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Abstract. Experim ents were conduc ted with resp ect to two classi­
fier system mechanisms: t he bid com pet it ion and th e use of classifier
specificity in biddi ng a nd paymen ts. T he experimen ts employed a sim ­
plified classifier system and so may not accurately reflect the behavior
of t he standard system. Nevertheless, the resul ts indicated t hat , in
general, (1) specificity should not be fac tored into amounts deducted
from a classifier 's st rengt h, (2) t he bid compe tit ion does not improve
perform ance and does not encourage defaul t hierarchies, and (3) de­
fa.ult hierarchies will form under a somewhat different algorithm than
the standard one.

1. Int roduction

Classifiersystems (Holland [1,2]) are ind uctive systems in which a population
of cond iti on-act ion rules encoded as bit-st rings evolves through t ime so as to
maximize reinforcement, or payoff, when the system respo nds to st imuli from
the env ironment . T he ru les, called classWers, have a condit ion part consisting
of one or more t axa from {l ,O,#}L, where # is a "don' t-care" sym bol;
an action pad consist ing of a message from {I ,O}L; and finally a strength
parameter that is adjusted to reflect the classifier 's usefulness in obtaini ng
payoff. Improved rules are discovered and mult iplied, and unpromising rules
discarded, under a genetic algorithm that t reats st rengt hs as fitnesses and
ap plies opera tors pattern ed after those of natural genet ics. Classifier systems
have relat ively simple components - the classifiers - but because th ese pass
messages and are in a quasi-Darwinian compet it ion, the overall behavior can
be com plex .

Th e classifier system idea has st imulat ed a number of investiga tions of its
merit for induct ive machine learning (e.g., [3-11]). Alt hough each investiga­
t ion retained most of th e elements of Holland's mod el, a number of modi fica­
t ions were explored . In particular, Wilson [6,7] exhibited successful systems
that omi tted two basic elements from the reinforcement algorithm: (1) T he
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restriction of the system's cont rolling class ifiers to a subset - selected by
a bidding competition - of all ma tching classifiers; (2) The factoring of a
classifier's specificity into it s bid and its payments to other classifiers. In­
stead, in Wilson's programs, the step of computing the subset - sometimes
ca lled the "active" set - is simply left out; and all bid-like quantities and
payments are based solely on classifier strength.

T he modifications were made pr imarily for reasons of simplification. How­
ever, it was also felt that the narrowing of control implied by the active set
com petition might serve no essential purpose. T he use of specificity - a
formal quantity - in bidding and payments was thought to be at odds with
the notion that a classifier's fit ness should depend only on its ability to ob­
tain payoff. At the time, no comparisons with and without the modifications
were made: the prog rams worked quite well as mod ified. In this art icle, we
present research in which, using Wilson's Boole program [7], effects of act ive
set competition and of specificity were invest igated. Because the resu lts ap­
pear to raise significant questions for classifier systems in general, we begin
by reviewing the reinforcement algor ithm of the standard system.

2. T he standard approach

For convenience, we shall refer to Holland's [2] classifier system as the "stan­
dard" system. Holland, Holyoak, Nisbett, and Thagard [12J adds to the
standard - notably the concept of "support " - but that system will not
be discussed since the re are no published reports of experimental tests. Hol­
land [13] and Riolo [10] suggest certain changes in the standard that will be
discussed later.

In each cycle of th e standard's reinforcement, or bucket-brigade, algo­
rit hm:

1. Messages from the input interface are added to the current message
list, an d a match set [M] is computed consist ing of all classifiers whose
cond itio ns are satisfied by messages on the list.

2. Each class ifier in [MJ makes a bid B equal to the product of its strength
S, its specificity a (t he number of non-#'s in its condition part divided
by the cond it ion's length), and a small constant c like O.l.

3. A subset of [MJ is chosen consisti ng of the high bidders. We sball
refer to this subset as [MM] or th e "active" set. The competit ion for
inclusi on in [MM] is usually made stochastic such tha t classifiers having
high bids are more likely to win than lower bidders. Usually, [MM] has
a fixed max imu m size; if [M] is smaller than this, all members of [M]
go into [MMJ.

4. Each classifier in [MM] has its strength reduced by the amount of its
bid. The classifiers that sent the messages matched by a member of
[MM] have their strengths increased by the amount of the member's
bid (it is usually divided among them) .
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5. [MMJ 's classifiers place their messages on the message list (the old
messages are erased) .

6. Any posted messages that would trigger the out put interface do so, but
with resolution of effector conflicts if necessary.

7.

