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1. Introduction

One way to evolve new artificial lifeforms is to fuse existing forms in var ious
ways . If one wishes for a new lifeform 's program to be the same size as each
of it s parent pr ogram s, then one might take half of each parent program and
pat ch the two halves together . T his method is typical of sexual repr oduction,
and of the genet ic programming approach .

A different meth od of crossbreeding two of three lifeforms is to write a
double or t riple length program which includes the full code of the original
programs and which provides an arena in which the programs can interact .
This might be called a symbiot ic programming approach .

In this pap er I will descri be som e new and lively cellular au tomaton rul es
whi ch I have found through symbiot ic programming on the CAM-6 cellul ar
automaton m achine [1,4].

2. The CAM-6

The CAM-6 cellul ar aut om aton machine consists of a PC board and a Forth
software environment . The bo ar d and software were dev eloped by Tommaso
Toffoli and Norman Margolus, both at t he Massachuset ts Institute of Tech­
nology Laboratory of Computer Science. The CAM-6 board with software
is in prin ciple avai lable for $1500 from Systems Concepts of San Francisco;
unfortunately, System s Concepts' filling of orders to dat e has been ext remely
slow.

The CAM -6 t reats a color computer monitor as a 256 by 256 array of cells.
Each cell holds four bits of information. Oft en one thinks of the screen as
being a stack of four bitplanes which are displ ayed as different pixel colorin gs.

The cells are updat ed in par allel. Each cell checks it self an d its neighbors,
and then calculates it s next state on the basi s of a shared lookup table . In
mo st of the rul es I have looked at, a cell is able to "see" a total of twelve
neighbors: the nine members of its 3 x 3 neighborhood in its own bitplane,
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also the three cells dir ectly above or below it in the other three bitplanes.
Usually a cell is called Center and its planar neighbors are called North,
Northeast, East , Southeast, Sout h , Southwest, West , and Northwest. One
way of referring to adj acent cells in th e other planes is to speak of CenterO,
Centerl , Center2 , and Center3. If Center is in Plane 0, th en it is the same
as CenterO.

The most remarkable feature of the CAM-6 is it speed. It up dat es the
whole screenful of cells 60 times a second. At 4 bit s per cell, this means the
CAM-6 is generat ing 256 x 256 x 4 x 60 ~ 16 million display bits per second.

Another remarkable feature of t he system is the shortness of the pr ograms
which produce interesting results . This is in fact a property of cellu lar au­
tomata in general: a well chosen cellular automaton rule of only a few dozen
bits can quickly conver t a st art screen with only a dozen bits lit into a full
256K bit color screen seeth ing with act ivity.

Some screens die or enter t ight loops, ot her boil ra ndomly, and at the
interface are the ar tificial life screens which show pseudopurposeful activit y.
Wolfram [7] classifies these rul es as , respect ively: class 1&2, class 3, and class
4; Langton [3] calls them, respectively: quiescent, chaot ic, and balanced.
These dist inctions are not absolute , as many interesting balanced rules will
eventually move off the interface to die out or to go fully chaot ic. In pr act ice
I have been interested in CAM-6 rules which can maintain balanced behavior
for at least five thousand steps.

3. T h e t h ree parent r u le s

The crossbreeding experiments I will describe here use the following three
rules: John H. Conway 's Life, Gerard Vichniac's Vote, and Brian Silverm an's
Bra in [4,6].

In each of these rules we regar d a cell as holding either a zero or a one.
A cell's next state is determined by the states of the members of the cell 's
3 x 3 neighborhood. The sum of all t he cell values in this neighbo rhood is
cailed th e 9Sum , the sum of all t he cell values save the cent ral one is called
the 8Sum .

T he ru le for Life can be succinctly represented in pidg in Forth as:

8Sum { 0 0 Center 1 0 0 0 0 0 0 } -t PlaneO

This not ati on means that for a given "Center" cell we form th e 8Sum of
its plan ar neighbors, and then use this total to select our cell's next state
from a list of nine possibilit ies - corresponding to possible 8Sums of zero
through eight. If a cell has two living neighbors, then its new value is the
sam e "Cent er" value as before. If a cell has three living neighbors its value
changes to 1. Ot herwise its value goes to O. These values are all displayed
in PlaneO.

