ones don’t reproduce enough, slowing down the discovery process.

Of course, there may be good reasons for conducting the bid competition
and forming a restricted message list that outweigh any attendant slowing of
learning. For example, a bid competition would allow the system to focus on
the most significant aspects of a situation, as indicated by the high-bidding
clagsifiers [13]. However, the most important suggested benefit of the bid
competition is the formation of default hierarchies of classifiers [14]. In the
simplest default hierarchy, there is a general, default rule that is correct in
most situations that satisfy its condition, but in a few situations it is not cor-
rect. To cover these situations, the system has one or more exception rules
and some automatic mechanism to make sure that the exception rules then
control the system and not the default. If the default rule is indeed broadly
correct and the exceptions quite rare, considerable representational economy
may be achieved compared with a set of completely accurate rules cover-
ing the same set of situations—that is, compared with rules that logically
partition the situations [13].

In a classifier system, the default rule would be a classifier with many
#’s in its condition; a related exception classifier would match in a subset of
the situations matched by the default. For these rules to control the system
accurately, it should be the case that the default controls when it is correct,
and the exceptions control when they, and not the default, are correct. The
dependence of the bid competition on specificity is designed to accomplish
this, For the broad set of cases when only the default matches, and in which
it is by hypothesis correct, only the default will go into [MM], and its action
will control. In an exception situation both the default and the appropriate
exception rule will match. But due to its higher specificity (assuming equal
strengths) the exception will have a correspondingly higher chance of getting
into [MM], in preference to the low-specificity default. Thus the exception
classifier will tend to control, and the default, which is wrong in the exception
situation, will not cause the system to make a mistake. At the same time,
the default is prevented from paying the cost of error, namely, the strength
reduction of step 4 had it entered [MM], plus any penalty that might have
come in step 7. In this sense, the higher-bidding exception may be said to
“protect” the default from loss.



Bid Competition and Specificity Reconsidered 715

4.2.3 Are there default hierarchies?

Since the bid competition was in effect in Experiment 2, we should expect ev-
idence of default hierarchies in the results, especially for small active set size.
Examination of the classifier populations showed, however, little sign that
default hierarchies had evolved. Instead, the system quite clearly tended to
evolve the partition represented by the solution set [S6], nearly independent
of [MM] size.

Classifiers in a population can be sorted in the form of a macrostate list
[7] in which the classifier with the most copies heads the list, the one with
the next most copies is next, etc. Or, the listing may be arranged in order of
the total strength possessed by each set of copies. The two methods produce
very similar orderings. Macrostates of the populations at 40,000 problems
were formed for all 20 runs of Experiment 2. Upon examination, the main
impression was that the first 8 to 10 classifiers in each of these lists had most
of the numerosity and strength, and nearly always included the members of
[56]. An example of a very clear partition, from a run in which [MM] size
was 5, was

56
51
51
48
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for the top ten classifiers (number of copies in the right-hand column). About
the clearest example of a default hierarchy was the following, where [MM]
size was 10:

0 1 # 0 # # / 0 54
0 0 0 # # # / 0 46
10##0#/043
10##1#/143
1 1 # # # 1 / 1 43
# 1 # 1 # # /1 42
1 1 # # # 0 / 0 38
# 0 1 # # # /1 24
001###/116
#01#1#/16

Note that the sixth classifier will be wrong for any input of the form 111 %0
(“+” means either input value). However, the seventh classifier matches in
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[MM]size | ¢ o7

5 6.6. 6.6
10 7.4 7.2
20 7.8 78

unlimited | 7.6 8.0

Table 1: Mean number of solution classifiers in the top 8 versus active
set size at two specificity powers.

all such situations and is correct; since it is more specific it stands to outbid,
and thus protect, the other. A similar relation holds between the eighth
and third classifiers, respectively. In all 20 runs, these were about the most
prominent examples of default hierarchies. To get a numerical picture, the
mean number of solution classifiers in the top eight macrostate classifiers was
calculated for each [MM] size. In addition, the experiment was repeated but
with o2, instead of just o, factored into the bid (so as presumably to increase
a more specific classifier’s protective ability [10]). The results were as seen
in Table 1. A value of 8.0 corresponds to a partition solution, so that even
with [MM] size of 5, the solution classifiers dominate. Increasing the power
of specificity does not seem to aid default hierarchies. However, it is not
yet clear just what a default hierarchy for the multiplexer problem should
look like. The next experiment produced one that was quite striking. For
the moment, let us draw the working conclusion that, on balance, the bid
competition does not promote significant default hierarchies—and propose
an explanation why.

Our hypothesis is that, while the bid competition protects defaults when
they are wrong, it tends to starve them when they are right. Earlier, we as-
sumed that, in non-exception cases, the default would get the payoff because
the exceptions would not match and therefore would not compete with the
default. However, we did not also ask whether some other classifier might
not sufficiently compete with the default to prevent it from entering [MM].
In particular, consider a classifier having the same action as the default, but
a more specific version of its taxon (different from any exception’s taxon).
Such a classifier would tend to beat the default out of [MM] and thus get its
payofl. Getting more payolff, it would tend to proliferate in the population.
The default, on the other hand, because it participates in relatively few pay-
offs, would have trouble maintaining its numbers in the face of deletion and
could well disappear (see the appendix of [7] for similar deletion effects).