(a) If external payoff enters t he system, it is sha red by all members
of [MMI.
There is some uncertainty about step 7a. A numb er of workers
(e.g., Goldberg [5]) have felt t hat step 7a is insufficient ly discrim­
inat ing and instead have implemented the following step, which
we shall consider as replacing 7a:

(b) If, following an effector act ion, exte rnal payoff enter s the system,
it is shared by the members of [MMJ that advocated t hat actio n.
In addition , Holland [2J suggests that tbe whole payoff amount be
paid to each of [MM)'s classifiers, but Holland [141advises sharing
the payoff among them. To test whether shar ing or non-sharing is
bet ter, we performed an auxiliary experiment. Because the results
were clearly in favor of sharing, sha ring is used in step 7b.

The experiments in this art icle were done not with the standard, but with
var iants of Boole , a program tha t generates an exte rnal act ion (a decision)
in one time-step and has no message list ; it thu s differs importantly from the
standard. However , Boole is the same as the standard in many ways, and
its behavior has the experimental advantage of being simpler to underst and.
Our results provide informat ion about the standard, though ind irectly. The
next sect ion introduces Boole and descri bes Boole-L, the first vari ant used
in the exper iments and the one most closely related to the standa rd system.

3. Boole

In general, Boole sees a binary input st ring and in one time-step produces
an act ion, 1 or 0, indicat ing whether or not it thinks the string belongs to
the concept (usually a Boolean function ) that it is being given feedback to
learn. Boole 's classifiers are simp le: the condition is a single taxon of the
same length as the inpu t stri ng; the action is either 1 or O. The par ticular
reinforcement algorit hm used initially in the expe riments was as follows:

A lgorit hm Boole-1

1. A match set [M] is computed consisti ng of all classifiers whose condition
is sat isfied by the input st ring. [Analogous to step (1) of the standar d.)

2. Each class ifier in [M] makes a bid B equal to the product of its st rength
S, its specificity a, and a small constant c like 0.1. [Same as the stan­
dard; our original work with B oole , as noted, did not factor specificity
into the bid].
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3. A subset of [M], termed [MM] or th e "act ive set" , is chosen stochas­
tically such that inclusion in [MM] is more likely for higher bidders.
[Same as the standard; the original Boole did not form [MMJI .

4. Each classifier in [MM) has it s st rength reduced by th e amount of it s
bid- te rmed the classifier 's payout . [Since there is no message list
here, the payout s have no recipients and so vani sh from the system .
This difference does not significant ly affect our comp arison, since the
paying classifiers payout identically under both systems.]

5. [No messages are posted , since th ere is no message list .]

6. The sys tem makes its decision (lor 0) by select ing a classifier from
[MM] with probability proportional to class ifier bids, and output ti ng
the selected classifier 's action as th e decision. [Thi s step is analogous
to conflict resolutio n in the standard .]

7. If, followin g the decision , external payoff ente rs the system, it is shared
by t he me mbers of [MM] that advo cated tha t action. [Same as step 7b
above.]

In the standard algorithm , an indefinite number of system cycles may
occur before an external act ion is generated. In all such cycles bu t the final
one, messages are po sted to th e message list and matched, but the me ssages
are "internal" in the sense of not triggering any exte rna l effector. Such
cycl es - ca ll t hem intern al cycles - are absent from Boole, whi ch chooses
an ex te rnal action on every cycle an d does not post internal messages .

Despite this difference, m any result s with B o ole should carry over to
the standard. The reason is th at an internal cycle of the standard closely
resembles Boole's single cycle with respect to: (1) matching, (2) forma tion
of bids, (3) com pet it ion for activat ion , and (4) payout from a clas sifier 's
stren gt h . There is a difference in that, on an internal cycle , a classifier of the
st andard system shares payoff that comes from anot her classifier , whe reas
in Boole , the shared payoff always com es from outside. The exact source
of payoff, however , does not seem cri t ical to questi ons about spec ificity and
act ive set size.

4 . Experiments with Boole

For all experiments, t he ini t ial population [P] contained 400 classifiers with
alleles generated from a unifo rm random distribution; init ial strengths were
set to 100. In Step 7 of th e reinforcement algorithm, th e payo ff for a corre ct
answer was 1000; for a wrong answer it was O. The constant factor c (step 2)
was set at 0.1. Specificity was calculated as described , except that, to permit
them to bid , t he specificity of classifiers whose taxa cons isted entirely of #'5
was defined to be 0.1 instead of O. The discovery com ponent, employing the
gene t ic algorit hm, was operated essent ia lly as descri bed in [7], and wit hout
significant difference from the discovery compo nent of the standard sys te m.
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It produ ced offspring at the rate of one per performance cycle , i.e. , per in­
pu t st ring presentati on and decision. Crossover was perform ed between two
offspring with probabi lity 0.12. An offspr ing allele was mutated with prob­
ability 0.001. T hese rates had been found to pro duce good learning in the
previous work.

