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A bst ract. A one-dimensional cellular automaton rule with specified
boundary conditions can be considered as acting simultaneously on all
finite lattices, which gives a mapping between formal languages. Reg­
ular lang uages are always mapped to regular langu ages, contex t-free to
context-free, context-sensitive to context-sensitive, and recursive sets
to recursive sets . In particular, the finite time sets on finite lattices
are regular languages. The limit set on finite lattices (t he periodic
set) is shown to be neither a regular nor an unambiguous context-free

language for certain additive rules with chaotic behavior, and for rules
that can simulate one of these additive rules t hrough a finit e blocking
transformation. The relation between cellular automata on finite and
infinite lattices is discussed .

1. I n t r o d u ctio n

Cellular automata are simple ex tended dynam ical systems, with discrete
space and time, local interactions, and discrete degrees of freedom at each
site. They have recently been st udied extensively (see, e.g., t he collection of
reprints in reference [1]), both because t hey allow simulations of hydrodynam­
ics, spin systems, and other physical systems to be implemented in massively
parallel hardware , and since a t horough investi gation of the sim plest cases
im aginable might conceivably reveal some universal properties of extended
dynamical systems. Since cellular automata are discrete systems, methods
and concepts from discrete mat hematics are often useful in t he analysis of
their behavior.

Formal languages (e.g. [2]) have been used to describ e the time evolution
of infinite one-dimensional cellular automata [3]. A form al langu age is any
set (usually infinite) of words consisting of symbols from a finite set E. This
could for example be the set of all fin it e blocks of symbols appearing in the
ensemble of infinite strings allowed at time t in the time evolution of a cellu lar
automaton, starting with a random in itial ensemble. These sets, the finite
time sets of t he cellu la r automaton, have been shown to b e reg ular lan gu ages
in the infinite one-dimensional case [3]. A regular language is a language
which can be recognized by a finite automaton, a dev ice with a finite numb er
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of internal states, and wit h state transitions labeled by symbols from the
set E . The Chomsky hierarchy of regular, context-free, context-sensitive,
and recursively enumerable (r .e.) languages classifies languages according
t o the complexity of the devices needed for their recogn ition. The class of
context-free languages, which includes the class of regula r lang uages as a
subset, consists of the languages which can be recognized by a push-down
automaton, which is an automaton equipped with a stack memory. The
context-sensitive languages are recognized by linear bounded automata, i.e.
Turi ng machin es rest ricted to using an amount of work space proportional to
t he length of the input, and r .e. languages correspond to unrestricted Tur ing
machines (see, e.g., [2] for det ails).

In this article, we consider cellular automata on finite lat ti ces and char­
acterize thei r time evolution in terms of formal language theory, and we also
attempt to relate the resu lts for finite and infini te lat t ices. When finite lat­
tices are considered, it is natural to let the cellular automaton mapping act
on all finite lat t ices of different lengths (but with identical boundary condi ­
ti ons) simultaneously. This gives a mapping between formal languages, and
we show that regular languages are always mapp ed to regular, context-free
to context-free, context-sensitive to context-sensitive, and recursive set s to
recursive sets, which in particular means that the finite time sets on finite
lattices are regular languages. We also consider the asymptotic be havior of
cellular automata on finite lattices, where resu lts such as non-regularity of
the limit set (which in this case consists of all states on temporal cycles) can
be shown for some simp le rul es with chaotic behavior.

One reason for study ing fini te systems is that one might at tempt to relate
computat ion t heoretical properties of the infinit e lattice cellular automaton
mapping to the properties of the mapping on finite lattices, which in some
cases are more easily derived (some of the subtleties involved in this approach
are discussed in section 4) . Another reason is that we would like to gain a
better underst anding of the transient behavior of these systems in the limit
of infinite lattice size (though this paper is mainly focused on the st ati onary
behavior) . Transient behavior has been argued to be imp ortant for weak
turbulence in extended dynamical systems (e.g. [4]).

In sect ion 2 of this paper, the computation theoretical propert ies of the
cellu lar automaton mapping on finite lattices are investigated. For fixed,
periodic, and twisted boundary conditions, the level of the finite time set
in the Chomsky hierarchy cannot increase in the time evolution, which in
particular means that for a random initial ensemble, the finite time sets are
regular languages.