If we run Vote in Plane1, its ru le takes the form:

9Sum { 0 0 0 0 1 0 1 1 I I } -t Pl ane1
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This mean s that each cell's new state is determined by taking a vote
among the nine members of its 3 x 3 planar neighborhood. But inst ead of
det ermining the out come by sim ple majority, near ties are awarded to the
loser!

The rule for Brain requires the use of two planes; sup pose we think of
Brain as being a combination of two rules Brain2 and Brain3, running in
planes 2 and 3.

[(8Sum = 2)AND (Center2 = 0)AND( Center3 = 0) ----+ P lane2
Center2 ----+ Plane3

The understanding in the rule for P lane2 is that the compound sente nce
in square brackets has a Boo lean t ru th value of 1 or o. "Center2" stands for
the P lane2 cell being updated, and "Center3" stands for the cell directly over
it in P lane3. At each step, the pr esent value Center2 is echoed in Pl ane3 as
Center3 . A cell is change d to 1 in Pl ane2 only if three conditions hold : the
cell has two "live" neighb ors, the cell is now off, and the cell was off during
the last cycle as well.

Each of these three ru les is very interesting to look at by itself. If we
start any of these rul es on a plane filled with a random soup of half Is and
half Os, the following behaviors occur.

Life bo ils chaot ically for a few cycles, then damps down leaving irregular
active patches craw ling about . The background at this stage consists of small
st atic pat terns (blocks and beehives) and isolated oscillators (blinkers) . Any
added cell , e.g. a wayward glid er , can touch of an act ive patch which will
move about for a few hundred cycles. But in all the pure Life runs I have
observed, the screen soon dies down to hold nothing but small scattered
periodic patterns.

Vote qui ckly forms small connected dom ains of Os and I s. A simple
majori ty vote (given by 9Sum { 0 0 0 0 0 1 1 1 II }) will freeze up at this
st age and exhibit no fur ther changes (though there can be small oscillators
on t he boundari es). Vichn iac's vote keeps evolv ing , wit h more and more
patterns fusing, t ill one norm ally has one or two large domains each of Os
and Is. The CAM-6 screen is t reated as a t orus, so a pat ch which runs off
the screen's left is cont iguo us wit h a patch running off the right. Typically,
Vote will go to either all I s or all Os with a few small oscillator islands of
the opposite parity; occasionally it will go to a pat tern consisting of two
hori zontal stripes or two vert ical stripes of opposite parity. The st ripes'
boundar ies display long-cycle periodic behavior.

Thus , from a rand om start, Life an d Vote exhibit "balanced," "art ificially
alive," or "clas s 4" behavior , but only for a short time. T heir configura­
t ion space is densely seeded with point at tractors and small-cycle attractors.
Brain , on the other hand, seems to have a single large strange attractor in its
configuration space. From practically any rand om start at all, Brain evolves
to a very active balanced pattern filled with large amounts of structure.

T he most common Brain pat tern s are "haulers," which move in each of the
four principal grid dir ecti ons. A hauler consis ts of two firing blo cks followed
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by two refractory blocks. Chains of outriggers attach themselves to haulers
and are towed along . Sparks jump up and down the outrigger chains, spewing
out writhing clots of debris. Just as Life has its special glider pattern, Brain's
spec ial pattern is the "but terfly." Like the glider, the butterfly is a small cell
structure which propagates along the grid's diagonals at "one fourth the
speed of light" (one cell for every four up dat es). I discovered a way to bui ld
a but terfly gun in June 1988.

Though Bra in is not chaotic, it is hyperactive, with all known patterns
but one being in constant motion. In January 1989 I foun d a static pattern,
the "twizz ler." The twizzler can be started as a block of four firing cells with
four refractory cells attached, one to each side in a pinwheel symmetry.

In st udying Brain, I developed several tricks to slow it down. One trick
is to ignore one neighbor (say East ) when form ing the 8Sum. Anot her t rick
is to add lethal barrier lines to prevent t he pattern from wrapping around
t he screen. A third way of slowing Brain down is to make the cells have two
or even three clockcycles of being "refractory" after firing.