T he learning tas k in all experim ents was the 6-bit Boolean multipl exer
[15L a rather intri cate function whose disjunctive normal form is as follows:

F = X'OX' IX2 + X'OX IX3 + XOX ;X4 + XOXIXS,

where Xo . . . Xs are the left-to-right bits of the input string. In each experi­
ment, input st rings were generated randomly and presented to the system.
The system's decision was correct if it equaled the value of F for that input
st ring, otherwise not .

One measure of system perform ance that was used was the percentage
of correc t decisions over the preceding 50 tri als- termed average score. T he
ot her measure used had more to do with the conte nt of what was being
learned. It was called the solution coun t, and measured the percentage of
the popu lation that consisted of instances of the following set of classifiers
(the "/" separates taxon from action):

0 0 0 # # # / 0
0 0 1 # # # / 1
0 1 # 0 # # / 0
0 1 # 1 # # / 1
1 0 # # 0 # / 0
1 0 # # 1 # / 1
1 1 # # # 0 / 0
1 1 # # # 1 / 1

Examination will show that each matches exact ly eight of the 64 possible
input st rings and recommends the right answer each tim e. Furtherm ore, the
eight matched sets are disjoint -they partition the input space . There does
not seem to exist a more efficient, complete set of "solut ion" classifiers. vVe
named the set [56] and used t he percentage of its instances in [P] as a measure
of the system's progress in evolving correct , maximal general izat ions.

4.1 Experiment 1

4. 1.1 Procedure and resul t s

The first experiment used the above Boole-l algorith m, that is, th e algo­
rithm deemed closest to the standard. Th e idea was to perform such an
experi ment as a baseline, then, wit h modi fica tions, to proceed to further
exper iments that the results would indicate. Experiment l 's further pu r­
pose was to investigate the effect of active set size by varying the maximum
number of classifiers allowed (in step 3 of Boole -1) to become members
of [MM]. Start ing with the same rand om popul ation, separate experiments
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Figure 1: Results of experiments under algorithm Boo le-L, t he "s tan­
dard" 1 for different active set ([MMJ) sizes. Upper four curves rep­
resent moving averages of percentage correct decisions over pas t 50
t rials for [MM] sizes as shown. T he cur ve at bottom is th e solu tion
count , or percent age of th e population consisting of instances of th e
"solution set" [56], for [MM] equal to 5. For ot her [MM] sizes, solut ion
counts were negligible or zero.

were carr ied ou t in which (MMl's maximum size was, resp ectively, 5, 10, 20,
and unlimited . T hen the ser ies was performed aga in using a different ini tial
popul ation. Each experiment ran to 20,000 problem s (trials) . For each set­
t ing of (MMJ's size , the average of the resul ts of the two runs was plotted in
Figure 1.

Lea rning under the B oo le-l algorithm was decidedly poor. Th e average
score did not get above 80% for any setting of [MM]'s size and in fact stayed
essent ially flat in each plot after 1000 problems. T here was a trend toward
highe r average scores wit h smaller [MM] size. In add it ion) a few solut ion
classifiers were evolved at the smallest [I\1M] size. Examinat ion of th e fi­
nal populatio ns revealed heavy overgenera lizat ion. Under small [MM] size)
among the st rongest classifiers were some that were correct three-four ths or
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five-eighths of the t imes they mat ched : class ifiers like 0 # # 0 # # / 0 and
# # # # # 0 / 0, respect ively. Other classifiers were either correct half
the time, such as 1 # # # # # / 0, or wrong more than hal f the ti me,
such as # # 1 # # # / O. In general, the populat ions contained almost
no per fectly correct classifier s, eit her mem bers of the solution set, or mo re
specific than those. The two runs with un limited act ive set size pr oduced
almos t totally degenerate popu lations: one ended up with 398 instances of
# # # # # # /1 and two instances of # # # # 0 # /1.

4.1.2 Discussion

Under our ass um pt ion that Boole-I can tell us about th e standard algo­
rithm , the results of this experiment suggest that rampant overgeneralizati on
and consequent mediocre performance may occur under the standard algo­
rithm . T here has been some informal ind ica tio n (e.g ., [13]) , th at thi s can be
the case. Here , we should like to pin down ju st what factor is caus ing the
overgenerali zation and find the simplest way to correct it.

