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Abstract. A one-dimensional cellular automaton rule with specified
boundary conditions can be considered as acting simultaneously on all
finite lattices, which gives a mapping between formal languages. Reg-
ular languages are always mapped to regular languages, context-free to
context-free, context-sensitive to context-sensitive, and recursive sets
to recursive sets. In particular, the finite time sets on finite lattices
are regular languages. The limit set on finite lattices (the periodic
set) is shown to be neither a regular nor an unambiguous context-free
language for certain additive rules with chaotic behavior, and for rules
that can simulate one of these additive rules through a finite blocking
transformation. The relation between cellular automata on finite and
infinite lattices is discussed.

1. Introduction

Cellular automata are simple extended dynamical systems, with discrete
space and time, local interactions, and discrete degrees of freedom at each
site. They have recently been studied extensively (see, e.g., the collection of
reprints in reference [1]), both because they allow simulations of hydrodynam-
ics, spin systems, and other physical systems to be implemented in massively
parallel hardware, and since a thorough investigation of the simplest cases
imaginable might conceivably reveal some universal properties of extended
dynamical systems. Since cellular automata are discrete systems, methods
and concepts from discrete mathematics are often useful in the analysis of
their behavior.

Formal languages (e.g. [2]) have been used to describe the time evolution
of infinite one-dimensional cellular automata [3]. A formal language is any
set (usually infinite) of words consisting of symbols from a finite set £. This
could for example be the set of all finite blocks of symbols appearing in the
ensemble of infinite strings allowed at time ¢ in the time evolution of a cellular
automaton, starting with a random initial ensemble. These sets, the finite
time sets of the cellular automaton, have been shown to be regular languages
in the infinite one-dimensional case [3]. A regular language is a language
which can be recognized by a finite automaton, a device with a finite number
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of internal states, and with state transitions labeled by symbols from the
set ¥. The Chomsky hierarchy of regular, context-free, context-sensitive,
and recursively enumerable (r.e.) languages classifies languages according
to the complexity of the devices needed for their recognition. The class of
context-free languages, which includes the class of regular languages as a
subset, consists of the languages which can be recognized by a push-down
automaton, which is an automaton equipped with a stack memory. The
context-sensitive languages are recognized by linear bounded automata, i.e.
Turing machines restricted to using an amount of work space proportional to
the length of the input, and r.e. languages correspond to unrestricted Turing
machines (see, e.g., [2] for details).

In this article, we consider cellular automata on finite lattices and char-
acterize their time evolution in terms of formal language theory, and we also
attempt to relate the results for finite and infinite lattices. When finite lat-
tices are considered, it is natural to let the cellular automaton mapping act
on all finite lattices of different lengths (but with identical boundary condi-
tions) simultaneously. This gives a mapping between formal languages, and
we show that regular languages are always mapped to regular, context-free
to context-free, context-sensitive to context-sensitive, and recursive sets to
recursive sets, which in particular means that the finite time sets on finite
lattices are regular languages. We also consider the asymptotic behavior of
cellular automata on finite lattices, where results such as non-regularity of
the limit set (which in this case consists of all states on temporal cycles) can
be shown for some simple rules with chaotic behavior.

One reason for studying finite systems is that one might attempt to relate
computation theoretical properties of the infinite lattice cellular automaton
mapping to the properties of the mapping on finite lattices, which in some
cases are more easily derived (some of the subtleties involved in this approach
are discussed in section 4). Another reason is that we would like to gain a
better understanding of the transient behavior of these systems in the limit
of infinite lattice size (though this paper is mainly focused on the stationary
behavior). Transient behavior has been argued to be important for weak
turbulence in extended dynamical systems (e.g. [4]).

In section 2 of this paper, the computation theoretical properties of the
cellular automaton mapping on finite lattices are investigated. For fixed,
periodic, and twisted boundary conditions, the level of the finite time set
in the Chomsky hierarchy cannot increase in the time evolution, which in
particular means that for a random initial ensemble, the finite time sets are
regular languages.

