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Abstract. We study the dynamical behavior of automata networks
defined by x(t + 1) = x(t) + f(Ax(t) + b); where A is a symmetric
n x n matrix, b is a real n-vector and f is the subgradient of a con
vex function . More precisely we prove, by using Lyapunov operators
associated to the network, that the steady state behavior of these au
tomata is simple: fixed points or two-cycles. We also give bounds for
the transient time needed to reach the steady state. These networks
appear in applications such as image restauration or phase unwrap
ping [6]. For this last application, we give bounds for the transient
length.

1. Introduction

In this paper we characterize the dynamics of automata networks defined by

x(t + 1) = x(t) + f(Ax(t) +b); x(t) E IRn (Ll)

where A is a n x n symmetric matrix, b a real n-vector, and f(Ul"' " un) =
(ji(Ui)) from IRn into itself is the subgradient of a convex function from IRn

into IR called the potential associated to f . Transformation (1.1) may be
seen as a network where each site is updated synchronously according to the
following local rule:

Xi(t +1) = Xi(t) + fi (t aijXj(t) + bi) i = 1, . .. , n
; =1

(1.2)

The characterization of the dynamics of automata (i.e., periodic behavior,
transient length to reach the steady state, etc.) is a hard problem and few
general results are known. For some particular classes there exist short cut
theorems that permit us to determine the dynamic only by knowing the
cellular space structure and the local rule.
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The class defined in (1.1) was introduced first in [6] to modelize phase
unwrapping problems, i.e., to compute the phase of an analytic function
from a set of values of the function in a discrete grid. The automaton that
accomplishes this task consists of a finite undirected graph G where each
site, labeled 1, .. . , n, initially contains a sample coded as an integer Xi(O) of
the principal value . All sites are updated synchronously according to a local
average rule

Xi(t + 1) = Xi(t) + f(Si(t)) for i = 1, . . . , n

where

(1.3)

n

Si(t) = L: Xj(t) - diXi(t)
jEVi

v; is the neighborhood of site i, defined by V; = {j /site j is connected to i},
d; = IV; I and f is the local transition function:

f(S,(i)) ~ {
-1 if Si(t) < 0
0 if Xi(t) = Xj(t) for any j E Vi

+1 otherwise
or

f(S,(i)) ~ {
-1 if Si(t) < 0
0 if Si(t) = 0

+1 otherwise

(1.4)

(1.5)

+f(Xi-l(t) + Xi+l(t) - 2Xi(t)) for 2 :::; i :::; n -1

+f(X2(t) - Xl(t)) and xn(t + 1) = xn(t)
+f(Xn-l(t) - xn(t))

For the initial configuration (8 9 2 3 5 7) we have for rule (1.4) and (1.5)
respectively:

The only difference between functions (1.4) and (1.5) is the tie-case (i.e.,
Si(t) = 0). In the former, the current state remains unchanged iff all the
neighbors and the central cell have the same value; in the latter it remains
unchanged for all configurations in the average local value .

As an example of the phase-unwrapping procedure, let a finite one-dimen
sional array of sites {I" 2.,,, n} with neighborhood Vi = {i - 1, i, i + 1} for
2 :::; i :::; n - 1 and VI = {1,2}, Vn = {n -1, n} and local transition function
as in (1.3):

xi(t+1)
XI(t + I')

Rule U.4) : 892357 Rule (1.5):
983466
874556
765465
676556
767665 two-cycle
676756

892357
983456
874455
765545
666454
656454
565545 two-cycle
656454
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Transformation (1.3) is a particular case of (1.1). Its periodic behavior was
first studied by Odlyzko and Randall [7] by using a non decreasing operator
introduced in [1] in the context of neural networks:

n

E(x(t)) = - L a;jx;(t)Xj(t - 1)
i,j=l

(1.6)

(1.7)

where the weights a;j correspond to the incidence matrix of graph G:

{

I !f ~i,j). is an edge of G
a;j = -d; If z = J

o otherwise

The authors proved that expression (1.6) is nonincreasing for any trajec
tory of the phase unwrapping algorithm and, in doing so, that in the steady
st at e th ere exists only fixed points or two-cycles. Unfortunately, E (x (t)) may
remain constant in the transient phase which makes it impossible to use for
bounding the t ransient length, i.e., the maximum number of steps to reach
the st eady state. Later, we have introduced in [5] a strictly decreasing op
erator for t ransformation (1.3) that roughly corresponds to expression (1.6),
plus nonlinear terms. In this context we give bounds for the transient in
O(Me), where M = max; Ix;(O)1 and e is the number of edges in the graph
G. Our bounds are large and probably the optimal bound is O(Mn) but it
seems to be a difficult problem. Finally, in [9] the author gives also bounds
O(Me) for the phase unwrapping transformation with a better constant term
t han in [5]. In order to do that he uses cyclically monotone functions in the
framework of convex analysis.

In this paper we determine Lyapunov functionals for transformation (1.1)
when the rule f is the odd subgradient of a convex function and matrix A
is symmetric. Lyapunov operators permit us to characterize the periodic
behavior of the network (only fixed points or two-cycles in the steady state)
and to give a bound O(Me2

) for the transient time. In the particular trans
format ion (1.3), i.e., t he phase unwrapping algorithm, with t ie-rule (1.5), we
determine a better constant for the O( Me) bound of the transient time.

