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Genetic Algorithms and Walsh Functions:
Part II, Deception and Its Analysis

David E . Goldberg
Department of Engin eering Mechanics, University of Alabama

Tuscaloosa, AL 35487, USA

Abstract . Part I considered the application of Walsh functions to the
analysis of genetic algorithms operating on different coding-function
combinations. In this paper, those meth ods are extended to permit
rigorous analysis of deception by considering the expect ed disruption
to schema processing caused by different genetic operators. Algebraic
extensions of these metho ds are considered, and a sensitivit y analysis
is described.

1. Introduction

For some time, Walsh methods have been available for the analysis of ge
netic algorithms (GAs) operating on different cod ing-function combinations
[1]; however , these methods have not been widely cited, nor have they been
widely used. In Part I, I attempted to make the Walsh functions and Bethke's
Walsh-schema transform more accessible by presenting the Walsh functions
in polynomial form. Although such a presentation is un conventional , it is
mat hematically equivalent to other discussions, and the use of po lynomials
makes proofs and algebraic ma nipulation more direct and intuitive. In that
paper , I also hammered away at the basic notions of Walsh-GA analysis by
illustrat ing the techniques with several simple examples, including a bitwise
linear function , a simple non line ar function, and two deceptive funct ions .
Although the paper demonstrated the analysis and design of deceptive func
ti ons by example an d those functions were consis tent wit h previous uses of
the term [3,4], the definition of deception was less than rigorous. The mai n
objective in this rapprochement is to remedy that omission.

Specifically, this paper cons iders a rigorous defini t ion of what is meant by
a deceptive fun ction, and this definition is used to define a procedure for the
analysis of deception in particular coding-funct ion combinations. The pa
pe r also derives pro cedures for analyzing deception using algebraic methods
alone, and sensitivity analysis is proposed for const rained function analysis
when penalty methods are imposed.
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values 1'.1 This leads us to consider whether the operator-adjusted schema
average fitness may be calculated in terms of the Walsh coefficients .

3.2 Operator-adjusted fitness values from W alsh coefficients

The lower bound on the operator-adjusted fitness value pres ented in the pre
vious section is not very practical. A more useful est imate may be determined
directly from the Walsh coefficients. Specifically, the usual schema average
calculation,

f(h) = L Wj1fj (l1(h)),
j EJ (h )

(3.3)

may be adj usted term by term dep ending on whether a particular operator
disrupts the similarity partition fixed by that term.

For example, consider crossover acting on the term j = 7 in a length 1= 5
st ring . Fixing j = 7 means that we are focused on a schema that at least
fixes t he last three positions of the st ring, **fff, where the f's indicate a fixed
position in the string. Thus the Walsh term should be expected to survive
crossover wit h probability [1 - Pc~], where o(j) is the defining length of
the positi ons fixed by the Walsh term. Noting that when disruption occurs,
the fitness achieved by the crossover product over these positions has a net
value of zero (an odd number of 1's is as likely as an even number of 1's) ,
the expected fitness over those positions is simply the product of the original
Walsh coefficient and the survival probability. Terming this the crossover
adju ste d Walsh-coefficient, wj , we write

c [ o(j ) ]Wj = Wj 1 - Pc 1- 1 . (3.4)

Under mutation a similar adjustment may be made, bu t the analysis
must consider t he post-mutation product more carefully. Using the previous
example, we expect no change under mutation when all bits fixed within
a Walsh te rm survive mutation; more precisely, we expect a probability of
sur vival ps(j) = [l-Pm]o(j). On the other hand, when the bits of a Walsh term
are change d by mutation, the outcomes are not equally likely. Most often
a single bit amo ng the defining bits of the term is changed; the pro bability
of having more than one mutation is of order O(p;"). When a single bit
is changed, t he corresponding sign of the Walsh function must also change
because the number of bits has changed from odd to even or vice versa. Thus,
the expected fitness of a Walsh term under mutation is well approximated as

