
Complex Systems 3 (1989) 129-152

Genetic Algorithms and Walsh Functions:
Part I, A Gentle Introduction

David E. Goldberg
Department of Engineering Mechanics, The University of Alabama,

Tuscaloosa, AL 35487, USA

Abstract. This paper investigates the application of Walsh functions
to the analysis of genetic algorithms operating on different coding­
funct ion combinations. Although these analysis tools have been in
existence for some time, they have not been widely used. To promote
their understanding and use, this paper introduces Bethke's Walsh­
schema transform through the Walsh polynomials. This form of the
method provides an intuitive basis for visualizing the nonlinearities
being considered, thereby permitting the consideration of a number of
useful extensions to the theory in Part II.

1. Introduction

Ever since the inner workings of genetic algorithms were unmasked by the
development of the theory of schemata [5-8]' researchers have known that
genetic algorithms (GAs) work well when building blocks - short, low-order
schemata with above-average fitness values - combine to form optima or
near-optima. For many years, checking this requirement in a particular
coding-function combination was a tedious computation. Then, Bethke [1]
discovered an efficient method for calculating schema average fitness values
using Walsh functions. Bethke's work shed much needed light on what makes
a function simple or hard for a genetic algorithm; it also permitted the design
of functions with a specified degree of deception, where low-order building
blocks lead away from the optimum. Despite the fundamental importance of
this work, it has largely been ignored in subsequent GA research.

This paper aims to remedy this oversight by explaining Bethke's tech­
nique in a straightforward manner. Specifically, we approach the analysis
using Walsh polynomials. By doing so, we gain important physical insight
concerning the processing of schemata and are better able to visualize the
interactions of functions and codings using straightforward algebraic meth­
ods.

In the remainder of the paper, the Walsh functions are presented in mono­
mial form, fitness functions are written as a weighted sum of the Walsh func­
tions, and a direct proof of Bethke's schema average calculation is given.

@ 1989 Comp lex Systems Publications, Inc.

132

String Fitness
000 f ooo
001 fOOl

: :

110 f110
111 fm

David E. Goldberg

Table 1: GAs process only strings and their fitness values.

our three-bit problem, any deterministic function-coding combination may
be reduced ultimately to a list of fitness values associated with each of the
23 = 8 st rings, as shown in table 1. This list-of-fitness-values approach to
specifying a problem disguises the implied choice of a set of basis functions .
A basis is simply a linearly independent set of funct ions which span the
underlying space. In the present case, we may write any funct ion over an
I-bit string as the following sum:

21- 1

f(j) = I: f ibij,
i=O

(2.7)

where the indices i and j are treated interchangeably as integers or their
binary string counterparts, and the b here is the Kronecker delta (not to
be confused with the defining length) such that bij = 1 when i = j and
a otherwise. This choice of basis is useful for examining individual strings,
but it becomes inconvenient when we wish to calculate schema averages. For
example, direct calculation of the average fitness of an order o(h) schema over
strings of length I requires the summation of 21- o(h) Ii values. Furthermore,
the canonical basis provides no intuitive insight into the interact ion of the
bitwise nonlinearities within the problem. For this reason, we seek a change
of bas is by considering the Walsh polynomials.

2 .3 The Walsh polynomials

To introduce the Walsh polynomials, it is useful to define a number of simple
funct ions over schemata. The a function is defined as follows:

a (h
i

) = {a, !f hi = *;
1, If hi = 0,1.

(2.8)

Using the a funct ion , we can define the partition number jp of a schema h
as follows:

I

jp (h) = I:a(h;)2 i
-

1
.

i =1

(2.9)

In this way, each competing set of schemata-each similarity partition-is
nu mbered uniquely. For example, the partition * * * receives j p = 0, * * f
receives jp = 1, *f* receives j p = 2, and fff receives jp = 7, where the f

Genetic Algorithms and Walsh Functions

J ..pj(Y)
0 1
1 Yl
2 Y2
3 YIY2
4 Y3
5 YIY3
6 Y2Y3
7 YIY2Y3

Table 2: Table of 'IjJ functions for l = 3.

133

denotes a fixed position (a 0 or a 1). In the future, we will drop the subscript
p unless the definition is unclear from the context.

The fJ function may be defined as follows:

fJ(h i) = {O, !f hi = 0,*
1, If hi = 1.

(2.10)

With these definitions , we are prepared to define a different basis in the
Walsh polynomials. To do so, we first define a mapping from the auxiliary
string positions Yi to the bit string positions Xi:

1
Xi = 2(1 - Yi), i = 1, . . . , l . (2.11)

(2.12)

Simply stated, a -1 in an auxiliary string maps to a 1 in the bit string, and
a 1 in the auxiliary string maps to a 0 in the bit string. This simple linear
mapping allows the usual multiplication operation to act as an exclusive­
or operator (XOR - the -1 is necessary for the XOR operator; however,
reversal of order - mapping a -1 to a 1 and mapping a 1 to a 0 - is needed
only to make the definition agree with that of the Walsh function literature).
W ith this definition, we may now calculate a set of 2/ monomials over the
auxiliary string variables:

/

..pj(Y) = IIyt', Yi E {-I,I}.
i=l

Notice how the index counter j is used bit by bit in conjunction with the fJ
funct ion to determine the presence or absence of a variable in the product.
This is no accident, as it turns out that the functions are defined in the same
sequence as the partition numbers jp.

