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Abstract. It is found numerically that a two-dimensional left-turning
particle-scatterer system does not diffuse for scatterer densities slightly
above one-half, or greater. For smaller densities, the diffusion coeffi-
cient is much lower than what the Boltzmann approximation predicts;
this is caused by orbiting events.

An isotropic-scattering model with reflective impurities also shows
deviations from the diffusion equation for various densities of isotropic
and reflective scatterers, caused by retracing events.

1. Introduction

Hardy, de Pazzis and Pomeau first attempted to model fluids with cellular
automata over ten years ago [1]. In the past two years we have seen a major
revival of this approach [2-4]. Much effort has been spent in studying the
viscosity coefficient in order to find its size dependence in two dimensions
[5] or to simulate the highest possible Reynolds number [6,7]. The study of
diffusion in such systems has been limited [8-11], probably because of the
lack of particle identity in these models. The first study of diffusion in cel-
lular automata models was probably that of Gates [12], in which he proved
the non-existence of diffusion in certain lattice wind-tree models at high den-
sity of scatterers. The continuum wind-tree model is a four-velocity particle
(wind) and square scatterers (trees) system introduced by the Ehrenfests
[13] to illustrate the approach of a probability distribution to equilibrium.
Along with a similar model with circular scatterers studied by Lorentz [14],
the Ehrenfests’s model has been very useful in identifying high-density phe-
nomena in fluids [15]. Gates introduced five deterministic models, only one
of which had point scatterers (henceforth model V). The other four were
area-occupying models with different potentials between scatterers. The first
simulations of lattice particle-scatterer systems [16] showed low-density dif-
fusive behavior in a non-chiral version of Gates’s model V, which will be
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described in the next section. Theoretical expressions for the diffusion coef-
ficient have been obtained [17] for the analogous stochastic models, showing
excellent agreement with simulations [16,18,19]. An interesting case is that
of stochastic isotropic scattering. The possibility of reflection brings in a
contribution from retracing trajectories which modifies directly the Boltz-
mann level (uncorrelated scatterers) solution. Simulations and an effective
medium approximation theory show excellent agreement in this case [20]. In
the present paper we go a step further, and explore high-density phenomena
in lattice gases which not only reduce the diffusion coefficient, but cause it
to vanish altogether. This paper proceeds as follows: in section 2 we study
analytically and numerically model V of Gates. We find numerically that the
threshold for abnormal diffusion is much lower than what has been proved,
and that even when diffusion exists the Boltzmann level theory is inadequate.
In section 3 we present numerical calculations of the mean-squared displace-
ment ((r?)) for a lattice particle-scatterer model where a few scatterers are
purely reflective. Einstein’s studies of Brownian motion [21] predict linear
growth of (r?) for long times. For certain concentrations of scatterers this
model shows abnormal diffusion (id est, slower-than-linear growth of (r?)).
All the models in this paper are formulated in the square lattice. For a study
of diffusion — characterized by a second-rank tensor — the symmetry of
this lattice is adequate [22]. Finally, in section 4 we discuss the results of
this paper, comment on previous theoretical work, and propose deterministic
particle-point scatterer systems that should also exhibit abnormal diffusion.

2. Theory and simulations for a left-turning model

Of the five models proposed by Gates, only model V consists of point particles
and scatterers, in the spirit of lattice gas automata. This model is defined
as follows: a particle moves from node to node at integer time steps on the
square lattice. If it does not encounter a scatterer (placed randomly at the
nodes with probability c), it continues along a straight line. If it encounters
one, it turns left. This type of ballistic or Newtonian model is very different
in spirit from a standard random walk. Gates was able to prove that for
z > 216 — 1 the system does not behave diffusively. The fugacity z is related
to the density of scatterers by ¢ = z(1 + z)™. Therefore, the proof applies
to very high densities, ¢ > 1 — 2716, Simulations at such high densities are
difficult to achieve. A thought-experiment for ¢ = 1 is easy to perform:
the particle necessarily gets locked in length-four trajectories, and indeed
does not behave diffusively. The relevant questions one can ask are (1) for
what range of the density of scatterers is the Boltzmann approximation of
uncorrelated scatterers valid? (2) Is Gates’s proof of abnormal diffusion
extremely conservative?

For this model the Liouville equation for the probability of a particle
being at node n with velocity i at time ¢, p(n, e;, t) is given by

P(n, eiat+ 1) = cp(n — €i—1,€i—1, t) + (1 - C)p(n — €, eivt)
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Density D(Boltzmann) D(Simulations)
0.1 4.75 2.18

0.2 2.25 1.01

0.5 0.75 0.205

Table 1: Density, Boltzmann-level and simulational value of the dif-
fusion coefficient for left-turning model. Notice the deviations from
the Boltzmann approximation even at low densities.

Here the e; are unit vectors in the four directions i, which are labeled cycli-
cally. The relevant eigenvalue of the collision operator is —1, which yields,
according to the methods of [17],

D(e) = (207" = (47"

We have measured the mean-squared displacement versus time for several
values of scatterer density for this model. The averages have been calculated
over 10 configurations for each value of the density. Table 1 shows the
Boltzmann-level theoretical result and the simulational result for the diffusion
coeflicient. We see that even at very low densities the Boltzmann value is
significantly higher than the simulations (which have error bars of about
10 percent). Orbiting trajectories (limit cycles) are the only possible high-
density phenomenon that can account for the deviation from the Boltzmann
approximation in this model.

