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Abstract. A simple method for finding conformational substates of
proteins is presented and realized through computer simulations. It is
based on a procedure in which the amino acids in a protein take the
places of the cities in the three-dimensional travelling salesman prob ­
lem. Optimization by simulated annealing was employed in the com­
puter simulations to obtain conformational substates originating from
a given three-dimensional structure of the protein backbone. Two
polypeptides, Avian Pancreatic Polypeptide and Leucin-Enkephalin,
were modelled and compared with available x-ray diffraction data.
The method gives an interesting spinoff: the possibility of assigning a
measure of complexity to real protein st ructures, due to the fact that
a metric on the set of interactions employed by the protein can be
defined naturally.

1. Introduction

The determination of the tertiary structure of proteins from their sequence
of amino acids, and the functional role of conformational substates of a given
tertiary state are important unsolved problems in the science of molecular bi­
ology. The dynamical behavior of complex systems like proteins is in general
extremely hard to simulate on a computer. It has been suggested that the
reason might be that many complex systems actually function as computers,
performing computations which cannot be completed in fewer logical steps
than the systems are using themselves . In other words, the computations are
irreducible and the computational results cannot be obtained by the use of
short cuts, because they do not exist [1].

In the case of the dynamics of proteins, where parts of the proteins move
relatively to each other, the question is: what is the protein computing whi le
it moves, and what is the final result of the computation?

The result of the protein folding process is clearly a topology. The process
looks for good neighbors for the various parts, and the system ends up in
a conformational state with high stability in which parts with an affinity
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for each other (or a dislike of the solvent) are brought together, and where
mutually repulsive parts seek positions with the highest poss ible dist ance
between them . Equilibrium fluctuations m ake it possible for a protein in
a given conformational state to assume a large numbe r of simi lar substates
[2,3], an d thus the computational result must be descr ibed in the form of a
time-dependent topology, or simply as an ensemble of the subst at es assumed.

In this pr ocess of sampling the set of topologies , the ratio between attrac­
tion and repulsion is oft en rather large, as can be seen from the very compact
ob jects the folding process is capable of producing .

The determi nation of the three-dime nsio nal st ructure of these folded ob­
ject s by conventional molecular dynamics [4- 8] leads to representat ions of
large sets of coupled differential equat ions describing the interaction and
motion of each atom in the protein. However , even with the help of to ­
day 's supercomputers, an ext reme computat ional complexity is conn ected
with this application of brute force . Therefore much research activity has
recen tly focu sed on simple models based on analogies to systems in physics
with certain generic properties overlappi ng with those of the proteins, bu t
which are better understood [9,10].

P roteins can be viewed roughly as being folded st rings to which a num­
ber of side -chain s are at tached. The multiple configur at ions of these side­
chain s and their st ability is the subject we consider in this pap er. Importan t
char act eri sti cs of pro tein dynamics are the many local mi nima in the energy
surfaces, giving rise to m any different metast ab le sub st at es separated by bar­
riers. These characteristics have also been found in disord ered and fru st rated
systems [11] such as spin glasses, neural ne tworks an d in complex problem s
in optimization , of which the travelling salesman prob lem is a prot otypical
example.

The hill- valley energy profi les for proteins and the transition scheme of
slow sequential relaxation, suggest that proteins in many ways are similar
to glasses [9- 11]. Systems consisting of simple parts behave in general with
a degree of com plexity which is int imately related to the diversity of the
in teractions present in the systems [12]. Examples are ferromagnets and
spin glass es, of which the former em ploys very few different interactions and
has a relatively simple behavior compared with the lat t er , which emp loys a
wealt h of different interacti ons and has a rather complex be havior . In systems
of intermediate size, as proteins ty pically are, the interaction diversity will
usually be very high [12].