If one starts with a very simp le pattern - as opposed to a random screen
of half Os and ha lf Is - Life can sometimes generate a lot of structure before
going pe riodic, Vote will die boringly, and Brain will usually end up at the
same strange attractor that it approaches from a random start.

4 . New r u les

I will describe three new rules: Brainlife, Votelife, and Ranch. For t he sake
of comprehensibility, I will not describe the programs in pure Forth, but will
instead use a kind of mixture of Forth, natural language, and Pascal.

In Brainlife, I run Life in Plane D, and I run Brain in planes 2 and 3. We
let the two ru les interact only at locations where the Plane l cell holds a 1.
Plane l is used to hold a static mask which allows t he two rules to interact.

[(Life =1) OR ((Centerl =1 ) AND (Center2 = 1))] --t PlaneO
Centerl --t Plane l

[(Brain2 = 1) AND NO T ((Centerl = 1) AND (CenterO=1 ))] --t Plane2
Center2 --t Plane3

The interact ion between Life and Brain is such that the presence of a
Brain cell in the Planel mask region turns Life cells on. This keeps Life from
dying out . The presence of a Life cell in the Planel mask region turns off
any live Brain cell which touc hes it. This has the effect of damping Brain's
act ivity.

In Plates 1 and 2 I show Brainlife evolving from a start consisting of a
disk in plane 1 and 2 bits in Plane2. Brain evolves two adjacent bits into an
expanding diamond pattern of bits in Plane2 and Plane3 . We see the pattern
crossing the mask in Plate l, and Plate2 shows the sequel.

In Votelife, I use a different trick to keep Life from dying out . I pu t Life
in Pl aneO, and I put Vote in Plane2, wit h an echo of Vote in Plane3. By
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Plate 1.
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Pl at e 2.
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looking where planes 2 and 3 differ, we can detect the shifting edge of t he
Vote domain. We let the edge cells turn on Life cells. This has the effect
of surround ing the Vote domains with activi ty, somewhat in analogy to the
activity found along beaches. Suppose that we define Edge to be Center2
XOR Center3, the Boolean value of NOT (Center2 = Center3). Then our
rule has the form:

Life O R Edge ~ PlaneO

Vote ~ Plane2

Center2 ~ P lane3

Votelife is not really symbiotic, as Life has no backreaction on t he Vote
rule. A backreaction can be arranged if we introduce a new voting rule
WVote.

9Sum { 0 0 0 1 1 0 0 1 II}

Run by itself, WVote goes immediately to chaos, but if it is run in some
spots on the edge of the normal Vote rule, it has the effect of making the
edges more jagged and more stable. Now let Change stand for Cent erO XOR
Centerl, and define a symbiotic Votelife rule JVotelife as:

Life 0 R Edge ~ PlaneO

Cente rO~ Plane l

IF Change TH E N (WVote ~ Plane2)

E LSE (Vote ~ Plane2)

Center2 ~ Plane3

PlaneO)

PlaneO)

1 0 0 0 0 } ~

ELSE ( Life ~

The edges which arise have a strong fractal appearance.
The third rule I want to describe in this section is called Ranch, and it is

a kind of synthesis of Brai nlife and Votelife. We run and echo Vote in planes
2 an d 3 as before, filling the screen wit h shift ing dom ains of Os and Is. We
might think of the black regions of Plane2 as ocean and the light regions
as land . We use planes 0 and 1 to run either Life (in PlaneO ) or Brain (in
Pl aneO with echo in Planel ). A given cell obeys the Brain rule if it is in
"ocean" and the Life rule if it is on "land." A lit tle care needs to be taken at
the edge, so that the Brain cells can sometimes get ashore and turn on Life
cells. In particular, if Edge is again short for (Center2 X OR Center3), we
define Edgelife as:

IF Edge T HEN ( 8Sum { 0 1 0 0

Now we can go ahea d and define Ranch

IF Center2 THEN Edgelife ~ PlaneO

E LSE Brain ~ PlaneO

CenterO~ Planel

Vote ~ Plane2

Center2 ~ Plane3
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Plate 3.

Ranch is a very interesting rule to watch. If one starts with only a few live
Bra in cells in the ocean, they will sporadically colonize the banks of the land
wit h Life, sometimes starting backreactions which return new Brain cells to
t he sea.