(3.5)

lS trictly speaking, t he calculation is not very mean ingful when performed with full
strings because the disrup tion is so high. Nonetheless, the not ion that a GA shou ld , in
a st ati c sense, do no worse than choose among the best on the basis of operator-adjusted
fitness will prove useful as we turn to calculat ing better bounds using the Walsh coefficients.
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In the usual case, the destruction probability, Pd = 1 - P., itself is well
approximated by the expression PmoU), resulting in the mutation-adjusted
Walsh coefficient as

(3.6)

Multiplying the multipliers for both mutation and crossover adjustment
together (assuming independence of the operators) we obtain the following
relationship for the operator-adjusted Walsh coefficient, wj, after dropping
cross-product terms:

I [ aU) 2 ( .)]Wj = Wj 1 - Pc1_ 1 - PmO J . (3.7)

The approximations made should not be detrimental to the calculation as
long as the adjustment is made only when the sum within the brackets is
greater than zero . Lat er, it will be useful to think of the operator-adjusted
W as the sum of the original coefficient and a change in that coefficient :

wj = Wj + ~wj, (3.8)

where by simple algebra the change due to operator adjustment may be
written as

(3.9)

(3.10)

With this calculation - or an analogous calculation for any set of proposed
operators - we may calculate the operator-adjusted fitness for any schema by
summing over the relevant operator-adjusted Walsh coefficients in a straight
forward manner:

J'(h) = L: wj7Pj(;1(h)).
j EJ(h )

With the operator-adjusted coefficients and fitness values so defined, we may
define deception rigorously.

3.3 Interpreting operator-adjusted fitness values

These calculations are straightforward enough, and in a moment we will con
sider how to use them in a rigorous definition of deception. But before we do ,
it may be useful to ponder the meaning of the operator adjustment . Is there
some physical or intuitive interpretation we may attach to this adjustment to
help us better understand the underlying assumptions of deception analysis?

P robably the easiest way to interpret operator-adjusted fitness is to imag
ine the performance of crossover and mutation on a single string contained
in a large, randomly generated population. The calculation of that st ring's
operator-adjusted fitness amo unts to calculating the expected value of fit
ness following the applicat ion of the subj ect operators. If we assume that
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reproduction acts independently of the genetic operators, we shou ld expect
it to select those strings with highest operator-adjusted fitnes s values. Thus,
strings with the highest operator-adjusted fitness values should attract the
most trials as the run progresses. This view, of course, ignores all dynamical
and stochastic considerations, and that is why the word "st at ic" is some
times at t ached to this typ e of analysis . Nonetheless, despite its ignorance of
dynamics and chance, static analysis of convergence is a reasonable starting
point in coding-function analysis because of its proper inclusion of operator
expected effect and its reasonable assumption regarding the elevating role of
reproduction . With this somewhat idealized view of the workings of GAs,
we move toward defin ing deception and an analysis of deception procedure.

3 .4 Deception defined

On the road to defining deception, we yield a t ime or two to define ot her
useful concepts. Writ ing the fitness value of the global optimum as 1*, we
may define a near-op timal set N as all those points that possess fitness values
within an E of the bes t:

N = {x: 1* - f( x) ::; E}. (3.11)

Setting E = 0, the set N becomes the globally opt imal set.
Similarly, global operator-adjusted fitness value may be written as f "

an d the corresponding operator-ad justed near-optimal set may be define d as

f " - Wo
N ' = {x: 1" - 1'(x ) ::; E'}, where E' = 1* E.

- Wo
(3.12)

In this way, f' is scaled to be the same proportion of the difference between
maximum and average fitness in both the ordinary and operator-adjusted
near-optimal sets .

With these definitions, deception itself may be defined straightaway. A
function is statically deceptive or just deceptive when the intersection of
the near-optimal set and the operator-adjusted near-opt imal set loses some
members when compared to the near-optimal set - when the set difference
is nonempty.?

Definition 1. A function-coding combina tion is statically deceptive at
the level E when N - N ' -=f 0.

A function-coding comb ination is said to be strictly statically deceptive when
the int ersect ion of N and N ' is empty (when N - N ' = N ).

A func t ion-coding comb ination is said to be statically easy or just easy
when all members of the near-optimal set are present in the corresponding
operator-adjuste d set.