To better understand these terms, we enumerate them for the case l = 3
in table 2. To tie the table to the defining expression, simply note that for
j = 6 = 1102 , bits two and three are set, thereby causing Y2 and Y3 to be
included in the product.

Notice that the table contains all products with three terms or fewer, ex­
cept those that would contain an exponent greater than one. Of cour se, with

134

4-'0
1

-1

tv, 1
- 1

~
1

-1

~
1

-1

4;{ 1
-1

~
1

- 1

~
1

-1

4?
1

-1

David E. Goldberg

00 0 001 010 a l l 100 101

x

110 111

Figure 1: The eight 'I/J functions versus x for string length l = 3.

the underlying group - multiplication over {-I, I} exponents greater
than one are redundant ; even exponents result in a prod uct of 1, and odd
exponents resu lt in the term it self:

a {I, if a even ;
Yi = .Vi, If a odd.

(2.13)

This fact will be useful in a number of subsequent calc ulations.
To be tter visualize the functions, function values are plotted versus x

value in figure 1. Following Bethke [1], the numbering is bit-reversed from
the usual binary-ordered numbering scheme of the Walsh function literature.

Genetic Algorithms and Walsh Functions 135

We note that the Walsh func tio ns, 'l/Jj , form a basis for the reals over
the st rings as did the Kron ecker delta function discussed earlier. This fact
may be proved easily by mathematical induction by showing that none of
the terms of a given order may be written as a linea r combination of lower
order terms. Thus, we may write the fitness fun ction as a linear combination
of the Walsh monomials:

2'_1
f(x) = L Wj'l/Jj(x) .

j =O

(2.14)

(2 .15)

As we have don e in this equat ion, we will sometimes write the Walsh fun c­
tion with the argument x , where the substitution of the mapping from the
au xiliary string y to the bit string x is un derstood. More important ly, we see
where the name Walsh polynomi al comes from: any mapping from an I-bit
string into the reals may be written as a linear combinat ion of the Walsh
monomials, yielding a po lynomial.

Note that the 'l/Jj basis is orthogonal:

2' - 1 {21 'f ' .1 2 = J"L 'l/Ji (X)'l/Jj(x) = O"f ' -I. .'
X=O ' 1 2 r J.

This may be proved by considering the cases i = j and i =J j separate ly. In
the first case, the sum contains 21 products where each term in the pro du ct
is squared. Using equ ation (2.15), we obtain L~'-11 = 21• In the second
case, the sum cont ains 21 terms , but the products mu st differ at one or more
posi tions by t he definition of the polynomials . Where the terms are identical ,
the product may be dropped as before; however, where they are different ,
the terms must be ret ained , and since the sum is taken over all 21 strings,
half the terms will resul t in a pr oduct of -1 and half will result in a pro duct
of 1. Thus, the sum must add to 0, thereby proving the result.

Using the orthogonality result of equ ation (3.1), we may calc ulate the
Walsh coefficient s as follows :

(2.16)

Direct computation of the Walsh coefficients in this manner is, of course,
possible; however, more efficient techniques analogous to the fast Fou rier
transform - the fast Walsh transform (FWT) - are pos sible and desirabl e.
One FWT implementation is presented in ap pendix A.

3. Calculating schema averages with W alsh coefficients

In this section, we derive a relati onship between the schema average fitnes s
values and the Walsh coefficients . The result is subsequently applied to the
analysis of a number of coding-fun ction combinat ions and to the design of
intentionally deceptive functions .

136 David E. Goldberg

3.1 Calculating average schema fitness values

Given the Walsh coefficients of a function - given the Wj values - we already
know how to back-calculate the function valu es; however , if any useful GA
analysis is to be done, we must identify schema average fitn ess valu es in terms
of the W j . We could, of course, calculat e the fitn ess values and then calcu late
the schema average fitn ess conventionally by summing fitn ess values over all
strings in the subset ; however , this seems overly tediou s, and Bethke's work
[IJ has shown that th e Walsh functions yield a more direct method.

To derive this relationship between a schema's average fitness , f(h) , and
the function's Walsh coefficients, Wj, consider the usu al average fitn ess cal­
culation , summing over all strings contained in the schema (contain ed in the
subset) and dividing by the number of st rings in the schema:

1
f(h) = -Ihl L f(x),

XEh
(3.1)

where [h] is the cardinality (the number of elements) of the subset h . Sub­
stituting equa t ion (2.16) into equat ion (3), we obtain

(3.2)

where once again the mapping from the underlying string x to the auxiliary
string y is understood. Reversing the order of summation results in the
following equation:

1 21-1

f(h) = -Ihl L Wj L 1Pj (x).
) =0 XEh

(3.3)

Further progress in reducing this equat ion expression comes from reducing
the sum

S(h,j) = L 1Pj(x).
xEh

Substituting the Walsh product, we obtain

I

S(h,j) = L II [Yi(xi)Jj , .

XEhi=1

(3.4)

(3.5)

Since there are [h i terms in the sum and since each term is a Walsh monomial
(with a value +1 or - 1), the sum is bounded by -Ihl and [h] .