Goldb erg [5] pointe d out that und er steady-state pay off conditions, the
streng th of a classifier would approach (in th e present notation ) S = Rj co ,
where R is the mean payoff to the classifier. This sugges ts that if two classi­
fiers CI and C2 receive eq ua l mean payoffs, their steady-s tate strengths will
nevertheless be unequ al if t heir specificit ies differ. In par ticular, t he more
gene ral classifier will be st ronger by the ratio of the two specificiti es. W hile
tha t implies a bias in favor of gene ra lists, it is st ill not clear why the bias
should tend to produce a rou t.

The explanation may be as follows. Suppose that C2 is a more specific
ver sion of CI (that is, CI with some # 's switched to 1 or 0). There will
then be situations in which Cl and C2 share payoff. Suppose, for sim plicity,
tha t no other classifiers participat e in these sit uat ions . T hen Cl and C2 will
each get half of the payoff, i.e., R is the same for both of them. From the
las t pa ragraph , however , Cl will tend toward a higher steady- state st reng th,
which m ust result in CI 's having mo re offspring than C2. Consequently, on
the next occas ion that CI and C2 share payoff, it is more likely they will
be joined by a second copy of C l than by a second copy of C2. Bu t this
means th at C2 will get only one-th ird of the ava ilable payoff, inst ead of half
of it , while the two copies of CI together get two-thi rds. The chan ge in t he
payoffs furth er alter s th e st rengths in favor of the more gener al concept , and
the cycle repeats. Eventually Ol and it s offspri ng drive ou t C2 and its . Cl
can eve n afford to be overgeneral - tha t is, wrong in some (other ) sit uations
- if the additiona l #lS increase its margin over C2 by more than th e cost of
the errors.

We hypothesize th a t a competi tive mechanism of this sort is respo nsible
for the overgeneralizat ion in Exp eriment 1. The basic cause is th at specificity,
a formal fact or , int ervenes bet ween a classifier 's mean payoff and its ste ady­
state stre ngth - so th at , as a result of reproduct ion, payoff and st re ngt h
cannot form a stable relationship , T he exte nt of the overgeneralizat ion will
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depend on the degree to which a gain in numbers for the C l concept can
take payoff away from the C2 concept. Note , however , t hat if the size of the
active set [MM] is N , the payoff ratio in favor of Cl can not exceed N to one .
Consequen tly, less overgeneralization should occur when [MMl's size is small
- as indeed the experiment indicates.

What is the remedy for th e overgenerali zation? Certainly it is not to
restrict [MM]'s size, for learning is still poor when the size is 5 (further ex­
periment s showed no improvement for smaller values) . In addition, classifier
sys tems ' em phas is on con current processing would not be served by red ucing
the size. The right solut ion would seem to be to change the way specificity
is handled. In par ticular, we sha ll retain specificity in the bid calculat ion
(step 2), but elimina te it from the calculat ion of a classifier 's payout (step
4). The bid per se affect s the probabili ty of ent ry into the active set and has
no direct effect on strength. In contrast, if specificity is eliminated from a
classifier's payout, th en Goldberg's equation becomes S = RIc and st rengt hs
will be stably related to payoffs. The cha nged algorithm is as follows:

Algorithm Boole-2

Same as Boole -l , except step 4 now read s:

4. Each classifier in [MM] has its strength reduced by a payout equ al to
c ti mes th e st rength (where c, as before, is a small constan t like 0.1).

4.2 Experiment 2

4.2.1 Procedure and results

This experiment used Boole -2. All param eter values were the sam e as in
Experiment 1. Five funs for each setting of [MMJ's size were performed (each
run used a different rand om ini tial populat ion); the results were averaged and
are plot ted in F igure 2. There is a stri king difference from Figure 1. The
upper set of curves plot s average score, which, except when [MM] size is
5, rises within 10,000 probl ems above 90%. The lower set of curves shows
st rong rises in the solut ion count, in contrast to no such rise in Experiment 1.
Clearly, leaving specificity out of th e payout calculat ion - the sole difference
between the two expe riments - has had a major effect.