In section 3 th e' asymptotic behavior of various simple cellular automat on
rules on fini te lattices is investigated. We prove that the finite lat ti ce limit
sets, i.e. the sets of all states on temporal cycles, of the additive ru les 60,
90, and 150 (where Wolfram's nomenclature for cellular automaton ru les [5]
has been used) are neither regular nor unambiguous context-free languages.
Furthermore, th is resu lt can be extended to all cellular automaton rules that
can sim ulate one of these rules through a finite block ing transformation.
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Some examples of periodic sets of class 2 rules on finite lat ti ces are also
given.

Sect ion 4, fina lly, contains a discussion of the relations between cellular
automata on finite and infinite lattices.

2. Fi ni te time sets on finite lattices

We now assume that we are given a finite set of symbols ~ with k ele­
ments, and a local transformation 'P : ~2r+l ~ ~, where r is the range
of the transformation. Together with suitable boundary cond iti ons, which
are usually taken to be fixed or pe riodic, this defines a cellular automaton
map 'P(n) : ~n ~ ~n on a finite lattice of arbitrary length n. If all finit e
lat t ice lengths with some specified boundary conditions are considered si­
multaneously, we get a cellu lar automaton mapping <p : ~. ~ ~. (wher e ~.

denotes the set of all finite strings over ~), which means that we can consider
the cellular automaton as acting on any set of finite strings, i.e. any formal
language.

If all poss ible finite sequences are allowed as initial states, so that we start
from the set n(O) = ~. at t = 0, we can define the finite time set n(t) as t he
set of sequences allowed at time t,

(2.1)

and the limit set of the cellular automaton mapping as

(2.2)

When we consider all finite lattices simultaneously, the limit set coincides
with t he periodic set, i.e . the set of all configurations tha t belong to a tem­
poral period , and the maximal invariant set, which is the union of all invariant
sets [6]. For periodic boundary cond itions, the finite lattice limit set is a sub ­
set of the infinite lattice limit set discussed in [3] and [7], and corresponds
to those infinite sequences allowed asympotically for periodic initial state s.
Equivalently, this corresponds to the set of all spatially periodic configura­
tions that lie on a period in time. It would be interesting to know to what
extent this subset reflects the structure of the complete limit set for an infi­
nite lat t ice; this art icle contains some resu lts in this direction. This situation
is rather similar to the case of ordinary chaotic dynamical systems, where
important properties such as the topological entropy can be calculated from
the set of all periodic orbits [8,9].

If the t ime evolution of a cellular automaton on an infinite lattice is
considered, the finite time set n(t) should be interpreted as the set of all
n-blocks of symbols that occur in the ensemble of infinite strings allowed
at t ime t , starting with an ensemble consist ing of all possible st rings at
t = °[7]. This way of specifying a topological ensemble is analogous to the
way a shift -invariant measure on bi-infinite strings is given by a set of block
probability distributions satisfying Kolmogorov's consistency conditions [10].
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W ith this random initial ensemble, the finite time sets on an infinite lattice
are regular languages [3]. We shall show that this is also the case when
the time evolution on the set of all finite lattices is considered. This is a
particular case of a more general result shown below, which st ates that the
cellu lar automaton map preserves trios. Trios are families of formal languages
closed under inte rsection with a regular set, inverse homomorphism, and E: ­

free forward homomorphism (see [2]). Some examples are the families of
regul ar languages, context-free languages, context-sens itive languages, and
rec ursive sets . This means that a finite number of iterations of the cellu lar
auto maton map cannot t ake us to a higher level in the Chomsky hierarchy,
and in particular, starting from an init ial ense mb le given by n(O) = 2:;* (which
is a regul ar langu age) , all finit e time sets are regular languages.

We prove this statement by constructing a gene ralized sequential machine
(gsm) which simulates th e cellular au tomaton map on finite st rings. A well­
known result in form al language theory which states that any s-free gsm map
preserves trios can then be used.

