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Abstract. For the class of permutive cellular automata the num
ber of periodic points and the topological and metrical entropies are
calculated.

1. Introduction

Cellular automata (CA) are infinite sequences of symbols of a finite alphabet
that evolve in time according to a definite local rule. We can take, for ex
ample, a lattice where each vertex contains the value of a dynamical variable
ranging over a finite set of numbers. At a certain t ime to the values on the
vertices of the lattice take a definite value, but at time to + 1 , the values of
the dynamical variable can change according to a law defined locally. This
kind of system, as shown by von Neumann [8] can simulate a Turing ma
chine, and specific examples exist where the cellular automaton is capable of
uni versal computation [3]. The simplest examples of CA ru les are obtained
when we restrict to one-dimensional lattices and the dynamic variable over
each site of the lattice can take values on the finite field Z2 = {O,I} [10].

There is an extensive literature on the dynamics of one-dimensional CA
and on the patterns generated by the evolution of the CA ru les in the ex
tended phase space Z x Z+ [12]. These patterns appear to be organized in
several complexity classes according to the behavior of the iterates of random
initial conditions [11]. In Wolfram's classification [11], we have four classes
of CA maps. Class 1: Evolution leads to a homogeneous state. Class 2:
Evolution leads to a set of separated simple or periodic structures. Class
3: Evolution leads to chaotic patterns. Class 4: Evolution leads to complex
localized structures.

The concept of metrical entropy, introduced by Kolmogoroff [9], and its
topological analog, the topological entropy [1] are invariants that quantify the
intuitive notions of mean complexity and global complexity of a dynamical
system. (For a discussion of this concepts see [2].) It has been shown by
Brudno [4] that the complexity of a trajectory of a dynamical system is
strictly re lated to the mean complexity, that is, if there exists an ergodic
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measure u, the complexities of fl-almost all trajectories equals the metrical
entropy. Under these conditions the classification of Wolfram can be made
more precise by calculating the ergodic invariant measures and the metrical
entropy for classes of CA maps.

The topological entropy gives an equal weight to the different kinds of
complex behaviors of the t raj ectories of a dynamical system, and so, we can
find systems with a positive topological entropy but with complex trajectories
localized on a subset of phase space with zero Lebesgue measure. However, if
the invariant measure associated to a compact dynamical system is unique,
the topological entropy equals the metrical entropy.

We can define a third quantity to quantify the complexity of a dynamical
system. Let f be a self map of a compact space X. Let Per(r) denote the
number of fixed points of I" . We define the periodic complexity of the map
f by

P (f ) 1
· logz Per(r )

= lm sup .
n e-e oo n

If f has the property of separability of trajectories, P(f) is a lower bo und
for the topological entropy [5]. In topological Markov chains P (f ) equals the
topological entropy [2] .

This paper is organized as follows. In Section 2 we calculate th e number of
fixed points and the periodic complexity for the class of permutive CA maps
(see the definit ions below), and for the other cla sses an upper bound is given.
It is also shown that orbits of points, under the evolution of a pe rm ut ive CA
map, are associated uniquely to orbits of points of a topological Markov
chain. In Section 3 we calculate the entropies for permutive maps . Section 4
is devoted to the discussion of the results and some examples are presen ted .
In the rest of the intro du cti on we give some defin itions that will be used in
the subsequent sections.

Cellula r automata are maps T : E -t E where E is the space of doubly

infinite sequences of °and 1, E = {O,1}t. We rest rict our study to the class
of finite breadth CA, that is, those CA whose value at site number i, i E Z,
at time t + 1 depends on the values of site numbers i + m , .. . , i + n , with
m < n , at time t . The number I = n - m + 1 is the breadth of the CA
rule T. Giving to Zz the discrete topology and endowing E with the product
topology, E is a compact topological space and a finite breadth CA ma p is a
cont inuous function of E.