To see what value the sum acquires for some given j and h, consider the
following examples. Suppose j = 6 = 1102 and h = O'l «. The summat ion
cont ains exactly two terms (exactly 10h I terms) and both terms equal - 1,
because Y3Y2 = (1)(-1) = - 1; thus, the sum equals -2 = - Ih l. A more
specific schema with the same set characters would change the magnit ude
of the result, but not the sign . For example, with h = 011 the product

Genetic Algoritbms and Walsb Functions 137

(3.6)

Y3Y2 = (1)(-1) = - 1 still, but since there is only one element of the subse t,
the sum is -l.

Schemata that do not fix the terms of the Walsh product present a dif­
ferent situation. Like the schema Oh, the schema 1 * 1 still induces a sum of
two terms, but the signs no longer remain the same. Because the partition
dictates a product containing the second and third position variables, and
because the schema allows the second position to vary, the summation equals
(-1) (- 1) + (- 1)(1) = O.

This result generalizes immediately to arbi trary strings and partition
numbers. A nonzero multiplier for a given Walsh coefficient will be obtained
only when the schema has fixed bits (not *'s) at the fixed positions of the
jth partition; otherwise, any positions in th e partition left unfixed will have
equal numbers of 1's and -1 's, resulting in a null sum overall. Furthermore,
any nonzero multipliers can only take on values of either +Ihl or - Ihl, be­
cause fixing the positions of the schema corresponding to those in the Walsh
monomial fixes the sign for all terms in the summation. Add itionally, t he
sign of the summation is determined solely by the number of 1's contained
in the fixed positions of the schema corresponding to the fixed positions of
the partition. If the number of 1's is even, the sum is positive; if the number
of 1's is odd, the sum is negative.

That the nonzero terms in the summation have magnitude [h] immedi­
ately cancels out the same term in the denominato r, an d we may write the
schema average fitness as follows:

f(h) = .E Wj1/Ji ((3(h)), J = {j : (3i) : h ~ hi(j)},
j EJ (h)

where the sum is taken over all partitions j such that the schema h is a subset
of exactly one of t he competing schemata hi(j) defined by the partition j
(here we assume that the schemata are indexed from 0 to 2o(h) - 1 as the fixed
positions det ermined by the partition number run in the usual binary fashion
from all O's to all 1's). In words, we have shown that the schema average
may be calculated as a partial, signed sum of the Walsh coefficients, where
the only coefficients included in the sum are those associated wit h partitions
that contain the schema, and the sign of a particular coefficient is positive
or negative as the number of 1's covering those positions is even or odd.
This same result was presented in somewhat different form by Bethke [1].
Hollan d [9] has extended Bet hke's method to per mit calculation of schema
averages for nonuniform ly dist ributed populations. These calculatio ns redu ce
t o Bethke's calculation in th e un iform case.

This computation - we shall call it the Walsb-scbema trans form - is
driven home in table 3 with a partial enumeration of the length I = 3
schemata and their fitness averages written in terms of the Walsh coeffi­
cients. Notice how the low-order schemata are specified with a short sum
an d how the high -order schemata are specified with a long sum. This is ex­
actly th e opposite situat ion of a schema average fitn ess calculat ion expresse d
using the canonical basis. There, low-ord er schema ta require ma ny terms

138 David E . Goldberg

Schema Fitness average as sum of Walsh coefficients
*** W o

**0 WO +Wl

**1 Wo -Wl

1** Wo -W4

*00 Wo +Wl +W2 +W3

*01 Wo - Wl +W2 - W3

*11 Wo - Wl - W2 +W3

11* Wo - W 2 - W 4 +W6

001 Wo - Wl +W 2 - W3 +W4 - Ws +W6 - W 7

101 Wo - Wl +W2 - W3 - W4 +W s - W6 +W7

Table 3: Some I = 3 schemata and thei r fitness averages as partial
Walsh sums.

and high-order schemata require relatively few terms. It is this inversion of
the schema average computation that makes the Walsh basis so useful for
identifying and designing deceptive problems .

3.2 What do the Walsh coefficients m ean?

The relationship be tween f (h) and the coefficient s Wj is now clear, but the
an alysis leaves us with little intuition regarding the meaning of the Wj . To
develop a better intuitive feel for the Walsh coefficients, we adopt the per­
spective of building blocks more lit erally. Specifically, we imagine that higher
order schemata are constructed from their lower order cons tituents and we
invest igate how new coefficients are accumulated in the increasingly accu­
rate summation . For example, with strings of lengt h 1= 3 cons ider how the
schema *01 might be constructed from its underlying constit uents * * *, *0*,
and **1. Comparing the schema average fitness computation for each of the
schemata, we note an interesting thing:

f(***)
f (**l)
f(*0*)

f (*Ol)

Wo;

Wo - W l;

Wo +W2 ;

Wo - Wl + W2 - W3 '

As schemat a become increasingly specific, additional terms are included in
their Wals h sum. For example, the fitness of schema **1 and that of schema
*** differ by an amount - W l ' Similarly, the fitness of schema *1* differs
from that of schema * * * by an amount W 2' Calling the fitness difference
associat ed with the schema h, t>.f , we may view the fitness of a higher
order schema as estimated by the summat ion of the lower order t>.f s . In
the particular case, we would say that the sum Wo - Wl +W2 is a first order
estimate of the fitness of the schema *01. Moreover, this calculation lead s us
to calculate the t>.f for the schema *01 as simply -W3 . T hus, we can interpret
a Wa lsh coefficient as representing the magnitude of the difference between

Genetic Algori thms and Walsh Functions

J x f(x) w·J
0 000 10.00 7.55
1 001 15.00 - 2.50
2 010 0.00 5.00
3 Oll 5.00 0.00
4 100 10.10 -0.05
5 101 15.10 0.00
6 110 0.10 0.00
7 III 5.10 0.00

Table 4: Walsh coefficients of a bitwise linear function.