A generalized sequential machine is a finite automaton with both inp ut
and output associated with its state transitions. The output consists of a
finite number of symbols (at least one for an s-free gsm) from an output
alphabet 0, and the input is one symbol from an input alphabet I . For
fixed boundary cond it ions given by the symbols S L and SR an z-free gsm
simulating the cellular automaton mapping can be constructed as follows:
(for simplicity we have rest rict ed ourselves to r = 1, but the construction
below can eas ily be generalized to cellular automaton rules with ar bitrary r )

Let the set of inte rnal states be

J( = {5, 2:; x 2:; , Z }, (2.3)

where 5 is the start state , 2:; is t he symbol set of the cellular automaton
(which is here used to lab el states in the gsm), and Z lab els an ad ditional
state; and let the input alphabet be I = 2:; u {z} an d the output alphabet be
o = 2:; U {y, z }. If t he transition rules of the gsm are chosen as (here a, b,
c, an d d rep resent arb itrary symbols in 2:;, ip is the local cellular automaton
rule, and the transit ions between states are labeled by input / output )

a/y5 --+ (sLa)
(ab) c/<pJr".bc) (bc)

Z~Z

5 z!'!/ Z
(ab) Z/<P~SR)Z Z

Z~Z,

(2.4)

this is an E:-free gsm whi ch maps strings of the form I7Z (where 17 E 2:;*)

to Y</;(I7 )z. T his cons truction is a modi ficati on to suit our purposes of a
construc t ion by Takahas hi [6]. If the cellu lar automaton m ap 17 --+ </;(17) is
wri tten as the composition 17 --+ I7Z --+ J( I7Z ) = Y</; (I7)z --+ </; (17 ), it is eviden t
that it pr eserves t rios; one can easi ly show that inserting and removing the
mar kers y and Z preserves trios, and as was mentioned above, an e-free gsm
m ap always preserves trios [2].



Formal Languages and Finite Cellular Automata 67

For periodic boundary conditions we can construct a simulating e-free
gsm in the following way :

Let t he set of states be

J{ = {S, E, Ex E x E x E, Z}, (2.5)

let the input and output alp habets be the same as in the case of fixed bound­
ary conditions, and let the transit ion rules be: (there is a certain freedom of
choice, since we are only interested in the effects of the gsm on inputs of the
form mentioned below)

S':.!:t (a)

(a) bJ:t (ab,ab)
(ab,cd) e/'PJ:.de ) (ab, de)

Zc:.!.:Z

S z0!!;z Z

(a) zl.!!-:z Z

(ab, cd) z /'P(cd':1r (dab)z Z

Z z.i: Z.

(2.6)

T his s -free gsm simulates the cellular automaton by m apping every st ring
of the form a z = 0"1' " O"nz, where n ~ 3, to f ( O"z ) = yyrp(0"2" ' O"n0"1)Z ,

The markers y and Z can be inser ted and removed just as before . We are
mainly interested in ensembles invariant under cyclic per mu t at ions, such as
the finite t ime sets obtained from an initial ensemble n(O) = E*, which cor­
respond to translation invariant ensembles in the infinite lat ti ce case . Then
the cyclic permutation included in the gsm map above does not make any
difference, and we can conclude that in this case t rios are pr eserved also for
periodi c boundary condit ions. We could also undo the cyclic permutatio n;
the map 0"1 .. 'O"n -+ O"n0"1 . • 'O"n-1 can be written as 0"1 . • 'O"n -+ O"n ' . • 0"1 -+

O"n-1 . . '0"10"n -+ O"n0"1 • . • O"n-1, and since the second step obvio usly can be per­
formed by a gsm, and the reversal operation pr eserves regular , context -free ,
context-sensitive an d rec urs ive sets [2], the cellular aut omaton map with pe­
riodic boundary conditions also preserves these properties. T his is also t rue
for twisted boundary conditions [11]; in the gsm above it is only necessary to
change t he out put of the t ransition rul e (ab, cd) -+ Z for input equal to Z to
take the twisted bo undary conditions into account. The construction coul d
be generalized to r > 1 in a straight-forward manner by expanding the set
of internal states so that r + 1 symbols were kept in memory, inst ead of two
as ab ove. T he output of the gsm map would then be cycli cally permuted r
steps to the left , but this permutation can of course be reversed by iterating
the procedure mentioned above r times.

T his in particu lar means that t he finite time sets n (t) for fini te latt ices
defined above are regul ar langu ages for all finite t (at leas t for fixed, periodic,
and twisted boundary conditions), and more generally that regular languages
are always mapped to regular languages, context-free to context-free, context ­
sensitive to context-sensit ive, and recursive sets to recursive sets . The level
in the Chomsky hie rarchy thus cannot increase in the t ime evolution of a
cellu lar automaton (though it of course can decrease, a trivial example is the
rule which m aps everything to 0) . A similar statement is also valid for the
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cellul ar autom aton m app ing on infin it e lattices [12]. This can be contrasted
to ot her, more refined , measures of complexit y, such as the algorit hmic com­
plexity, which is t he numb er of state s in the minimal deterministic finit e
automaton accepting n(t) [3], or the effective measure complexity [13], which
measure s the rate of convergence of finite length block entrop ies, that in gen­
eral increase in the t ime evolut ion of a cellular automaton [3,14]. On infinite
lat ti ces, the lim it set may oft en be more complicated than the fini te t ime
sets , and this is also the case if we consider all finite lat ti ces simultaneously.
In the following sect ion we shall see that certain properti es of the limit set
(periodic set) , such as non-regul ari ty, can be deri ved in the finite lat tice case
for some simple chaotic cellul ar automaton rules.