Confo rm at ional subst ates of a pro te in are partly dete rmined by the po­
sitions of the side-chains , and in a pr ot ein which has N side-chains , there
ar e (N - I)! /2 side-chai n-side-chain interactions to account for. This is
clearly computationally intractable for larger proteins, but since the side­
chain-side-chain interact ion is predominantly of short range, we shall con­
sider a model where only neighbor interactions are included. We are then
left with the problem of choo sing a suitable neighbor topology for the three­
dimensional configur at ion of side-chains, being the resu lt of a global relax ­
at ion t hroughout t he protein. A su itable selection of neighbors should com-
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pri se shor t rang e as well as interactions of longer range. We will pro pose to
achi eve this by expanding the mo del so that it incorp orates a procedure for
selecting a self-consistent sequence of nearest neighbors. The most reason­
able number of nearest neighbors may well differ from two. But for reasons of
simplicity, we assume that the coordination number is fixed and equal to two .
This is t he smallest number which assures that the dynamics of the side -chain
configurati on is collective. As describ ed later, it also immediate ly leads us
to the analogy with the problem of the travelling salesman. The side-chains
or atoms take the places of the cities , and the Hamiltonian becomes the sum
of the neighbor interactions.

The Travelling Salesman Problem (TSP) is a finite prob lem in which
we also encounter an energy sur face wit h many local minima [13,14]. The
TS P, when ap plied to pr otein st ructure, has the advantage of giving a simple
dynamical desc ription of protein conformations in terms of the kinematics
of the participating side -chains . At the same time, it is easy to develop
an optimization procedure on a TSP that, when transferred to the protein
structure, gives a protein substate or a near-optimal local minimum of the
Hamiltonian . In other word s, our goal is to describe the set of fun cti onal
substates an d the invo lved interactions, based on the participating atoms
movements, without invoking the full set of coupled differential equations of
the motion for all atoms in the protein.

The function of a protein can be described either by the ensemble of
substates parameterised by conformational coordinates, or by the ensemble
of interacti ons which are res ponsible for the set of substates. T he intern al
structure of these sets, i.e, the interrelations between set -members, possibly
that of a hierarchy, as it is suggested for the first ensemble in reference [9], can
be investigated. If a hierarchical structure is found, it is possible, by means
of the complexity measure introduced in reference [12], to assign measur es of
fun ctional com plexity to proteins, and thus it becomes possib le to relate the
sequence of amino acids to the function of the protein .

In the following sections we shall further elaborate on the analogy between
protein dynamics and the TSP. In section 2, TSP is int roduced, and in section
3 it is applied to proteins. Fi nally in sect ion 4 we present data from compu ter
simulations of the mod el and compare them with x-ray da ta of the native
structure. An ap pendi x contains an outli ne of a procedure which assigns a
measure of functional complexity to real protein st ructures.

2. The t r av elli ng sa le sm an problem and optimization by Sll11U-

lated annealing

The t ravelling Salesman Problem is a com plex com binatorial optimization
problem [15J that is hard to solve, but easy to formulate. It belongs to the
class of "NP-complete" problems [16J for which know n algor it hms, obt aining
the exact solution, req uire a number of steps that grows at least exponentially
with the nu mber of const ituents in the problem. The TSP is simply stated
as the following . Give n N cit ies and their mutual dist ances, the ob jective is
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to find a tour, or a permutation P, of the cities such that the total length L
of th e tour , visiting all cities once and returning to the first in the succession
P , is minimized . If dij denotes the distance between city i and j, the total
length to be minimized is simply:

N

L = L d p (i)P(i+l)
i =1

with the return condition:

P(N +1) = P(I)

(2.1)

(2.2)

If the start ing point and direction of the tour do not matter, the total
number of distinct tours is (N -1)!/ 2. To find the exact solution to the TSP
by test ing all possibilities is therefore impossible , if N is large . Heuristic
strategies, which search for near opt imal tours and only explore the phase
space locally, will in most cases fail to find the overall optimal tour. This is
because it often pays to choose cities that are not nearest neighbors at a given
step of city-search, in order to optimize the total length. Thi s phenomenon,
which makes the T SP opt imization very intricate, is termed frustration [11],
and is, as in the case of spin glasses, the global inability to satisfy simul­
taneously all local ordering requirements. It is the cause of the many local
minima of the energy, which here is equivalent to the length of the total
travelling distance.