A simple representation of a CA map can be obtained t hrough the sh ift
map a : E -t E and a Boo lean function of I ~ 2 variables . Given f :
{O, 1P -t {O, 1} we can define a cellu lar automaton map T by

(T(X))i = f(xi+m, ... , Xi+n), for all i E Z" = n - m + 1,

or,
T(X) = f (am(x ), ... ,an(x ))

where (a(X))i = Xi+l an d x = (... ,X-I, Xo, Xl , .. .) E E. f is the generating
function of the finite breadth map T. An example of a CA map is given by
T(X) = a -I (X) EB al(x), where EB means addit ion modulo 2.
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There are 22~ Boolean functions f( x}, . . . , x'"( ) of, variables and some of
them do not depend of X l or xT An easy calculation shows that the numb er
of Boolean functions that depends of Xl and x'"( is

N(,) = 22~ - 2 · 22r 1+ 22~-2 , for any v > 2.

In the following, C(, ;m, n) , with m < n , is the class of CA map s whose
generating functions depend of Xl and x '"( and , = n - m + 1. For each fixed
pair of integers m and n, C(2; m, n) and C(3; m , n) have respectively 10 and
228 elements.

Following Milnor [7], we say that T is a right -permutive CA map (RP),
iff, its generating function f verifies to the condit ion

f(xl, ... , x'"() = f( Xl" '" x'"() , for all ( Xl ," " X'"( ) E Zl.
T is left-permutive (LP), iff,

f( Xl " ' " x'"() = f( Xl " ' " x'"( ), for all (Xl, ... , x'"() E Zl,
where 0 = 1 and I = O. T is permutive (P) iff both the above condit ions are
verified. Denoting by P(, ;m , n) the number of permutive CA maps and by
Q(,;m,n) the number of right- or left-p ermutive CA maps in C(, ;m ,n), it
can be found easily that

P('; m,n)

Q(,;m,n)

where N(I) = 2.

2. P er iodic points

Let {AJ with 0 ~ j ~ 2'"( - 1 represent th e elements of Zl, where j =
i'"( + 2 . i'"(-l + 4 · i'"( _2 + .. .+ 2'"(- 1 . i l and (il , ... , i '"( ) E ZJ, This defines an
invertible map Jr '"( : Zl -t {A j } . For example, if , = 2, we have the symbolic
rep resentat ion,

Ao f--> (0,0) , Al f--> (0,1), A2 f--> (1,0) , A3 f--> (1,1).

We can now identify the set L; = Z~ with a subset of I:'"( = {Ajri by taking
X = (oO"X_l ,XO,Xl,' '') E L; and identifying consecutive and overlapping
,-blocks of elements of Z2 with th e elements of t he set {A j } . For, = 2, we
have, for example,

... 01101001110 ... {} .. . Al A3A2Al A2AoAlA3A3A2 .. .

Hence , we have constructed a bijection h'"( : L; -> S'"( c I:'"( such that
0"'"( ( h'"( (x)) = h'"( (0"( x)), where 0"'"( is th e shift map over I:T The map h.;
L; -t S'"( is defined by

(h'"(( X))i := Jr'"((Xi+m, ' " ,Xi+n) = bi , for all i E Z and, = n - m + 1,
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where bi = A j and j = Xi +n + 2 . X i+n-l + ...+ 21'-1 . Xi+m'

Let M1' = [Mi j ] , 0 ~ i,j ~ 21' - 1, be a 21' X 21' matrix. With i =
i1'+2· i1'-1 +.. .+21'-1 . i1 we define M1' by M i j = 1 if j = 2· i1'+...+21'-1 . i2

or j = 1 + 2 . i.; + ... + 21'- 1 . i2 and M i j = 0 otherwise. We say that
Ai --t Aj is an allowed or compatible transition for M1' iff Mi j = 1. The
set 51' is completely characterized by the Markov transition matrix M1" i.e. ,
b = (.. .,b_1 , ba, b1 , . • • ) E 51' iff b, --t bi+! is an allowed transition of M1"
for all i E Z. For, = 2, we have

The characteris tic polynomial of M 2 is ),3(), - 2) and th e number of periodic
configurat ions of 51' with perio d n is 2n

. For each class Chim,n) we call
M1' the space transition matrix to th e right (STMR). The space transition
matrix to th e left (STML) is the transposed of the STMR, M~.