In section 3 the asymptotic behavior of various simple cellular automaton
rules on finite lattices is investigated. We prove that the finite lattice limit
sets, i.e. the sets of all states on temporal cycles, of the additive rules 60,
90, and 150 (where Wolfram’s nomenclature for cellular automaton rules [5]
has been used) are neither regular nor unambiguous context-free languages.
Furthermore, this result can be extended to all cellular automaton rules that
can simulate one of these rules through a finite blocking transformation.
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Some examples of periodic sets of class 2 rules on finite lattices are also
given.

Section 4, finally, contains a discussion of the relations between cellular
automata on finite and infinite lattices.

2. Finite time sets on finite lattices

We now assume that we are given a finite set of symbols ¥ with & ele-
ments, and a local transformation ¢ : $¥*1 — ¥, where r is the range
of the transformation. Together with suitable boundary conditions, which
are usually taken to be fixed or periodic, this defines a cellular automaton
map ¢(m) : L" — X" on a finite lattice of arbitrary length n. If all finite
lattice lengths with some specified boundary conditions are considered si-
multaneously, we get a cellular automaton mapping ¢ : £* — X* (where X*
denotes the set of all finite strings over X), which means that we can consider
the cellular automaton as acting on any set of finite strings, i.e. any formal
language.

If all possible finite sequences are allowed as initial states, so that we start
from the set Q) = £* at ¢ = 0, we can define the finite time set Q®) as the
set of sequences allowed at time ¢,

Q0 = ¢t(Q®), (2.1)
and the limit set of the cellular automaton mapping as
k) = N, al, (2.2)

When we consider all finite lattices simultaneously, the limit set coincides
with the periodic set, i.e. the set of all configurations that belong to a tem-
poral period, and the maximal invariant set, which is the union of all invariant
sets [6]. For periodic boundary conditions, the finite lattice limit set is a sub-
set of the infinite lattice limit set discussed in [3] and [7], and corresponds
to those infinite sequences allowed asympotically for periodic initial states.
Equivalently, this corresponds to the set of all spatially periodic configura-
tions that lie on a period in time. It would be interesting to know to what
extent this subset reflects the structure of the complete limit set for an infi-
nite lattice; this article contains some results in this direction. This situation
is rather similar to the case of ordinary chaotic dynamical systems, where
important properties such as the topological entropy can be calculated from
the set of all periodic orbits [8,9].

If the time evolution of a cellular automaton on an infinite lattice is
considered, the finite time set Q) should be interpreted as the set of all
n-blocks of symbols that occur in the ensemble of infinite strings allowed
at time ¢, starting with an ensemble consisting of all possible strings at
t =0 [7]. This way of specifying a topological ensemble is analogous to the
way a shift-invariant measure on bi-infinite strings is given by a set of block
probability distributions satisfying Kolmogorov’s consistency conditions [10].
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With this random initial ensemble, the finite time sets on an infinite lattice
are regular languages [3]. We shall show that this is also the case when
the time evolution on the set of all finite lattices is considered. This is a
particular case of a more general result shown below, which states that the
cellular automaton map preserves trios. Trios are families of formal languages
closed under intersection with a regular set, inverse homomorphism, and e-
free forward homomorphism (see [2]). Some examples are the families of
regular languages, context-free languages, context-sensitive languages, and
recursive sets. This means that a finite number of iterations of the cellular
automaton map cannot take us to a higher level in the Chomsky hierarchy,
and in particular, starting from an initial ensemble given by Q(®) = %* (which
is a regular language), all finite time sets are regular languages.

We prove this statement by constructing a generalized sequential machine
(gsm) which simulates the cellular automaton map on finite strings. A well-
known result in formal language theory which states that any e-free gsm map
preserves trios can then be used.