Simulated annealing [17,18] is a Monte Carlo optimization scheme de­
signed to cope with these problems. It is based on the Metropolis algorithm
[19] which accepts not only down-hi ll changes of the objective function or
Hamiltonian, but also steps that raise it. In the approach a random number
generator is used to generate new configurations.

In the TSP, a new configuration is made by introducing a number of n­
bond moves into the old one. For a 2-bond move, two links on a tour are
discarded, say di ,i+l and d j,j+l' and then replaced by di, j and d i+l,j+l' so that
the new path is again a tour. There are N (N - 1)/ 2 such moves arising from
any tour.

This pro cedure is performed with the given Boltzmann acceptance prob­
ability a number of t imes , forming a Markov chain, and eventually the sys­
tem reaches thermal equilibrium with the macroscopic parameters fluctuat­
ing about t heir mean values in a Boltzmann distribution appropriate to the
t emperature. The simu lated annealing procedure starts with a sufficiently
high temperature, at which a relatively large amount of tour proposals are
accepte d , and the system can be considered as being melted. After waiting
for equilibr ium to be well established at each temperature, the temperature
is decreased according to a cooling schedule. Finally, at a temperature where
the system has frozen into a certain configuration, one hopes to have reached
a 2-optimal solution , which is a solut ion stable to all 2-bond moves, and
hopefully close to the global minimum or ground state of the prob lem.



A Travelling Salesman Approach to Protein Conformation

3. TSP applied to protein conformations

3 .1 The relaxat ion

13

The goal of this paper is to obtain a relaxation scheme for realist ic spatial
configurations of the atoms in a given protein. T he relaxation we have in
mind is based on an underlying hierar chically constrained dyn ami cs, as de­
scribed in reference [20] for a glassy relaxation, and which we believe is also
essential for proteins . T he bas ic fea t ure of a hierarchically constrained dy­
namics is that the relaxation follows a series of many correlated activation
steps. Consider a complex system with a series of levels each containing a
nu mber of degrees of free dom, and where each level is strongly corr elated to
the pr eceding level. In a discrete ser ies of levels, l = 0, 1,2, ..., the entities in
levell + 1 are only free to change their state if a condit ion on som e entit ies
in levell is satisfied, a situation bearing a resemblance to a t raffic jam .

For a protein molecule in the tertiary structure we ask what global effects
a change in the position of one side-chain m ight have on other side-chains
in the protein str ucture . We therefore need a pr ocedure under which all the
involved side-chain s along the backbo ne of the protein can re lax in a direction
toward s a new equilibrium pos it ion.

According to the mechanism just described, the side -chain of a given
level is correlated wit h the side -chains of the preceding levels . A level is
here defined by all the preceding side-chains, in a given succession of side­
chains. If, however , the relaxation was just proceeding sequentially along the
backbone, the un derlying dynamics would not have any physical reality.

We shall instead consider a relaxation proceeding seq uentially thro ugh
t he present succession of neighbors in the three-dimensional configuration
space. (For a coordination number of two, the successio n of neighbors is
uniquely defined once a direc t ion is fixed .) It is important that the relaxat ion
of the side-chain motion is non-exponential in time, which observations [10]
indicate, and which has been found to occur in system s with a hierarchically
constrained dynamics [20] . The relaxation follows a power law, since the
weights in each level are constant.

The best sequence of levels, i.e. t he most reasonable choice of neighb ors,
is defined so as to make the total interact ion energy of the entire protein min­
im al. This is ach ieved by spanning out a t rave lling salesm an tour thr ough
points of attack in all the involved side-chai ns. The sequence of side-chains
in the tour is selected by optimizing the interact ion energy, which is a func ­
tion of the euclidian distances between the side-chains. The procedure thus
encompasses both interactions of short range as well as fewer interacti ons of
a longer range.