We can now associate to a CA rule -r E Chim,n), with , ~ 2, and
m ~ 0 ~ n , a time transit ion matrix. Let (bm , . . . , bn ) be a , -block of
elements of {A j }, 0 ~ j ~ 21' - 1. We define the map f* : { A j} ---t { Aj} by

where c E {AiJ and f is the generating function of r . The map f* induces
a CA map r" : 51' ---t 51" by

r *(b) := f*(O':;'(b), . .. , O';(b))

The time transit ion matrix T; = [T;jl, 0 ~ i, j ~ 21' - 1, associated to r is
defined by

T. {I, if f* (bm , ... , ba, . . . , bn ) = c, with ba = Ai and c = Aj
ij = 0, otherwise

where m ~ 0 < n. We will call TT the time transition matrix (TTM)
associated to r.

Proposition 2.1. Let T E Ch i m, n) with , ~ 2, h1' : ~ ---t 51' an d T* :
51' ---t 51' as defined above. Th en, r and r " are topologically conj ugate,
T* 0 h.; = h., 0 r.

Proof. With x = (.. . ,X- I , Xa, x I, ...) E ~ and by the definitions of the
maps h.; an d 1r1" we have

Ap-J .r (x );+m+".+T(X)i+n

A2'Y- 1.j (Xi+ m + m ,. .. ,Xi+m+n)+ ...+ f (xi +n +m ,... ,Xi+ n+ n )



Periodic Points and Entropies for Cellular Automata
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(T*(h,(x)))i

f*( A2"Y-1'Xi+m+m+...+XI:+m+n ' ... , A2i-loXi+n+m + ...+ Xi+n+n )

7r, ( f (x i+m+m, " " Xi+m+n),"" f (xi+n+m," " x i+n+n))

A 2-r- 1'! (Xi+m+m,...,Xi+m+n)+ ...+ j(Xi+n+m"" ,Xi+n+n)

for all i E Z. Comparing the above expressions, we have the desired result.•
We have constructed a CA map T* : 5, -+ 5" over a "larger" set of

symbols ( {A j } , 0 :<:; j :<:; 2' - 1 ), that is topologically equivalent to T.

We shall see below the conditions for the orbit of a point b E 5, by the
iteration of T*, O(b) := {x E 5, : x = T*n(b),n :::: OJ, to be completely
"reconstructed," given a semi-infinite sequence (bo, b1 , • • •) of elements of {Aj}
whose transitions bi ~ bi+1 are all compatible with TT' In this way the
number of periodic po ints of the dynamical system defined by T* equals the
number of periodic points of the subshift of the finite type defined by TT and
the shift map CT, over 5,. In the following we look for conditions on T such

that a "temporal transition" b~ c compatible wit h TT generates uniquely
the "spatial transitions" b~ d(b, c) and e(b, c) ?-- b compatible with M,
and M~, respectively. In a diagrammatic form we have

e(b, c) b

c

~ d(b,c)
M,

Lemma 2 .2 . Le t T E C(,; m, n ) with, :::: 2 an d m < 0 :<:; n. Le t TT and M,
[resp . M~J be, respectively, the T TM associated to T and tile ST M R [resp .

STMLj. If b~ c is an allowed transition of TTl T is RP [resp. LPJ and
n > 0 [resp . m < OJ then, there exists one and only one allowed transition
b .z, d [resp. e?-- bJ compatible with M, [resp. M~j.