2Recall that th e set difference A - B contains all point s in A not in B: A - B = {x :
x E A and x rf. B } .
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D efinition 2. A fun ction-coding combination is said to be statically easy
at the level e when N - N' = 0.

A function-coding combination is said to be strictly statically easy when the
operator-adjusted near-optimal set coincides with the near-optimal set ; th at
is, when N = N' .

Intuitively, if we view the operator-adjusted set as the set of points pre
ferred by the genetic operators acting in concert with reproduction, simplicity
and deception indicate whether or not those points coincide with the optima
or near-optima of the function .

4. A nalysis of decep t ion

In a static sense, operator-adjusted fitnes s defines th e fixed points - the
convergence points or attractors - of genetic adapt ive search. Whether
or not these attractors correspond to the optimal or near-optimal points of
the unadulterated function is the essence of whether that function is simp le
or decep tive. The definitions of the previous sect ion permit the construc
tion of an efficient procedure for determining whether and to what degree a
coding-function combination is deceptive. This section considers the appa
ratus required for so doing and applies the technique to a number of simple
examples.

4. 1 W hom to check and whom to forget?

As the definition of deception suggests, a rigorous an alysis of deception pro 
cedure is a relatively straightforward matter of comparing pre - and post
adjustment near-opt imal sets . The naive approach to this comp arison would
calculate the near-optimal set , calculate the Walsh transform (the w's), cal
culate the operator-adjusted w's, calculate the inverse Walsh transform of
the adjusted w's, calculate the operator-adjusted near- optimal set , and de
termine the overlap between the two sets. A more sophisticated approach
tries to limit the number of points requiring consid eration and attemp ts to
take advantage of the usual sparsity of th e Walsh coefficients. To establish
such a procedure, we consider the pictorial representation of the sear ch space
in figure l.

In the figure , we imagine a fitness-ordered list of points, starting with the
globally optimal point at th e top and proceeding in descend ing order. The
points contained within the near-optimal set N are shown within an (; of the
best . The complement of the near-optimal set, the set NC , is shaded and
marked, and normally we would expe ct to have to perform the aforemen
t ioned computations on all the points in th e space, but some st raightforward
reasoning can eliminate many points from evaluation. The only points that
must be considered in the complementary set are those that have some hope
of surpassing the least fit points of the original near-optimal set. A bound
may be obtained on the maximum change in fitness that a sing le point may
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Figure 1: Three representations of the search space, S, showing the
near-optimal set, N, its complement, N C

, the enlarged ANODE set ,
N+, and their relation to the near-optimal set tolerance, E, and the
potential shift, s.

undergo due to operator adjustment . A single point may change at most an
amount flj:nax given as

21- 1

flj;"ax = L Iflwj l,
j =O

(4.1)

where the flwj are the operator-adjusted values determined as discussed in
the previous section. In the extreme, if a low point were to have its fitness
raised by this amount, and if the lowest point in the near-optimal set were to
have its fitness lowered by flj:nax' it would be necessary to check the fitness
values of all points within s = 2flj:nax of the least fit point of N . We call this
quantity s the potential shift and use it in the analysis of deception algorithm
to determine the number of points that must be checked for membership in
the operator-adjusted near-optimal set N'.

4.2 An analysis of deception (ANODE) algorithm

Using the potential shift value, an analysis of deception (ANODE) algorithm
may be defined quite directly:

1. Calculate 1*.
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2. Determine the Wj from the Ii-

3. For all nonzero W j, determine the operato r-adjusted t-wj.

4. Determine the potential shift, s = 2 E j :wj#o It-wj I.

5. Det ermine the elements of N + = {i : Ii ~ 1* - E - s} . If N+ =
N , the coding-function combination is strictl y simple and no fur th er
computations are required.

6. Determine the fitness value changes, t-II = t-II(t-wj) , as a result of
operator adjustment for all element s of the enlarged set , i E N+ , and
calculate the operator-adjusted fitness values, II-

7. Calculate 1'* over the elements of N+.

8. For the near-optimal set, N, check whether its elements are members
of N ' (whet her for j E N , Ii ~ 1'* - E') . If all members of N are in N'
then I is simple. If not all memb ers of N are in N ' then I is deceptive.
If no members of N are in N' then I is strictly deceptive.

