Complex Systems 3 (1989) 29-36

Global Dynamics in Neural Networks

Stan Franklin
Max Garzon
Department of Mathematical Sciences and Institute for Intelligent Systems
Memphis State University, Memphis, TN 38152, USA

Abstract. The Hedlund-Richardsod Theorem states that a global
mapping from configuration space to itself can be realized by a Eu-
clidean cellular automaton if and only if it takes the quiescent configu-
ration to itself, commutes with shifts, and is continuous in the product
topology. An analogous theorem characterizing the realizability of self-
mappings of finite or infinite configuration space via neural networks
is established. It follows that, under natural hypotheses, a uniform
limit of global dynamics is a global dynamics. We also give sufficient
conditions for the global dynamics of a neural network to be realized
by a cellular automaton.

1. Introduction

Deterministic cellular automata [7,8] can be viewed as discrete dynamical
systems with local dynamics defined by a finite-state machine. This local
dynamics induces a global dynamics, i.e., a self-mapping of configuration (i.e.,
global-state) space C. Since not all self-maps of C arise this way, it is natural
to ask what self-mappings of the configuration space can be realized as the
global dynamics associated with some cellular automaton. This question is
answered satisfactorily by Richardson’s Theorem [5]. (A one-dimensional
version of this result follows from earlier work by Hedlund [3].) Since the
set of local states of a cellular automaton is finite and the number of cells
countable, the configuration space in its natural topology is homeomorphic
to the Cantor set. Synchronous, discrete neural networks (or connectionist
models) can also be thought of as discrete dynamical systems with their
local dynamics defined by local, non-uniform activation functions together
with a local non-uniform input function consisting of the weighted sum of
input values. Hence, local dynamics give rise to global dynamics on both the
net-input space and the activation space of the network. It is natural to ask
again what global properties of a self-map of the net-input space arise from
such local non-uniform dynamics.

We provide necessary and sufficient conditions to characterize such self-
maps for any infinite ring R with unity and family of activation functions
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fi : R — R satisfying f;(0) = 0 (in order to avoid spontaneous generation of
activation) and f;(1) a unit in R (to avoid trivial networks). Recall that the
support of a configuration z : C — C is the set of vertices having non-zero
value. For each cell k, define the k' pixel to be the configuration that is
non-zero only at k by ef = 1if k£ = 4, and 0 otherwise.

Theorem 1. A self map T : C — C is realizable by a neural network with
activation functions {f; : R — R} if and only if

1. T(0) =0;
2. T is continuous;

3. T(e*) has finite support for each pixel configuration e*; and
4. T and {f;} are related by

T(Z xjej),- = Z %T(CJ),

Condition 1 disallows spontaneous generation within the network. Condition
2 allows the recovery of the underlying network structure. Conditions 2 and
3 reflect the local infiniteness of the network. Condition 4 mirrors the local
dynamics of the network. (See Section 2 for their precise meanings. It will be
shown in section 4 that conditions 1 and 2 imply that the sum in condition
4 is finite.) Thus, as one would expect, the first two conditions are two of
those from Richardson’s Theorem, while the other two result from the less
regular type of architecture of the network, and from the characteristic form
of its local dynamics.

Theorem 1 has natural applications. In the important case of a finite
neural network, conditions 2 and 3 are automatically satisfied. It also implies
that, under natural conditions, the uniform limit [1] of neural network global
dynamics is also a global dynamics. A direct proof of this result may be
somewhat involved.

Corollary 1. A selfmap T : C¥ — CV is realizable by a neural network
with given activation functions {f; : R — R} if it is the uniform limit of a
sequence of neural network global dynamics T, : C¥ — CV with the same
activation functions and uniformly bounded support of pixel images T, (e*).

Proof. The first two conditions of Theorem 1 are easily verified for T'. The
third follows since uniform convergence implies pointwise convergence, which
on each coordinate R emans that each sequence {Tn(ek)j}nzo is eventually
constant; thus 7'(e*) can contain as many nonzero cells as the uniform bound
on the support of T,(e*). Likewise, a given T(T;zje?); in condition 4 is
eventually equal to the corresponding sum for T, so it remains to check that
the sets {j : Tn(e?); # 0} are eventually equal to {j : T'(e) # 0}. This
follows since that sum has only finitely many nonzero terms. B