3 . Limit sets on finite lattices

In this section , we shall primarily consider cellular automaton rules with
r = 1 and ~ = {O , I }, in particular additive ru les and rules that can simulat e
an additive rule through a finit e blocking transformation , and characte rize
thei r limit sets on finite lat tices. It is in general a recursively unsolvable
problem even to determine whether the lim it set (periodi c set ) of a cellular
automaton is a regular set [15], but in the particular cases we consider, we can
show that the lim it set is neith er a regul ar nor an un amb iguous context-free
language.

On e of the simplest examples of a cellular automat on rul e (with k = 2
and r = 1) showing chaotic behavior is rule 90 (we label cellular automaton
rul es according to the convent ions of Wolfram [5]), where the value of a site
is given by the sum modulo 2 of its nearest neighbors at the preceding t ime
step, (ai(t) = ai- l(t -1) +ai+l(t - 1)) mod 2. This is an add itive rule, which
means that the configur at ions satisfy an additive superpos ition principle, and
m any properties of the cellular automaton, such as the cycle structure, can
then be determined algebraically. Addit ive rules, in particular rule 90, on
finite lat ti ces were extensively analyze d by Mart in, Odlyzko, and Wolfram in
reference [11], and some of their resul ts will be useful here.

There are a number of conceivable ways of showing that a language (with
an unknown grammar ) is not a regul ar language, or not a context-free lan­
guage (see e.g. [2,16]). One method frequent ly used is to prove that certain so
called pu mping lemmas characterizing regular and context-free languages are
viola te d. For regular languages, the pumping lemma st at es that any st ring
z in L longer than some const ant N (depending on L) can be written as the
concat enation of three st rings , z = U VW, where the string uvkw be longs to L
for any integer k :::: O. This occurs because any regular language is accepted
by a finit e automaton, and the const ant N can then be chosen so that for
any st ring of length larger than N, some state in the accepting au tomat on
must be visited more than once. This gives a closed circuit of states in the
automaton, which may be rep eated an arbit rary number of times k, always
giving accept able words in L , since the initial and final st ates are uncha nged
(an d are thus allowed as ini ti al an d final states). There is also a pumping
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lemma for context-free languages.
An alternative approach is t o exami ne the analytic properties of various

generating functions associated wit h the language L [17]. If t he number of
words of length n in L , i.e . the growth function of L, is denoted g(n) , we
can for example introduce a generating function (t he st ructur e generating
fun ction of L [18])

00

G(z ) = L: g(n) zn.
n= O

(3.1)

For a regular language, this generat ing funct ion is always a rational func­
tio n , an d for an unambiguous context -free language, G(z ) is an algebraic
fun ction [19,20]. A context-free language is un ambiguous if it has a grammar
where each st ring has a unique deri vation. Inherently ambiguous context­
free languages exis t , an d some of these are known to have trans cend ental
structure generating functions [21].

Regular an d unambiguous cont ext -free langu ages can thus be excluded
by showing that G(z ) is transcendental. This can be done in several ways,
for example by showing t hat G(z ) has an infini te nu mb er of singularities, or
by considering the asymptotic behavior of the Taylor coefficients g(n) . The
Taylor coefficients of a rat ional fun ction satisfy a lin ear differ ence equat ion ,
and are thus of the form

(3.2)