9. If the previous step indicates a simple function-coding combinat ion,
test the members of N+ not in N (test the members of N+ - N) for
membership in the operator-adjusted near-optimal set , N '. If there are
no such members, I is strictly simpl e.

The ANODE algorithm is straightforward and may be used to determine
whether a function is deceptive or not, and if it is, to what degree. Wh eth er
the algorithm is practical, even as a research tool, depends upon its com
plexity, and even though a thorough complexity analysis is beyond the scope
of this treatment, some consideration of the computational bot t lenecks and
how they can be eliminated is in order .

Steps 2 and 6 are the two places likely to dominate the complexity of
the ANODE algorithm. In step 2, th e usual method of calcul ating Walsh
coefficients from funct ion values, the fast Walsh transform, has complex
ity of order O( 151Iog2 15j), where 15 1is the cardinality of the search spa ce
(151 = 21) . This bound on the computat ion is difficult to beat , because
the FWT is the optimal algorithm for calculat ing the Walsh transform over
non-sparse functions. If there is some prior knowledge of function st ructure ,
such as additi ve or mult iplicat ive separability, such structure may be used
by performing FWT's on the subfunctions (or the log of the subfunctions in
the case of mult iplicative separability ) and performing the remainder of the
ANODE algorithm on each subfunction.

If there is no such regularity in th e function-coding structure, but the
algebraic st ructure of the function and the coding is known, th ere is one
final possibility for improving th e efficiency of step 2: algebraic reduction.
This not ion is sufficient ly important that we will discuss it more fully in a
later section; briefly, if the fitness and coding functions may be expressed in
polynomial form, th e overall relationship between the function values and the
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J x f(x) Wj

0 000 10.00 7.55
1 001 15.00 -2.50
2 010 0.00 5.00
3 011 5.00 0.00
4 100 10.10 -0.05
5 101 15.10 0.00
6 110 0.10 0.00
7 III 5.10 0.00

David E. Goldberg

Table 1: Walsh coefficients of the bitwise linear function from Part I.

bit variables may be expressed as a polynomial. Thereafter , straightforward
algebraic reduction makes it possible to read off W values directly without
performing a transform. Whether the FWT or the algebraic method should
be used depends upon the complexity of the algebraic computations.

In step 6, in the worst case, there will be many nonzero ~w's and a full,
fast Walsh t ransform may have to be performed, req uiring O( ISllogz lSI)
ad dit ions. If the ~Wj are sparse, then the definition of th e Walsh transform
may be used to calculate the required ~f:. Assuming there are nn nonzero
~wj, and assuming there are IN+ I elements of the enlarged set, then f'
calculations may be performed in O(nnIN+ 1) additions (assuming the signs
are stored as data) . A rough guide to choosing the FWT over the calculat ion
by definition may be obtained by comparing the two complexity estimates.
If the number of nonzero elements in the set of Walsh coefficients meets the
crite rion

(4.2)

then the definition of the Walsh transform should be used to calculate indi 
vidu al ~f' values; otherwise, the fast Walsh transform should be used.

With the ANODE algorithm defined and partially analyzed, we turn to
several examples of its application.

4. 3 Using ANOD E

Let 's consider two applications of the ANODE algorithm. In the first , we
resurrect the bitwise linear function of Part I:

f( X3XZXd = 10 + 5Xl - 10xz +0.lx3' Xi E {O, I}.

The function an d it s Walsh t ran sform are displayed in t able 1. Analysis
of deception proceeds quite smoothly in this case. Assuming an allowable
E = 0 (we are interested only in globally optimal points ), a low mutation
rate (Pm ::::; 0) and max imum crossover disruption (Pc = 1.0), we note an
interesting thing. Only order two or greater Walsh coefficients undergo any
change due to crossover, and in a bitwise linear function no such coefficients
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J x w' Ii .~ fl.wj fl.fi fiJ -PC/-l

a 000 15 28 0.0 0.0 -1.5 26.5
1 001 1 26 0.0 0.0 -4.5 21.5
2 010 2 22 0.0 0.0 -8.5 11.5
3 all 3 a -0.5 -1.5 14.5 14.5
4 100 4 14 0.0 0.0 -1.5 12.5
5 101 5 a -1.0 -5.0 7.5 7.5
6 110 6 a -0.5 -3.0 11.5 11.5
7 111 -8 30 -1.0 8.0 -17.5 11.5