139

a higher order approximation to a schema's fitness and its next lowest order
approximation.

More rigorously, jtol(h) may be defined as the oth-order approximat ion to
the fitness of the schema h ; the magnitude of the difference between a schema
average and its next lowest order approximation is simply the highest order
Walsh coefficient in the sum. This persp ective of assembling functions from
lower order schemat a coincides nicely wit h the way G As act ually work; it
will also enable us to understand what kinds of fun cti on s are easy and hard
for genetic algori thms.

4 . Exa m ple calculations using the Walsh-schema t ransform

In this section we solidify our understanding of the calculations of the pr evi­
ous section with some examples. We examine a linear fun ction and a number
of nonlinear functions to try to bet ter understand what makes a fun ction easy
or hard for a simple GA.

4 .1 W alsh coefficients and bitwise linear functions

Before we examine the role of Walsh coefficients in analyzing nonlinear func ­
t ions , it is useful to consider a bitwise linear function:

Recognizing that only positive coefficient s should be included in the sum to
attain a maximum, we calculate an opt imum of 1* = 15.1 at x = 101. Less
obvious is the fact that the average value of the function is f = 7.55, as may
be calculated directly by enumerat ion.

To explore the relationship between the Walsh coefficients , schema aver­
ages , and the fun ction opti mum, we take the Walsh t ransform of the fun ction
using the code of the appendix and present the coefficients along with fun c­
tion values in tabl e 4. Scanning the table, we note that the order-zero Walsh
coefficient has the same value as the average function valu e. This is no ac­
cident, because f(***) = woo We also not e that the only other nonzero
schemata are associated with the one-bi t partitions (j = 1,2,4) . This makes

140 David E. Goldberg

(4.1)

(4.2)

sense when we recognize th at we are dealing with a bitwise linear function ,
and a firs t-order est ima te is exac t. This same line of reasoning suggests that
the opt imum may be found by the considerat ion of th e first-order Walsh co­
efficients alone. We simply choose a 0 or a 1, dep endi ng up on whether th e
corresponding Walsh coefficient associated with th e corresponding posit ion
is negative or posit ive respec tively.

T hese resu lt s generalize immediately to an arbitrary [-bit , linear funct ion :

I

f(x) = b+ LaiXi, Xi E {O,I}.
i= l

Some straightforward calculation yields the following Walsh coefficients:

{

b+ ~ 2::=1 ai , if j = 0;
Wj = -¥, if j E {2i

-
1

, i = 1,2 , .. . , [};
0, otherwise.

Thus , only the order-zero and order-one coefficients can be nonzero, and
every bit predicts the optimum corre ctly, depending upon th e sign of the
associated Walsh coefficient.

This simple function is not of mu ch direct , practical int erest, because
the optimization of known bitwise linear functions is not a difficult problem;
however, when we consider th e accurate manipulation of schema averages in­
herent in even simple GAs, we see that processing of one-bit averages amounts
to the combined construction and utilization of a model that is at least of
first-order accuracy. If we refer back to th e expression for th e schema the­
orem (equation 2.8), we realize th at all one-bit schemata are treated with
little crossover-mutation loss because the term

8(h)
[1 - Pc[_ 1 - Pmo(h)] = 1 - Pm

is close to 1 for small Pm. Although the higher-order approximations to the
function are treated less graciou sly by crossover, it is this inverted cascade
of building blocks that constructs optimal or near-optimal solutions in GAs.
This persp ect ive of simultaneously building and using an increasingly refined,
bitwis e model of the fitness will become clearer as we study some non linear
functions and deception.

4.2 An easy nonlinear function

Linear function optimization is unlikely to make us famo us. Nor is it likely
to provide us wit h any insight regarding the deception that can cause sim­
ple GAs difficulty. To st art our brief foray into nonlinear function analysis,
consider the coding-fun ction combination we posed earlier in sect ion 2 (equa­
tions 2-2.6). There, we described the fitn ess fun ction f(d) = d2

, where d was
coded as an unsigned binary int eger of length l = 3. This function takes
on a maximum of f* = 49 at x = HI , as can be seen from the enumera­
tion of fitn ess values in table 5. Using th e FWT code of th e appendix, the

Genetic Algorithms and Walsh Functions

J x f(x) W·J

0 000 1 17.5
1 001 2 -3.5
2 010 4 -7.0
3 011 9 1.0
4 100 16 -14.0
5 101 25 2.0
6 110 36 4.0
7 111 49 0.0

Table 5: Function values and Walsh coefficients of f(d) = d?, d an
unsigned binary integer.