(wh ere the Fi(n) are polynomials in n) . Using this expression one can classify
the different forms of asymptot ic behavior that are allowed for the regular
language growth function (e.g. [22]). In typical cases, the number of words
of leng th n in a regular language asymptot ically increases exponent ially. An
oscillating factor may occur if the characteristic equation of the difference
equation has complex roots. To illu st rate this by a simple example, let us
consider the set of Garden of Eden configurations (states that cannot be
reached in the time evolution, and thus only can occur as initial states) for
rule 90 on finit e lat ti ces, wit h period ic boundary condit ions. This set is the
complement of the set of configurations allowed at t = 1, the finite ti me set
n (l ) . In the previous section, the finite t ime sets on fini te lat tices were shown
to be regular languages, and the complement of a regular language is regu lar,
which means that for any cellu lar automaton rule, the set of Garden of Eden
configurations is a regular language. T he number of states allowed at time t
for rule 90 can be found in reference [11], and also the number of Gard en of
Eden configurations for a lat tice of length n , which equals (for n ~ 3)

(3.3)

which gives a rational struct ure generating fun ction

(3.4)
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(3.6)

The topological entropy of the language is given by the negative logarithm
of the smallest pos itive root of the denominator po lynomial of the structure
generating function. In this particular case the topological entropy is equal
to 1.

If a formal language L is required to define a t ranslation invariant en­
semble of infinite st rings in a consistent manner, as in t he case of the finite
t ime sets n(t) on infinite lat t ices, then all sub strings of a part icular st ring in
L are also words in L, and for any string I]" in L, at least one of the strings
obtained by adding a symbol from L; to the right (and to t he left ) of I]" neces ­
sarily belongs to L . In this case the growth funct ion must be a monotonously
increasing function.

For unambiguous context-free languages, the generating funct ion G(z) is
algebraic, which means that its Tay lor coefficients g(n) satisfy an algebraic
recursion relation [23], and that generically their asymptotic behavior is given
by: (where K, is a rational number, and .>-, c., and Wi are algebraic, with
IWil = 1)

g(n ) '" cn" .>-n (2::;i CiWi) . (3.5)

Let us now apply these results to the periodic sets of some simple cellular
auto maton ru les, where the growth funct ion can be obtained algebraically,
such as additive rules with k = 2 and r = 1. We begin by consider ing rul e
90. The growth function gp(n) of the periodic set, i.e , the total number of
states on cycles, was derived for rule 90 (with periodic boundary conditions)
in reference [l1J. For lattices of odd length n, a fraction 1/2 of all states
lie on cycles, which means that for odd n, gp(n) = 2n

-
1 . For n even, the

fraction of configurations on cycles is 1/(2D2 (n) ) , where D2 (n) is the maximal
power of two that divides n . T hus gp(n) = 2n- D 2 (n) for even n (and if we
define D2 (2m + 1) = 1, this expression is valid for all n). In particul ar , for
lattices of length equal to a power of two the zero configuration is a un ique
fixed poi nt , which means that gp(2n

) = 1. This gives a generat ing fun ction
00

G(z) = L 2n- D 2(n)zn

n =3
00 2m

fa 1 _ t2zpm+l - z(l + z),

which is quite reminiscent of some classical examples of lacun ary series (e.g.
[24]). On the radius of convergence, Iz i = 1/2, G(z) is singular for (1/2
t imes) every 2m +lth root of un ity, which gives singular iti es on a dense set
on the radius of convergence, and Izi = 1/2 can then be shown to be a
natural bo undary. The existence of a natural boundar y implies that G(z) is
a tr anscendental function. This in turn implies that the limit set of rul e 90
on finite lattices (with periodic bo undary conditions) is neither a regular nor
an unambiguous context-free language.

This could also have been seen from the irregular asymptotic behavior of
the coefficients s»(n), which cannot correspond to the product of an expo­
nential (and/or a power law) and an oscillating factor .
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An additive ru le closely related to ru le 90 is rule 60, where instead ai(t) =
(ai_l( t -1) + ai(t - 1)) mod 2. The t ime evolution of rule 90 on a lat t ice of
even length n is equivalent to the evolution of two ind ep endent copies of rule
60 on lat ti ces of length n/2, which means that the number of states on cycles
for ru le 60 on a lattice of length n satisfies gp60(n) = (gp9o(2n))1/2 = gp90(n) .
Since the st ructure generating function of the periodic set then is ident ical
to that of rule 90, we conclude that also in the case of rul e 60, the periodic
set is neit her regular nor unambiguous context-free.

