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Abstract. The Hedlund-Richardsod Theorem states tha t a global
mapping from configuration space to itself can be realized by a Eu­
clidean cellular automaton if and only if it takes the quiescent configu­
ration to itself, commutes with shifts, and is continuous in the product
topology. An analogous theorem characte rizing the realizability of self­
mappings of finite or infinite configuration space via neural networks
is established. It follows that, under natural hypotheses, a uniform
limit of global dynamics is a global dynamics . We also give sufficient
conditions for the global dynamics of a neural network to be realized
by a cellular automaton.

1. Introduction

Determinist ic cellular automata [7,8J can be viewed as discrete dynamical
systems with local dynamics defined by a finite-state machine. This local
dynamics induces a global dynamics, i.e., a self-mapping of configuration (i.e. ,
global-state) space C. Since not all self-maps of C arise this way, it is natural
to ask what self-mappings of the configuration space can be realized as the
global dynamics associated with some cellular automaton. T his question is
answered satisfactorily by Richardson 's Theorem [5J. (A one-dimensional
version of this result follows from earlier work by Hedlund [3J.) Since the
set of local states of a cellular automaton is finite an d the number of cells
countable, the configu ration space in its na tural topology is homeomorphic
to the Cantor set. Synchronous, discrete neural networks (or con nectionist
models) can also be thought of as discrete dynamical systems with their
local dynamics defined by local, non -uniform activation functions together
with a local non -uniform inpu t function cons ist ing of the weighted sum of
input values. Hence, local dynamics give rise to global dynamics on both the
net-input space and the activation space of the network. It is natura l to ask
again what global properties of a self-map of the net-input space arise from
such local non-uniform dynamics.

We provide necessary and sufficient conditions to characterize such self­
m aps for any infinite ring R with unity an d fami ly of activation fun ct ions
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fi : R -+ R satisfying fi(O) = 0 (in order to avoid spontaneous generation of
activation) and fi (1) a unit in R (t o avoid trivial networks). Recall that the
supp ort of a configuration x : C -+ C is the set of vert ices having non-zero
value. For each cell k, define the kth pixel to be the configuration that is
non-zero only at k by e7 = 1 if k = i, and 0 otherwise.

Theorem 1. A self map T : C -+ C is realizab le by a neural network with
activation functions {Ii : R -+ R } if and only if

1. T(O) = 0;

2. T is continuous;

3. T( ek
) has finite support for each pixel configuration ek

; and

4. T and {fd are related by

T( '" j ) - '" fi (Xj) T ( j)6 x je i - 6 -f.() e i
j j t 1

Condition 1 disallows spontaneous generation within t he network. Condition
2 allows t he recovery of the underlying net work st ructure. Conditions 2 and
3 reflect the local infini t eness of t he network. Condition 4 mirrors the local
dyn ami cs of the network . (See Section 2 for t heir precise meanings . It will be
shown in section 4 that con ditions 1 and 2 im ply that t he sum in condition
4 is finite.) Thus , as one wou ld expect , the first tw o conditions are two of
those from Richardson's Theorem, while the ot her two result from the less
reg ula r type of architect ure of t he network , and from t he characteristic form
of it s local dynamics.

T heorem 1 has nat ur al applications . In t he impor tant case of a finite
neural network, conditions 2 and 3 are automatically satisfied. It also implies
that, under natural cond it ions , the uniform limit [1] of neural network global
dyn ami cs is also a global dynamics. A direct proof of t his res ult may be
somewhat involved .

Corollary 1. A self-map T : CY -+ CY is realizab le by a neural network
with given activation fun ctions {Ii : R -+ R } if it is the uniform lim it of a
seq uence of neural network global dynam ics Tn : CY -+ CY with the same
activation functions and uniformly bounded supp ort of pixel images Tn(ek

) .