Table 2: ANODE analysis of the three-bit deceptive function of Part
I.
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exist . Thus we conclude immediately that the potential shift s = 0.0 and
no points outside the best point must be checked for membership in the
operator-adjusted globally optimal set: the bitwise linear function is strictly
simple. This result generalizes immediately to any bitwise linear function
under simple crossover and mutation; however, the inclusion of mutation
requires a more careful analysis.P

In the second example, consider the three-bit deceptive function designed
in Part I. The function and its Walsh transform are presented in table 2 (the
table corresponds to the function after design; the corresponding table in
Part I was used to design the function). Performing the ANODE algorithm
is straightforward. Assuming low mutation rate and high crossover rate, we
calculate the operator-adjustment factors coefficient by coefficient. These
calculations are also tabulated in table 3. Assuming we are int erested in
the globally optimal set E = 0.0, we determine the potential shift as s =
2(1.5 + 5.0 + 3.0 + 8.0) = 35.0. Thus, the entire space must be checked,
because all have fitness values greater than 30 - a - 35 = - 5. Taking the
fast Walsh transform of the fl.w' values yields the changes to the fitn ess
values , fl.!" shown in the table. Adding these to the function values of the
unadulterated function yields the operator-adjusted fitness values, fi, shown
in the table. T he best point is now 000 and the pre -adjustment best, 111, is
now among the worst. Thus, this function is strictly deceptive, as was the
intent of the design procedure.'

3The example sidestepped the effect of mutation by setting the mutation rate to zero.
To include mutation cleanly, simply split the deception analysis in two parts. In th e first,
consider the effect of mutation by calcu lating the post-mutation fitness of all order-one
coefficients by multip lying the pre-operator coefficient by the multiplier 1-2pm and leaving
W Q untouched . Since each order-one coefficient is so affected , and since all coefficients
contribute to each fitness value sum, mutation simply scales the range of the values about
the mean value of the original function. When e' is similarly scaled, there will be no change
in the post-mutation near-opt imal set and the argument above concerning crossover may
be applied to the scaled function without modification.

4This function would also be strictly deceptive if it were imbedded in a larger string,
unless th e linkage were sufficiently tight to drop the disruption probabilit ies to the point
where 111 remained the best. The ANODE procedure may be used in a straightforward
manner to roughly dete rmine the required linkage .
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5. Algebraic coding-function analysis

The previous section suggest ed how to avoid mu ch of the computational
overhead of analysis of deception pro cedures by using algebraic methods.
Although we come to these methods in a quest for ANODE efficiency, th eir
existence provides a tool for coding-function analysis and coding design that
sometimes proceeds by simp le inspection.

In this section, we examine how straightforward algebraic reduction may
be used to obtain Walsh coefficient s without resorting to fast Walsh trans
forms. This algebraic coding-funct ion analysis procedure is applied to the
simple non linear function of Part I, and a useful algebraic theorem is also
discussed.

5.1 Defining a m ethod

Assuming that a fitness function f is defined over a set of decision variables
d, and further assuming known mappings between the bit string x and the
decision var iables, d , it is a straightforward matter to write the mapping
from the strings into the fitness values as the composi tion of functions:

f = f(d(x) ). (5.1)

If the functions f and the components of d are restricted to polynomials.l
then it is clear that the composite function is itself a polynomial over the bi
nary var iables Xi. Taking this one step further and substituting the mapping
from the auxi liary string (over +1 and -1) to the bits (over 0 and 1) usually
written as

Xi = ~ [1 - Yi], i = 1, .. . ,1, (5.2)

the fitness func tion may be written as a polynomial over the auxi liary string
variab les.

T his polynomial may be further reduced by recalling from Part I that
even powers of the Yi reduce to 1 and that odd powers reduce to the var iable
itself:

a {I, if a even ;
Yi = .Yi, If a odd.