141

Walsh coefficients have also been calculated and listed in the table. To deter­
mine whether this function shou ld be difficult for a GA, we simply consider
whether the low-order approximations to the function predict the op timum.
The zeroth-order approximation to the optimum is simply f(* * *) = Woo

This, of course, te lls us that the average fitness is 17.5, but it provides no
further clues . The first -order approximation to the optimum point may be
calculated as follows:

17.5 + 3.5 + 7 + 14;
42.

This est imate is very suggestive that we are on the right track, because it is
the best among all order-one estimates (all its terms are positive).

Proceeding further, we notice that the second-order approximat ion to the
optimum may be calculated as

Wo - WI - W2 + W3 - W4 + Ws + W6;

17.5 + 3.5 + 7 + 1 + 14 + 2 + 4;
49.

Note that the difference between the second- and first -order estimates, Clj(2)
(1l1) = 49 - 42 = 7, is positive, thereby reinforcing the judgment of the
first-o rder estimate. Moreover, the second-order estimate exactly calcu­
lates the optimum value of the string, a fact that is further verified by
checking the value of the third-order coefficient , W 7 = 0.0.1 This reason­
ing leads to an interesting conclus ion. Despite the existence of nonzero,
higher -order w's, the coding-function combination is not difficult for a ge­
netic algorithm, because low-order schemata correctly predict the optimum

1We won't belabor the point at this juncture, but the existence of no nonzero coeffi­
cients above the second-order looks suspiciously related to the degree of the underlying
polynomial objective function . Actually this fact is related to the degree of the polynomial
and to the linear mapping implied in the usual unsigned binary integer coding . We will
come back to th is notion when we generalize the result in Part II.

142 David E. Goldberg

and all higher-order estimates only reinforce the low-order estimates. In
other words, all roads lead to Rome and the GA is unlikely to make major
errors.

Of course, this type of static analysis does not ensure that the GA will
not stray due to stochastic effects, nor does the static analysis preclude the
possibility that deceptive problems will be solved correctly due to dynamic
effects which go unaccounted in the static analysis. The former difficulty,
nonconvergence due to stochastic effects, occurs when certain building blocks
possess insufficiently high signal-difference-to-noise ratios. When this occurs,
those building blocks are not under much selective pressure and their pro ­
portion in the population tends to wander randomly. In small populations,
this wandering may result in convergence to a suboptimal schema, a condi­
tion that biologists have called genetic drift. Connecting thes e problems to
our easy nonlinear function and table 5, we recognize that problems are most
likely when the W values associated with a building block are relatively small.
Comparing the values of the three, first-order w's, WI = -3.5, W2 = -7.0,
and W4 = -14.0, we see that the magnitude of the leftmost bit is four times
that of the rightmost bit, suggesting that if we are to have difficulty opti­
mizing this function, it will occur to the right. We note that if the rightmost
bit were to become fixed at an incorrect value - if it were to hitchhike into
a dominant position - a single mutation should correct the problem, and
we would simply be waiting for the somewhat better string to take over.
Deterministically, the t ime for this event could be estimated by an equation
derived in a previous paper [3J :

r +1
t = --In(n - 1),

r -1
(4.3)

where t is the takeover time, r is the ratio of the fitness of the best to the
second best alternative, and n is th e population size. Stochastically, this
equation is only valid if the difference between first - and second- best alter­
natives is significantly larger than the noise, induced or actual, of the fitness
function (in many cases this assumption becomes valid - the noise reduces
sufficiently - for low-w building blocks late in a run near convergence).

4.3 Designing a deceptive function

Thus far, we have not seen how nonlinearities can cause much difficulty.
Certainly there are problems in which first-order estimates fail to predict
the optimum. In fact, we need not look very far to find them. Here we
construct a deceptive function where the first-order schemata do not predict
the optimum. To do this, we consider a two-bit function where, without loss
of generality, we assume that point 111 is the best. For a GA to be misled,
the one-bit schemata must dictate either

1(*0) > 1(*1), or

1(0*) > l(h)

Genetic Algorithms and Walsh Functions 143

or both. These conditions are particularly easy to write in terms of the Walsh
coefficients; with straightforward manipulation they reduce to

WI > 0, or

W2 > O.

For maximum deception we would like to maintain both of these conditions
simultaneously. To see that this is not possible in a two-bit problem, consider
the three optimality conditions:

fll > faa; fll > f01; fll > flO'

These may be written in terms of the Walsh coefficient s with some algebraic
reduction as follows:

Clearly the first of these conditions (WI < - W 2) cannot be met if both
deception conditions are to be enforced. Thus, we pick the first of the decep­
tion conditions (WI > 0) and conclude that there are two cases to consider:
W2 + W3 > 0 and W2 + W3 < O. These correspond to the cases fOl < faa
and f01 > foo, and elsewhere [2] these have been called types I and II of
the minimal deceptive problem, because the functions are the least nonlinear
problems that can be deceptive. It is interesting that a simple GA consisting
of reproduction and crossover is not usually misled by the MDP the func­
tions are GA-deceptive but not usually GA-hard (dynamically, the problem
converges to the right answer despite static deception) .