3. 2 The potential

Instead of optimizing the bare to ur length, as in the ordinar y T SP, we shall
optimize a "length" which is a sum of dist ances each transformed by a func ­
tion f . The fun ct ion f describes the resulting pote nt ials of the interaction
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between two side-chains.
We are using an approximation to the following well-known potential

which includes polar as well as van del' Waals interactions:

A B qlq2
f(d) = d12 - d6 + dD ' (3.1)

where D is the dielectric constant of the medium, A and B are known con­
stants taken from reference [21J and [22], and ql and q2 are charges.

The precise form of the set of functions used to mimic this potential is
shown in figure 1, where the two curves correspond to attractive and repulsive
interactions, depending on the hydrophobicity index and polarity of the side­
chains. The position of the first cusp on the curves is determined by van del'
Waals radii aroun d the points of attack of the side-chains, while the position
of the second cusp is determined by a cutoff which ensures that distant
repulsive side-chains are unlikely to be chosen as neighbors.

The best nearest neighbor topology of the protein structure can thus be
found by solving an ord inary Travelling Salesman Problem in which the dis­
t ances be tween cit ies are the values of the funct ion f instead of the eucl idian
dist ances.

3 .3 The procedure

In detail our procedure is as follows. Consider a given protein in the tertiary
structure, where all the coordinates along the folded backbone are known
from x-ray crystallography or NMR. The side-chains of all the am ino acids
along the backbone move according to their mutual int eraction, and under
constraints from the bonding geometry. We now layout cones along the
backbone, one for each side-chain, placed with their tops at the carbon-,B
atoms and with axes along the carbon-a-carbon-,B direction, as shown in
figure 2. These local cone "st ate spaces" are discretized and finite, and they
emerge when the dihedral angles of the side-chains are varied. In the case of
alanine, for example, the state space degenerates to a single point.

At the start, a random "travelling tour" between randomly chosen po­
sitions on the cones is generated. Then the sequential relaxation for this
permutation of the cones takes place, where the new side-chain configuration
on one cone is determined by the relaxation cond ition that the interaction
energy, or (transformed) distance to the side-chain of the preceding cone, is
minimized . When the sequent ial relaxation is comp leted a total tour length
L can be calculated , and it represents the energy of the system.

The ra ndom st ar ting to ur represents the present set of "active" nearest ­
neighbor interactions, most of which surely are totally unp hysical, and th us,
by the potential in figure 1, has a rather high energy. By introducing a 2­
bond move into this tour, another one is pro duced , and the same relaxation
procedure is carried out sequentially, resu lting in a new total energy of the
system. The new tour and the resu lting positions on th e cones are kept
as the new configuration , or rejected, according to the Boltzmann factor in
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attractive

repulsive

DISTANCE d

Figure 1: The new dist ances (or energies) as a function of the euclid­
ian dist ance be tween the side-chains . The two curves correspond to
attractive and rep ulsive int erac tions respectively. By assigning large
values to both very short an d very long dist ances , neighbors of this
kind become highly improbable.
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Figure 2: The degrees of freedom for three side-chains drawn as grids
on cones.

the annealing scheme. We gradually cool down the protein system, accept­
ing fewer and fewer changes in th e tour while optim izing the length of the
"round trip" between the side-chains of the protein. Meanwhile the protein
is relaxing into a conform ational state or substate.

The resulting substate will in general first of all dep end on the location
of the cones, i.e. the initial backbone structure. These substates are local
or global 2-opt minima of the tour length (2.1), and th ey are in the next
section compared with the native st ructure obtained by x-ray data. T he
difference between the native structure and the generated substates reflects
the diversity of t he nearest neighbor interactions activated by the protein.

It is important to notice that our pro cedure of finding local minima or
conformational substates only depends on a few free parameters such as
initial temperature and cooling velocity. Th e intrinsic parameters needed
to fix the cones, such as cone size, polarity and angular constraints, are all
da ta that are easy to obtain an d in fact data that, except for the backbo ne
geometry, follow from the sequence of am ino acids .