A generalized sequential machine is a finite automaton with both input
and output associated with its state transitions. The output consists of a
finite number of symbols (at least one for an e-free gsm) from an output
alphabet O, and the input is one symbol from an input alphabet I. For
fixed boundary conditions given by the symbols sy and sg an e-free gsm
simulating the cellular automaton mapping can be constructed as follows:
(for simplicity we have restricted ourselves to r = 1, but the construction
below can easily be generalized to cellular automaton rules with arbitrary )

Let the set of internal states be

K=1{8,2x%,2}, (2.3)

where S is the start state, ¥ is the symbol set of the cellular automaton
(which is here used to label states in the gsm), and Z labels an additional
state; and let the input alphabet be I = £ U {z} and the output alphabet be
O = Y U{y, 2}. If the transition rules of the gsm are chosen as (here a, b,
¢, and d represent arbitrary symbols in ¥, ¢ is the local cellular automaton
rule, and the transitions between states are labeled by input/output)

S (spa) 51
(ab) T4 (be) (ab) LR 7 (2:4)
7%z zH g

this is an e-free gsm which maps strings of the form oz (where o € X*)
to y¢(o)z. This construction is a modification to suit our purposes of a
construction by Takahashi [6]. If the cellular automaton map o — ¢(o) is
written as the composition ¢ — oz — f(02) = yé(o)z — ¢(0), it is evident
that it preserves trios; one can easily show that inserting and removing the
markers y and z preserves trios, and as was mentioned above, an e-free gsm
map always preserves trios [2].
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For periodic boundary conditions we can construct a simulating e-free
gsm in the following way:
Let the set of states be

K={5%X,ExExXxX7Z}, (2.5)

let the input and output alphabets be the same as in the case of fixed bound-
ary conditions, and let the transition rules be: (there is a certain freedom of
choice, since we are only interested in the effects of the gsm on inputs of the
form mentioned below)

¥ (a) gl
(a) i (ab, ab) (a) zlvez .
(ab, cd) /5™ (ab,de) (ab, ed) /#4210 7 _
2%z 7%z

This e-free gsm simulates the cellular automaton by mapping every string
of the form oz = 0y...0,2, where n > 3, to f(cz) = yyp(o2...0,01)z.
The markers y and z can be inserted and removed just as before. We are
mainly interested in ensembles invariant under cyclic permutations, such as
the finite time sets obtained from an initial ensemble Q% = ©* which cor-
respond to translation invariant ensembles in the infinite lattice case. Then
the cyclic permutation included in the gsm map above does not make any
difference, and we can conclude that in this case trios are preserved also for
periodic boundary conditions. We could also undo the cyclic permutation;
the map 0y...0, — 0,01...0,_1 can be written as 0y...0, = 0,...01 —
On—1...010, — 0p07 ...0,_1, and since the second step obviously can be per-
formed by a gsm, and the reversal operation preserves regular, context-free,
context-sensitive and recursive sets [2], the cellular automaton map with pe-
riodic boundary conditions also preserves these properties. This is also true
for twisted boundary conditions [11]; in the gsm above it is only necessary to
change the output of the transition rule (ab, cd) — Z for input equal to z to
take the twisted boundary conditions into account. The construction could
be generalized to 7 > 1 in a straight-forward manner by expanding the set
of internal states so that r + 1 symbols were kept in memory, instead of two
as above. The output of the gsm map would then be cyclically permuted r
steps to the left, but this permutation can of course be reversed by iterating
the procedure mentioned above r times.

This in particular means that the finite time sets Q) for finite lattices
defined above are regular languages for all finite ¢ (at least for fixed, periodic,
and twisted boundary conditions), and more generally that regular languages
are always mapped to regular languages, context-free to context-free, context-
sensitive to context-sensitive, and recursive sets to recursive sets. The level
in the Chomsky hierarchy thus cannot increase in the time evolution of a
cellular automaton (though it of course can decrease, a trivial example is the
rule which maps everything to 0). A similar statement is also valid for the
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cellular automaton mapping on infinite lattices [12]. This can be contrasted
to other, more refined, measures of complexity, such as the algorithmic com-
plexity, which is the number of states in the minimal deterministic finite
automaton accepting Q) [3], or the effective measure complexity [13], which
measures the rate of convergence of finite length block entropies, that in gen-
eral increase in the time evolution of a cellular automaton [3,14]. On infinite
lattices, the limit set may often be more complicated than the finite time
sets, and this is also the case if we consider all finite lattices simultaneously.
In the following section we shall see that certain properties of the limit set
(periodic set), such as non-regularity, can be derived in the finite lattice case
for some simple chaotic cellular automaton rules.