This reasoning suggests that the bid competition will support exception
classifiers and more-specific versions of the default, but not the default. The
implication is that the system will tend to evolve partition solutions — as
indeed occurred in Experiment 2 — not default hierarchies. The results in
Table 1 indicate little effect of different [MM] sizes. This is reasonable if
the bid competition both protects and starves defaults. Then the additional
protection from a smaller [MM] would be accompanied by additional starva-
tion, with no net advantage to the default. To the extent it applies to the
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standard classifier system, Experiment 2 suggests default hierarchies will be
rare.

4.2.4 What does it take to get them?

It would be interesting to find a variant of the Boole algorithm that makes
default hierarchies. The key seems to be to achieve protection without at-
tendant starvation. Let us compare the following algorithm with Boole-2.

Algorithm Boole-3

1. A match set [M] is computed consisting of all classifiers whose condition
is satisfied by the input string.

2. Each classifier in [M] makes a bid B equal to the product of its strength
S, its specificity o, and a small constant ¢ like 0.1.

5. —

6. The system makes its decision (1 or 0) by selecting a classifier from
[M] with probability proportional to classifier bids, and outputting the
selected classifier’s action as the decision.

7. If, following the decision, external payoff enters the system, it is shared
by the members of [M] that advocated that action.

8. Each classifier in the “advocate set” [AD] of step 7 has its strength
reduced by a payout equal to ¢ times the strength.

Steps 1 and 2 are identical to Boole-2; elimination of steps 3, 4, and 5
removes [MM]; steps 6 and T are just like Boole-2 except they now refer to
[M]. Finally, step 8 reintroduces the payout step eliminated with step 4, but
in a different way: from among the members of [M], it is the advocates of
the system’s decision that pay out, not the high bidders (i.e., [MM]).

Under Boole-3, a default will be protected by an exception because, in
step 6, the exception will control the decision, and therefore the default will
not belong to [AD] and so will not pay out in step 8. Now consider the case
when the default is correct. It and any more-specific versions of itself will
control the decision in step 6, receive payofl in step 7, and do their payout in
step 8. No starvation can occur because all classifiers in [M] that agree with
the system’s decision receive payoff. This was not the case under Boole-2.
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Exp. 3 -- Default Hierarchy Algorithm
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Figure 3: Results of experiments under algorithm Booele-3, which
produced default hierarchies, for different specificity powers. Curve
sets represent same quantities as in previous figures,

4.3 Experiment 3
4.3.1 Procedure and results

This experiment used Boole-3. The objective was to see whether default
hierarchies would form. To investigate the effect of various degrees of em-
phasis of specificity in step 2, separate runs were conducted with: specificity
not factored into the bid, and specificity raised to the first, second, and
third powers, respectively, before being factored in. Each of these runs was
repeated five times using different initial populations and the resulis were
averaged and plotted in Figure 3. Parameter values were the same as in
previous experiments.

The experiment produced extremely modest performance, with average
score quickly rising to, then staying in, the 70% range. Solution counts, how-
ever, rose rather strongly to about 50% by 40,000 problems. Interestingly,
both average score and solution count showed little dependence on specificity
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power.

Examination of the macrostates at 40,000 problems for each of the 20
runs showed a strong pattern of default hierarchy in runs where specificity
entered the bid calculation. For example, the top eight classifiers for a run
with specificity to the first power were:

0 0 1 # # # / 1 56
11 # # #£ 1 /1 56
0 1 # 1 # # / 1 48
10 # # 1 # / 1 39
# # # # # # / 0 23
1o # # 1 # /1 23
# # # # 0 # [/ 0 18
0 # # 0 # # [/ 0 17

The first four classifiers are those of [S6] having action 1. They and the fifth
classifier form a default hierarchy that says, in effect, “decide 0, except decide
1 in cases matched by one of the first four.” Note that the general classifier,
# 4t # 4 # 4 [ 0, is wrong in 32 out of 64 cases, yet has a strong position
in the macrostate — showing that it is both well protected and “nourished.”

This pattern of five classifiers, or its complement with opposite action
bits, occurred in the top eight macrostate positions in 11 out of the 15 runs
that had specificity in the bid. In those 11 runs, no other member of [S6]
ever appeared in the top eight positions, indicating a default hierarchy was
decisively chosen over a partition solution. In the other four of those 15 runs,
the picture was one of incomplete formation of one or the other hierarchy. In
general, there was no correlation between specificity power and the likelihood
of getting a hierarchy. In the five runs that did not have specificity in the
bid, the partition solution was evident, as would be expected; the average
number of solution classifiers in the top eight was 6.4.