If the underlying diagraph of a neural network happens to be a cellular
space, it is reasonable to ask under what conditions the global dynamics
might be that of a cellular automaton.
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Theorem 2. Let T : C — C be a self-map arising from a neural network
whose activation functions are {f; : R — R} and let F' be the product of
the f;. If

1. the underlying diagraph D of the network is an Euclidean cellular space;

2. the activation functions of the network are identical and onto;

3. T commutes with shifts of pixels.

then there is a mapping 7 : C — C that is realized by a cellular automaton
on D so that the following diagram comimutes

T
—

e}
QA— 0
e

o]

—_—
T

In Section 2 we formally define the brand of neural network considered
here. In section 3 the characterizing conditions for the global dynamics of
such a network are established. Section 4 is devoted to recovering the un-
derlying network structure from a suitable self-map of the Cantor set. The
results of section 3 and 4 constitute the proof of Theorem 1. Section 5 is
devoted to the proof of Theorem 2.

2. Neural Networks

A neural network consists of cells or processors capable of some arithmetic,
connected by links bearing weights [6]. Cells sum their weighted inputs and
apply an activation function to calculate their new activation state. This
means that a neural network is built on a directed graph with vertices V,
and various arcs from vertex j to vertex ¢ representing links and labeled with
a weight w;; from the ring R. In order for the network to be physically real-
izable, each vertex must have only finitely many incoming and outgoing arcs,
i.e., the diagraph must be locally finite. In order to have full computational
ability (i.e., that of Turing machines [2]) neural networks must allow for an
arbitrarily large number of cells. We will simply assume a countably infinite
number.

Formally, a neural network is a triple N' = (R, D,{f;}) consisting of a
finite ring R, a countably infinite, locally finite, arc-weighted, directed graph
D, and a family of activation functions, f;, one for each vertex ¢ in D. The
local dynamics of A is defined by equations

net;(t+1) = Z w;za;(t), (2.1)

where

a;(t) = fi(net;(t)) (2.2)
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is the activation of the cell j at time ¢, and the sum is taken over all cells j
supporting links into 3.

At a fixed time ¢, the vector of net-inputs assigns to each cell 7 of D a new
value net; from the ring R, and is thus a member of RV. (Recall that RY is
the set of all functions from V to R.) Similarly the vector of activations is
also a member of RY. In the following we shall use C to refer to activation
space and call it the configuration (activation) space of the network, and
use RY to refer to the net-input space. At each tick of the time clock, the
current net-input vector changes. This change reflects the global dynamics
of the network N.

For each cell 7, the activation function f; maps R onto R. This family of
functions gives rise to a product function F': RV — C so that the following
diagram commutes under composition of functions:

F
RY —s @
"1 i
R — R
fi

where 7; is the projection from RY onto the 7*" component in R. This means
that for each cell i and each net-input vector z € RY, F(z); = fi(=:).

3. Global dynamics of neural networks

Formally, the global dynamics T : RY — RY of A is given for any configu-
ration z € RY, by

T(z); = net;(F(z)) (3.1)

T gives rise to the following commutative diagram:

T
RV — RV
FLqm
cC — R

net;

This global dynamics T" describes the evolution of the entire network from all
possible global states as a dynamical system. The four properties of Theorem
1 are satisfied.

1. T(0) = 0. This now follows from equations (2.1) and (2.2). B
2. T(e*) has finite support, since our graph D is locally finite. B

For our next property of 7' we must make a small excursion into topology.
(See [1] for any unfamiliar definitions or results used below.) Since R is a
finite ring, give it the discrete topology, i.e., let every subset of R be open.
Given RY the product topology, i.e., basic open sets are those that restrict
to specified values at a fixed finite number of cells. With these topologies,
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3. T is a continuous map.

This proof is most easily followed by referring to the diagram below equa-
tion (3.1). A function into a product space is continuous if and only if its
composition with each projection function =; is continuous. Thus F is con-
tinuous since each f; is (every function on a discrete space is continuous).
The continuity of net; requires a little argument. Take any =z € RY so that
net;(z) =r € R. {r} is an open neighborhood of 7 in R. Only finitely many
cells, 7y, ...,1, contribute to net;(z). Let U be the subset of RY consisting
of all those configurations that agree with = on each of ¢y,...,C,. The set
U is open in RV and net;(U) C {r}. Thus net; is continuous, and so is 7. N

Finally we want to establish a global analogue of equation (2.1) in terms
of T.