Proof. T he first two conditions of Theorem 1 are easi ly verified for T . The
third follows since uniform convergence implies pointwise convergence, which
on each coordinate R emans t hat each sequence {Tn(ek)j }n>O is eventually
constant; t hus T (ek

) can contain as m any nonzero cells as the-uniform bo und
on t he support of Tn(ek ) . Likewise, a given T( L j Xjej)i in condition 4 is
eventually equal to t he corresponding sum for Tn' so it remains to check that
the sets {j : Tn(ej)i =f. O} are eventually equal to {j : T (ej) =f. O} . This
follows since that sum has only finitely many nonzero terms . •

If t he underlying diagraph of a neural network happens to be a cellular
space, it is reasonable to ask un der what conditions t he global dynam ics
m ight be that of a cellular automaton.
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Theorem 2. Let T : C -+ C be a self-map arising from a neural network
whose activation funct ions are {Ii : R -> R} and let F be the product of
the t.. If

1. the underlying diagraph D of the network is an Euclidean cellular space;

2. the activation functions of the network are identical and onto;

3. T commutes witb shifts of pixels .

then there is a mapping T : C -> C that is realized by a cellular automaton
on D so that the following diagram commutes

T

C ~ C
F! ! F

C ~ C
T

In Section 2 we formally define the brand of neural net work considered
here. In section 3 the characterizing condit ions for the global dynamics of
such a network are established. Section 4 is devoted to recovering the un­
derlying network structure from a suitable self-map of the Cantor set. The
results of section 3 and 4 constitute the proof of Theorem 1. Section 5 is
devoted to the proof of Theorem 2.

2. N eural N etworks

A neural network consists of cells or processors capable of some arithmetic,
connected by links bearing weights [6J. Cells sum their weighted inputs and
apply an activation function to calculate their new act ivation state. This
means that a neural network is bu ilt on a directed graph with vertices V,
and various arcs from vertex j to vertex i representing links and labeled with
a weight Wij from the ring R. In order for the network to be phys ically real­
izable, each vertex must have only finite ly many incomi ng and outgoing arcs,
i.e., the diagraph must be locally finite . In order to have full computational
ability (i.e ., that of Turing machines [2]) neural networks must allow for an
arbitrarily large number of cells. We will simply assume a count ably infinit e
number.

Formally, a neural network is a triple N = (R , D , {I;} ) consisting of a
finite ring R, a countably infinite, locally finite, arc-weighted, directed grap h
D , and a family of activation funct ions, Ii, one for each vertex i in D . The
local dynamics of N is defined by equations

neti(t +1) = L Wij(/j(t),

where

(2.1)

(2.2)
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is the activation of the cell j at time t, and the sum is taken over all cells j
supporting links into i.

At a fixed time t, the vector of net-inputs assigns to each cell i of D a new
value net; from the ring R, and is thus a member of R v . (Recall that R v is
the set of all functions from V to R .) Similarly the vector of activations is
also a member of R v. In the following we shall use C to refer to activation
space and call it the configuration (activation) space of the network, and
use R V to refer to the net-input space . At each tick of the time clock, the
current net-input vector changes. This change reflects the global dynamics
of the network N .

For each cell i, the activation function 1; maps R onto R. This family of
functions gives rise to a product function F : R v -+ C so that the following
diagram commutes under composition of functions:

F

RV ---+ C
'" ! !"i

R ---+ R
Ii

where ']['; is the projection from R V onto the i th component in R. This means
that for each cell i and each net -input vector x E R V

, F(X)i = fi(Xi).

3. Global dynamics of neural networks

Formally, the global dynamics T : R V -+ R V of N is given for any configu­
ration x E R V

, by

T(x); = neti(F(x))

T gives rise to the following commutative diagram:

T

RV ---+ RV

F! !'"
C ---+ R

neti

(3.1)

This global dynamics T describes the evolution of the entire network from all
possible global states as a dynamical system. The four properties of Theorem
1 are satisfied.

1. T(O) = O. This now follows from equations (2.1) and (2.2).•

2. T( ek
) has finite support, since our graph D is locally finite .•

For our next property of T we must make a small excursion into topology.
(See [IJ for any unfamiliar definitions or results used below.) Since R is a
finite ring, give it the discrete topology, i.e., let every subset of R be open.
Given R v the product topology, i.e., basic open sets are those that restrict
to specified values at a fixed finite number of cells. With these topologies,
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3. T is a continuous map.
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This proof is most easily followed by referring to the diagram below equa­
tion (3.1). A functi on into a product space is cont inuous if and only if its
composition with each project ion function 7r; is cont inuous. T hus F is con­
tinuous since each f; is (every function on a discrete space is cont inuous).
T he continuity of net; requires a little argument. Take any x E nv so that
net;(x ) = r E R: {r } is an open neighborhood of r in R: Onl y finite ly many
cells, ill ' .. , in cont ribute to net;(x). Let U be the subset of nv consisting
of all those configurations that agree with x on each of iI, . . . ,en' T he set
U is open in nv and net;(U) ~ {r }. Thus net; is cont inuous , and so is T . •

Finally we want to est ablish a global analogue of equation (2.1) in terms
of T.

