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Abstract. For the class of permutive cellular automata the num-
ber of periodic points and the topological and metrical entropies are
calculated.

1. Introduction

Cellular automata (CA) are infinite sequences of symbols of a finite alphabet
that evolve in time according to a definite local rule. We can take, for ex-
ample, a lattice where each vertex contains the value of a dynamical variable
ranging over a finite set of numbers. At a certain time ¢ the values on the
vertices of the lattice take a definite value, but at time ¢o + 1 , the values of
the dynamical variable can change according to a law defined locally. This
kind of system, as shown by von Neumann [8] can simulate a Turing ma-
chine, and specific examples exist where the cellular automaton is capable of
universal computation [3]. The simplest examples of CA rules are obtained
when we restrict to one-dimensional lattices and the dynamic variable over
each site of the lattice can take values on the finite field Z, = {0,1} [10].

There is an extensive literature on the dynamics of one-dimensional CA
and on the patterns generated by the evolution of the CA rules in the ex-
tended phase space Z x Z* [12]. These patterns appear to be organized in
several complexity classes according to the behavior of the iterates of random
initial conditions [11]. In Wolfram’s classification [11], we have four classes
of CA maps. Class 1: Evolution leads to a homogeneous state. Class 2:
Evolution leads to a set of separated simple or periodic structures. Class
3: Evolution leads to chaotic patterns. Class 4: Evolution leads to complex
localized structures.

The concept of metrical entropy, introduced by Kolmogoroff [9], and its
topological analog, the topological entropy [1] are invariants that quantify the
intuitive notions of mean complexity and global complexity of a dynamical
system. (For a discussion of this concepts see [2].) It has been shown by
Brudno [4] that the complexity of a trajectory of a dynamical system is
strictly related to the mean complexity, that is, if there exists an ergodic
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measure y, the complexities of u-almost all trajectories equals the metrical
entropy. Under these conditions the classification of Wolfram can be made
more precise by calculating the ergodic invariant measures and the metrical
entropy for classes of CA maps.

The topological entropy gives an equal weight to the different kinds of
complex behaviors of the trajectories of a dynamical system, and so, we can
find systems with a positive topological entropy but with complex trajectories
localized on a subset of phase space with zero Lebesgue measure. However, if
the invariant measure associated to a compact dynamical system is unique,
the topological entropy equals the metrical entropy.

We can define a third quantity to quantify the complexity of a dynamical
system. Let f be a self map of a compact space X. Let Per(f™) denote the
number of fixed points of f™. We define the periodic complexity of the map
I by )

P(f) =limsup M.

n—00 n

If f has the property of separability of trajectories, P(f) is a lower bound

for the topological entropy [5]. In topological Markov chains P(f) equals the
topological entropy [2].

This paper is organized as follows. In Section 2 we calculate the number of
fixed points and the periodic complexity for the class of permutive CA maps
(see the definitions below), and for the other classes an upper bound is given.
It is also shown that orbits of points, under the evolution of a permutive CA
map, are associated uniquely to orbits of points of a topological Markov
chain. In Section 3 we calculate the entropies for permutive maps. Section 4
is devoted to the discussion of the results and some examples are presented.
In the rest of the introduction we give some definitions that will be used in
the subsequent sections.

Cellular automata are maps 7 : ¥ — X where ¥ is the space of doubly
infinite sequences of 0 and 1, ¥ = {0, 1}2. We restrict our study to the class
of finite breadth CA, that is, those CA whose value at site number 4, 7 € Z,
at time ¢t + 1 depends on the values of site numbers ¢ + m,...,7 + n, with
m < n, at time t. The number v = n — m + 1 is the breadth of the CA
rule 7. Giving to Z, the discrete topology and endowing ¥ with the product
topology, ¥ is a compact topological space and a finite breadth CA map is a
continuous function of ¥.

A simple representation of a CA map can be obtained through the shift
map o : ¥ — ¥ and a Boolean function of v > 2 variables. Given f :
{0,1}" — {0,1} we can define a cellular automaton map 7 by

(7(2)i = f(Tigmy -+ -y Tign), foralieZ,y=n—-—m+1,
or,
7(z) = f(e™(2),...,0"(2))
where (o(2)); = @41 and ¢ = (..., 2_1,%0,21,...) € E. [ is the generating
function of the finite breadth map 7. An example of a CA map is given by
7(z) = o7!(z) ® o'(z), where @ means addition modulo 2.
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There are 22" Boolean functions f(zy,...,z,) of v variables and some of
them do not depend of z; or z.,. An easy calculation shows that the number
of Boolean functions that depends of z; and z, is

N(y)=2" =227 427" for any v > 2.