Proof. Suppose that T is RP. Let b~ c be an allowed transition of TT'
With 7r~l(b) = (x m, . . . , Xo, .. . , xn) and 7r~l(C) = (Ym,"" Yo, . .. ,Yn), we
have f(x m, .. . , xn) = Yo. As Yl is fixed by 7r~l (C) because n > 0 and,
by the RP condition, there exis ts one, and only one , x E Z2 such that
f( xm+I, . . . ,xn,x) = Yl. So, d = 7r( xm+1 " " ' xn, x). A simi lar proof is
obtained when T is LP. •

Theorem 2.3. Let T E C(r; m, n) with, :::: 2. If 7 is RP [resp. LPJ
and m :<:; 0 < n [resp . m < 0 :<:; nJ then, for any allowe d sequence
B = (bO, b\ ,v; ...) compatible with TT' there exist sequences t» =
(dL . .. , d~, ) [resp . E i = (. .. ,e~k' . .. , e~l)J with i :::: 0, such that, for

. > 0 d k > 1 di t Ji +l { i t i+1J d di S dievery t _ an _ , k --+ Uk resp. e_k --+ e_k an k --+ k+1
[resp. e~k-l ?-- e~ kJ are compatible with TT and M, [resp. M~J, respecti vely.
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Moreover, bi ~ d; [resp . e~ I ~ bi) is com patib le with M -y [resp . M~) for
every i 2: 0, an d th e sequen ces D i [resp . E i ) are completely determined by
B.

Proof. Suppose that T is RP an d that B is an allowed T; sequence . By
lemma 2.2, there exist uniquely determined M-y-compatible transitions bO~

d~ and bI ~ d~, determined , respecti vely by the T; t ransit ions bO ~ bI

and bI ~ b2
. Now we want to prov e that 4 ~ d~ is Tr-admissible.

Wit h 7r:;I(cfi. ) = (xm+J, ' " ,xn+J) and 7r:; I(dD = (Ym+b'" ,Yn+J), as we
have seen in the proof of lemma 2.2, Xn+I is completely determined by YI,

i.e. , f (Xm+I, " " xn+d = YI. SO, as m .s 0 and n > 0, the transit ion 4 ~ d~

is always admissible, ind ep end ently of Yn+J' As cfi. ~ d~ is admissible, by
lemma 2.2 there exists, say, clg , such that cfi. ~ ~ is M-y-admissible. Using
inductio n with the same arguments we construct semi-infinite sequences D i =«....,dL ...) all compatible wit h M-y and completely det ermined by B .
When T is LP the proof is similar.•

In the conditions of the last theorem, when T is RP and given B =
(bO, bI

, . . . ) , we have the following diagram:

bO s cfi. s
~

s
~ . ..--+ --+ --+

t I t! t!
bI s

dl s d1 ...--+ I --+

t! r ]
b2 s

di· ..--+

t!
b3 . ..

where all vertical and hori zontal t ra nsit ions are compat ible wit h T; and
M-y, resp ecti vely, and the t» are determined by B . If T is P we can pro
long the diagram to the left in an analogous way and write T*(E i,v,D i) =
(Ei+1 , bi+1 , Di+1 ) . Hen ce, we have:

Corollary 2.4. If T E C(,; m, n) is a P CA map, , 2: 3 and m < 0 < n,
th en P eri Tk ) = Trace(T!:) for every k 2: 1. If T is nonpermutive, , 2: 2 and
m .s 0 .s n , then Per(Tk

) .s Trace(T';).

Proof. If T is permutive and B = (bo, . . . ,bk - 1 , r, ...,bk - 1 , . .• ) is periodic
and Tr-admissible, by theorem 2.3 we have that T* (Ei, v, Di) = (Ei+J , bi+l,
Di+l), for every i 2: O. By lemma 2.2, d? = d7 and e~i = e~i ' for every
i 2: 1. So, (EO , bO, DO) is a periodic point of T*. As Di and E i are uniquely
determined by B, the first assertion of the corollary follows by proposition 2.1
and by the fact that the number of periodic transitions of a Markov matrix
equa ls its trace. If T is nonpermutive , by construction of T; and M-y, to
every periodic point x E I; of T with period n , corresponds a closed loop of
length n in the graph defined by Tz : So, P er( Tk

) = Per(T*k) .s Trace(T.;)..
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Lemma 2.5. Let T E C(, ;m ,n) with, 2: 2. IfT is P then T is 2'1-1-to-one
as well as any finit e block of elem ents of Z2'

