Complex Systems 3 (1989) 79-90

Symbiotic Programming: Crossbreeding Cellular
Automaton Rules on the CAM-6

Rudy Rucker
Department of Mathematics and Computer Science,
San Jose State University, San Jose, CA 95192, USA

1. Introduction

One way to evolve new artificial lifeforms is to fuse existing forms in various
ways. If one wishes for a new lifeform’s program to be the same size as each
of its parent programs, then one might take half of each parent program and
patch the two halves together. This method is typical of sexual reproduction,
and of the genetic programming approach.

A different method of crossbreeding two of three lifeforms is to write a
double or triple length program which includes the full code of the original
programs and which provides an arena in which the programs can interact.
This might be called a symbiotic programming approach.

In this paper I will describe some new and lively cellular automaton rules
which I have found through symbiotic programming on the CAM-6 cellular
automaton machine [1,4].

2. The CAM-6

The CAM-6 cellular automaton machine consists of a PC board and a Forth
software environment. The board and software were developed by Tommaso
Toffoli and Norman Margolus, both at the Massachusetts Institute of Tech-
nology Laboratory of Computer Science. The CAM-6 board with software
is in principle available for $1500 from Systems Concepts of San Francisco;
unfortunately, Systems Concepts’ filling of orders to date has been extremely
slow.

The CAM-6 treats a color computer monitor as a 256 by 256 array of cells.
Each cell holds four bits of information. Often one thinks of the screen as
being a stack of four bitplanes which are displayed as different pixel colorings.

The cells are updated in parallel. Each cell checks itself and its neighbors,
and then calculates its next state on the basis of a shared lookup table. In
most of the rules I have looked at, a cell is able to “see” a total of twelve
neighbors: the nine members of its 3 X 3 neighborhood in its own bitplane,

© 1989 Complex Systems Publications, Inc.

80 Rudy Rucker

also the three cells directly above or below it in the other three bitplanes.
Usually a cell is called Center and its planar neighbors are called North,
Northeast, East, Southeast, South, Southwest, West, and Northwest. One
way of referring to adjacent cells in the other planes is to speak of Center0,
Centerl, Center2, and Center3. If Center is in Plane 0, then it is the same
as Center0.

The most remarkable feature of the CAM-6 is it speed. It updates the
whole screenful of cells 60 times a second. At 4 bits per cell, this means the
CAM-6 is generating 256 x 256 x 4 x 60 ~ 16 million display bits per second.

Another remarkable feature of the system is the shortness of the programs
which produce interesting results. This is in fact a property of cellular au-
tomata in general: a well chosen cellular automaton rule of only a few dozen
bits can quickly convert a start screen with only a dozen bits lit into a full
256K bit color screen seething with activity.

Some screens die or enter tight loops, other boil randomly, and at the
interface are the artificial life screens which show pseudopurposeful activity.
Wolfram [7] classifies these rules as, respectively: class 1&2, class 3, and class
4; Langton [3] calls them, respectively: quiescent, chaotic, and balanced.
These distinctions are not absolute, as many interesting balanced rules will -
eventually move off the interface to die out or to go fully chaotic. In practice
I have been interested in CAM-6 rules which can maintain balanced behavior
for at least five thousand steps.

3. The three parent rules

The crossbreeding experiments I will describe here use the following three
rules: John H. Conway’s Life, Gerard Vichniac’s Vote, and Brian Silverman’s
Brain [4,6].

In each of these rules we regard a cell as holding either a zero or a one.
A cell’s next state is determined by the states of the members of the cell’s
3 x 3 neighborhood. The sum of all the cell values in this neighborhood is
called the 9Sum, the sum of all the cell values save the central one is called
the 8Sum.

The rule for Life can be succinctly represented in pidgin Forth as:

8Sum { 0 0 Center 1 0 0 0 0 00 } — Plane

This notation means that for a given “Center” cell we form the 8Sum of
its planar neighbors, and then use this total to select our cell’s next state
from a list of nine possibilities — corresponding to possible 8Sums of zero
through eight. If a cell has two living neighbors, then its new value is the
same “Center” value as before. If a cell has three living neighbors its value
changes to 1. Otherwise its value goes to 0. These values are all displayed
in Plane0.