There is one other symmetric additive CA rule (with k = 2 and r = 1)
that shows chaotic behavior , namely rule 150, for which ai(t) = (ai- l(t ­
1) +ai(t - 1) +ai+1(t - 1)) mo d2. If the me thods of reference [11] are applied
to this case, one finds (using periodic boundary conditions) that for lattice
lengths n not divisible by three, all states lie on cycles, while if n is a multiple
of three, the fraction of configurations on cycles is 1/ (2D2(n»). This gives a
generat ing function

00 00
G(z) = 2: (23n+1 z3n+1 + 23n+2z3n+2) + 2: 23n- D2(n)z3n (3.7)

n = l n= l

16z4(1 + 2z) 00 22m +1 z3·2m
1 - 8z3 +fa 1 - (2z )3 .2m+1

An argum ent similar to that above shows that G(z) is transcen dental , which
means that the periodic set of rule 150 (with periodic bound ary condit ions)
is neither a regular nor an unambiguous context-free language.

Periodic sets that are regular languages are typically found for class 2
cellu lar auto mata. These are cellular automaton rul es that asymptot ically
simulate a shift map (or a power of t he shift map, if the asymptotic behavior is
periodic) for almost all initial states. Often both right and left shift maps can
be simulated, even though one of these corres ponds to a dominating fract ion
of the ini ti al states . The limit set, which includes behavior occurring with
vanis hing probability, then typically includes both these sim ulation sets, an d
often (for asymmetric ru les) a set of measure zero of infinite sequences wit h
a boundary separa ti ng different asymptotic behavior to the right and to the
left . The limit sets an d attractors of class 2 ru les on infinite lat ti ces are
discussed more extensively in reference [25], here we just intend to give a few
examples of finite lat tice periodic sets .

The simplest examples are given by cellular automaton rules with bounded
t ransient length on an infini te lat tice. Then all spatially period ic infinite se­
quences allowed at arbitrarily large times lie on temporal cycles, and t he
(finite lat ti ce) periodi c set consists of all blocks of symbols in the infinite
lattice limit set 11(00) that correspond to part of some closed circuit of st ates
in the automaton accepting 11(00). The periodic set is thus equivalent to the
union of the irreducible subsets of 11(00). These are the subsets where any
st at e can be reached from any other , assumi ng that the finite automat on is
const ru cted in such a way that all states are allowed as ini ti al st ates, which
is often conven ient when ensembles of infin ite strings are discussed (irre­
du cibility then corresponds to the stationarity req uirement on ensembles of
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reference [13]). In t he cases where n(oo) is a finite time set , it is necessarily
irreducible, and we conclude that the periodic set P on finite lattices then is
identical to n(oo). This applies to many of the simplest class 1 and class 2
ru les; for k = 2 and r = 1 the rul es 0, 1, 2, 3, 4, 5, 8, 10, 12, 19, 24, 29, 34,
36, 38, 42, 46, 72, 76, 108, 138, 200 (and the trivial surject ive cases 15, 51,
170, 204 and 240), and their reflection and/or conjugation equivalents, all
reach their limit set at t :::; 2 (see the table in reference [26]), and it can be
checked that this is also the maximal length of transient behavior in these
cases .

A rather trivial example of a CA rule with unbounded transients on an
infinite lattice (an d linearly growing maximal t ransient length on finite lat­
tices) is ru le 128, where the block 111 is mapped to 1, and all other length
three blocks are mapped to O. On finite lattices with periodic boundary con­
ditions all configurat ions except 1* are eventually mapped to the fixed point
0*, which means that the periodic set is P = 0* U 1* (which corresponds to
the irr educible subsets of the infinit e lattice limit set, which can be found in
[3]), and the st ruct ure generat ing functi on of P is then given by

G(z) = 2z
3

(3.8)
l- z

(which obviously corresponds to zero topological ent ropy). The notation a*

used above stands for an arbitrary number (including zero) of repetitions of
t he string a, but when cellu lar automata with perio dic boundary cond itions
are considered, we assume that strings of overall length smaller than 2r + 1
have been excluded.

A slightly less trivial example is given by rule 44, where the blocks 101,
011, and 010 are mapped to 1, and all other length three blocks to O. On an
infinite lat t ice, almost all initial configurations eventually approach a stable
state consisting of single symbols 1, isolated by at least two symbols O. The
infinite lat t ice limit set, which consists of those sequences that have prede­
cessors arbitrarily far back in time, can be explicitly constructed (see [25J for
details). In particular, the block 0110 uniquely determines its predecessor
blocks in a backward light cone (a periodic pattern of the form (011)* is ob­
tained inside the light cone), which means that on a finite lattice, this block
can only occur in t he limi t set in a configuration of the form (011)*, up to
cyclic permutations (when periodic boundary conditions are considered, we
shall tacitly assume t hat all cyclic permutations of words are included in a
language, an operation which is known to preserve tri os [2]). On an infinite
latt ice, the blo ck 111 m ay occur as a boundary between different form s of
asymptot ic behavior to the right and the left , a phenomenon which cannot
occur on a finite lat ti ce. Furthermore, the block 1111 is forbidden at t :::: 2.
The pe riodic set can then be shown to be the un ion of t he fixed point set
0*U(1000*)*, and all states of the form (011)*, which have period three. Thi s
means that P44 = 0*U (011)* U (1000*)* (and cyclic permutations). The fixed
point set has a growth funct ion g(n) which obeys