4.4 A fully deceptive function

Because of the limited number of degrees of freedom in the two-problem, we
were only able to construct a problem that was partially deceptive: only one
of the two, single-bit schemata led away from the optimum. It is natural
to wonder whether a problem can be completely deceptive in that all lower­
order schemata lead away from the true optimum. This is possible [1], and in
this section we give a constructive proof by assembling just such a function.

We begin, as we did with the two-problem, by assuming without loss of
generality that point III is the best. For full deception we require that all
order-one and order-two schemata lead away from the best. For the one-bit
schemata this means that

In terms of the Walsh coefficients we obtain the following inequalities:

WI > 0, W2 > 0, and W4 > O.

For the two-bit schemata we require

144

J x Wj fj

0 000 0 14
1 001 1 10
2 010 2 6
3 011 3 -14
4 100 4 - 2
5 101 5 -14
6 110 6 -14
7 111 -7 14

David E. Goldberg

Table 6: Inverse transform for designing a fully decepti ve function.

as well as the two other sets of three conditions over the other two-bit par­
titions . These conditions reduce to

WI + W3 > 0, W2 + W 3 > 0, an d WI + W2 > 0;

WI + Ws > 0, W4 + Ws > 0, and WI + W4 > 0;

W6 + W 4 > 0, W6 + W2 > 0, and W2 + W4 > O.

Finally, the seven op timality conditions round out the picture and may be
wri tten in terms of the Walsh coefficients as follows:

-(WI + W2 + W4) > W7;

WS+W3 > W2 + W4;

W6 +W3 > WI + W4;

Ws + W 6 > W4 + W7;

W s +W6 > WI + W 2 ;

W 3 + WS > W 2 + W7;

W3 + W6 > WI + W7 ·

Many sets of coefficient s satisfy these condit ions; however, noting the
pairings of coefficients in the optimality condit ions, we can say that the
coefficients

ws = i. j = 1, .. . ,6

satisfy both optimality and deception conditions as long as W7 < -7 an d
Wo is chosen to make the fitn ess values nonnegative. Setting W7 = -7 (for
borderline deception) and Wo = 0, we take the inverse t ransform of the
coefficients and obtain the resu lts presented in table 6. Notice that the worst
value in t he t able is -14. This can be made non-negat ive by increasing Wo

by 14, thereby raising all fitness values 14 unit s. Not ice also that points 000
and III have the same value . Point III can be made the best by decreasing
the coefficient W 7 an amount c; this action raises the fitness of point 111
an amount c and similarly increases the fitness values of any point whose
binary representation contains an odd number of 1's (po ints 001, 010, an d

Genetic Algorithms and Walsh Functions

38

30

I
ell If(X)
20

15

10

II

0
000 001 010 011 100 101 110 111

String X

Figure 2: A fully deceptive function plotted as a function of a single,
binary-ordered variable.

145

100). Contradistinctively, points 000,011, 101, and 110 will have their fitness
values reduced an amount c. Thus, to maintain non-negativity of the fitness
values, an additional amount c (on top of the 14 already added) must be
added to the Wo coefficient. Figures 2 and 3 show this fully deceptive 3­
bit function plotted in binary-ordered and squashed-Ramming-cube formats
respectively.

These methods may be developed more rigorously to design and analyze
deceptive problems of higher order. Some of the questions that arise in
generalizing these techniques are discussed in the next section.

5. Some questions and some partial answers

Our discussion thus far has dealt with some specifics of Walsh analysis of the
function-coding combinations relevant to genetic algorithms: the details of
Walsh functions, the Walsh-schema transform, and some sample calculations.
Whether these techniques can be generalized depends on our ability to answer
a number of key questions:

Can deception be defined more rigorously?

Can deception be analyzed using these methods under arbitrary string
codings, parameter mappings, and functions?

146 David E. Goldberg

011

Figure 3: A fully deceptive function represented by a squashed Ham­
ming cube shows the isolation of the fully deceptive optimum.

Can constraints be incorporated into the analysis?

Can anything be learned about building block processing without per­
forming complete Walsh transforms?

All these questions may be answered in the affirmative. In Part II, we shall
address each one quite carefully. Here, let's take a peek at things to come.

To define deception more rigorously, we must avoid the loose talk of this
paper concerning low-order schemata "leading" to the optimum. Instead we
should define the point or points to which a genetic algorithm should be
expected to converge under perfect sampling conditions. The definition of
such a static fixed point will itself go a long way toward motivating a rigorous
analysis of deception (ANODE) procedure.

Once this is done, we may use such an analysis procedure to calculate
fixed points in arbitrary string codings, parameter mappings, and functions .
We have already acknowledged how the use of intermediate mappings simply
introduces the composition of additional functions . Instead of writing f =

Genetic Algorithms and Walsh Functions 147

f(x), we might write f = f(g(h(x))) where h might be some odd decoding
function and 9 might be some parameter mapping. That many of our I, g,
and h functions may be written as finite or truncated polynomials and that
the Walsh functions themselves may be written as monomial terms, suggests
that perhaps we should look at polynomials as the lingua franca of coding­
function analysis. Doing so raises the possibility of performing analysis of
deception without the explicit use of transform methods. The development of
such algebraic coding-function analysis procedures (ACFA procedures) will
permit full or partial analysis of deception by inspection or simple algebraic
manipulation.