If we run Vote in Planel, its rule takes the form:

9Sum { 0000101111} — Planel

Symbiotic Programming 81

This means that each cell’s new state is determined by taking a vote
among the nine members of its 3 x 3 planar neighborhood. But instead of
determining the outcome by simple majority, near ties are awarded to the
loser!

The rule for Brain requires the use of two planes; suppose we think of
Brain as being a combination of two rules Brain2 and Brain3, running in
planes 2 and 3.

[(8Sum = 2)AND(Center2 = 0)AND(Center3 = 0) — Plane2
Center2 — Plane3

The understanding in the rule for Plane2 is that the compound sentence
in square brackets has a Boolean truth value of 1 or 0. “Center2” stands for
the Plane2 cell being updated, and “Center3” stands for the cell directly over
it in Plane3. At each step, the present value Center2 is echoed in Plane3 as
Center3. A cell is changed to 1 in Plane2 only if three conditions hold: the
cell has two “live” neighbors, the cell is now off, and the cell was off during
the last cycle as well.

Each of these three rules is very interesting to look at by itself. If we
start any of these rules on a plane filled with a random soup of half 1s and
half Os, the following behaviors occur.

Life boils chaotically for a few cycles, then damps down leaving irregular
active patches crawling about. The background at this stage consists of small
static patterns (blocks and beehives) and isolated oscillators (blinkers). Any
added cell, e.g. a wayward glider, can touch of an active patch which will
move about for a few hundred cycles. But in all the pure Life runs I have
observed, the screen soon dies down to hold nothing but small scattered
periodic patterns.

Vote quickly forms small connected domains of 0Os and 1s. A simple
majority vote (given by 9Sum { 0000011111 }) will freeze up at this
stage and exhibit no further changes (though there can be small oscillators
on the boundaries). Vichniac’s vote keeps evolving, with more and more
patterns fusing, till one normally has one or two large domains each of Os
and 1s. The CAM-6 screen is treated as a torus, so a patch which runs off
the screen’s left is contiguous with a patch running off the right. Typically,
Vote will go to either all 1s or all 0s with a few small oscillator islands of
the opposite parity; occasionally it will go to a pattern consisting of two
horizontal stripes or two vertical stripes of opposite parity. The stripes’
boundaries display long-cycle periodic behavior.

Thus, from a random start, Life and Vote exhibit “balanced,” “artificially
alive,” or “class 4” behavior, but only for a short time. Their configura-
tion space is densely seeded with point attractors and small-cycle attractors.
Brain, on the other hand, seems to have a single large strange attractor in its
configuration space. From practically any random start at all, Brain evolves
to a very active balanced pattern filled with large amounts of structure.

The most common Brain patterns are “haulers,” which movein each of the
four principal grid directions. A hauler consists of two firing blocks followed

82 Rudy Rucker

by two refractory blocks. Chains of outriggers attach themselves to haulers
and are towed along. Sparks jump up and down the outrigger chains, spewing
out writhing clots of debris. Just as Life has its special glider pattern, Brain’s
special pattern is the “butterfly.” Like the glider, the butterfly is a small cell
structure which propagates along the grid’s diagonals at “one fourth the
speed of light” (one cell for every four updates). I discovered a way to build
a butterfly gun in June 1988.

Though Brain is not chaotic, it is hyperactive, with all known patterns
but one being in constant motion. In January 1989 I found a static pattern,
the “twizzler.” The twizzler can be started as a block of four firing cells with
four refractory cells attached, one to each side in a pinwheel symmetry.

In studying Brain, I developed several tricks to slow it down. One trick
is to ignore one neighbor (say East) when forming the 8Sum. Another trick
is to add lethal barrier lines to prevent the pattern from wrapping around
the screen. A third way of slowing Brain down is to make the cells have two
or even three clockcycles of being “refractory” after firing.

If one starts with a very simple pattern — as opposed to a random screen
of half 0s and half 1s — Life can sometimes generate a lot of structure before
going periodic, Vote will die boringly, and Brain will usually end up at the
same strange attractor that it approaches from a random start.

4. New rules

I will describe three new rules: Brainlife, Votelife, and Ranch. For the sake
of comprehensibility, I will not describe the programs in pure Forth, but will
instead use a kind of mixture of Forth, natural language, and Pascal.