Proof. Let x E E and a = (a1" '" a'1-1 ) E Zr1
. By the RP condition,

there exists one, and only one, Y1 E Z2 such that !(a1, .. . ,a'1-1'Y1) = Xo.
By the LP condition, there exists one, and only one, Y- 1 E Z2 such that
!(Y-1 ,a!>. .. ,a'1_1) = X-I ' A configurat ion

Y = (.. . ,Y-n ,' . . , Y- 1,a1 , · .. ,a'1_!>Y1 , · . . , Yn,' . .)

such that T(Y) = x is then obtained by induction. As a is an arbitrary
element of Zr 1

, the proposition follows. •

Corollary 2.6 . If T E C({ ;m , n) is permutive, , 2: 3 and m < 0 < n, then
P( T) =' -l.

Proof. Let T; be the TMM associated to T. By lemma 2.5 , for each Ai
there exists 2'1-1 TT-allowed transitions Ai -; A j . So,

2~ - 1

'" T.. - 2'1- 1
LJ lJ - ,

j =o

independently of i. By the Frobenius-Perro n T heorem the spectral radius ).
of TT is bounded by

and so, ). = 2'1-1. As Trace(T;) ~ ).k, th e result follows by corollary 2.4 and
the defin ition of P(T) (see Introduction) . •

We have shown that all permutive CA maps within a class C({ ;m, n) have
the same per iodic complexity. In the next sect ion we prove that the same
conclusion hold s for th e ent ropies. Finally, we note that the Markov mat rix
TT associated to any CA map T enables us to construct an algorithm to find
the period n points of T . In fact, if x E E is a periodic poi nt of T with period
n then , associated to x, there exists a closed loop of length n in the graph
defined by TT' So, from all th e possible loops of length n we can test those
that can be prolonged to the right and left with transitions compatible with
M'1 an d M~ .

3. Entropies

Let X, Y E E and define the distan ce fun ction d: E x E -; R + by d(x ,y) =
L::"=-oo IY;;:fnI. T he neighborhood base for the topo logy induced by the met
ric d consists of cylinder sets,
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where a = (all' . . ,a.-r+d is a fixed element of z~-r+1. In this topology ~ is
compact. Let B be the zr-algebra generated by 1,11 the cylinder sets C~. and
define the product measure J-l : B -t R+ through '

J-l (C;';;"m, n C:::2,m2 n ... n C;;'kkomk) := ;k
for any c, E Z2' m i E Z and k ?:: 1. Bakenship and Rothaus [7] have
shown that the T invariance of J-l is a necessary and sufficient condition for
the surjectivity of T. By lemma 2.5 we have that every permutive cellu lar
automaton map is invariant with respect to the measure fl.

Let a = {Ai" . . , An} and /3 = {E 1 , . . • , Em} be either covers or partitions
of ~ and denote their join by a V /3 := {A; n Ej : 1 ~ i ~ n, 1 ~ j ~ m} .
The cover /3 is a refinement of the cover a , a -< /3, iff every element of /3 is
a subset of some element of a . A finite partition a of ~ is called generating
for T iff Vr':- oo Tka = t, where t is the partition of ~ into points .

Let a be an op en cover of ~ and N(a) the number of sets in a subcover
of minimal cardinality. The topological entropy of T with respect to a is

I ( ) r log2 N (a V T-1a V . . . V T- k+Ia )
~ T,a := k':'~ k

and the topological entropy of Tis Suph(T,a ), where the sup is taken over
all finite covers of E, If {ad is a sequence of refining covers of ~ and
diamet er (a i) -t 0 as i -t 00 then, h(T ) = sUPi h(T,ai ) [1].

If T leaves invariant a measure J-l, the metrical entropy of T relati ve to the
partition a and the measure J-l is

H( ) ._ r HI'-(a V T-1a V . . . V T-k+ 1a)
T, u, a .- k':'~ k

where HI'-(a) = - L?=l J-l(Ai ) log, J-l(Ai). The metrical entropy of T relative to
the measure fl is H(T, fl) = sup H(T, fl, a) and, if a is a generating partition,
H(T, fl) = H(T, J-l , a) [9].