4.3.2 Discussion

LExperiment 3 confirms Holland’s insight that default hierarchies can occur
in classifier systems, but a reinforcement regime different from the standard
appears to be required. Instead of the standard’s active set bid competition,
under which payoff can never go to the low bidders, the experiment suggests
that the correct principle is for payofl to go to all matching classifiers that
agree with the system’s decision. Unfortunately, it is not obvious how to
apply this principle in the standard classifier system. The reason is that on
each internal cycle of the standard, messages are simply posted: there is no
clear notion of agreement and disagreement with a system decision. Even on
a cycle containing an external action it would be hard to apply the principle
since many classifiers in the match set are not, in general, involved with the
action decision.

Because it seems important to be able to evolve default hierarchies in the
standard system, we shall offer a suggestion. Since it involves a rather deep
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change, the suggestion is offered mainly as food for thought. The Boole-
3 algorithm generates default hierarchies because there is a clear notion of
system decision with which matching classifiers either agree or disagree. Con-
sider a standard system in which on each cycle a single message is computed
collectively using all the matching classifiers. Suppose, for concreteness, that
messages are of length 6 and each classifier has just one condition. An ex-
ample classifier might look like this:

001 # # 0/ 43:1 4:0 15:0 27:1 2:0 9:0.

It says: “if my taxon matches the current (single) message (for simplicity,
ignore the environmental message), then in computing the next message I
vote 43 for 1 on the first bit, 4 for 0 on the second, etc.” Each matching
classifier would make a similar statement. The system would decide the bits
of the next message by adding up the votes for each bit and deciding 1 or 0
depending on which had the majority. Notice that for each bit decision there
will in general be some classifiers that agree and some that disagree. Those
that agree will, in analogy with Boole-3, share one-sixth of the available
payoff. Those that disagree with a particular bit’s decision will get nothing;
but they may be in the agreement sets for other bits. The payoff shares to
a given classifier would be added to the corresponding “vote” weights, and a
payout consisting of a small fraction of each weight would be removed from
those vote weights that had been adjusted. The fitness of a classifier for the
genetic algorithm would equal the sum of its weights, which form a sort of
strength vector in contrast to the scalar strength of the standard system.

This approach seems likely to yield default hierarchies. The problem is
that the “message list” has been reduced to a single message, apparently
drastically reducing the system’s concurrency. Two comments can be made.
First, it is at least worth noting that the message could be regarded as bear-
ing the concurrency in its substrings. That is, substrings could be thought
of as analogous to the separate messages of the standard system. Second,
a multistep classifier system has been proposed [8], in which, though the
message list can have many messages, only one message is posted on each
cycle; it could be computed as above. That system has not been investigated
experimentally.

5. Summary

The results in this paper point to several conclusions with respect to classifier
system mechanisms:

1. Factoring specificity into a classifier’s payout introduces a significant
tendency toward overgeneralization and poor performance.

2. Restriction of system control to a high-bidding (“active”) subset of the
match set is not, in general, desirable:
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(a) Performance and learning are better using the whole match set,
without restriction (except perhaps in the presence of strong over-
generalization forces);

(b) The bid competition does not encourage default hierarchies: de-
faults are indeed protected when they are wrong, but they are
“starved” when they are right.

3. One method of promoting default hierarchies is to distribute payoff to,
and take payout from, all matching classifiers that agree with the sys-
tem’s decision, leaving alone the others. However, “system decision”,
as well as agreement and disagreement therewith, must be well defined.

A caveat on these conclusions is that they were drawn from experiments with
Boole, a specialized, one-step classifier system that allowed easier interpre-
tation of the results than would have been the case with the standard system.
Analogous experiments should be performed with the standard system using
well understood tasks.

6. Related work

In one part of a wide-ranging article on genetic algorithms and classifier sys-
tems, Holland [13] proposes changes in the use of specificity that parallel
those investigated here, but appear to be more complicated. In our termi-
nology, Holland forms a classifier’s (bid competition) bid “by reducing [the
quantity ¢S] in proportion to the generality of the classifier.” The simplest
interpretation of this would make the actual (“effective”) bid equal to o%5.
Next, a classifier’s payout is made equal to ¢S, Finally, a classifier’s proba-
bility of reproduction under the genetic algorithm is also made 5. Notice
that if o is divided out of all three quantities, one obtains the values used in
Boole-2 (or -3). As a check, an experiment was performed using Holland’s
regime; the results were similar to Experiment 2, including the absence of
default hierarchies.

In careful simulations, Riolo [10] shows that if the bid competition is
sufficiently biased against generalists, default hierarchies, once formed, will
persist stably. However, the simulations included only the performance and
reinforcement components and not the genetic algorithm. Since Riolo ad-
vocates factoring specificity into a classifier’s payout, we would predict that
a complete experiment would show a tendency toward overgeneralization,
but offset by starvation of the overgenerals due to the bias against them.
Whether this opposition would lead to interesting default hierarchies is not
clear.
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