Figure 2 also exhibits a reversal in th e trend with [MM] size: the worst
curves occur for size 5, the best for the case when the active set size is not
limited. T he implication, at leas t from thi s experiment , is tha t in term s of
performance and discovery of solut ion classifiers, step 3 of the reinforcement
algorithm does not buy anything. Th at is, no purpose seems to be served by
restricti ng the system's contro lling classifiers to a high-bidd ing subset of the
match set; inst ead , it appears better to eliminate the bid competit ion and
let all members of the match set participate in the decision. Extended to the
standard classifier system, this result suggests th at all matching classifiers
should get to post their messages .
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Figure 2: Results of experiments under algorithm Boole-z , which
omitted specificity from payou t, for different active set sizes. As in
Figure 1, upper four curves represent average score; lower curves are
solution count.
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4.2. 2 D iscussion

Why does small [MM] size slow down learni ng? Note that only classifiers that
get into [MM] pay out from t heir strengths and receive payoff. That is, they
are evaluated, whereas the rem ain ing members of [M] are not. Consequently,
if the size of [MM] is small, the overa ll rat e of evaluat ion of the class ifier
po pu la ti on is reduced. Each t ime a classifier is evaluated, its strength tends
toward a more accur at e es t imate of t he classifier ' s ty pica l payoff (divided by
c). High evaluation rates thus mean that the genet ic algorithm has more
accurate fit ness informat ion to work wit h. Conversely, low rates can mean
inaccurate in formation, so that, for example, poor classifiers over-reproduce
and good ones don't rep roduce enough, slowing down the discovery pro cess.

Of cours e, there may be good reasons for conducting t he bid competition
and forming a restrict ed message list that ou tweigh any attendant slowing of
learn ing. For example, a bid compet ition would allow t he system to focus on
the most sign ificant aspects of a situat ion, as indica ted by the high-bidding
classifiers [13]. However, the most important suggested be nefit of the bid
competition is the formation of default llierarchies of class ifiers [14]. In the
simplest default hierarchy, t here is a general, de fault ru le that is correct in
most situations that satisfy its cond it ion, bu t in a few situations it is not cor­
rect. To cover these situat ions, the system has one or more exception ru les
an d some automat ic mechanism to make sure that the exception ru les then
control t he system and not the de fau lt. If t he de fau lt ru le is indeed broadly
correct and the exceptions qu ite rare, cons iderable rep rese ntat ional economy
may be achieved com pared with a set of completely acc urate rules cover­
ing the same set of sit uations-that is , compared with rul es that logically
partition the situations [13J.

In a class ifier system, t he default rule wou ld be a class ifier with many
#'s in its condi ti on ; a re lated exception classifier would match in a subset of
the situa t ions matched by t he default. Fo r these ru les to control t he system
acc urate ly, it should be t he case that t he defau lt cont rols when it is correct,
and the exce ptions cont rol when t hey, and not the default, are correct . The
de pende nce of t he bid compet ition on specificity is des igned to accomplish
this . For t he broad set of cases when only the de fault matches , and in which
it is by hyp othesis correct, only th e defa ult will go into [MM], and its action
will control. In an exception sit uat ion both the default and t he appropriate
exception rul e will match. But du e to its higher specificity (assum ing equal
st rengths) t he exception will have a correspondingly higher chance of gett ing
into [MM], in preference to the low-specificity default. T hus the except ion
classifier will tend to cont rol, and the default , wh ich is wrong in the exception
situation, will not ca use the system to make a mistake. At the same t ime,
the default is prevented from pay ing the cost of error, namely, the st rength
reduction of step 4 had it ente red [MMJ, plus any penalt y that might have
come in ste p 7. In t his sense, t he higher-b idding exception m ay be sai d to
"p rotect" t he default from loss .
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4.2.3 Are there default hierarchies?

715

Since the bid competition was in effect in Experiment 2, we should expect ev­
idence of default hierarchies in the results, especially for small active set size.
Examination of th e classifier pop ulations showed, however, little sign that
default hierarchies had evolved. Instead, the system quite clearly tended to
evolve the partit ion represented by the solution set [56], nearly independent
of [MM] size.

Classifiers in a population can be sorted in the form of a macrostate list
[7] in which t he classifier with the most copies heads the list, the one with
the next most copies is next, etc . Or, the listing may be arranged in order of
the total st rength possessed by each set of copies . The two methods produce
very sim ilar orderings. Macrostates of the populati ons at 40,000 problems
were formed for all 20 runs of Experiment 2. Upon examination, the main
impression was that the first 8 to 10 classifiers in each of th ese lists had most
of th e numerosity and st rength, and nearly always included th e members of
[861 . An example of a very clear partition, from a run in which [MMJ size
was 5, was