For higher densities, we have performed a binary-tree search of the value
of the density at which the system ceases to diffuse normally. This value
appears to be 27! < ¢ < 27! 4+ 27%, which is much lower than what Gates
expected as a lower bound for diffusion.

3. Stochastic models with abnormal diffusion

Consider a two-dimensional square lattice with scatterers placed randomly
at the nodes. There are two kinds of scatterers: type (1) causes a colliding
particle to scatter randomly with equal probability in any of the four allowed
directions. As discussed in [17,20] this model has a much lower diffusion co-
efficient than what the Boltzmann approximation predicts. In order to have
an even more important contribution from what Hauge and Cohen [15] call
retracing events, we need scatterer type (2), which reflects back the moving
particle no matter which direction it comes from. As in the previous sec-
tion, a particle will not change velocity as long as it does not encounter a
scatterer. The reflecting scatterers model overlapping trees (reflector config-
urations) which are the ones that cause the diffusion coefficient to vanish in
the continuum wind-tree model [15].

We have performed simulations for various densities of both types of scat-
terers. For each combination of densities, 30000 independent configurations
were used in calculating the average mean-squared displacement ({r?)). For
long enough times, typically 400 < ¢ < 1000, a log(< r? >) vs log t plot
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Density (1)+(2) | Fraction of (2) | Exponent a
0.10 0.20 0.9
0.25 0.20 0.8
0.40 0.20 0.9
0.50 0.20 0.9
0.25 0.10 1.0
0.25 0.20 0.8
0.25 0.30 0.85
0.25 0.40 0.9

Table 2: Total concentration of scatterers, fraction of reflective scat-
terers and algebraic exponent for the mean-squared displacement.

yields an exponent of algebraic growth, (r?) ~ ¢*. Table 2 shows the total
density of scatterer types (1) plus (2) (¢ = ¢; + ¢;) in column 1, the fraction
of type (2) (¢z/¢) in column 2 and the exponent a defined above in column
3. With an estimated uncertainty of 5%, we show clearly abnormal diffusion
for several concentration values in this model.

According to Einstein’s equation, the quantity (r?)/¢ should monotoni-
cally increase to a constant value for long times. Figure 1 is a plot of this
quantity versus time for ¢; + ¢; = 0.25, ¢y/c = 0.20. This provides further
evidence for abnormal diffusion.

4, Conclusions

We have measured the mean squared displacement for two particle-scatterer
lattice models. In a left-turning model there is no diffusion for a density of
scatterers ¢ > 1/2. The only theoretical lower bound for abnormal diffusion
so far was calculated by Gates, ¢ = 1 — 2718, We calculate the diffusion
coefficient in the Boltzmann approximation. Simulational values are much
lower than theoretical ones, even at low densities. For the first time we see
orbiting events [15] affecting the diffusion process.

In stochastic particle-scatterer systems the possibility of retracing trajec-
tories is known to lower [20] the diffusion coefficient obtained by the Boltz-
mann approximation. The inclusion of purely reflective impurities disrupts
the diffusion process completely. Numerical values of the algebraic exponent
of growth for the mean-squared displacement are reported in this paper.

In Gates’s left-turning model the fact that the particle always turns the
same way is essential to prove abnormal diffusion. In stochastic and deter-
ministic chiral models [16-20] the orbiting events are not so important. For
example, in a deterministic odd time-left deflection, even time-right deflection
model, the limit cycle distribution decays roughly as t~4/3; furthermore, after
800 time steps no more than 3 percent of all particles have become locked in
orbiting events; this does not even contribute to the dominant term of the
diffusion coefficient [18].

In the new stochastic models with reflective impurities we find nonlinear
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Figure 1: < 72 > /t vs time for the model in section 3, ¢ = 0.25, cafc =
0.2. Normal diffusion would correspond to a monotonic increase to a
constant value.
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growth of the mean-squared displacement. The simple theoretical approach
of van Beijeren and Hauge [23] predicts an algebraic growth exponent which
falls linearly with the concentration of scatterers. This dependence has been
corroborated numerically [24]. We do not observe such dependence in the
new models. It is unclear whether the method of reference 23 applies in this
case.

It is possible to introduce reflectors in deterministic lattice systems. For
example, in the “mirror models” of Ruijgrok and Cohen [19] in which scat-
terers placed at 45 degrees turn +z colliding particles to +y directions and
scatterers placed at 135 degrees turn £z colliding particles to +y and vice
versa, a configuration consisting of a 45-degree and a 135-degree scatterer
side-by-side will act as a reflector to particles hitting it with a +y velocity.

We hope that this paper will stimulate theoretical work in the predic-
tion of abnormal diffusion in lattice gas models. Especially, the introduction
of reflective scatterers should shed light on the behavior of the model of
Boghosian and Levermore [11], in which two particles hitting a node perpen-
dicularly are reflected straight back. We plan in the near future to study
numerically deterministic models with straight-back reflectors such as those
proposed in reference [25].
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