In Brainlife, I run Life in Plane0, and I run Brain in planes 2 and 3. We
let the two rules interact only at locations where the Planel cell holds a 1.
Planel is used to hold a static mask which allows the two rules to interact.

[(Life =1) OR ((Centerl =1) AND (Center2 =1))] — Plane0

Centerl — Planel

[(Brain2 =1) AND NOT ((Centerl =1) AND (Center0 =1))] — Plane2
Center2 — Plane3

The interaction between Life and Brain is such that the presence of a
Brain cell in the Planel mask region turns Life cells on. This keeps Life from
dying out. The presence of a Life cell in the Planel mask region turns off
any live Brain cell which touches it. This has the effect of damping Brain’s
activity.

In Plates 1 and 2 I show Brainlife evolving from a start consisting of a
disk in plane 1 and 2 bits in Plane2. Brain evolves two adjacent bits into an
expanding diamond pattern of bits in Plane2 and Plane3. We see the pattern
crossing the mask in Platel, and Plate2 shows the sequel.

In Votelife, I use a different trick to keep Life from dying out. I put Life
in Plane0, and I put Vote in Plane2, with an echo of Vote in Plane3. By

Symbiotic Programming

Plate 1.

83

84

Rudy Rucker

Plate 2.

Symbiotic Programming 85

looking where planes 2 and 3 differ, we can detect the shifting edge of the
Vote domain. We let the edge cells turn on Life cells. This has the effect
of surrounding the Vote domains with activity, somewhat in analogy to the
activity found along beaches. Suppose that we define Edge to be Center2
XOR Center3, the Boolean value of NOT (Center2 = Center3). Then our
rule has the form:

Life OR Edge — Plane0

Vote — Plane2

Center2 — Plane3

Votelife is not really symbiotic, as Life has no backreaction on the Vote
rule. A backreaction can be arranged if we introduce a new voting rule

WVote.
9Sum { 0001100111}

Run by itself, WVote goes immediately to chaos, but if it is run in some
spots on the edge of the normal Vote rule, it has the effect of making the
edges more jagged and more stable. Now let Change stand for Center0 XOR
Centerl, and define a symbiotic Votelife rule JVotelife as:

Life OR Edge — Plane0

Center0) — Planel

IF Change THEN (WVote — Plane2)
ELSE (Vote — Plane2)

Center2 — Plane3

The edges which arise have a strong fractal appearance.

The third rule I want to describe in this section is called Ranch, and it is
a kind of synthesis of Brainlife and Votelife. We run and echo Vote in planes
2 and 3 as before, filling the screen with shifting domains of 0s and 1s. We
might think of the black regions of Plane2 as ocean and the light regions
as land. We use planes 0 and 1 to run either Life (in Plane0) or Brain (in
Plane0 with echo in Planel). A given cell obeys the Brain rule if it is in
“ocean” and the Life rule if it is on “land.” A little care needs to be taken at
the edge, so that the Brain cells can sometimes get ashore and turn on Life
cells. In particular, if Edge is again short for (Center2 XOR Center3), we
define Edgelife as:

IF Edge THEN (8Sum { 01 0010000 } — Plane0)
ELSE (Life — Plane0)
Now we can go ahead and define Ranch
IF Center2 THEN Edgelife — Plane0
ELSE Brain — Plane0
Center0) — Planel
Vote — Plane2
Center2 — Plane3

86 Rudy Rucker

Plate 3.

Ranch is a very interesting rule to watch. If one starts with only a few live
Brain cells in the ocean, they will sporadically colonize the banks of the land
with Life, sometimes starting backreactions which return new Brain cells to
the sea.

Plate 3 shows the rule Ranch. This is a typical pattern evolved some two
thousand steps from a random start of half zeroes and half ones. I have run
a similar pattern for as many as half a million steps. I found this pattern
after searching through a few hundred different random starts. I think of it
as an artificial life tide-pool.

In this pattern, the Vote rule establishes two vertical stripes of black and
yellow, and these stripes do not go away. (Keep in mind that the screen is
treated as a torus, so the two yellow stripes are really one.) The persistence
of life Brain cells traveling along the black region of Plate 9 is promoted by
the presence of the small manshaped Vote oscillator shown in the center.
Under Vote, this oscillator spins about its horizontal axis like an acrobat. I
call him “Robotman.” Every time a Brain glider hits the Robotman, he gets
infected with Life cells which burst back out of him to produce showers of
new live Brain cells.