3. Limit sets on finite lattices

In this section, we shall primarily consider cellular automaton rules with
r=1and ¥ = {0, 1}, in particular additive rules and rules that can simulate
an additive rule through a finite blocking transformation, and characterize
their limit sets on finite lattices. It is in general a recursively unsolvable
problem even to determine whether the limit set (periodic set) of a cellular
automaton is a regular set [15], but in the particular cases we consider, we can
show that the limit set is neither a regular nor an unambiguous context-free
language.

One of the simplest examples of a cellular automaton rule (with £ = 2
and r = 1) showing chaotic behavior is rule 90 (we label cellular automaton
rules according to the conventions of Wolfram [5]), where the value of a site
is given by the sum modulo 2 of its nearest neighbors at the preceding time
step, (ai(t) = a;—1(t —1) 4+ a;41(t — 1)) mod 2. This is an additive rule, which
means that the configurations satisfy an additive superposition principle, and
many properties of the cellular automaton, such as the cycle structure, can
then be determined algebraically. Additive rules, in particular rule 90, on
finite lattices were extensively analyzed by Martin, Odlyzko, and Wolfram in
reference [11], and some of their results will be useful here.

There are a number of conceivable ways of showing that a language (with
an unknown grammar) is not a regular language, or not a context-free lan-
guage (see e.g. [2,16]). One method frequently used is to prove that certain so
called pumping lemmas characterizing regular and context-free languages are
violated. For regular languages, the pumping lemma states that any string
z in L longer than some constant N (depending on L) can be written as the
concatenation of three strings, z = uvw, where the string uv¥fw belongs to L
for any integer k£ > 0. This occurs because any regular language is accepted
by a finite automaton, and the constant N can then be chosen so that for
any string of length larger than NNV, some state in the accepting automaton
must be visited more than once. This gives a closed circuit of states in the
automaton, which may be repeated an arbitrary number of times &, always
giving acceptable words in L, since the initial and final states are unchanged
(and are thus allowed as initial and final states). There is also a pumping
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lemma for context-free languages.

An alternative approach is to examine the analytic properties of various
generating functions associated with the language L [17]. If the number of
words of length n in L, i.e. the growth function of L, is denoted g(n), we
can for example introduce a generating function (the structure generating
function of L [18])

Gz) = 3o g(n) 2", (3.1)

n=0

For a regular language, this generating function is always a rational func-
tion, and for an unambiguous context-free language, G(z) is an algebraic
function [19,20]. A context-free language is unambiguous if it has a grammar
where each string has a unique derivation. Inherently ambiguous context-
free languages exist, and some of these are known to have transcendental
structure generating functions [21].

Regular and unambiguous context-free languages can thus be excluded
by showing that G(z) is transcendental. This can be done in several ways,
for example by showing that G(z) has an infinite number of singularities, or
by considering the asymptotic behavior of the Taylor coefficients g(n). The
Taylor coefficients of a rational function satisfy a linear difference equation,
and are thus of the form

g(n) = Pi(n)AT + P(n)AT + ...+ Py(n)\}, (3.2)

(where the P;(n) are polynomialsin n). Using this expression one can classify
the different forms of asymptotic behavior that are allowed for the regular
language growth function (e.g. [22]). In typical cases, the number of words
of length n in a regular language asymptotically increases exponentially. An
oscillating factor may occur if the characteristic equation of the difference
equation has complex roots. To illustrate this by a simple example, let us
consider the set of Garden of Eden configurations (states that cannot be
reached in the time evolution, and thus only can occur as initial states) for
rule 90 on finite lattices, with periodic boundary conditions. This set is the
complement of the set of configurations allowed at ¢ = 1, the finite time set
Q). In the previous section, the finite time sets on finite lattices were shown
to be regular languages, and the complement of a regular language is regular,
which means that for any cellular automaton rule, the set of Garden of Eden
configurations is a regular language. The number of states allowed at time ¢
for rule 90 can be found in reference [11], and also the number of Garden of
Eden configurations for a lattice of length n, which equals (for n > 3)

g(n) = (5+(=1)")2", (3-3)
which gives a rational structure generating function

G(z) = % (3.4)
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The topological entropy of the language is given by the negative logarithm
of the smallest positive root of the denominator polynomial of the structure
generating function. In this particular case the topological entropy is equal
to 1.