3.4 Functional complex ity

The set of all conformational substat es possesed by a given protein deter­
mines the functional complexity of the struct ure. This set is, by our travel­
ling salesman approach, desc rib ed by a set of tou rs, in which each member
represents a discrete character isation of th e interactions responsible for a
particular conformational sub st at e. In th e appendix, it is shown how one
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can easily define a me tric on the set of all possible tours, and hence measure
the dist an ce between the interacti ons employed by different conformat ional
substates. Armed wit h the inter-state dist ances it becomes possible to reveal
the organization in the full set of active interactions, possibly that of a hie rar­
chy [9,12,14J. A tree-like organization can be constructed by a class ification
process [23J. The classification process lumps the conformat ional substates,
in groups wit hin groups, according to their similarit ies. A set with an org an i­
zat ion neither completely ordered nor comp letely disord ered will correspond
to a structure with a high diversity in the intern al interactions, an d hence a
high complex ity, while a low complexity will resul t from a set wit h random
or self-sim ilar organization. Our approach thus makes it possible to compare
prote in structures wit h respect to func tio nal complexity.

4. N u m er ica l r esults from computer simulations

We shall in this section illustrate our approach to protein confor mations by
two examples: (1) Avian Pancreatic Polypep tide, APP, a medium-size pro­
tein of 36 amino acids, and (2) Leucin Enkephalin, a very small po lyp eptide
of only 5 amino acids .

We choose t hese two simple examples of polypeptides for this st udy be­
cause their side-chain motions are easy to follow in detail, and are well doc­
umented in the literature [24-30J.

4.1 Avian P ancreatic Polypeptide (APP)

The first example, AP P, is interest ing from a modelling poi nt of view, due to
its compact globular structure comprising an alpha-helix (residues 14-32) and
a hydr ophobic core, and yet bei ng quite simple com pared to ordinary glob ular
proteins. It s cryst alline st ru ct ure is well known from x-ray diffraction [24],
and is shown in figure 3a,b.

We simulate the APP by fixing the center of our global coordinates at
the carbon-a atoms of each amino acid on the backbone. We allow the side­
chains to move on 'grid ' po ints on cones as described ab ove, representing
possible configurations of the side-chains of each am ino acid . Optim al or
near-optimal positions on the cones are to be determined in the simulation.
Due to the fru strated situation wit h both positive and neg at ive int eractions
many different substate configurations must be expected to have low cost in
interact ion energy.

The optim ization procedure start s with the side -chains in random po si­
tions on the cones and a random choice for the nearest neighbor top ology.
The corresponding to ur is crossing in an d out through the entire molecule,
as shown in figure 4a. When t he annealing proceeds the tour becomes stable
at a certain temperature and all the side -chains have relaxed accordingly.
The res ult of the optimization is shown in figure 4b, and rep resents a set of
interacti ons wit h a mu ch lower energy. The rate at which the te mpe ratur e
was lowered is logarithmic [18].
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Figure 3: (a) The x-ray structure of Avian Pancreatic Polypeptide
(APP) a medium-size protein of 36 amino acids . (b) APP with the
cone state-spaces for each side-chain.
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Figure 4: (a) A random starting configuration for Avian Pancreatic
Polypeptide (APP). Most of the interactions are clearly unphysical as
nearest neighbor interactions. Lstart = 7320.1. (b) A self-consistent
set of nearest neighbors , Lend = 2264.3. The L's are given in trans­
formed distances representing interaction energy.
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Our resu lts can be compared with known conformational changes [25,26].
The fairly fixed three-dimensional structure due to a stable hydrophobic core
is presumably essential for a correct binding to t he hormone receptor . Espe­
cially the direction of Tyr 27 and Phe 20 bending away from the alpha-helix
towards the proline chain is thought to be crucial for the stability of the func­
t ional state of AP P. Asp 22 and Glu 25 should point in the opposite direction
away from th e proline chain, and thus together constitute hydrophobic and
hydrophilic sides of th e alpha-helix. Our dat a in the minimized configuration
of figure 4b descri be that picture.