As with Votelife, Ranch has no backreaction on the voting rule. The only

Symbiotic Programming 87

acceptable (noncatastrophic) backreaction I have found is to replace Vote by
WVote whenever Center0 OR Centerl, but this makes no great change.

I have found one nice rule which sets up a very strong nonlinear feedback
between a Life-like rule and a Vote-like rule. This rule, which I call Temple,
displays true emergent behavior in that it does some very surprising things.
Perhaps the most surprising is the way in which it builds spires on the sides
of an ordinary start square, as shown in two slides which Chris Langston
lost. If one starts Temple with a random screen, it divides the screen into
oppositely striped domains, with some fairly shortlived boiling and sparking
along the domain boundaries.

5. Why?

Just about everyone enjoys watching these displays. The simplest explana-
tion is what Jim Crutchfield half-jokingly calls “technomothia”: our society
conditions people to pay attention to fast-moving bright colors. But after
the initial enjoyment, the question often is: “Why are you doing this? What
are these good for?”

One aspect of all fast Type 3 CA displays is that here computation is
in some sense made visible. The complexity, or program size, of these rules
is very low, yet the amount of visual information being produced is large
and, in interesting patterns, not readily predictable. In Charles Bennett’s
terms, these patterns are logically deep [?]. Up to a point, the longer the
computer runs, the more information you are getting. Real computational
work is being done.

The low-complexity/high-depth character of artificial life CA displays is
in some respects the opposite of expert systems Al programs, which typically
have extremely long programs (high complexity) and, when actually used,
very short run times (low depth). A nice thing about CAs is that one uses a
cheap machine to do all the boring work, instead of assigning man-centuries
of programming to hapless graduate students.

But this is all at the level of metaphor. How might one practically exploit
artificially alive CA patterns for some useful purpose? Phrasing the question
in such a way limits the range of interesting answers. A dog, or even a
tree, is to a certain extent intelligent. Yet we do not dream of getting a
dog or a tree to act as a medical advisor or a missile pilot. We can only
exploit the intelligence of a dog or a tree by enjoying the things that they
characteristically do (find game, grow a shady umbrella).

It seems certain to me that bigger machines and better breeding will pro-
duce CA life of really startling richness. (Margolus and Toffoli are currently
building CAM-7, a 1000 x 1000 x 1000 CA board with 16-bit cells.) Yet
in their natural course of development, these lifeforms are not particularly
“interested” in doing things like speaking English. A rule like Ranch would
much rather land gliders on shore to lay eggs.

In a recent paper [?], Danny Hillis, suggests that human speech is a kind
of software virus which initially started as songs apes would sing. In his view,

88 Rudy Rucker

the natural wetware evolution of the apes provided a substrate upon which
the rich software of abstract thought memes could fruitfully grow. I think the
present function of artificial life breeders is simply to produce systems with
rich repertoires of behavior. So many CA rules are computation universal
that, when the time comes, many sorts of humanly useful patterns can be
taught or programmed in. Given that Brain is almost certainly computation
universal, longlived Ranch pattern could presumably be programmed.

Although it has been some years since Conway proved Life to be com-
putation universal, workers such as William Gosper of Symbolics continue
refining what Gosper has termed in conversation “the technology of Life.”
The challenge is to make small and efficient CA patterns which perform
useful computations. One can imagine a situation in which computer hard-
wares were simply very large cellular automaton machines, and users would
download the “computer” pattern which they currently needed.

Yet this last idea is probably not the correct one. The essential thing
about a CAM is that it is a parallel processor, and it is probably a misal-
location of resources to use such a machine to simulate serial computation.
As Hyman Hartman pointed out in his talk at ALIFE 87, the best way to
“program” parallel computers may simply be to evolve interesting patterns
on them, and only then to try to find tasks for which the patterns are appro-
priate. CAs provide a paradigm for this activity in the same way that the
Turing machine is a paradigm for serial computation.

6. Two program listings

As my programs have rather short codelength, it seems valuable to list two
of them here so that other CAM-6 workers can run them. The programs are
written in an extension of Forth [1,4].