The main result of this section is the following theorem:

Theorem 3.1. Let T E C(t; m, n ) with,?:: 3 and m < 0 < n . If T is P
then, the topological and metrical entropies of Tare

h(T) = H (T' J-l ) = ,-I

where J-l is the product measure on I; .

We now give some preparatory lemmata for the proof of theorem 3.1.

Lem m a 3.2. Let T E C(,; m, n) with, ?:: 3 an d m < 0 < n , If Tis P then ,
for every r > k +m and s < p + n, we have

(T- 1Cf,p)nC:,s = 0
or,

(T- 1Ck,p)nC:,s = C~+m,p+n

wh ere d depends of a and b.
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Proof. Let a = (ak, . . . , ap) E Z~-k+l. By the definition of T,

-lCa UCC

T k.p = k+m,p+n
cEG

125

where G = {(X k+m,""xp+n) : ! (Xi+m"" ,Xi+n) = ai,k ~ i ~ p}. By
lemma 2.5, the set G has 2"Y- l elements and it can be constructed as in the
proof of lemma 2.5, by "extending" to the right and left the set of all the
, - I- blocks of elements of Z2' With r > k + m and s < p + n, if the
block b = (br, , bs ) agrees with one of the blocks (x r , .. . , x.) we can choose
d = (Xk+m, ,br, . . . ,b., ... ,xp+n) and (T -1Ck,p) nc~,s = C1+m,p+n' If b
does not agree with either of the sub-blocks of the elements of G we have an
empty intersection.•

Lemm a 3 .3. Let T E C(,; m, n) with, ~ 3 and m < 0 < n. Let a(im, in) =
{Ct",in : a E Z~(n-m )+l}. If Tis P then, for any i ~ 1, we have,

N(a(im, in ) V T-la(im, in) V ... V T- k+Ia (im , in))
= 2i(n- m)+ I+ (k- l )("Y - l )

and V);::'oTka (im, in) = e, where t is the partition of E into points.

Pro of. To simplify the notation let us put a := a(im, in) and ak = a V
T-1a V . .. V T-k+la. By lemma 3.2 we have a2 = a V T-la = {Cfm+m,in+n}'
Continuity of T implies that a2 is a cover of E with minimal car dinality and
so N ta V T- l a ) = 2i(n- m)+I+(n- m). From property 6 of [1], a3 = a V T-l(a V

T-1a) . As im > im + m (m < 0) and in < in + n (n > 0), by lemma
3.2, we have, a3 = {Cfm+2m,in+2n }' With the same previous argument a3
is a cover of E with minimal cardinality. By induction, we obtain ak =
{c a • Z( i+k-l)(n-m)+l} With - 1 th Itim+(k-l)m,in+(k-l)n . a E 2 • 1 n - m - , - , e resu
for N(ak ) follows and, limk.....ooak = V"k::'oTka = {x E E} = t .•

Proof of theorem 3.1. Let {ad := {a(im,in) : i ~ I} be a sequence of
covers of E. In the metric d, diameter(ai) ~ 0 as i ~ 00. By lemma 3.3
and the definition of topological entropy, h(T, ai) = , - 1 and so, h(T) =
SUPi h(T, a i ) = , -I. For the metrical entropy, by definition of the measure
f.L, we have

(ca )- 1/2 i (n - m)+ I+ (k- l )("Y- l )
f.L im+(k-l )m,in+(k-l)n -

and so, HI' (ai V T-l a i V . . . VT-k+la;) = i(n -m) +1+(k -1)(, -1). As every
partitio n ai is generating (lemma 3.3) we have H(T, f.L) = H(T, u, ai) = ,-1..
4. Examples and conclusions

In general, any finite breadth cellular automaton map can be specified within
a certain class C(,; m, n), by a code number ranging in the interval [0,2 2-' ]
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[10] . For example, taking vy = 2, and let ting ao = f(O ,O), al = f(O, 1),
a2 = f(l ,O), and a3 = f(1 , 1), the CA map generated by f( XI' X2) has code
number C = ao +2· a l +4 · a2+8· a3. When the a, ( E Z2 ) range over all its
values, there ar e 16 different Boolean fun ctions of two variables. However ,
the class C(2; m, n), for fixed m and n, has only ten elements because some
of the generating functions do not explicitly depend on Xl or X2 . In this
representation, reducible generating funct ions have code numbers 0, 3, 5, 10,
12, and 15.