0 0 1 # # # / 1 56
0 1 # 1 # # / 1 51
1 0 # # 1 # / 1 51
0 0 0 # # # / 0 48
1 0 # # 0 # / 0 48
1 1 # # # 0 / 0 48
1 1 # # # 1 / 1 35
0 1 # 0 # # / 0 20
# 1 # 0 # # / 0 3
0 1 # # # # / 0 3

for the top ten classifiers (number of copies in the right-hand column). Abou t
the clearest example of a default hierarc hy was th e following, where [MM]
size was 10:

0 1 # 0 # # / 0 54
0 0 0 # # # / 0 46
1 0 # # 0 # / 0 43
1 0 # # 1 # / 1 43
1 1 # # # 1 / 1 43
# 1 # 1 # # / 1 42
1 1 # # # 0 / 0 38
# 0 1 # # # / 1 24
0 0 1 # # # / 1 16
# 0 1 # 1 # / 1 6

Note that the sixth classifier will be wrong for any input of the form 11*1*0
("*" means either input value). However, the seventh classifier matches in
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IMMJ size a u'
5 6.6 . 6.6
10 7.4 7.2
20 7.8 7.8

unlimited 7.6 8.0

Table 1: Mea.n number of solution classifiers in the top 8 versus active
set size at two specificity powers.

al l such situa tions and is correct; since it is more specific it stands to outbid,
and thus protect , the ot her. A similar relati on holds between tbe eighth
and third classifiers, respecti vely. In all 20 runs, these were about the most
prominent examples of defau lt hierarchies. To get a numerical picture, the
mean number of solut ion classifiers in the to p eight macrostate classifiers was
calculated for each [MM] size. In addit ion, th e experiment was repeated but
with (72 , instead of just a , factored into the bid (so as presum ably to increase
a more speci fic classi fier 's protective ab ility [10]). The results were as seen
in Table 1. A value of 8.0 corresponds to a partition solut ion, so that even
with [MM] size of 5, th e solution classifiers dominate. increasing the power
of spec ificity does not seem to aid default hierarchies. However, it is not
yet clear just what a default hierarchy for th e multiplexer problem should
look like. T he next experiment produced one that was qui te st riking. For
the moment, let us draw th e working conclu sion th at, on balan ce, th e bid
competit ion does not promote significant defau lt hierarchies-and propose
an explanat ion why.

Our hypothesis is that , while the bid competition protects defaults when
th ey are wrong, it te nds to starve them when they are right . Earlier, we as­
sumed that, in non-excep t ion cases, the default would get the payoff because
th e except ions would not match and th erefore would not comp ete wit h t he
default. However, we did not also ask whether some other classifier might
not sufficient ly compe te with the default to prevent it from entering [MMJ.
In particular, consider a classifier having the same act ion as the default , but
a more specific version of its taxon (different from any exception' s taxon).
Such a classi fier would lend to beat the defaul t ou t of [MM] and thus get its
payoff. Get t ing more payoff, it would tend to proliferate in the population .
T he default, on th e other hand, because it participates in relat ively few pay­
offs, would have troubl e maintaining its numbers in th e face of deletion and
could well disappear (see the appendix of [7] for similar deletion effects) .

T his reasoning suggests that the bid comp etition will support exception
classifiers and more-specific versions of the defau lt , bu t not th e default . T he
im plication is that the system will tend to evolve partition solut ions - as
indeed occurred in Experiment 2 - not default hierarchies. Th e resu lts in
Table 1 indicate little effect of di fferent [MM] sizes. T his is reasonable if
the bid competit ion both pro tects and starves defau lts. T hen t he addi t ional
protecti on from a smaller [MM] would be accom panied by addit ional starva­
tion, with no net advantage to the default. To the extent it applies to the
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standard classifier syst em , Experiment 2 suggests defaul t hierarchies will be
rare .

4.2.4 What does it take to get them?

It would be interestin g to find a variant of the Boole algorit hm that mak es
default hierarchies. The key seems to be to achieve protection wit hout at­
tenda nt st arvat ion. Let us compare the following algorit hm with Bool e-2.

Algorith m B oole-3

1. A match set [M] is computed consisti ng of all classifiers whose condit ion
is satisfied by the inpu t st ring.

2. Each classifier in [M] makes a bid B equal to the product of its strength
5, its specificity a , and a. small constant c like 0.1.

3.

4.

5.

6. Th e system makes its decision (l or 0) by select ing a classifier from
[M] wit h probability proport ional to classifier bid s, and out putting th e
selected classifier 's act ion as th e decision .

7. If, following the decision , external payoff enters the sys tem , it is shared
by th e memb ers of 1M] that advocated th at act ion.