4. For eachz € RY,
T(@) = ¥ L r(e,
i j(l)
Proof. We first observe that, if k& has a link into 7 then

T(ek); = net;(F(ek)) = net,'(fk(l)ek) = Zw,-jaj = w,-k(l),

otherwise T'(e*); = 0. Since fi(1) has an inverse, we can express the weight
Wi as

__T(eM)
Wik = fk(l) (32)
We can now calculate T'(z); as follows:
T(:L‘), = net,(F(z)) = ;wi]ﬂj = ; Tj%fj(xj),

the second sum now being taken over all j’s, since for cells 7 with no links
into 7, T'(e?); = 0. W

Thus we have shown that the conditions of Theorem 1 are necessary. In
the next section we prove their sufficiency.

4. Realization of self-maps via a neural network

Given amap I': C — C and an activation function F' : C — C satisfying the
conditions of the Theorem 1, we want to recover T' as the global dynamics
of some neural network based on F. We will first construct the underlying
directed graph, and then show that, with the weights defined by equation
(3.2), T is the global dynamics of the resulting network.

The finite ring R is given. Choose a countable set of vertices V. Give R
the discrete topology and RY the product topology. RY is a perfect, totally
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disconnected, compact metric space, and as such is homeomorphic to the
Ca‘;ntor set [4, p. 97]. Thus, consider both T' and I as mappings from RY to
RY.

First, we find suitable links among the vertices in V in order to determine
the underlying digraph D. Observe that the sequence {e*} of pixels (in
an arbitrary order) converges to the all-quiescent configuration O. Since
T(0O) = O and T is continuous, {T'(e*)} also converges to O. This means that
for a fixed node ¢, T'(e?); is nonzero for at most finitely many j’s. Therefore,
the sum in condition 4 of Theorem 1 must be finite. Define a digraph D on
the vertex set V by putting an arc from j to ¢ just in case T'(e”); # 0. This
shows that the underlying directed graph D of the network is completely
determined by T independently of the f;’s. Together with condition 3, it
also shows that D is locally finite.

Next, we need to find appropriate weights so that the resulting neural net-
work defined by D and F induces T as global dynamics. Apportion weights
according to equation (3.2), so that, by condition 4 of Theorem 1 and equa-
tion (2.1),

T(o) = et i(ei) = Duwii(es) = net(F(o),

and this satisfies equation (3.1). H

5. Application to cellular automaton

In this section we will use the deterministic version [5, Corollary 2] of Richard-
son’s Theorem to prove Theorem 2. Assume the conditions of Theorem 2
and refer to the diagram contained in its statement. We first define 7 and
then prove it to be the global dynamics of a cellular automaton by verifying
that the three conditions of Richardson’s Theorem are satisfied.

Note that for any two points z, y € RY, if F(z) = F(y) then T'(z) = T(y)
by condition 4 in Theorem 1. Hence, if z € C and z,y € F~!(2), then
F(T(z)) = F(T(y)). Therefore, we may define 7 : C — C as follows: since F'
is onto, for z € C choose some z € F~!(z) and let 7(2) = F(T(z)). Thus 7
is well defined and the diagram commutes. Further, 7 satisfies Richardson’s
conditions:

A. 7(0)=0,since T(0) =0 and F(O) = 0.

B. Since C is compact and F' is continuous, F' is a closed map. Since F'
is also onto, it is a quotient map. Thus 7 is continuous since F' o T' is
continuous.

C. 7 commutes with shift operators: given any configuration z € C and
a lattice point k, define the shift operator Sy by Si(z); = ®i—x. By
hypothesis, T commutes with each shift operator at pixels, i.e.,

T(e'H-k),' = T(ej),'._k
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for all nodes ¢ and j. Since the network is homogenous, 7 € N; if and
only if j — k € N;_j, where N; is the cellular neighborhood of the cell
i. Thus, since T'(¢’); = 0 for cell with no links into ¢,

F(@5-1) iy,
P e

- F@ik) p by,
- j—kgz:vf_k f(1) T(e™ ik

_ f(z;) N o .
= 20 ) TEiee = T@)es = Tlakis

= Si(T(=))s,

T(Sk(z))s

i.e., T commutes with all shifts. Since F' is the product of identical
maps [ : R — R, it also commutes with all shifts. Using these facts
and the definition of 7 it follows that

SgoToF = SioFoT=FoSoT
FoToSy,=710F0ob
= 70S,0F.

Il

But F is an epimorphism (i.e., is onto) and thus right-cancelable.
Therefore Spor =705, B
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