g(n) = g(n - 1) +g(n - 3), g(3) = 4,g(4) = 5,g(5) = 6, (3.9)
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o

(a) (b)

(3.10)

(3. ll)

Figure 1: Finite automata giving (a) the attractor (b) the complete
limit set of CA rule 56.

an d if we include the period three states, we obtain a rational structure
generating function for the complete periodic set,

z3(z2 +Z +4) 3z3
G(z ) = 3 + - -31- z- z 1 - z

The pe riodic set and the infinite lat ti ce limit set both have a topological
entropy equal to t hat of the fixed po int set, s(O) = 10g2 1.4656 = 0.5515.

As a final example of class 2 rul es we consider rul e 56, where the blo cks
101, 100, and Oll are mapped to 1, and all ot her length three blocks to O.
Here almost all init ial states are attracted to a simulation of a right shift on
sequences containing only isolated symbols 1. The attractor (also discussed
in [27]) is repr esented as a fini te aut omaton in figur e l(a). The complete
limit set (see [25] for de tails) is shown in figur e 1(b) , in a representation
where all nodes in the finite au tomaton are allowed start nodes. The limit
set also includes a set of sequences corresponding to a left shift, and a set
of measure zero of sequences wit h different asymptot ic behav ior to the right
and the left .

The periodi c set on finite lattices wit h periodic bo undary conditions cor­
responds to the union of the two irreducib le subsets of figur e l (b), which
yields a structure generating function (note that this time the two sets are
not disjoint, since a right shift cannot be dist inguished from a left shift on
sequences of the form .. .01010101 .... )

G(z) = z3(3z +4) + z3(10z3+6z +3) _~.
1 - z - Z2 1 - z2 - z3 1 - z2

T he topological ent ropy of the limit set is in this case identical to that of the
at t ractor, s(O) = 10g2 1.618 = 0.696, both on finite and infinite lat ti ces.

Finally, the results for additive ru les can be extended to all cellular au­
tomaton rules that can simulate one of the addit ive rules discussed above
throu gh a finite blocking transform ation . A cellular automaton ru le R1 (with
k = 2) simulates another, R 2 , if the evolut ion of R1 on sequences consisting of
the finite blocks of symbols Eo and E 1 corresponds to the evolut ion of R 2 on
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sequences over ~ un der the mapping Bo -4 0, B I -4 1. A mapping ~ -4 s:
(where /::". is some set of symbols) is a homomorphism of languages if the im­
age of a E ~ is a single string h(z) E /::".*. Many classes of formal langu ages
are closed under the inverse of a homomorphism; this requirement was for
example included in the definition of a t rio (see section 2), which means that,
e.g ., the regular languages are closed under inverse homomorphisms. It can
also be shown that the class of unambiguous context-free languages is closed
under inverse homomorphisms (to check whether a string a is an element of
h-I(L), a push-down automaton could construct h(a) and determine whether
it is an element of L [2]). We shall also need the operation of taking the in­
tersection of a language with a regu lar set. The class of regular languages
is closed under this operation (t his proper ty was also included in the defi­
ni ti on of a t rio), and this is also the case for the unambiguous context-free
languages (t his can be shown by constructing a push-down automaton which
runs the accepting automata of the two languages in parallel [2]).

If a cellular automaton rul e R I simulates one of the addit ive rul es men­
tioned above through a fini te blocking tran sformation Bo -4 0, BI -4 1, the
limit set of the additive rul e can be obtain ed from the limit set (periodic
set) PI of the rule R I . We firs t form the intersection PI n B of PI and the
regu lar langu age B consisting of all possible strings m ade out of the blocks
Bo and BI , B = (BoB; )*. We t hen get the limi t set of the addit ive rule
through the inverse of the homomorphism 0 -4 Bo, 1 -4 BI . Both of the op­
erations used , i.e. inverse homomorphism and int er sect ion wit h a regul ar set,
are closure oper ations of the classes of regular and un am biguous context-free
languages. Then , sin ce the limit set of the addit ive rul e is neither regul ar
nor unambiguous context-free, this is necessarily the case also for the limi t
set of R I .