If a formal language L is required to define a translation invariant en-
semble of infinite strings in a consistent manner, as in the case of the finite
time sets Q) on infinite lattices, then all substrings of a particular string in
L are also words in L, and for any string o in L, at least one of the strings
obtained by adding a symbol from ¥ to the right (and to the left) of o neces-
sarily belongs to L. In this case the growth function must be a monotonously
increasing function.

For unambiguous context-free languages, the generating function G(z) is
algebraic, which means that its Taylor coefficients g(n) satisfy an algebraic
recursion relation [23], and that generically their asymptotic behavior is given
by: (where & is a rational number, and A, ¢;, and w; are algebraic, with
il = 1)

g(n) ~ cn"/\"(Ei C; w,-). (35)

Let us now apply these results to the periodic sets of some simple cellular
automaton rules, where the growth function can be obtained algebraically,
such as additive rules with k¥ = 2 and » = 1. We begin by considering rule
90. The growth function gp(n) of the periodic set, i.e. the total number of
states on cycles, was derived for rule 90 (with periodic boundary conditions)
in reference [11]. For lattices of odd length n, a fraction 1/2 of all states
lie on cycles, which means that for odd n, gp(n) = 2"'. For n even, the
fraction of configurations on cycles is 1/(2P2(")), where D,(n) is the maximal
power of two that divides n. Thus gp(n) = 2°"P2(" for even n (and if we
define Dy(2m + 1) = 1, this expression is valid for all n). In particular, for
lattices of length equal to a power of two the zero configuration is a unique
fixed point, which means that gp(2") = 1. This gives a generating function

G(z) = 3 2 Palgn (3.6)
n=3
= z2"'
Z—:O 1= (22)2m+1 - 2(1 + Z),

which is quite reminiscent of some classical examples of lacunary series (e.g.
[24]). On the radius of convergence, |z| = 1/2, G(z) is singular for (1/2
times) every 2™*'th root of unity, which gives singularities on a dense set
on the radius of convergence, and |z| = 1/2 can then be shown to be a
natural boundary. The existence of a natural boundary implies that G(z) is
a transcendental function. This in turn implies that the limit set of rule 90
on finite lattices (with periodic boundary conditions) is neither a regular nor
an unambiguous context-free language.

This could also have been seen from the irregular asymptotic behavior of
the coefficients gp(n), which cannot correspond to the product of an expo-
nential (and/or a power law) and an oscillating factor.



Formal Languages and Finite Cellular Automata 71

An additive rule closely related to rule 90 is rule 60, where instead a;(t) =
(ai—1(t —1) + a;(t — 1)) mod 2. The time evolution of rule 90 on a lattice of
even length n is equivalent to the evolution of two independent copies of rule
60 on lattices of length n/2, which means that the number of states on cycles
for rule 60 on a lattice of length n satisfies gp,, (n) = (gp,, (27))/? = gp,, (n).
Since the structure generating function of the periodic set then is identical
to that of rule 90, we conclude that also in the case of rule 60, the periodic
set is neither regular nor unambiguous context-free.