(5.3)

After red ucing the polynomial thus, coefficients of identical monomial
terms may be added, whereupon we notice an interest ing thing. The fitness
function ha s been red uced to a linear combination of proper monomials over
the auxiliary string variables, Yi: the fitness funct ion has been reduced to
a line ar combination of the Walsh functions. Thus, it is a straightforward
matter to obtain the Walsh coefficients simply by reading the coefficient

5This restriction is not too limiting, because to any desired accuracy tolerance, many
funct ions of interest can be written as truncated polynomials.
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f( d(x))

1
f (y ) = 4(49

associated with the appropriate monomial. This is most easily done by cal
culating the coefficient index as a binary integer where the ith position of
the integer is set to 1 if the ith auxiliary string variable is in the product and
ootherwise (e.g., the term Y2Y3 generates the index j = 1102 = 6).

To drive these ideas home, let's reconsider the simple nonlinear function
of Part I.

5.2 Algebraic analysis of a simple nonlinear function

We resurrect the simple nonlinear function of Part I to illustrate the workings
of algebraic coding-function analysis. Specifically, we consider the function
f = d2

, where d is coded as an unsigned binary integer. Substituting the
relationship d = LT=l Xi2i-l into the fitness function, an equation relating f
and the bit values Xi is obtained:

[d(xW;

(t 2i-lXi) 2

.=1

(Xl + 2X2+4X3)2;

xi + 2XlX2 +4XlX3 + 4x~ + 16x2x3 + 16x;.

To complete the analysis, substitute the relationship between bit values
and auxiliary string variables Xi = ~[l-YiJ into f(x), obtaining the following
result:

14Yl+yi - 28Y2 +4Y2Yl +4yi - 56Y3+ 8Y3Yl

+ 16Y3Y2 + 16y; ) .

Using the reduction relationship above, we note that the squared terms be
come constants, thus reducing the relationship to the Walsh function form:

1
f(y) = 4(70 - 14Yl - 28Y2 +4Y2Yl - 56Y3+8Y3Yl + 16Y3Y2) .

Picking off coefficients term by term, we see that the result agrees with
the independently calculated results of Part I, reproduced here as table 4.
The rest of the ANODE procedure may be performed in the usual manner.
Calc ulating the potential shift as

s = 2(0.5 . 1 + 1.0 ·2 + 0.5 ·4 +0.0) = 9.0,

we recognize that the function is strictly simp le because the the potential shift
of 9 is less than the difference between the highest and second-highest fitness
values, 49 - 36 = 13 (the assumption of a more poorly ordered string requires
the analysis of only one additional point because the maximum potential shift
s = 2(4 + 2 + 1) = 14 requires the inclusion of the top two points; such an
analysis demonstrates strict simplicity regardless of ordering, because of the
negative sign associated with all order-one w's).
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J x f(x) Wj

0 000 1 17.5
1 001 2 -3.5
2 010 4 -7.0
3 011 9 1.0
4 100 16 -14.0
5 101 25 2.0
6 110 36 4.0
7 111 49 0.0

Table 3: Function values and Walsh coefficients of f( d) = rP , d an
unsigned binary integer.

5.3 A useful theorem

Algebraic reduction calculations can yield much information about a func
tion's deception or lack thereof when we are willing to grind through the nec
essary symbolic manipulations. The growing availability of symbolic algebra
packages such as Reduce, MACSYMA, and Mathematica will put these tools
at many doorsteps; however, even when we are unwilling to do such calcula
tions, algebraic analysis can yield useful information concerning the degree
of bitwise nonlinearity - the degree of epistasis - inherent in a particular
function. Here , we consider a straightforward theorem that bounds the order
of the nonze ro Walsh terms.

Assume that a fitness function f is a polynomial over a vector of decision
variables d, f = f( d) , and further assume that the degree of the f poly 
nomial is kf (the degree of a monomial is simply the sum of the exponents
of the variables in the product - the degree of d~d~d4 is 6 - and the de
gree of a polynomial is the maximum degree among all monomial terms) .
Furthermore, we assume that the components of the decision vector d may
each be written as a polynomial over a subset of the Boolean string variables
x , where kd is defined as the maximum degree among all the component
functions. With these definitions, it is a straightforward matter to prove the
following theorem.