In the following, C(y;m,n), with m < n, is the class of CA maps whose
generating functions depend of z; and z., and v = n —m + 1. For each fixed
pair of integers m and n, C(2;m,n) and C(3;m,n) have respectively 10 and
228 elements.

Following Milnor [7], we say that 7 is a right-permutive CA map (RP),
iff, its generating function f verifies to the condition

fz1,---y2y) = f(21,...,%y), forall (z4,...,2,) € Z].
7 is left-permutive (LP), iff,
f(z1,..-y2y) = f(T1,...,2y), forall (zq,...,2,) €77,

where 0 = 1 and 1 = 0. 7 is permutive (P) iff both the above conditions are
verified. Denoting by P(v;m,n) the number of permutive CA maps and by
Q(v;m,n) the number of right- or left-permutive CA maps in C(y; m,n), it
can be found easily that

P(y;m,n) = e
Q(y;m,n) = (22N(i))—P(7;m,n)

where N(1) = 2.

2. Periodic points

Let {A;} with 0 < j < 27 — 1 represent the elements of Z3, where j =
i+ 2 iy1+4-tyo+---+2""14; and (44,...,1,) € Z3. This defines an
invertible map 7., : Z] — {A;}. For example, if v = 2, we have the symbolic
representation,

Ao & (0,0), 41 & (0,1), 4y & (1,0), 45 > (1,1).

We can now identify the set ¥ = Zg with a subset of £, = {Aj}z by taking
z = (...,%_1,%0,Z1,...) € ¥ and identifying consecutive and overlapping
v-blocks of elements of Z, with the elements of the set {A;}. For v =2, we
have, for example,

...01101001110. .. & ... A; AgAyA; As Ao Ay Az As A, . ..

Hence, we have constructed a bijection h, : & — S, C X, such that
o4(hy(2)) = hy(o(z)), where o, is the shift map over ¥,. The map ., :
¥ — S, is defined by

(hy(2))i == Ty(Tigmy - -+ Tign) =b;, foralli€Zandy=n-—-m+1,
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where b; = Aj and 7 = Tipn + 2 -Tipa1+...+ 27-1. Titm-

Let M, = [M;], 0 < 4,5 <27 —1, be a 2” x 27 matrix. With 7 =
iy +2-iy1+...+277 i) we define M, by My; =1if j =21, +...+277 14,
orj=14+2-4,+...4+ 2714, and M;; = 0 otherwise. We say that
A; — A; is an allowed or compatible transition for M, iff M;; = 1. The
set S, is completely characterized by the Markov transition matrix M., i.e.,
b= (...,b-1,b0,b1,...) € Sy iff b; — biy1 is an allowed transition of M.,,
for all i € 7. For v = 2, we have

1100
0011
M= 1100
0011

The characteristic polynomial of M, is A3(A —2) and the number of periodic
configurations of S, with period n is 2". For each class C(y;m,n) we call
M., the space transition matrix to the right (STMR). The space transition
matrix to the left (STML) is the transposed of the STMR, M.

We can now associate to a CA rule 7 € C(y;m,n), with v > 2, and
m < 0 < n, a time transition matrix. Let (bu,...,b,) be a v-block of
elements of {A;}, 0 <j <27 —1. We define the map f*: {4;} — {4;} by

Fr(by- -5 by) o= my(f(757 (b1)); -, F(777(By))) = ¢

where ¢ € {A;} and f is the generating function of 7. The map f* induces
a CAmap 7*: S, — S,, by

7*(b) := f*(o;”(b),. . O':(b))

The time transition matrix T = [T};], 0 < 7,5 < 27 — 1, associated to 7 is
defined by

T.__{ 1, if f*(Bmyeerb0y.-.5bn) = ¢, with by = A; and ¢ = A;
: 1 S

0, otherwise

where m < 0 < n. We will call T, the time transition matrix (TTM)
associated to 7.

Proposition 2.1. Let 7 € C(y;m,n) with y > 2, hy : ¥ — S, and 7" :
S, — S, as defined above. Then, 7 and 7* are topologically conjugate,
™ ohy=hyoT.