There is one other symmetric additive CA rule (with £ = 2 and r = 1)
that shows chaotic behavior, namely rule 150, for which a;(t) = (a;—1(t —
1)+ a;i(t—1)+air1(t — 1)) mod2. If the methods of reference [11] are applied
to this case, one finds (using periodic boundary conditions) that for lattice
lengths n not divisible by three, all states lie on cycles, while if n is a multiple
of three, the fraction of configurations on cycles is 1/(2P2(™). This gives a
generating function

G(Z) = Z(23n+123n+1 A 23n+223n+2) 4 Z 23n—D2(n)z3n (37)
n=1 n=1

1624(1+2Z o 22m+1 3-2m
1_823 +21_(2232m+1

An argument similar to that above shows that G(z) is transcendental, which
means that the periodic set of rule 150 (with periodic boundary conditions)
is neither a regular nor an unambiguous context-free language.

Periodic sets that are regular languages are typically found for class 2
cellular automata. These are cellular automaton rules that asymptotically
simulate a shift map (or a power of the shift map, if the asymptotic behavioris
periodic) for almost all initial states. Often both right and left shift maps can
be simulated, even though one of these corresponds to a dominating fraction
of the initial states. The limit set, which includes behavior occurring with
vanishing probability, then typically includes both these simulation sets, and
often (for asymmetric rules) a set of measure zero of infinite sequences with
a boundary separating different asymptotic behavior to the right and to the
left. The limit sets and attractors of class 2 rules on infinite lattices are
discussed more extensively in reference [25], here we just intend to give a few
examples of finite lattice periodic sets.

The simplest examples are given by cellular automaton rules with bounded
transient length on an infinite lattice. Then all spatially periodic infinite se-
quences allowed at arbitrarily large times lie on temporal cycles, and the
(finite lattice) periodic set consists of all blocks of symbols in the infinite
lattice limit set () that correspond to part of some closed circuit of states
in the automaton accepting Q(>). The periodic set is thus equivalent to the
union of the irreducible subsets of (). These are the subsets where any
state can be reached from any other, assuming that the finite automaton is
constructed in such a way that all states are allowed as initial states, which
is often convenient when ensembles of infinite strings are discussed (irre-
ducibility then corresponds to the stationarity requirement on ensembles of
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reference [13]). In the cases where () is a finite time set, it is necessarily
irreducible, and we conclude that the periodic set P on finite lattices then is
identical to Q). This applies to many of the simplest class 1 and class 2
rules; for £ = 2 and » = 1 the rules 0, 1, 2, 3, 4, 5, 8, 10, 12, 19, 24, 29, 34,
36, 38, 42, 46, 72, 76, 108, 138, 200 (and the trivial surjective cases 15, 51,
170, 204 and 240), and their reflection and/or conjugation equivalents, all
reach their limit set at ¢ < 2 (see the table in reference [26]), and it can be
checked that this is also the maximal length of transient behavior in these
cases.

A rather trivial example of a CA rule with unbounded transients on an
infinite lattice (and linearly growing maximal transient length on finite lat-
tices) is rule 128, where the block 111 is mapped to 1, and all other length
three blocks are mapped to 0. On finite lattices with periodic boundary con-
ditions all configurations except 1* are eventually mapped to the fixed point
0%, which means that the periodic set is P = 0* U 1* (which corresponds to
the irreducible subsets of the infinite lattice limit set, which can be found in
[3]), and the structure generating function of P is then given by

228
G(z) = e (3.8)
(which obviously corresponds to zero topological entropy). The notation a*
used above stands for an arbitrary number (including zero) of repetitions of
the string a, but when cellular automata with periodic boundary conditions
are considered, we assume that strings of overall length smaller than 2r + 1
have been excluded.

A slightly less trivial example is given by rule 44, where the blocks 101,
011, and 010 are mapped to 1, and all other length three blocks to 0. On an
infinite lattice, almost all initial configurations eventually approach a stable
state consisting of single symbols 1, isolated by at least two symbols 0. The
infinite lattice limit set, which consists of those sequences that have prede-
cessors arbitrarily far back in time, can be explicitly constructed (see [25] for
details). In particular, the block 0110 uniquely determines its predecessor
blocks in a backward light cone (a periodic pattern of the form (011)* is ob-
tained inside the light cone), which means that on a finite lattice, this block
can only occur in the limit set in a configuration of the form (011)*, up to
cyclic permutations (when periodic boundary conditions are considered, we
shall tacitly assume that all cyclic permutations of words are included in a
language, an operation which is known to preserve trios [2]). On an infinite
lattice, the block 111 may occur as a boundary between different forms of
asymptotic behavior to the right and the left, a phenomenon which cannot
occur on a finite lattice. Furthermore, the block 1111 is forbidden at ¢t > 2.
The periodic set can then be shown to be the union of the fixed point set
0*U(1000%)*, and all states of the form (011)*, which have period three. This
means that Py = 0*U(011)*U (1000*)* (and cyclic permutations). The fixed
point set has a growth function g(n) which obeys