Plate 3 shows the rule Ranch. This is a typ ical pattern evolved some two
thousand steps from a random start of half zeroes and half ones. I have run
a similar pattern for as many as half a million steps. I found this pattern
after searching through a few hundred different random starts. I think of it
as an art ificial life tide-poo l.

In this pattern, the Vote rule establishes two vertical stripes of black and
yellow, and these st ripes do not go away. (Keep in mind that the screen is
t reat ed as a to rus, so the two yellow stripes are really one.) The persistence
of 'life Bra in cells traveling along the black region of Plate 9 is promoted by
the presence of the small manshaped Vote oscillator shown in the center.
Under Vote , th is oscillator spins about its horizont al axis like an acrobat. I
call him "Robotman." Every time a Brain glider hits the Robotman, he gets
infected wit h Life cells which burst back out of him to produce showers of
new live Brain cells .

As with Votelife, Ranch has no backreaction on the voting rule . The only
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acceptable (non catastrophic) backreact ion I have found is to replace Vote by
WVote whenever CenterO OR Centerl , but this makes no great change.

I have found one nice ru le which set s up a very st rong nonlinear feedb ack
between a Life-like rule and a Vote-like rule. T his rule, which I call Temple,
displays true emergent behavior in that it does some very surprising things.
Perhaps the mos t surprising is the way in which it builds spires on the sides
of an ord inary start square, as shown in two slides which Chris Langston
lost . If one starts Temple with a random screen, it divides the screen into
oppositely stri ped domain s, with some fairly shortlived boiling and sparking
along the domain boundaries.

5. Why?

Just about everyone enjoys watching thes e displays. The simplest explana­
tion is what Jim Crutchfield half-jokingly calls "technomothia" : our society
conditions people to pay attention to fast -moving bright colors . But after
t he init ial enjoyment , the quest ion ofte n is: "Why are you doing this? What
are these good for?"

One aspect of all fast Type 3 CA displays is that here computat ion is
in some sense made visible . The complexity, or program size, of these rules
is very low, yet the amount of visual information being produced is large
and, in interesting patterns, not readily predictable. In Charles Benn ett's
te rms, these patterns are logically deep [?]. Up to a point , the longer the
computer runs, the more information you are getting. Real computational
work is bei ng done.

The low-complexity /high-depth character of art ificial life CA displays is
in some respects t he opposite of expert syst ems AI progr ams, which typic ally
have extremely long programs (high complexity) and, when actually used,
very short run t imes (low depth). A nice thing about CAs is that one uses a
cheap machine to do all th e boring work , instead of assigning man-centuries
of programming to hapless graduate students.

But this is all at the level of metaphor. How might one practi cally exploit
art ificially alive CA patterns for some useful purpose? Phrasing the question
in such a way limits the range of interesting answers. A dog, or even a
t ree , is to a certain extent intelligent . Yet we do not dream of get ting a
dog or a tree to act as a medical advisor or a missile pilot . We can only
exploit the intelligence of a dog or a tree by enjoying the things that th ey
characterist ically do (find game, grow a shady umbrella) .

It seems certain to me that bigger machines and bet ter br eeding will pro­
duc e CA life of really start ling richness. (Margolus and Toffoli are currently
building CAM-7, a 1000 x 1000 x 1000 CA board with 16-bit cells.) Yet
in their natural course of development , these lifeform s are not par ti cularly
"int erest ed" in doing things like speaking Engli sh. A rule like Ranch would
much rath er land gliders on shore to lay eggs.

In a recent paper [?], Danny Hillis, suggests that human speech is a kind
of software virus which ini tially st arted as songs apes would sing . In his view,
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the natural wetware evolution of the apes provided a substrate upon which
the rich software of abstract tho ught memes could fruitfully grow. I think the
present fun ction of artificial life breeders is simply to produce systems with
rich rep ertoires of behavior. So many CA rules are computation universal
that, when the time comes, many sorts of humanly useful pat tern s can be
t aught or programmed in. Given that Brain is almost certainly computation
universal, longlived Ran ch pattern could pr esumably be programmed .