Proof. With 2 = (...,2_1,%0,21,...) € ¥ and by the definitions of the
maps h, and ., we have

(hy(7(2))): = AZ"’"-T(z);+m+...+r(z);+“

= A2"’_"f(1‘i+m+m ----- Zitmin )+t (ZitntmyTitnin)
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and

f*((h“/(x))i+ma RS (h'y(m))i+n)
f*(AT’—l~z;+m+m+...+z:,'+m+na sy A27'1~1'.'+n+m+---+zi+n+n)

7"-’y(.f(xi+m+m, %k § ami+m+n)7 oes g f(xi+n+m7 sl mi+n+n))

(77 (ks (2))):

Agr— S (TigmpmoenTitmin) ot F(TigngdmoeaTitnin)

for all 7 € Z. Comparing the above expressions, we have the desired result. B

We have constructed a CA map 7* : S, — S,, over a “larger” set of
symbols ( {4;},0 < j < 27 —1 ), that is topologically equivalent to 7.
We shall see below the conditions for the orbit of a point b € S, by the
iteration of 7*, O(b) := {z € S, : = = 7*"(b),n > 0}, to be completely
“reconstructed,” given a semi-infinite sequence (bo, b1, . . .) of elements of {4;}
whose transitions b; —— biy1 are all compatible with 7. In this way the
number of periodic points of the dynamical system defined by 7* equals the
number of periodic points of the subshift of the finite type defined by 7' and
the shift map o, over S,. In the following we look for conditions on 7 such
that a “temporal transition” b —— ¢ compatible with 7, generates uniquely
the “spatial transitions” b —— d(b,c) and e(b,c) «+— b compatible with M,
and M}, respectively. In a diagrammatic form we have

e(bc) «— b = d(b,c)
M M,
T, Lt

c

Lemma 2.2. Let 7 € C(y;m,n) withy > 2 and m <0 < n. Let T; and M,
[resp. M}] be, respectively, the TTM associated to T and the STMR [resp.

STML). If b = c is an allowed transition of Ty, T is RP [resp. LP] and
n > 0 [resp. m < 0] then, there exists one and only one allowed transition
b —> d [resp. e «— b] compatible with M. [resp. M}].

Proof. Suppose that 7 is RP. Let b —Y5 ¢ be an allowed transition of 7.
With 771(8) = (Zmy---1%0s--+,2x) and 771(c) = (Ymy--+>Y05--+>Yn), We
have f(Zm,...,Zn) = yo. As y; is fixed by 7 "(c) because » > 0 and,
by the RP condition, there exists one, and only one, ¢ € Z, such that
F(@mgts ey @ny®) = y1. S0, d = T(Tmg1,-.., Tny ). A similar proof is
obtained when 7 is LP. B

Theorem 2.3. Let 7 € C(y;m,n) with v > 2. If 7 is RP [resp. LP]
and m < 0 < n [resp. m < 0 < n] then, for any allowed sequence
B = (b°,b,...,b%,...) compatible with T, there exist sequences D' =
(di,...,di,...) [resp. Ef = (...,€',,...,e' )] with 1 > 0, such that, for
everyi > 0 and k > 1, di -t dit! [resp. €', — e¥}] and di = di e
[resp. €' _, «— €' ] are compatible with T, and M, [resp. M?], respectively.
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Moreover, b* — di [resp. €', «*— b'] is compatible with M., [resp. M!] for
every i > 0, and the sequences D' [resp. E‘] are completely determined by
B.

Proof. Suppose that 7 is RP and that B is an allowed T, sequence. By
lemma 2.2, there exist uniquely determined M. -compatible transitions 4° —
d? and b' = d}, determined, respectively by the T, transitions 5° —— &'
and b' -5 B*. Now we want to prove that d? —— d! is T,-admissible.
With 77(d}) = (Zm41,--++%nt1) and 77(d]) = (Ymt15--->Yn41), a5 We
have seen in the proof of lemma 2.2, z,,; is completely determined by y;,
ie., f(Tmily-- - Tnt1) = y1. So,asm < 0and n > 0, the transition d? oty di
is always admissible, independently of yn4;. As &5 iy d} is admissible, by
lemma 2.2 there exists, say, d3, such that df — d5 is M,,-admissible. Using
induction with the same arguments we construct semi-infinite sequences D =
(di,...,di,...) all compatible with M, and completely determined by B.
When 7 is LP the proof is similar. B