8. Each classifier in the "advocate set » [AD] of step 7 has its st rength
reduced by a payout equal to c t imes the st rength.

Steps 1 an d 2 are identical to Boole-Z, elimination of steps 3, 4, and 5
removes [MM1; steps 6 and 7 are just like Boole-2 excep t they now refer to
1M]. Finally, step 8 reintroduces the payout step elim inated with step 4, but
in a different way: from among the members of [ML it is the advocates of
the system's decision that payout , not t he high bidders (i.e., [MM]).

Under Boole -3, a default will be protect ed by an excep t ion because, in
step 6, the except ion will control th e decision, and therefore th e default will
not belong to [AD] and so will not pay out in step 8. Now consider th e case
when the default is correc t . It and any more-specific versions of it self will
cont rol the decision in step 6, receive payoff in step 7, and do th eir payout in
step 8. No starvat ion can occur because all classifiers in [M] t hat agree with
t he system's decision receive payoff. Thi s was not th e case und er Boole-2.
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Figure 3: Result s of experiments under algo rit hm Boole-3, which
produced default hierar chies, for different specificity powers. Curve
sets represent same quantit ies as in previous figures.

4.3 E xper iment 3

4 .3.1 P roced u re and res u lts

Thi s experiment used B oo le-3. T he objective was to see whether default
hierarchies would form. To invest igate the effect of various degrees of em­
phasis of specificity in step 2, separate funs were conducted with : spec ificity
not factored into the bid , and specificity ra ised to the first , second, and
third powers , respectively, before being factored in. Each of th ese runs was
repea ted five t imes using different initial populations and the resul ts were
averaged and plotted in Figure 3. Param eter values were the same as in
previous expe riments.

The experiment produced extremely modest performance} with average
score quickly rising to}then staying in}the 70% range. Solut ion counts, how­
ever, rose rather st rongly to about 50% by 40, 000 problems. Interest ingly}
bot h average score and solution count showed lit tle dependence on spec ificity
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power.
Examination of the macrostates at 40, 000 problems for each of the 20

runs showed a strong pattern of default hierarchy in runs where specificity
entered the bid calculat ion. For example, the top eight class ifiers for a run
with specificity to the first power were:

o 0
1 1
o 1
1 0
# #
1 #
# #
o #

1 #
# #
# 1
# #
# #
# #
# #
# 0

#
#
#
1
#
1
o
#

#
1
#
#
#
#
#
#

/ 1 56
/ 1 56
/ 1 48
/ 1 39
/ 0 23
/ 1 23
/ 0 18
/ 0 17

The first four classifiers are those of [86J hav ing action 1. They and the fifth
classi fier form a default hier archy that says, in effect, "decide 0, except decide
1 in cases matched by one of th e first fOUL" Note that the general classifier,
# # # # # # / 0, is wrong in 32 out of 64 cases, yet has a strong position
in the macros tate - showing that it is hath well pro tected and "nourishe d."

This pattern of five classifiers, or its complement with opposite act ion
bits, occ urred in the top eight macros tate positions in 11 out of the 15 runs
that had specificity in th e bid . In those 11 runs, no other member of [86]
ever appeared in th e top eight positions, indica ting a default hierarchy was
decisively chosen over a part it ion solution. In the other four of those 15 runs,
the picture was one of inco mp lete formation of one or the other hierarchy. In
general, there was no correlation between specificity power and the likelihood
of get ting a hierarchy. In the five ru ns th a t did not have specificity in the
bid, the part ition solution was evi dent, as would be expected; the ave rage
number of solution class ifiers in the top eight was 6.4.

4 .3 .2 Discussion

Experiment 3 confirms Holland's insight that defa ult hierarchies can occur
in class ifier systems, but a reinforcement regime different from the standard
appears to be required . Inst ead of the standard's act ive set bid competition,
under which payoff can never go to the low bid ders, the experiment suggests
that the correct pr inciple is for payoff to go to all matching classifiers that
agree with the system's decis ion . Unfortunately, it is not obvious how to
app ly this principle in the standard classifier system. T he reason is that on
each intern al cycle of the standard, messages are simply posted: there is no
clear notion of agreement and disagreement with a system decision. Even on
a cycle containing an extern al act ion it would be hard to apply the principle
since many class ifiers in the match set are not, in general, involved with the
act ion decision.

