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Abstract. It is found numerically that a two-dimensional left-turning
particle-scatterer system does not diffusefor scatterer densities slightly
above one-half, or greater. For smaller densities, the diffusion coeffi­
cient is much lower than what the Boltzmann approximation predicts;
this is caused by orbiting events.

An isotropic-scattering model with reflective impurities also shows
deviations from the diffusion equation for various densities of isotropic
and reflective scatterers, caused by retracing events.

1. Introduction

Hardy, de Pazzis and Pomeau first attempted to model fluids with cellular
automata over ten years ago [1]. In the past two years we have seen a major
revival of this approach [2- 4]. Much effort has been spent in studying the
viscosity coefficient in order to find its size dependence in two dimensions
[5] or to simulate the highest possible Reynolds number [6,7]. The study of
diffusion in such systems has been limited [8-11], probably because of the
lack of particle identity in these models. The first study of diffusion in cel­
lular automata models was probably that of Gates [12], in which he proved
the non-existence of diffusion in certain lattice wind-tree models at high den­
sity of scatterers. The continuum wind-tree model is a four -velocity particle
(wind) and square scatterers (trees) system introduced by the Ehrenfests
[13] to illustrate the approach of a probability distribution to equilibrium.
Along with a similar model with circular scatterers studied by Lorentz [14],
the Ehrenfests's model has been very useful in identifying high-density phe­
nomena in fluids [15]. Gates introduced five deterministic models, only one
of which had point scatterers (henceforth model V). The other four were
area-occupying models with different potentials between scatterers. The first
simulations of lattice particle-scatterer systems [16] showed low-density dif­
fusive behavior in a non-chiral version of Gates's model V, which will be
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described in the next section. Theoretical expressions for the diffusion coef­
ficient have been obtained [17] for the analogous stochastic models, showing
excellent agreement with simulations [16,18,19]. An interesting case is that
of stochastic isot ropic scattering. The possibi lity of reflection brings in a
contribution from ret racing trajectories which modifies directly the Boltz ­
mann level (uncorrelated scatterers) solution. Simulations and an effective
medium approximation theory show excellent agreement in this case [20]. In
the present paper we go a step further, and explore high-density phenomena
in lattice gases which not only red uce the diffusion coefficient, but cause it
to vanish altogeth er . This paper proceeds as follows: in section 2 we study
analyt ically and numerically model V of Gates. We find numerically that the
threshold for abnormal diffusion is much lower than what has been proved,
and that even when diffusion exists the Boltzmann level theory is inadequate.
In sectio n 3 we present numerical calcu lations of the mean-squared displace­
ment ((r 2

) ) for a lattice particle-scatterer model where a few scatterers are
purely reflective. Einstein's studies of Brownian motion [21] predict linear
growth of (r2 ) for long t imes. For certain concentrations of scatterers this
model shows abnormal diffusion (id est, slower-than -linear growth of (r2

) ) .

All t he models in t his paper are formulated in t he square lat t ice. For a study
of diffusion - characterized by a second-rank tensor - the symmetry of
this lattice is adeq uate [22]. Finally, in section 4 we discuss the results of
this paper, comment on previous theo retical work, and propose deterministic
parti cle-point scatterer systems that should also exh ibit abnormal diffusion.

2. Theor y and simulations fo r a left-t urning m od el

Of the five models proposed by Gates, only model V consist s of point particles
and scatterers, in t he spirit of lat ti ce gas automata. This model is defined
as follows: a particle moves from node to node at integer t ime steps on the
square lattice. If it does not encounter a scatterer (placed randomly at the
nodes wit h probability c), it continues along a st raight line. If it encounters
one, it turns left. This ty pe of ballist ic or Newton ian model is very different
in spirit from a st and ard random walk. Gates was able to prove th at for
z > 216 - 1 t he system does not behave diffusively. The fugacity z is related
to the density of scatterers by c = z (l + z )-1. T herefore , the proof applies
to very high densities, c > 1 - 2- 16 . Simulations at such high densities are
difficult to achieve. A thought-experiment for c = 1 is easy to perform:
the part icle necessarily get s locked in length-four trajectories, and indeed
does not behave diffusively. The relevant questions one can ask are (1) for
what range of the density of scat terers is the Boltzmann approxi mat ion of
uncorrelat ed scatterers valid? (2) Is Gates's proof of abnormal diffusion
ext remely conservative?

For this model the Liouville equation for the probability of a particle
being at node n with velocity i at time t, p(n, ei, t) is given by

p(n , e., t + 1) = cp(n - ei-1, ei-l> t) + (1 - c)p(n - e. , e., t)
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Density D(Boltzm an n) D(Simulations)
0.1 4.75 2.18
0.2 2.25 1.01
0.5 0.75 0.20.5

Table 1: Density, Boltzmann-level and simulati onal value of the dif­
fusion coefficient for left-turning model. Notice the deviat ions from
the Boltzmann approxim ation even at low densities.
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Here the e i are unit vectors in the four dir ections i, which are labeled cycli ­
cally. The relevant eigenvalue of the collision op erator is - 1, which yields,
according to the methods of [17],

D( c) = (2C) - 1 - (4)- 1

We have measured t he mean- squared displ acem ent versus time for several
values of scat terer den sit y for thi s model. T he ave rage s have been calculated
over 103 configurati ons for each value of th e den sity. Table 1 shows the
Boltzmann-level theoretical result and th e sim ulat ional result for the diffusion
coefficient. We see that even at very low densities the Boltzmann value is
significantly higher than the simulations (which have error bars of about
10 percent) . Orbiting t rajectories (limi t cycles) are t he only possible high­
densi ty phenomenon that can accoun t for the deviation from the Boltzmann
approximation in this model.