Analyzing whether deception is induced in an otherwise undeceptive prob­
lem by the imposition of constraints may be tackled using transforms and
some sensitivity analysis. Penalizing infeasible subsets of points sufficiently
to cause them to fall below the constrained optimum may be viewed as the
summed effect of pointwise changes to fitness values of the points in the in­
feasible subset. In turn, these changes may be viewed as changing w values
and schema fitness values, thereby permitting an analysis of the change in
deception. The procedure is similar to that used in the design of the fully
deceptive problem of section 4.4; it may be useful in a number of analysis
and function design situations.

In Part II, we will examine these and other questions more rigorously.
So doing will provide further insight into the building block processing that
underlies genetic algorithm power.

6. Conclusions

In this paper, Walsh functions have been used to help analyze the workings of
genetic algorithms. Specifically, the Walsh monomials and polynomials have
been defined and schema average fitness values have been calculated as a
partial, signed summation over the Walsh coefficients. Although this analysis
agrees with those that have gone before, the introduction of a polynomial
form presents a common language for discussing the usual composition of
mappings that occurs in GAs when codings are decoded, mapped, and passed
as parameters to some objective function.

A number of examples have demonstrated the usefulness of these meth­
ods in determining whether particular coding-function combinations should
be easy or hard for a genetic algorithm. Additionally, a method has been
demonstrated for using the Walsh techniques to design fully deceptive prob­
lems. The paper has also hinted at the generalization of these techniques, a
matter to be covered more rigorously in the sequel.

Acknowledgments

This material is based upon work supported by the National Science Foun­
dation under Grant MSM-8451610. I also acknowledge research support pro­
vided by the Digital Equipment Corporation and by Texas Instruments Incor-

148 David E. Goldberg

(Fast Walsh Transform include file)
const maxlength - 10. (t he maximum bit string l ength)

maxpoints - 1023: (2Amax1engt h-1)

type dataar r ay - ar ray [O•• maxpoi nts] of r eal.

var datain, dataout:dataarray.
m:inteqer;
transformf1ag:boo1ean:

t rans f orm (or inverse) i nput, output
string length, 2A1

i f true then transform e l s e inverse

procedure fwt (var datain,dataout : dataarray :
m integer:
transform f lag : boolean):

(Binary-Ordered Fast Walsh Transform - Coo1ey-Tukey Formulation
(Programmed by D. E. Goldberg & C. L. Bridges , Nov . 1988
var newalah 1 dataarray,

level, k, kplus, s t ep , n, i, 1 ,
bunchstep, bunchstart, bunchstop integer:

begin
1 :- round(ln(m)/ln(2»: m - 2A1

n : = m - 1;
dataout : - datain. i nit i a l ize dataout
step :- 1;
bunchstep : - 2:
for level : - 1 to 1 do begin
bunchstart : - 0 /
while (bunch.tart < n) do begin

k 1- bunchstart:
bunchstop := bunchstart + step - 1:
f or i : - bunchstart to bunchstop do begin

kp1us : - k + step:
newa1sh[k] : - dataout [k] + dataout[kp1us] :
newalsh[kplus] := dataout [k] - dataout [kplus]:
k : - k + 1 .

end: (on to next bunch)
bunchstart : - bunchstart + bunchstep:

end: (bunch loop)
dataoUt : - newa1sh: (advan ce results a l evel)
s tep : - s tep * 2:
bunchstep : - bunchstep * 2:

end: (level loop)
i f transformflag then (divide by 2Al i f trans form f -->w)

for i : - 0 to n do dataout[i] : - dataou t[i]/m.
end. (fwt)

Figure 4: File fll't .pas contains the procedure fll't .

porated. The first draft of the FWT code was program med by Clay Bridges,
and the illustrations were prepared by Br ad Korb.

Appendix A. The Cooley-Tukey fast W alsh transform in pascal

This section presents a Pascal implementation of the fast Walsh t ransform
(FWT). The code is very similar to th e Cooley-Tukey formul ation of th e fast
Four ier transform, except that sine and cosine multipliers are unnecessary
and th ere is no imaginary part to be concerned with. Further informat ion is
available in pap ers by Kremer [10,11].

The program is contained in three files: f ll't .pas , fastwt .pas, and i o. pas .
These three files are presented in figures 4, 5, and 6 respectively.

The file fwt . pas contains the procedure f wt , the fast Walsh transform

Genetic Algorithms and Walsh Functions

pr ogram fastwt ;

(Bi nary-Ordered Fast Walsh Transform - Cooley-Tukey Formulation
Progr ammed by D. E. Goldberg & C. L. Bridges - Nov. 1988

149

($I i o .pas)
($I fwt.pas)

(include i/o r outines
(include Fas t Walsh Transform

var i nf i l e , outfile :text;
infilename, outfilename, da taname:string;

procedure f wi nput (va r infile : text;
var m : integer ;
var transformflag:boolean;
var datain : dataarray;
var dataname :string);

(read in f or w values from infile with header
var i : integer; ch:char ;
begin
readln(infile, dataname); f i r s t line)
readln (infile , m) ; second line)
readln(infile , ch); third line)
transformflag : ~ (ch= 't') or (ch~'T');

for i : - 0 to m- l do readln(infile, datain[i); remaining
end;

procedure fwout put (va r outfile :text;
var m : integer;
var transformflag:boolean;
var dataout :dataarray;
va r dataname : s t r i ng) ;