In class C(2;0,1) th e permutive CA maps have code numbers 6 an d 9 and
th ere are no simply right- or left -permutive maps. In class C(3; -1 ,1) there
are four permutive maps, with code numbers 90, 105, 150, and 165; there are
also eight simply RP an d eight simply LP maps.

The results of the previous sect ions apply to the classes C(2; 0, 1) and
C(3; -1, 1) in the following way:

(a) Class C(2; 0, 1). Within thi s class, by corollary 2.4, we have only
an upper bound for P(T) . However, in this sp ecial case, P(T) can
be exact ly calculated.

Let v be the permutation

and define the map k(b) : 52 -+ 52 by, (k(b))i = v(bi), for all i E Z.
The map k is a bijection over 52. Let T'* = k- l OT* 0 k. Obviously,
T'* and T* are topologically conjugate. Denoting by ,\, and ,\,' the
spectral radius of TT an d TTl , we have that Per(T*n) = Per(T,*n)
and, with A" = minp ,'\"}, P(T*) = P(T'*) ::::; '\'*. For nonpermu
tive CA maps, we have calculated explicitly the spectral radius of
all the TTM and we obtained, using the previous argument, that
Per(T*n) ~ c(n), where c(n) is some polynomial in n with degree
at most 3. Hence, we have: If T E C(2; 0, 1) is nonp ermutive then
P(T) = 0.

When T is permutive ( ., = 2 ), corollary 2.6 does not apply
but, in [6] (theorem 2.5) it was shown that for the map with

code number 6, Per~Tn) = 2n- 2n
' , where n' is the largest natural

number such that 2n divides n . So, for rule number 6, P(T) = 1.
The permutive map wit h code number 9 is topologically equivalent
to the map with code 6, via the bijection k, and the same result
applies. According to the crite rion of classification of complex
patterns by P(T), we have that ru les in C(2; 0, 1) are divided in two
classes, one corresponding to P(T) = 1 and the other to P(T) = 0.
In fact , the obse rvation of the patterns in the ext ended phase
space, generated by the ite rat ion of the CA maps in this class,
confirms this conclusion.
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(b) C lass C(3j -1 , 1). In this class we have, if T is permuti ve, by
corollary 2.6 and theorem 3.1, P(T) = h(T) = H(T ,fL) = 2. For
simply RP or LP maps we found Per(Tn) S T race(T;) = 3n,
independently of the map , implyin g, P(T) S log23. The estimate
for the number of periodic poin ts can be very crude for cer tain
valu es of n . For example, in the LP map with code number 30, we
have Per(T) = 3 and Per(T2 ) = 3. For permutive maps the same
calculations lead exact ly to Per(Tn) = 4n, improvin g theorem 2.5
of [6]. The patterns generated by the permutive rules in C(3; -1 ,1 )
show all the same qu alitative behavior correspo nding to Class 3
in Wolfram's classifi cation. For other classes numerical evidence
suggest that all permutive CA map s belong to Class 3.

As we have seen, for all classes of permutive CA map s the rela tion
P(T) = h(T) holds. So, we advance the conjecture that for any
finite breadth cellular automaton the same equality is true. T his
would lea d to good est imates for the topological ent ropy through
the calculation of the number of periodic points of r" (see the
comments at the end of Section 2).
In class C(3j -1 ,1) all permutive maps have the same number of
periodic points of period n for all n ::::: 1. This suggests that
all p ermutive maps can be to pologica lly equivalent. For classes
C(2jm, m + 1) this is indeed the case. For classes C(3; m , m + 2),
ru les 90 and 165 and rules 105 and 150 are topologically equivalent
via the map locally defined by the permutation v : {Ao, . . . , Ar }

~ {A r, . . . , Ao}.
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