For higher densities, we have pe rformed a binary -t ree search of the value
of the density at which the system ceases to diffuse normally. This value
appears to be 2-1 < C < 2- 1 + 2- 5 , which is much lower than what Gates
expected as a lower bound for diffusion.

3. Stochastic models with abnormal diffu sion

Consider a two-dimensional square latti ce wit h scat tere rs placed randomly
at the nodes. There are two kind s of scatterers: typ e (1) causes a colliding
particle to scatter rand oml y wit h equal probabili ty in any of the four allowed
directions. As discusse d in [17,20] this mo del has a mu ch lower diffusion co­
efficient than what t he Boltzm ann approximation predi cts. In order to have
an eve n more impor tant cont ribution from what Hauge and Cohen [15] call
retracing events, we need scatterer ty pe (2), which reflects back the moving
particle no matter which direction it comes from. As in the previous sec­
tion , a particle will not change velocity as long as it does not encounter a
scatterer. The reflecting scatterers mod el overlapping trees (reflector config­
urations) which are th e ones that ca use the diffusion coefficient to vanish in
the con tinuum wind-t ree model [15].

V\'e have performed simulat ions for various densities of both types of scat ­
terers. For each combination of densit ies, 30000 indep endent configur ati on s
were used in calculat ing the average mea n-squared displacement ((r 2

} ) . For
long enough t imes, typically 400 < t < 1000, a log(< 1,2 » vs log t plot
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Density (1)+(2) Fraction of (2) Exponent a
0.10 0.20 0.9
0.25 0.20 0.8
0.40 0.20 0.9
0.50 0.20 0.9
0.25 0.10 1.0
0.25 0.20 0.8
0.25 0.30 0.85
0.25 0.40 0.9

Table 2: Tot al concentration of scatterers, fraction of reflective scat­
terers and algebraic exponent for the mean-squared displacement.

yields an exponent of algebraic growth , (r2
) ~ t" , Table 2 shows the total

density of scatterer types (1) plus (2) (c = C1 +C2) in column 1, the fraction
of typ e (2) (C2/ c) in column 2 and the exponent a defined above in column
3. With an estimated uncertainty of 5%, we show clearly abnormal diffusion
for several concentration values in this model.

According to Einstein's equat ion, the quantity (r2
) [t. should monotoni­

cally increase to a constant value for long times . Figure 1 is a plot of this
quantity versus time for C1 + C2 = 0.25 , cdc = 0.20. This provides further
evidence for abnormal diffusion .

4. Conclusions

vVe have measured the mean squared displacement for two particle-scatterer
lat t ice models. In a left -turning model there is no diffusion for a density of
scatterers c > 1/ 2. The only theoretical lower bound for abnormal diffusion
so far was calculated by Gat es , c = 1 - 2-16 . We calculate the diffusion
coefficient in the Boltzmann approximation. Simulational values are much
lower than theoretical ones , even a t low dens ities . For the first time we see
orbiting events [15] affecting the diffusion process.

In stochastic particle-scatter er systems the possibility of retracing trajec­
tories is known to lower [20] the diffusion coefficient obtained by the Boltz­
mann approximation. The inclusion of purely reflective impurities disrupts
t he diffusion process completely. Numerical values of the algebraic exponent
of growth for the mean-squared disp lacement are reported in t his paper.

In Gates's left -turn ing model the fact t hat the particle always turns the
same way is essent ial to prove abnormal diffusion . In stochastic and deter­
ministic chiral mo dels [16-20] the orbiting events are not so important. For
example, in a deterministic odd t ime-left deflection , even ti me-right deflect ion
model, the limit cycle distribution decays roughly as t- 4 / 3 ; furthermore, after
800 time steps no mo re than 3 percent of all particles have become locked in
orb it ing events; t his does not even contribute to the dominant term of the
diffusion coefficient [18].

In the new stochastic models with reflective impurit ies we find non linear
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Figure 1: < r 2 > It vs time for the model in section 3, c = 0.25, cdc =
0.2 . Normal diffusion would correspond to a monotonic increase to a
constant value .
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grow th of the mean -squ ar ed disp lacement . The sim ple theoretica l approach
of van Beijeren and Hauge [23] predicts an algebraic growth exponent which
fall s lin early with the concentration of scatterers. This dep endence has been
corroborated numer icall y [24]. We do not observe such dependence in the
new models. It is unclear whether the method of reference 23 applies in this
case.

It is possible t o introdu ce reflectors in deterministi c lat t ice systems. For
example, in the "mirror models" of Ruijgrok and Cohen [19] in which scat ­
terers placed at 45 degrees turn ±x colliding part icles to ±y directions and
scatterers placed at 135 degrees turn ±x colliding particles to ±y an d vice
versa, a configuration cons isting of a 45-degree an d a 135-degree scatterer
side-by -side will act as a reflector to par ticles hitting it with a +y veloc ity .

We hop e that this pap er will st im ulat e theoretical work in the pr edic­
tion of abnormal diffusion in lattice gas models. Especially, the introduction
of reflective scatterers should she d light on the beh avior of the model of
Boghosian and Levermore [11], in whi ch two particles hitting a node p erpen­
dicul arly ar e reflected straight back. We plan in the near future to study
numerically deterministic models with straight-back reflectors such as those
proposed in refe rence [25].
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