In the conditions of the last theorem, when 7 is RP and given B =
(6°,8,...), we have the following diagram:

I BN IR I

¢l t] ¢
B & 4
t] t]
Bt @
t] :

b...

where all vertical and horizontal transitions are compatible with 7). and
M., respectively, and the D' are determined by B. If 7 is P we can pro-
long the diagram to the left in an analogous way and write 7*(E?, b, DY) =
(B, b+, D**1). Hence, we have:

Corollary 2.4. If T € C(y;m,n) isa P CA map, vy > 3 and m < 0 < n,
then Per(t*) = Trace(T¥) for every k > 1. If 7 is nonpermutive, v > 2 and
m < 0 < n, then Per(r¥) < Trace(T¥).

Proof. If 7 is permutive and B = (8°,...,6F1,8%,...,bF1 . ) is periodic
and T,-admissible, by theorem 2.3 we have that 7*(E¢, b, D) = (E™!, b+,
D), for every i > 0. By lemma 2.2, d? = d¥ and €%; = ¢*;, for every
i > 1. So, (E° °, D°) is a periodic point of 7*. As D' and E* are uniquely
determined by B, the first assertion of the corollary follows by proposition 2.1
and by the fact that the number of periodic transitions of a Markov matrix
equals its trace. If 7 is nonpermutive , by construction of T, and M,, to
every periodic point z € ¥ of 7 with period n, corresponds a closed loop of
length n in the graph defined by T,. So, Per(7*) = Per(T*k) < Trace(TF). B
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Lemma 2.5. Let 7 € C(y;m,n) withy > 2. If 7 is P then 7 is 2""'-to-one
as well as any finite block of elements of Z,.

Proof. Let z € ¥ and a = (ay,...,a,-1) € Z37". By the RP condition,

there exists one, and only one, y; € Zy such that f(ai,...,ay-1,91) = zo.
By the LP condition, there exists one, and only one, y_; € Z, such that
f(y-1,a1,...,ay-1) = _1. A configuration

y= (""y—n7'"7y-—1,a1,"'7a’7—1,y17"')yna"')

such that 7(y) = z is then obtained by induction. As a is an arbitrary
element of Z7 ™", the proposition follows. N

Corollary 2.6. If 7 € C(y;m,n) is permutive, v > 3 and m < 0 < n, then
P(r)=~-1.

Proof. Let T, be the TMM associated to 7. By lemma 2.5 , for each A;
there exists 27! T,-allowed transitions A; — A;. So,

27-1

Z T = 2,

i=0

independently of . By the Frobenius-Perron Theorem the spectral radius A
of T, is bounded by

min(}_Ty;) <A <max(}_Ty)
J J

and so, A = 2771, As Trace(TF) ~ AF, the result follows by corollary 2.4 and
the definition of P(7) (see Introduction). ll

We have shown that all permutive CA maps within a class C(y; m,n) have
the same periodic complexity. In the next section we prove that the same
conclusion holds for the entropies. Finally, we note that the Markov matrix
T, associated to any CA map 7 enables us to construct an algorithm to find
the period n points of 7. In fact, if z € ¥ is a periodic point of 7 with period
n then, associated to z, there exists a closed loop of length n in the graph
defined by T. So, from all the possible loops of length n we can test those
that can be prolonged to the right and left with transitions compatible with
M, and M?.

3. Entropies

Let z,y € ¥ and define the distance function d : & x & — R* by d(z,y) =
02 ]y—"z_,lﬁcil The neighborhood base for the topology induced by the met-

ric d consists of cylinder sets,

Cr,={2 €D :(2ry...,2s) = (@1,-+-,85-r41)}
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where a = (ay,...,a,_,11) is a fixed element of Z5~7*'. In this topology X is
compact. Let B be the o-algebra generated by all the cylinder sets 7, and
define the product measure p : B — R through
1
(0;11 my 0:122 ymz e O:fk,mk) = ok
for any a; € Ty, m; € T and k£ > 1. Bakenship and Rothaus [7] have
shown that the 7 invariance of p is a necessary and sufficient condition for
the surjectivity of 7. By lemma 2.5 we have that every permutive cellular
automaton map is invariant with respect to the measure p.