Although it has been some years since Conway proved Life to be com­
putation uni versal , workers such as William Gosper of Symb olics cont inue
refining what Gosper has te rmed in conversat ion "the technology of Life."
The challenge is to make small and efficient CA pattern s which perform
useful computat ions. One can imagine a situat ion in which compute r hard ­
wares were simply very large cellular automaton machines, and users would
download the "computer" pattern which they currently needed .

Yet this last idea is probably not the correct one. The essent ial thing
about a CAM is that it is a parallel processor, and it is probably a misal­
locat ion of resources to use such a machine to simulate serial computation.
As Hym an Hartman pointed out in his talk at ALIFE 87, the best way to
"program" para llel computers may simply be to evolve int eresting patterns
on them , and only then to t ry to find t asks for which the patterns are appro­
priat e. CAs provide a paradigm for this activity in the same way that the
Turi ng machine is a paradigm for serial comput at ion.

6 . Two program list in gs

As my programs have rath er short codelength, it seems valu able to list two
of them here so that oth er CAM-6 workers can run them. The programs are
written in an extension of Forth [1,4].

In reading the programs one must und erstand t hat the CAM-6 is orga­
nized as two halfm achine s, CAM-A, which runs plan es 0 and 1, and CAM-B,
which runs planes 2 and 3. Each halfmachine thinks of its own planes' cen­
te r cells as CENT ER and CENT ER', and the other planes' center cells as
&CENT ER and &CENT ER' . In the rule Temple, th e neighborhood assign­
ment is such that one is allowed to look into the neighb orin g plane to see
NORT H', EAST' , SOUTH', and WEST' as well as CENTER'.

People who cannot get access to a CAM-6 should be aware of a new, pure
software CA generator called CA Lab. This pro duct is written in C and 8088
assembly language for the PC fami ly by myself and John Walker, co-founder
of Autodesk, Inc . CA Lab will be available for $59.95 from Autodesk, Inc .,
2320 Marinship Way, Sausalito, CA 94965, starting March 18, 1989. CA Lab
can show Ranch and all th e cellular automata men tioned in [4], as well as a
class of 16-bit rules which solve Laplace's equat ion in the plane . (I have not
t ried to make it do Temple yet .) Rules for CA Lab can be programmed via
a screen editor or in Basic, Pascal , or C.
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6.1 Ranch: A symbiosis of Life and Brain partitioned by Vote

NEW-EXPERIMENT
N/MOORE &/CENTERS

NORTH EAST SOUTH WEST N.WEST N.EAST S. WEST S.EAST
+ + + + + + +

8SUM CENTER +

8SUM { 0 0 CENTER 1 0 0 0 0 0 }

8SUM 2 = CENTERS 0 = AND

9SUM { 0 0 0 0 1 0 1 1 1 1 }

&CENTER &CENTER' XOR

EDGELIFE
EDGE IF 8SUM{ 0 1 0 0 1 0 0 0 0 } ELSE LIFE THEN

CAM-A

RANCH/A
&CENTER IF EDGELIFE >PLNO ELSE BRAIN >PLNO THEN

CENTER >PLN1
MAKE-TABLE RANCH/A
CAM-B

RANCH/B
VOTE >PLN2

CENTER >PLN3
MAKE-TABLE RANCH/ B

6.2 Temple: A voting rule driven by Lifey noise

NEW-EXPERIMENT
CAM-A N/VONN &/CENTERS

5SUM
NORTH EAST SOUTH WEST CENTER + + + +

5SUM'
NORTH' EAST' SOUTH ' WEST' CENMTER' + + + +

TEMPLE/A
5SUM{ 0 0 0 1 1 1 } 5SUM' { 0 0 0 0 0 1 } XOR

&CENTER ' OR >PLNO
&CENTER >PLN1

MAKE-TABLE TEMPLE/A
CAM-B N/MOORE &/ CENTERS

89

8SUM\ \

9SUM

LIFE

BRAIN

VOTE

EDGE
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NORTH EAST SOUTH WEST N.EAST N.WEST S.EAST S.WEST
+ + + + + + +

8SUM CENTER &CENTER &CENTER' + + +

8SUM { 0 &CENTER CENTER 1 0 0 0 0 0 }
CENTER' NOT AND >PLN2

11SUM { 0 0 0 0 0 0 0 0 0 1 1 1 } >PLN3
MAKE-TABLE TEMPLE/B
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