g(n) =g(n—1)4+g(n—-3), g¢(3)=4,9(4) =5,9(5) =6, (3.9)
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Figure 1: Finite automata giving (a) the attractor (b) the complete
limit set of CA rule 56.

and if we include the period three states, we obtain a rational structure
generating function for the complete periodic set,
3(,2 4 3 3
Gy = LE tEEE) B (3.10)

1—z—28 1—28

The periodic set and the infinite lattice limit set both have a topological
entropy equal to that of the fixed point set, s(0) = log, 1.4656 = 0.5515.

As a final example of class 2 rules we consider rule 56, where the blocks
101, 100, and 011 are mapped to 1, and all other length three blocks to 0.
Here almost all initial states are attracted to a simulation of a right shift on
sequences containing only isolated symbols 1. The attractor (also discussed
in [27]) is represented as a finite automaton in figure 1(a). The complete
limit set (see [25] for details) is shown in figure 1(b), in a representation
where all nodes in the finite automaton are allowed start nodes. The limit
set also includes a set of sequences corresponding to a left shift, and a set
of measure zero of sequences with different asymptotic behavior to the right
and the left.

The periodic set on finite lattices with periodic boundary conditions cor-
responds to the union of the two irreducible subsets of figure 1(b), which
yields a structure generating function (note that this time the two sets are
not disjoint, since a right shift cannot be distinguished from a left shift on
sequences of the form ...01010101....)

_ Z%(3z2+4) | 2%(102°+62+3) 2z*
T 1l—z-—22 1—22—-28 1—22

G(z)

The topological entropy of the limit set is in this case identical to that of the
attractor, s(0) = log, 1.618 = 0.696, both on finite and infinite lattices.
Finally, the results for additive rules can be extended to all cellular au-
tomaton rules that can simulate one of the additive rules discussed above
through a finite blocking transformation. A cellular automaton rule R; (with
k = 2) simulates another, Ry, if the evolution of R; on sequences consisting of
the finite blocks of symbols By and B; corresponds to the evolution of R; on

(3.11)
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sequences over % under the mapping By — 0, B; — 1. A mapping ¥ — A*
(where A is some set of symbols) is a homomorphism of languages if the im-
age of a € ¥ is a single string h(z) € A*. Many classes of formal languages
are closed under the inverse of a homomorphism; this requirement was for
example included in the definition of a trio (see section 2), which means that,
e.g., the regular languages are closed under inverse homomorphisms. It can
also be shown that the class of unambiguous context-free languages is closed
under inverse homomorphisms (to check whether a string a is an element of
h~*(L), a push-down automaton could construct A(a) and determine whether
it is an element of L [2]). We shall also need the operation of taking the in-
tersection of a language with a regular set. The class of regular languages
is closed under this operation (this property was also included in the defi-
nition of a trio), and this is also the case for the unambiguous context-free
languages (this can be shown by constructing a push-down automaton which
runs the accepting automata of the two languages in parallel [2]).

If a cellular automaton rule R, simulates one of the additive rules men-
tioned above through a finite blocking transformation By — 0, B; — 1, the
limit set of the additive rule can be obtained from the limit set (periodic
set) P, of the rule R;. We first form the intersection P, N B of P; and the
regular language B consisting of all possible strings made out of the blocks
By and By, B = (B;B;)*. We then get the limit set of the additive rule
through the inverse of the homomorphism 0 — By, 1 — B;. Both of the op-
erations used, i.e. inverse homomorphism and intersection with a regular set,
are closure operations of the classes of regular and unambiguous context-free
languages. Then, since the limit set of the additive rule is neither regular
nor unambiguous context-free, this is necessarily the case also for the limit
set of R;.