4. For each x E u" ,

T(x). =~ fj(xj) T (ej).
t 7 Ji( I ) ,

P ro of. We first observe th at , if k has a link into i then

T (ek); = net;(F(ek)) = net;Uk( l)e k) = L W;jaj = w;k(I),
j

otherwise T (ek
) ; = O. Since h (l ) has an inver se, we can express the weight

W;k as

(3.2)

We can now calculate T (z ), as follows:

T( ej
) ;

T (x ); = net;(F (x )) = L W;jaj = L-f .( ) Ji(Xj),
i j J 1

the second sum now being taken over all j 's, since for cells j with no link s
into i, T (ej ) ; = O. •

T hus we have shown that the condit ions of Theorem 1 are necessary. In
the nex t section we prove their sufficiency.

4 . R ealization of sel f-m aps v ia a neur a l n et work

Given a m ap T : C --> C and an activation fun ct ion F : C --> C sat isfying the
cond itions of the Theorem 1, we want to recover T as the global dynamics
of some neur al network based on F. 'vVe will first construct the un derlying
directed grap h, and then show that, with the weights defined by equation
(3.2), T is t he global dynamics of t he resulting network.

T he fini te ring R: is given. Choose a count able set of vertices V . Give R:
the discret e topology and nv the product to pology. nV is a perfect , totally
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disconnected, compact metric space, and as such is homeomorphic to the
Cantor set [4, p. 97J. Thus, consider both T and F as mappings from nv to
nv . _

First , we find suitable links among the vertices in V in order to determine
the underlying digraph D. Observe that the sequence {ek

} of pixels (in
an arbitrary order) converges to the all-quiescent configuration O. Since
T(O) = 0 and T is continuous, {T(ek

)} also converges to O. This means that
for a fixed node i, T(ei)i is nonzero for at most finitely many j's. Therefore,
the sum in condition 4 of Theorem 1 must be finite . Define a digraph D on
the vertex set V by putting an arc from j to i just in case T( ei)i f. O. This
shows that the underlying directed graph D of the network is comp letely
determined by T independently of the !;'s. Together with condition 3, it
also shows that D is locally finite.

Next, we need to find appropriate weights so that the resulting neural net­
work defined by D and F induces T as global dynamics. Apportion weights
according to equation (3.2), so that, by condition 4 of Theorem 1 and equa­
tion (2.1),

and this satisfies equation (3.1).•

5. Application to cellular automaton

In this section we will use the deterministic version [5, Corollary 2Jof Richard­
son's Theorem to prove Theorem 2. Assume the conditions of Theorem 2
and refer to the diagram contained in its statement . We first define 7 and
then prove it to be the global dynamics of a cellular automaton by verifying
that the three cond itions of Richardson's Theorem are satisfied.

Note that for any two points x , y E n V , if F(x) = F(y) then T(x) = T(y)
by condition 4 in Theorem 1. Hence, if z E C and x,y E F -1(z), then
F(T(x)) = F(T(y)). Therefore, we may define 7 : C -+ C as follows: since F
is onto, for z E C choose some x E F -1(z) and let 7(Z) = F(T(x)). Thus 7

is well defined and the diagram commutes. Further , 7 satisfies Richardson's
conditions:

A . 7(0) = 0, since T(O) = 0 and F(O) = O.

B. Since C is compact and F is cont inuous, F is a closed map. Since F
is also onto, it is a quot ient map. Thus 7 is continuous since F 0 T is
cont inuous.

C . 7 commutes wit h shii t. operators: given any configuration x E C and
a lattice point k, define th e shift operator Sk by Sk( X)i = Xi -k. By
hypothesis, T commutes with each shift operator at pixels , i.e.,

T ( i+k) T( i)e i = e i -k
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for all nodes i and j. Since the network is homogenous, j E N; if and
only if j - k E Ni-k> wh ere N, is the cellular ne ighborhood of the cell
i . Thus, since T( ei)i = 0 for cell with no links into i ,

i.e. , T com mutes with all shifts . Sin ce F is the product of identical
maps f : R -t R , it also com mutes with all shifts . Using these facts
and t he definition of T it follo ws t hat

S; 0 F 0 T = F 0 s, 0 T

F 0 T 0 Sk = TO F 0 Sk
TO Sk 0 F.

But F is an epim orphism (i .e., is on to) and thus right-cancelable.
Therefore Sk 0 T = TO Sk.•
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