Theorem 1. If a function f = f( d) is a polynomial of degree kf in the com 
ponents of the vector d , and if the vector function d = d (x) has component
functions that are polynomials of maximum degree kd in the string variables
x, the maximum order of any nonzero Walsh coefficient, o" = max{o(j ) :
W j :f O}, is bounded as o· ::::; kfkd .

Proof of the theorem follows immediately from elementary theorems in
th e algebraic theory of polynomials [7] and the fact that the auxiliary string
mapping is of degree one.

Applying th e theorem to the simple nonlinear function, we note that the
maximum order o" must be less than 2·1 = 2; this coincides with the obser
vation that the coefficient W7 = O. Other applications of the theorem include
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consideration of the epistasis of Gray and other nonlinear codes. The theorem
seems to suggest that nonlinear codes may be more susceptible to deception,
because of the potential for significant nonzero, higher-order Walsh coeffi
cients, but such speculation must be checked before firm conclusions may be
drawn, because high-order Walsh coefficients alone are insufficient evidence
to prove deception.

6. Sensitivity analysis

Analysis of deception can be a powerful tool for understanding what makes
coding-function combinations potentially difficult for genetic algorithms. Yet,
once such an analysis has been performed on a particular function, there may
be a variety of questions to ask regarding the change in the function's de
cept ion for given changes in the function's values. Furthermore, we might
like to answer those questions without returning to square one on the origi
nal analysis. This may be easily accomplished using sensitivity analysis . In
this section, we examine such a procedure and outline its use in constrained
function analysis with penalty functions.

6. 1 H ow much do the coefficients change w hen a given fu nction
val u e changes?

The crucial questions to ask and answer when pondering sensitivity analysis
of deception are the following: when a particular function value is modified by
some amount, which Walsh coefficients change and by what amo unt? These
may be answered easily if we ret urn to the definition of the Walsh transform
obtained by orthogonality arguments in Part I:

(6.1)

The linearity of this equation requires that

(6.2)

Writing the total different ial of b..Wj as

(6.3)

the sensitivity coefficients ~ may be recognized:

(6.4)
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Since 7/Jj(i) is + 1 or -1, every Walsh coefficient either increases or decreases
by the amount of change in the particular function value being consi dered
divided by 2/. Of course, applying those changes to the W j and then back
calculating I values is a glorious exercise in chasing one's tail; however, if the
calculation of the ~w's is used in conjunction with the operator adjustment
of a previous section, the sensitivity analysis provides a meaningful way to
evaluate the sensitivity of deception to changes in function values.

6.2 Sensitivity analysis of deception

Because different operators affect different Walsh coefficients differently, chang
ing a function value of a single point can affect the presence or absence of
other points in the post-operator near-optimal set , N ' . Defining the pre
operator changes (the sensitivity changes) as ~Wj and the post-operator
sensitivity changes as ~w'j, the following straightforward calculation follows
immediately:

A " A [ 8(j) 2 ( 0)]
uWj = UWj 1 - Pcl _ 1 - PmO J . (6.5)

The adjustment is performed to the sensitivity changes in the same manner
as with the original W values .

Thereafter, the ANODE procedure may be adopted as before except that
the potential shift should be calculated as

21- 1

S = L I ~wj +~wjI.
j=O

(6.6)

Once the enlarged set is redetermined (more or fewer members may be re
quired), calculation of the po st-operator, post-sens itivity function values may
be determined as

I:' = If + ~II', (6.7)

where the ~II' values are summed over the post-operator ~w'j values in the
usual Walsh way.

6.3 Constrained function optimization, p enalty functions, and sen-
sitivity analysis

One candidate application for analyzing decep tion using sensit ivity analysis
is function optimization with inequality constraints. The usual metho d for
optimizing such problems with GAs [4] is to impose penal ty functions on the
unconstrained objective function, where the penalty is a linear or superl in
ear function of the constraint violation. We will not review this in det ail ,
except to note that the use of a penalty method imposes changes on the un
constrained function at points exterior to the feasible region. The aggregate
effect of these changes can be calculated using the sensitivity analysis just
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developed, and deception can be determined by comparing the constrained
near-optimal set to the constrained, post-operator near-optimal set. Careful
application of sensitivity methods may then enable the use of penalty meth
ods that permit near-optima to be found while introducing a minimum of
additional deception into the problem.