In Table 1 is shown RMSD, standard-deviations and x -square for the
sample of minimized conformations in relation to x-ray data. We found
RMSD values of the order of 1.6-2.7 A. Within an average level of standard­
deviations of the order of 2.1 A there is statistical justification, for infering
that the data is consistent with the x-ray structure. The full sample being
the result of one hu ndred runs is shown in figure 5.

One could question the im port ance of the comparison between the sample
of substates and x-ray data from the crystalline structure of the protein.
This st ruct ure is presumabl y an artifact of the conditions for crystal growt h.
However , in defaul t of better data for the biologically active protein, e.g .
NMR data for the protein in solution, it is the best we can do at the moment .
It is important to note that our method, in princ iple, makes it possib le to
take into account the effect of the surrounding media by simply including
solvent molecules as cities in the TSP approach.

4 .2 Leug-enkep h alin

The second example of (Leus)-enkephalin (Tyr-Gly-Gly -P he-Leu) has only
five side-chains. The three large and import ant side-chains, Tyr , Phe and
Leu are represented by big cones st icking out from the corres ponding carbon­
(3 ato ms, and their motions are essential to the various conformations . The
unfolded form has been observed to participate in beta-sheet polymers, refer­
ence [27], but we shall study its folded structure, see figure 6a,b and reference
[28], stabilized by two hydrogen bonds between N1, 0 4 and 0 1, N4. The two
glycine amino acids are kept fixed during the simulation, but they are still
interact ing with other side -chains, especially due to their repulsive cores .

Typical results of a computer simu lation are shown in figure 7a,b, start
and end configurations respectively. The end results show a fairly fixed ori­
entat ion of the two impo rtant side-chains, Phe an d Leu , while the Ty r side­
chain is free t o move almost perpendicular to the ring plane. Thi s is what
has been observed in x-ray diffraction data [28- 30].

Smaller peptides are known to be less constrained than larger ones . Com­
pared to their size , they are employing a more diverse set of int eractions
than the densely packed globular structures. The mean-deviation here is
higher than in the case of APP, and is within 3.4 Aof RMSD . The standard­
deviations are listed in Table 2, and they lie in the interval of 1.3 and 2.8 A.
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Figure 5: The sample of one hundred runs on APP is shown with their
distribution on sites in the cone state spaces. The weight of each site
is not shown.
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i SD MD MAXD
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 1.3 1.1 2.5
4 0.3 0.2 0.6
5 0.0 0.0 0.0
6 1.2 0.6 3.0
7 4.0 3.7 7.9
8 0.0 0.0 0.0
9 0.0 0.0 0.0
10 1.4 1.5 2.7
11 1.4 1.4 2.8
12 0.0 0.0 0.0
13 0.0 0.0 0.0
14 1.4 1.2 2.7
15 1.4 1.2 3.0
16 1.4 1.7 2.8
17 1.1 0.5 2.8
18 1.3 2.2 3.0
19 2.9 2.1 6.8
20 3.8 4.2 7.9
21 3.9 3.8 7.7
22 1.3 1.5 2.7
23 2.2 1.6 4.8
24 2.2 3.5 4.9
25 0.6 0.6 1.1
26 2.5 2.2 5.0
27 3.5 5.9 7.8
28 1.4 1.3 2.9
29 2.3 2.1 4.7
30 1.4 1.0 3.1
31 1.3 0.9 2.9
32 1.1 1.4 2.3
33 2.7 1.9 5.6
34 3.0 2.1 6.7
35 3.7 4.0 7.5
36 3.9 3.8 8.2

Table 1: APP. i : Amino acid number, 5'D: Standard deviation, M D:
Mean deviation from x-ray structure, M AX D: Maximum deviation
from x-ray structure in the cones. X2 = 0.77.
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Figure 6: (a) The x-r ay st ructure of Leug-enkephalin, a small peptide
of 5 amino acids. (b) Leug-enkephalin with the cone state-spaces for
each side-chain.
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Figure 7: (a) The random starting configuration for Leug-enkephalin,
Lst art = 372.2 . (b) Typical end configuration, Lend = 131.9.
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i SD MD MAXD
1 2.8 6.8 7.9
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 1.3 0.4 7.9
5 1.4 1.1 2.8

Table 2: Leug-enkephalin. i: Amino acid number, SD: Standard de­
viation, M D: Mean deviation from x-ray structure, MAX D: Maxi­
mum deviation from x-ray structure in the cones. X2 = 3.8.