We thus conclude that any cellu lar automaton rule that can sim ulate
one of the rul es 60, 90, or 150 has a periodic set which is neit her a regul ar
nor an unambiguous context-free language. This in particular applies to the
(k = 2 and r = 1) ru les 18, 22, 26, 94, 122, 146, 154, an d 164, which are
know n to be capable of simulating ru le 90 (e .g. [26]), an d to the rules relat ed
to one of t hese through conjugation and/or reflect ion , and also to rul e 105,
which can simula te rul e 150. Examp les of cellular automaton rul es where
the arg ume nt do es not apply, bu t where the irregular behavior of the total
number of state s on cycles indicat es that the result should st ill be valid, are
the non-linear sur ject ive rul es 30 (discusse d in [28]) and 45, and rul es 73 and
110.

4 . Discussion: The relation between finite and infinite lat t ices

Som e of the results of the pr evious section might seem slightly surprising, in
view of t he fact that the additive rul es considered (rules 60, 90, and 150) are
surjecti ve on an infini te lat ti ce, which mean s that all sequences are allowed
at all ti mes. T he limit set of one of these rules on an infini te latti ce is thus
the set ~* of all po ssible sequences, which is obviou sly a regul ar langu age.
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Figure 2: Part of an infinite evolution pattern of CA rule 90, il­
lust rat ing how the spat ial periods of the predecessors of the state
... 01010101. . . diverge with distance back in time.

In such cases, where the limit set ,11 (00) of a cellu lar automaton on an infinite
lattice is a regular language, the infinite, spatially periodic states in ,11(00)
correspond to all closed circuits of states in the finite automaton accepting
the lim it set, and they are thus obtained from a regular language. But the
periodic set on finite lattices, on the ot her hand, which is a subset of the limi t
set in the infin ite lat t ice case, corresponds only to those spatially periodic
states that are actually on a temporal cycle. A spatially periodic state could
also have predecessors arbitrarily far back in t ime (an d t hus be included in
the lim it ensemble), where the spatial period necessarily increased without
bound as its ancestors were traced back in t ime. The subset of spatially
periodic states on cycles need not have a descri ption in terms of a regular
lan guage, even though the union of that set, and those periodic states in t he
limit set corresponding to infinite transients , is a regular language. This is
what happens for the additive rules in question, where the periodic states on
infinit e transients simply correspond to the complement of the periodi c set.
Both these sets are non-regular , t hough their union is a regular language.

It is not hard to find explicit examples of this phenomenon. Consider for
example rule 90, and a spatially periodic infinite state of the form ... 010­
10101010101 . . .. T his state is not on a temporal cycle, since it is mapped
to the fixed point . . . 00000000000000 . .. in one time step, but it still has
predecessors arbitrarily far back in time (after all, the rule is surjective,
so this is true for all states). One possible choice of predecessors for the
seq uence (10)00 is given by the infinite Sierpinski gasket partially shown in
figure 2, which is constructed so that the sequence (10)00 has predecessors
given by (102n+

1
-

1)00 at instances 2n - 1 steps back in time, which shows that
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asympotically the spatial period diverges linearly as predecessors are traced
back in time. Since each infinite sequence has exactly 4t predecessors t steps
back in time for rule 90, a simple counting argument shows that the linearly
increasing spatial period of the predecessors is a generic feature in this case.

The relation between the computation theoretical properties of the peri­
odic set and the infinite lat t ice limit set thus depends on the nature of the
CA rule considered; only for rules where every spatially periodic state is on a
temporal cycle can we immediately relate the two, as was discussed in section
3. We are however not aware of any example with a regular periodic set and
a non-regular limit set on an infinite lattice.

It can finally be noted that even though the periodic set does not have
the same computation theoretical properties as the infinite lat t ice limit set
e.g. for rule 90, it does have topological entropy 1, so that the topological
entropies are identical. This was also the case for the class 2 rules considered.
One may in general conclude that the topological entropy of the periodic set
on finite lat t ices is smaller than or equal to that of the infinite lattice limit
set, since it corresponds to a subset of the initial states on an infinite lattice.
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