(write out f or w values to outfile with header
var i : integer;
begin

writeln(outf ile, dataname) ,
writeln(outfile, m)i
if transformflag then writeln(outfile,'F')
e l s e wr i t e l n (out f i le , ' T') ; (i nvert transformflag in outfile)

for i : - 0 to m-l do writeln(outfile,dataout[i)
end;

begin (main)
writeln;
writeln(/================--=========~=D=--~-=D_-------------••• ');
writeln(' Binary-ordered Fast Walsh Transform'); writeln;
open_input(infile, interactive, 'Input " infilename);
open_output (outfile, interactive, 'Output " outfilename) ; writeln;
fwinput(infile, m, transformflag, datain, dataname),
fwt(datain, dataout, m, transformflag);
fwoutput(outfile, m, transformflag, dataout , datanarne);
close (outfile) ;
writeln('Data set ',dataname, ' has " m, I values.');
writeln('Input ',infilenarne, ' transformed to ',outfilename,' .');
writeln('ca-----_------_._-------------------------------------')1

end.

Figure 5: File fastwt. pas contains th e main program and dat a input
and output routines for th e program f as t wt.

150 David E. Goldberg

(10 Routines- File opening routines)
type query_type - (interactive,batch);

var qflag:query type;
fn:string; -

procedure page(var out:text);
begin write (out,chr (12» end;

procedure open_input(var i nput:text; query_flag : query_type;
message:string; var filename:string);

begin
if (query_flag-batch) then assign(input,filename)
else begin
wr i t e (' Ent er ',message,' filename: ');readln(filename);
assign(input,filename);

end;
reset(input);

end;

procedure open_output(var output : t ext ; query_fl ag : query_t ype ;
message:string; var filenarne:str ing);

begin
if (query_flag-batch) then assign(output,filename)
else begin
write('Enter ',message,' filename: ');readln(filename);
assign(output,filename);

end;
rewrite(output);

end;

Figure 6: File io. pas contains the file utilities to open input and
output files.

subroutine. The routine f wt takes n values (n a power of two) in the datain
array (from 0 to n-1) and transforms them using the Cooley-Tukey algo­
rithm into the dat aout array. The Boolean flag t ransformflag determines
whether the transform or its inverse is calculated as the flag is true or false .

T he signal-flow graph of the algorithm is depicted in figure 7 for the
algori thm when n = 8 (or when the string length 1= 3). In the figure, the 1
different levels of the calculation are apparent, as are the succe ssive addit ion
or subtraction of pairs of terms from the previous level.

The file fastwt .pas contains the main program, data input, and data
output procedures. Data input and output are designed so that output from
the program may be used immediately as input to the program (the inverse
transform of the transform should return the original points) .

The file i o .pas contains utility routines to open input and output files.
These are used in an interactive mode to obtain file names and to open files
for the input device infile and the output device outf ile.

Genetic Algorithms and Walsh Functions

Figure 7: Signal flow graph for the Cooley- Tukey, fast Walsh trans­
form algorithm with l = 3 and n = 8.

151

152

References

David E. Gold berg

[1] A.D. Bethke, Genetic algorithms as function optimizers, Doctoral disser­
tation, University of Michigan, 1980. Dissertation Abstracts International,
41(9) , 3503B. (University Microfilms No. 8106101).

[2] D.E. Goldberg, "Simple genetic algorithms and the minimal deceptive prob­
lem." In L. Davis (Ed.), Genetic algorithms and simulated annealing (Pit­
man , London, 1987) 74-88.

[3] D.E. Goldberg, Sizing populations for serial and parallel genetic algorithms
(TCGA Report No. 88004). Tuscaloosa: University of Alabama, The Clear­
inghouse for Genetic Algorithms, 1988.

[4] D.E. Goldberg, Genetic algorithms in search, optimization, and machine
learning. (Addison-Wesley, Reading, MA, 1989).

[5] J .H. Holland, Hierarchical descriptions of universal spaces and adaptive sys­
tems. Technical Report ORA Projects 01252 and 08226, Department of Com­
puter and Communication Services (University of Michigan, Ann Arbor, MI,
1968).

[6] J.H. Holland, "Hierarchical descriptions of universal spaces and adaptive
systems." In A.W. Burks, ed., Essays on cellular automata (University of
lllinois Press, Urbana, 1970) 320-353 .

[7] J.H. Holland, "Processing and processors for schemata." In E.1. Jacks, ed .,
Associative information processing (American Elsevier, New York, 1971)
127-146.

[8] J.H. Holland, Adaptation in natural and artificial systems (University of
Michigan Press, Ann Arbor, 1975).

[9] J .H. Holland (in press), "Searching nonlinear functions for high values,"
Applied Mathematics and Computation.

[10] H. Kremer, Representations and mutual relations of the different systems
of Walsh functions . Paper presented at a Colloquium on the Theory and
Applications of Walsh and Other Non-Sinusoidal Functions, Hatfield, Herts.,
UK, 1973.

[11] H. Kremer, On theory of fast Walsh transform algorithms. Paper presented
at a Colloquium on the Theory and Applications of Walsh and Other Non­
Sinusoidal Functions, Hatfield, Herts., UK, 1973.