7. Extensions

This work may be extended in a number of ways:

application of ANODE to operators other than simple crossover and
mutation,

generalized Walsh analysis of standard codings,

the use of Walsh analysis and ANODE on fun ctions with nonbinary
codin gs,

st ring ordering design using algebraic methods, and

dynamic extensions of the ANODE analysis to determine whether a
function-coding-operator combination diverges from a desired near
optimal set.

Analysis of deception may be performed for GAs that use operators other
than simple crossover and mutation, as long as survival probability boun ds
can be estimated. Comparative deception analysis of different operators
acting on the same funct ion (or set of functions) might prove instructive.
For example, it might be possible to compare single-point and multiple-point
crossover operators using ANODE over a suite of difficult test functions.

Codings other than the usual unsigned binary integer may be handled
using the methods of this paper. Gray codes, floating point codes, and other
commonly used mappings may be analyzed. Algebraic methods or transform
methods may be used on the coding funct ions individually, and the algebraic
metho ds of section 5 may be applied to examine the interaction of function
and coding. Comparative analysis of deception of differen t codings may prove
useful here agai n. T here are a number of theoretically unjust ified claims
regarding the sup eriority of this or that coding in the lit eratur e, and these
may be subj ected to careful scrutiny using the methods of this paper.

T he Walsh an alysis and ana lysis of decept ion may be exte nded to non
binary alphabets. 2k-ary alphabet analysis is particularly ea sy to visu alize.
Simply code the problem as the concatenat ion of I, length-k binary codes
and perform the an alysis as per usual except that 5(j) must be taken as the
defining length of the substring wri tten in t he nonbinary alphabet. Careful
ana lysis of mutation may be somewhat difficult, bu t approximate handling
of various nonbinary mu tation operators may not be to o taxing .

Algebraic methods may prove usefu l in codi ng design. Kno wledge of mul
tiplicati ve or additive separability may be exploi ted immediately by placing
those subsets of variables contained in different subfunctions on different
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chromosomes, since linkage is unnecessary in such cases. Other prior knowl
edge of coding and function algebraic structure may be used to order strings
to create short defining lengths for those building blocks that have the highest
Walsh coefficients. In many cases , the required information may be available
without algebraic computation of all Walsh coefficients .

Holland's [6] extension of the Walsh calculation to populations containing
uneven proportions of strings opens the door to the possibility of complete
dynamic analysis of GA-hardness (the word "hard" should be reserved for dy
namic convergence to undesirable points, while "deceptive" should be saved
for the static notion defined in this paper). The computational convenience
of the Walsh basis may permit firmer conclusions than are usually possible
when the full finite difference equations are written in terms of the canonical
basis directly [2].

8. Conclusions

This paper has developed a number of tools for analyzing and designing the
interaction of codings, functions, and operators within genetic algorithms.
Specifically, the concepts of static deception and simp licity have been de
fined in terms of the overlap of two different near-optimal subsets, one de
fined in terms of fitness and the ot her in terms of operator-adjusted fitness.
These definitions have led to the development of an analysis of deception
or ANODE algorithm for calculating deception or simplicity in particular
problems. In combination with the monomial representation of the Walsh
funct ions developed in Part I, these tools have led to the development of alge
braic coding-function analysis procedures, where bounding maximum-order
calculations or full sets of Walsh coefficients may be obtained without resort
ing to expensive transform computations. A sensitivity analysis procedure
has also been ou tlined to permit the direct evaluation of t he change in decep 
tion that can occur when one or more of a funct ion's values change; specific
recommendations have also been made to apply this sensitivity analysis to
problems with inequality constraints adjoined as a penalty.

These analysis and design tools should provide a useful analytical vantage
point for understanding why genetic algorithms work and how they can be
improved. Their future application should add a useful measure of rigor to
the study of genetic algorithm performance.
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