In reading the programs one must understand that the CAM-6 is orga-
nized as two halfmachines, CAM-A, which runs planes 0 and 1, and CAM-B,
which runs planes 2 and 3. Each halfmachine thinks of its own planes’ cen-
ter cells as CENTER and CENTER/, and the other planes’ center cells as
&CENTER and &CENTER'. In the rule Temple, the neighborhood assign-
ment is such that one is allowed to look into the neighboring plane to see

NORTH’, EAST’, SOUTH’, and WEST’ as well as CENTER/.

People who cannot get access to a CAM-6 should be aware of a new, pure
software CA generator called CA Lab. This product is written in C and 8088
assembly language for the PC family by myself and John Walker, co-founder
of Autodesk, Inc. CA Lab will be available for $59.95 from Autodesk, Inc.,
2320 Marinship Way, Sausalito, CA 94965, starting March 18, 1989. CA Lab
can show Ranch and all the cellular automata mentioned in [4], as well as a
class of 16-bit rules which solve Laplace’s equation in the plane. (I have not
tried to make it do Temple yet.) Rules for CA Lab can be programmed via
a screen editor or in Basic, Pascal, or C.

Symbiotic Programming 89

6.1 Ranch: A symbiosis of Life and Brain partitioned by Vote

NEW-EXPERIMENT
N/MOORE &/CENTERS

: 8SUM\\
NORTH EAST SOUTH WEST N.WEST N.EAST S.WEST S.EAST
+ + + + + + + i
: 9SUM
8SUM CENTER + ;
: LIFE
8SUM { 0 O CENTER 1 0 0 0 0 0 } ;
: BRAIN
8SUM 2 = CENTERS 0 = AND ;
: VOTE
gstuM { 00001011113} ;
: EDGE

&CENTER &CENTER’ XOR ;

EDGELIFE
EDGE IF 8SUM { 0 1 0 01 0 0 0 0 } ELSE LIFE THEN ;
CAM-A

RANCH/A
&CENTER IF EDGELIFE >PLNO ELSE BRAIN >PLNO THEN
CENTER >PLN1 ;
MAKE-TABLE RANCH/A
CAM-B

RANCH/B
VOTE >PLN2

CENTER >PLN3
MAKE-TABLE RANCH/B

6.2 Temple: A voting rule driven by Lifey noise

NEW-EXPERIMENT
CAM-A N/VONN &/CENTERS

; 5SUM
NORTH EAST SOUTH WEST CENTER + + + + ;
: 5SUM’
NORTH’ EAST’ SOUTH’ WEST’ CENMTER’ + + + + ;
: TEMPLE/A

5suUM{ 0001 113}55UM {00000 1} XOR
&CENTER’ OR >PLNO
&CENTER >PLN1 ;
MAKE-TABLE TEMPLE/A
CAM-B N/MOORE &/CENTERS

90 Rudy Rucker

: 8SUM
NORTH EAST SOUTH WEST N.EAST N.WEST S.EAST S.WEST
++ 4+t o+
11SUM
8SUM CENTER &CENTER &CENTER’ + + + ;
: TEMPLE/B

8SUM { 0 &CENTER CENTER 1 0 0 0 0 O }
CENTER’ NOT AND >PLN2
11stM {0000 0000 01113} >PLN3 ;
MAKE-TABLE TEMPLE/B

References

[1] A. Califano, N. Margolus, and T. Toffoli, CAM-6 User’s Guide, Version 2.1
(Cambridge, MA: MIT Laboratory for Computer Science, 1987).

[2] W.D. Hillis, “Intelligence as an Emergent Behavior,” Daedalus, 117 (1988)
175-189.

[3] C.G. Langton, “Studying Artificial Life with Cellular Automata,” Evolution,
Games, and Learning (Amsterdam: North Holland, 1986) 120-149.

[4] N. Margolus and T. Toffoli, Cellular Automata Machines (Cambridge, MA:
MIT Press, 1987).

[5] R. Rucker, Mind Tools (Boston, MA: Houghton Mifflin, 1987).

[6] B. Silverman, The Phantom Fishtank (Cambridge, MA: Lego-Logo Lab,
1988).

[7] S. Wolfram, Theory and Applications of Cellular Automata (Singapore:
World Scientific, 1986).