Let @ = {A4,...,An} and B = {Bx,..., By} be either covers or partitions
of ¥ and denote their join by aVp:= {A;NB;: 1 <i<n, 1 <j<m}
The cover f is a refinement of the cover o, a < 3, ifl every element of f is
a subset of some element of a. A finite partition « of ¥ is called generating
for 7 iff V2 __ 7*a = ¢, where ¢ is the partition of ¥ into points.

Let « be an open cover of ¥ and N(«) the number of sets in a subcover
of minimal cardinality. The topological entropy of 7 with respect to « is

=4 ~k+1
h(7'>a)2=klim logy N(aVrla V... V7 Ftla)

—00 k

and the topological entropy of 7 is sup h(7,a), where the sup is taken over
all finite covers of ¥. If {o;} is a sequence of refining covers of ¥ and
diameter(a;) — 0 as ¢ — oo then, h(7) = sup; (7, o) [1].

If 7 leaves invariant a measure y, the metrical entropy of 7 relative to the
partition « and the measure y is

HiaVrlaV...vrlg)
k

where H, (o) = — 3%, p(A;i) log, (A;). The metrical entropy of  relative to
the measure p is H(r, p) = sup H(7, 1, @) and, if @ is a generating partition,
H(Tnu) = H(Tﬁ‘va) [9]

The main result of this section is the following theorem:

H(r,p, o) = hm

Theorem 3.1. Let 7 € C(y;m,n) withy >3 and m < 0 <n. If7 is P
then, the topological and metrical entropies of T are

h(r) = H(r,p) =
where 1 is the product measure on X.
We now give some preparatory lemmata for the proof of theorem 3.1.

Lemma 3.2. Let 7 € C(y;m,n) withy >3 and m < 0 <n. If 7 is P then,
for every r > k+m and s < p+ n, we have

(rreg )N e, =

(T—lcz,p) ﬂ Cf,s = Cl?—i»m,p-}-n
where d depends of a and b.

or,
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Proof. Let a = (ay,...,a,) € 727%+1 By the definition of 7,

—1/va __ c
¥ Ck.p - U Ck+m,p+n
ceG

where G = {(Tkimy---1Tptn) ¢ [ (Titmy--rTign) = ¢,k < 1 < p}. By
lemma 2.5, the set G has 27! elements and it can be constructed as in the
proof of lemma 2.5, by “extending” to the right and left the set of all the
~ — 1-blocks of elements of Z,. With r > k + m and s < p + n, if the
block b = (b, ..., bs) agrees with one of the blocks (z,,...,z,) we can choose
d = (Thtmy---rbrs-nvsbay s Tppn) and (771CE) N CE, = Chyppyn KD
does not agree with either of the sub-blocks of the elements of G we have an
empty intersection. B

Lemma 3.3. Let T € C(y;m,n) withy > 3 andm < 0 < n. Let a(im,in) =
{Coiimza € Z;("_m)+1}. If 7 is P then, for any i > 1, we have,

N(a(im,in) V 7 la(im,in) V...V 77 % a(im, in))
- 2i(n—m)+l+(k—l)(’y—l)

and Vi5r*a(im,in) = €, where € is the partition of ¥ into points.

Proof. To simplify the notation let us put o := a(im,in) and o = a V
rla V...V 1. Bylemma 3.2 we have ay = a V7 'a = {Cf 1 mintn}-
Continuity of 7 implies that «; is a cover of ¥ with minimal cardinality and
so N(aV7la) = 2i{(*=m)+1+("=m)  From property 6 of [1], az = a V7~ (a V
77la). Asim > im+m (m < 0)and in < in+n (n > 0), by lemma
3.2, we have, az = {Cf, 12m ins2n}- With the same previous argument s
is a cover of ¥ with minimal cardinality. By induction, we obtain «; =
{C?m+(k—1)m,in+(k—1)n ta € Zg”“"“)(""")“}. With n —m =« — 1, the result

for N (o) follows and, limy_eocp = VigmFfa = {z €S} =¢. I

Proof of theorem 3.1. Let {a;} := {a(im,in) : ¢ > 1} be a sequence of
covers of X. In the metric d, diameter(e;) — 0 as ¢ — oco. By lemma 3.3
and the definition of topological entropy, h(7,c;) = v — 1 and so, A(7) =
sup; h(7, ;) = v — 1. For the metrical entropy, by definition of the measure
1, we have
H(Cl g (h=tym int (k-1)n) = 1 Jof—ma(-1)(r—1)

and so, H,(c; VTl V.. . VT~ %) = i(n—m)+1+(k—1)(y—1). As every
partition ¢; is generating (lemma 3.3) we have H(7, ) = H(7, g, 05) = v—1. 10