The full sample is shown in figure 8.

5. Conclusion

25

We have presented a method for finding conformational substates of proteins
which relies on an analogy to a hard well-known problem from the field
of optimization, the travelling salesman problem. Efficient techniques for
obtaining near-optimal solutions for this problem have provided us with a
tool for finding conformational substates, a tool which drastically decreases
the computational complexity that usually haunts protein engineers. The
model gives only crude, but important, features of the substate ensembles,
and it contains only a few parameters to be adjusted in the search of local
minima or conformational substates of the protein structure. The necessary
parameters are easily obtained from x-ray data of the backbone coordinates,
and from the amino acid sequence, such as hydrophobicity, polarity and size
of individual amino acids .

A quantitative complexity measure characterizing the functional comp lex­
ity of a protein structure has furthermore been proposed. It is our intention
to apply the complexity measure to available protein data, and to extend
the model to optimize not only local side-chain coordinates but also global
backbone coordinates, i.e. to treat the substate conformations as well as
the folding of proteins. This extension is natural, since the folding can be
considered as being a relaxation process, which dynamically minimizes the
backbone interaction energy, according to a changing neighbor topology, ex­
actly as in the TSP approach.
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. .

Figure 8: The sample of one hundred runs on Leug-enkephalin is
shown with their distribution on sites in the cone state spaces. The
weight of each site is not shown.

Appendix A . Appendix

The interactions participating in a conformational substate are, by our meth­
od, described by a tour, which is a unique selection of N links from the full
set of N(N -1) /2 possible TSP links. Such a selection will be a point in the
space of allowed tours. Distances between points in this space can be defined
in various ways, either as the number of 2-bond moves which turn one tour
into another [31], or simply as the fraction of links that differ in two tours

1""12d12 = 1- N ~lili· (A.l)
,

The overall sum is N (N - 1)/2 links, and Ii = 1 if the link is participating
in tour m, and 0 if it is not . Hence 0 :::; d12 :::; 1. Correspondingly, an overlap
q12 = 1 - d12 , between two conformational substates can be defined as the
fraction of links they have in common, 0 :::; q12 :::; 1.

In tour-space the solutions will not be randomly distributed, but will
be lumped in some way. When the tours are subjected to a classification
process [23], the lumps can be characterized by a tree, showing the distances
between clusters and the actual number of them. (The classification process
redefines distances between tours , but makes, according to some criteria, as
few modifications as possible.)

A measure of complexity [12] can be assigned to this tree (hierarchy) of
functional states by counting the number of distinct subtrees the tree pos ­
sesses, which again characterizes the diversity of the interactions present in
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the protein structure. A highly uniform tree will corr espond to few distinct
interactions, as will a ran dom one . In contrast a non -uniform but non-random
tree will correspo nd to interactions which are highly heterogeneous. The com­
plexity assigned to a protein structure will thus be rel ated to the functional
behavior of the protein, and not to a description of it s prim ary, secondary
or tertiary structur e. It would be very interesting, however , to compare this
com plexity measure wit h the me asure of the information-conten t obtained
from a sequence analysis.

The complexity me asu re can be normalized so that differen t proteins can
be compared with respe ct to functional complexity.

Without a discrete characte rization of the conformat ional substates, as
our tours are, it is har d to see how a metric can be defined. An d wit hout a
metric, no classifi cation, and hence no tr ee, can represent the set of sub st ates
for a given protein in an abso lute way.
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