Because it seems imp or tant to be ab le to evolve default hierarchies in the
standard system) we sha ll offer a suggest ion . Since it involves a rather deep
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change, the suggest ion is offered main ly as food for thought . T he Boole­
3 algorithm generates default hierarchies because t here is a clear not ion of
system decision with which matching classifiers eit her agree or disagree. Con­
sider a.standard system in which on each cycle a single m essage is computed
collect ively using all the matching classifiers. Suppose, for concreteness, that
messages are of length 6 and each class ifier has just one condition . An ex­
ample classifier might look like this:

o 0 1 # # 0 / 43 : 1 4:0 15 :0 27 : 1 2 :0 9 :0.

It says : "if my taxon matches the current (single) message (for simplicity,
ignore the env ironmental message), then in comput ing the next message I
vote 43 for 1 on the first bit, 4 for 0 on the second , etc." Eac h mat ching
class ifier would make a similar statement . T he system would decide the bits
of the next message by adding up the votes for each bit and deciding 1 or 0
dependin g on which had th e majority. Notice t hat for each bit decision there
will in general be some classifiers that agree and some that disagree. T hose
that agree will, in analogy with Boole-S, share one-sixth of the avai lab le
payoff. T hose th at disagree with a particular bit's decision will get not hing;
but they may be in the agreement sets for other bits. Th e payoff shares to
a given classi fier would be added to the corresponding "vote" weights) and a
payout consist ing of a small fracti on of each weight would be removed from
those vote weights that had been adjusted . The fitness of a class ifier for the
genet ic algorit hm would equal the sum of its weights, which form a sort of
st rength vector in contrast to the scalar st rength of the standard system.

Th is approach seems likely to yield defaul t hierarchies. The problem is
that the "message list" has been redu ced to a single message, apparent ly
drast ical ly reducing the system's concurrency. Two comments can be made.
Fir st, it is at leas t worth not ing that th e message could be regarded as hear­
ing th e conc urrency in its substrings. T hat is, subst rings could be tho ught
of as analogous to th e separat e messages of th e standard system . Second,
a multi step classifier system has been proposed [8], in which, th ough the
message list can have many messages, only one message is posted on each
cycle; it could he computed as above. That system has not been investi ga ted
exp erimentally.

5 . Su m m ar y

The results in th is paper po int to several concl usions with respect to classifier
system mechani sms:

1. Factoring spec ificity into a classifier 's payo ut introduces a significant
tendency toward cvergenere liaat ion and poor performance.

2. Restriction of syste m control to a high-bidding (vacfive") subset of the
match set is not , in general, desirable:
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(a) Performance and learning are better using the whole match set,
without res tri cti on (except perhaps in th e presence of st rong over­
generalization forces);

(b) The bid compe t it ion does not encourage default hierarchies: de­
faults are indeed protected when they are wrong, but they are
"starved" when they are right.

3. One method of promoting default hierarchies is to dist ribute payoff to,
and take payout from, all matching classifiers that agree with th e sys­
te m 's decision, leaving alone the ot hers. However, "system decision" ,
as well as agreeme nt and disagreement therewith, must he well defined .

A caveat on t hese conclusions is that t hey were drawn from experiments with
B o ole , a specialized , one-step classifier system that allowed easier interpre­
tation of the results th an would have been the case with the standard system.
Analogous experiments should be performed with the st an dard system using
well unders tood tasks.

6 . Related work

In one part of a. wide-ranging art icle on genet ic algorithms and classifier sys­
tems, Holland {13] prop oses changes in the use of specificity that parallel
those investiga ted here, but appear to be more complicated . In our te rrni­
nology, Holland forms a classifier's (bid compet it ion) bid "by redu cing [the
quanti ty uS] in propo rtion to the generality of the classi fier." T he sim plest
interpretation of this would make the actual (veffective"] bid equa l to uZS.
Next , a classifier 's payou t is ma de equal to a S, Finally, a classifier's proba­
bility of reproduct ion under the genet ic algorithm is also made oS , Notice
that if a is divided out of all three quant ities, one obtains the values used in
B o ole-? (or -3). As a check, an experiment was performed using Holland 's
regime; the results were similar to Exp eriment 2, including th e absence of
default hierarchies.

In careful simulat ions, Riolo [10] shows th at if the bid competit ion is
sufficiently biased aga inst generalists , default hierarchies, once formed , will
persist stably. However , the simulat ions included only the performance and
reinforcement components and not the genetic algorithm. Since Riolo ad­
vocates factoring spec ificity into a classifier 's payout, we would pred ict that
a complete expe riment would show a te ndency toward overgeneraliza tion ,
bu t offset by starvat ion of the overgenerals due to th e bias against th em.
Whether this opposition would lead to interesting default hierarchies is not
clear.
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