4. Examples and conclusions

In general, any finite breadth cellular automaton map can be specified within
a certain class C(y;m,n), by a code number ranging in the interval [0,2%"]
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[10]. For example, taking v = 2, and letting ao = f(0,0), a; = f(0,1),
a; = f(1,0), and a3 = f(1,1), the CA map generated by f(z1,z;) has code
number C = ag+2-a; +4-a3+8-as. When the a; ( € Z; ) range over all its
values, there are 16 different Boolean functions of two variables. However,
the class C(2;m,n), for fixed m and n, has only ten elements because some
of the generating functions do not explicitly depend on z; or z,. In this
representation, reducible generating functions have code numbers 0, 3, 5, 10,
12, and 15.

In class C(2;0,1) the permutive CA maps have code numbers 6 and 9 and
there are no simply right- or left-permutive maps. In class C(3; —1,1) there
are four permutive maps, with code numbers 90, 105, 150, and 165; there are
also eight simply RP and eight simply LP maps.

The results of the previous sections apply to the classes C(2;0,1) and
C(3;—1,1) in the following way:

(a) Class C(é; 0,1). Within this class, by corollary 2.4, we have only
an upper bound for P(r). However, in this special case, P(7) can
be exactly calculated.

Let v be the permutation

o Ao A1 A As
T4 Ay A A

and define the map k(b) : Sy — S, by, (k(b)); = v(b;), forall ¢ € Z.
The map k is a bijection over Sy. Let 7* = k™' o7* 0 k. Obviously,
7 and 7* are topologically conjugate. Denoting by A and A’ the
spectral radius of T and T, we have that Per(7*") = Per(r"")
and, with A* = min{A, X'}, P(r*) = P(v™) < A*. For nonpermu-
tive CA maps, we have calculated explicitly the spectral radius of
all the TTM and we obtained, using the previous argument, that
Per(m*") ~ ¢(n), where ¢(n) is some polynomial in n with degree
at most 3. Hence, we have: If 7 € C(2;0,1) is nonpermutive then
P(r)=0.

When 7 is permutive ( v = 2 ), corollary 2.6 does not apply
but, in [6] (theorem 2.5) it was shown that for the map with

code number 6, Per(r") = 2"_2"1, where n’ is the largest natural
number such that 2* divides n. So, for rule number 6, P(7) = 1.
The permutive map with code number 9 is topologically equivalent
to the map with code 6, via the bijection k, and the same result
applies. According to the criterion of classification of complex
patterns by P(7), we have that rules in C(2;0,1) are divided in two
classes, one corresponding to P(7) = 1 and the other to P(1) = 0.
In fact, the observation of the patterns in the extended phase
space, generated by the iteration of the CA maps in this class,
confirms this conclusion.
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(b) Class C(3;—1,1). In this class we have, if 7 is permutive, by
corollary 2.6 and theorem 3.1, P(7) = h(r) = H(r,pu) = 2. For
simply RP or LP maps we found Per(r") < Trace(T}) = 37,
independently of the map, implying, P(7) < log, 3. The estimate
for the number of periodic points can be very crude for certain
values of n. For example, in the LP map with code number 30, we
have Per(r) = 3 and Per(7?) = 3. For permutive maps the same
calculations lead exactly to Per(7™) = 4™, improving theorem 2.5
of [6]. The patterns generated by the permutive rulesin C(3; —1,1)
show all the same qualitative behavior corresponding to Class 3
in Wolfram’s classification. For other classes numerical evidence
suggest that all permutive CA maps belong to Class 3.

As we have seen, for all classes of permutive CA maps the relation
P(7) = h(r) holds. So, we advance the conjecture that for any
finite breadth cellular automaton the same equality is true. This
would lead to good estimates for the topological entropy through
the calculation of the number of periodic points of 7 (see the
comments at the end of Section 2).

In class C(3; —1,1) all permutive maps have the same number of
periodic points of period n for all n > 1. This suggests that
all permutive maps can be topologically equivalent. For classes
C(2;m,m + 1) this is indeed the case. For classes C(3;m,m + 2),
rules 90 and 165 and rules 105 and 150 are topologically equivalent
via the map locally defined by the permutation v : {Ao,..., A7}
=2 {A7,...,A0}.
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