We thus conclude that any cellular automaton rule that can simulate
one of the rules 60, 90, or 150 has a periodic set which is neither a regular
nor an unambiguous context-free language. This in particular applies to the
(k =2 and r = 1) rules 18, 22, 26, 94, 122, 146, 154, and 164, which are
known to be capable of simulating rule 90 (e.g. [26]), and to the rules related
to one of these through conjugation and/or reflection, and also to rule 105,
which can simulate rule 150. Examples of cellular automaton rules where
the argument does not apply, but where the irregular behavior of the total
number of states on cycles indicates that the result should still be valid, are
the non-linear surjective rules 30 (discussed in [28]) and 45, and rules 73 and
110.

4. Discussion: The relation between finite and infinite lattices

Some of the results of the previous section might seem slightly surprising, in
view of the fact that the additive rules considered (rules 60, 90, and 150) are
surjective on an infinite lattice, which means that all sequences are allowed
at all times. The limit set of one of these rules on an infinite lattice is thus
the set 3* of all possible sequences, which is obviously a regular language.
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Figure 2: Part of an infinite evolution pattern of CA rule 90, il-
lustrating how the spatial periods of the predecessors of the state
...01010101... diverge with distance back in time.

In such cases, where the limit set Q() of a cellular automaton on an infinite
lattice is a regular language, the infinite, spatially periodic states in Q(°)
correspond to all closed circuits of states in the finite automaton accepting
the limit set, and they are thus obtained from a regular language. But the
periodic set on finite lattices, on the other hand, which is a subset of the limit
set in the infinite lattice case, corresponds only to those spatially periodic
states that are actually on a temporal cycle. A spatially periodic state could
also have predecessors arbitrarily far back in time (and thus be included in
the limit ensemble), where the spatial period necessarily increased without
bound as its ancestors were traced back in time. The subset of spatially
periodic states on cycles need not have a description in terms of a regular
language, even though the union of that set, and those periodic states in the
limit set corresponding to infinite transients, is a regular language. This is
what happens for the additive rules in question, where the periodic states on
infinite transients simply correspond to the complement of the periodic set.
Both these sets are non-regular, though their union is a regular language.

It is not hard to find explicit examples of this phenomenon. Consider for
example rule 90, and a spatially periodic infinite state of the form ...010-
10101010101 .... This state is not on a temporal cycle, since it is mapped
to the fixed point ...00000000000000... in one time step, but it still has
predecessors arbitrarily far back in time (after all, the rule is surjective,
so this is true for all states). One possible choice of predecessors for the
sequence (10)*® is given by the infinite Sierpinski gasket partially shown in
figure 2, which is constructed so that the sequence (10)* has predecessors

given by (10277 ~1)> at instances 2"~ steps back in time, which shows that
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asympotically the spatial period diverges linearly as predecessors are traced
back in time. Since each infinite sequence has exactly 4¢ predecessors ¢ steps
back in time for rule 90, a simple counting argument shows that the linearly
increasing spatial period of the predecessors is a generic feature in this case.

The relation between the computation theoretical properties of the peri-
odic set and the infinite lattice limit set thus depends on the nature of the
CA rule considered; only for rules where every spatially periodic state is on a
temporal cycle can we immediately relate the two, as was discussed in section
3. We are however not aware of any example with a regular periodic set and
a non-regular limit set on an infinite lattice.

It can finally be noted that even though the periodic set does not have
the same computation theoretical properties as the infinite lattice limit set
e.g. for rule 90, it does have topological entropy 1, so that the topological
entropies are identical. This was also the case for the class 2 rules considered.
One may in general conclude that the topological entropy of the periodic set
on finite lattices is smaller than or equal to that of the infinite lattice limit
set, since it corresponds to a subset of the initial states on an infinite lattice.
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