We also study the dynamic behavior of (1.1) when the connection matrix
A is positive-definite. In this context we determine a Lyapunov functional
which drives any trajectory to fixed points. This strong hypothesis is inter
esting in applications of automata networks to modelize associative memories
[?], i.e., given a finite set of patterns, to determine a network whose dynam
ics have these patterns as fixed points , and given an initial condition, t he
evolution converges to the nearest memorized pattern. In this case, A is t he
correlation matrix be tween the discrete pattern to be memorized and satisfies
our assumption.

2. P reliminaries

Let f : JRn -+ JRn be the subgradient of a convex function 9 : JRn -+ JR, i.e.,

g(u) ~ g(v) + (J(v),u - v) 't/u,v E JRn
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where (,) is the usual scalar product in lEe. In this context, 9 is called the
potential associated to f. We shall say that f is strict if in (2.1) equality
holds iff f(u) = f(v) .

It is not difficult to see that a sufficient (but not necessary) cond it ion
for strictness is for 9 to be strictly convex. In the applications, the previous
condition is too strong and we shall see that in the model of local graph
transformation (1.2) we only need a weaker condition to ensure f strict.

Some elementary properties of subgradients that we shall use in this paper
are the following:

Lemma 1.

1. g(O) = 0 ==} (J(v),v) 2:g(v) Vv E IRn

2. f(O) = O,g(O) = 0 ==} g(v) 2: 0 Vv E IRn

Proof. Directly from inequality (2.1) applied to the couple of vectors (0, v),
(v, O) respectively. •

We shall say that f is odd iff f( -u) = - f( u) Vu E IRn (hence f( O) = 0).
Clearly if 9 is a different iable even potentia l then f = V 9 is it s subgradi
ent and it is odd, bu t in general a subgradient of an even potential is not
necessarily odd.

Applications that are the subgradient of a convex function are charac
terized as cyclically monotone functions [10]. A particular class of cycli
cally monotone functions are the positive ones [2,3], i.e., those which satisfy
Vu,v E IRn (J(u) - f (v ),u) 2: O. This positivity property allows us to
associate a quadratic Lyapunov operator to symmetric automata networks
[2,3]. Other results of convex analysis can be seen in [10] and applications to
discrete iterat ions are given in [2- 4,8] .

Finally, we define a cycle of transformation (1.1) as a finite sequence of
vectors (x (t))f;~ such that x(t + 1) = x(t) + f(Ax(t) + b) for 0 ~ t ~ P -1 ,
where the indexes are taken module p, and x(t) i- x(t ') Vt i- t', with
t, t' E {O, .. . ,p-l}. In this context p is called the period ofthe cycle. Also we
define the transient length of transformation (1.1) as T = maXx(O)ERn{t: x(t)
does not belong to a cycle}. Obviously T may be not bounded and we write
T = +00, when iterat ion (1.1) is not bounded. In other cases, for inst ance
in local graph transformations, initial conditions are taken in ~n and (1.2)
evolves in a finite set , so T < 00.

3. Lyapunov fu nc tions

In this paragraph we associate to transformation (1.1) a strictly decreasing
opera tor (called Lyapunov function ) driving the dynamic of the network.
We study two cases: when f is the subgradient of a convex function 9 and
when f is a pos itive function. Even though positive applications are also
the subgradient of a convex functions [i.e. g(x) = (x , f (x)) ), the associated
Lyapunov operator is simpler than in the general case.
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3.1 Subgradient-potential analysis

Let (f, g) be a couple subgradient-potential, we prove:

Theorem 1. Let A be a symmetric n x n matrix, b a real n-vector, and f
a strict odd subgradient of an even potential g. Then E (u) = -(u, Au) 
g(Au + b) - (2b,u), u E IRn , is a Lyepiuiov function for transformation
(1.1), i.e., for any trajectory (x(t))t>o of (1.1) the sequence (E(x(t))) t>l is
decreasing and also satisfies E(x(t)f< E(x(t - 1)) iff x(t - 1) i x(t + i) .

Proof. From expression (1.1) we get E(x(t)) = - (x(t - 1) + f(Ax(t -1) +
b),Ax(t) )- g(Ax(t)+b) - (2b, x(t) ). Since A is symmetric and x(t)-x(t-2) =
f(Ax(t - 1) + b)+ f(Ax(t - 2) + b):

!::>'tE E(x(t)) - E(x(t -1))
= -(J(Ax(t - 1) + b),Ax(t - 1) + Ax(t))

- g(Ax(t ) + b)+ g(Ax(t -1) + b) - (2b, x(t) - x(t -1) )

but, since x(t) - x(t - 1) = f(Ax(t -1) + b), we have

!::>'tE = - (J(Ax(t-l)+b), Ax(t-l)+b+Ax(t)+b)-g(Ax(t)+b)+g(Ax(t-l)+b)

Let u(t) = Ax(t) + b; hence,

!::>'tE = -(J(u(t -1)),u(t -1) + u(t) ) - g(u(t)) + g(u(t -1))

Since f is a subgradient of g, f is odd, 9 is even: !::>'tE = - g(u(t )) +
g(-u(t - 1))+ (J( -u(t-l )), u(t) -( -u(t -I))} ::::: O. Since f is strict !::>'tE = 0
iff f(u(t)) = f( - u(t- l )) and f odd implies f(u(t))+ f(u(t -l)) = O. Finally,
from definition of (1.1): !::>'tE = 0 iff x(t+l) -x(t-l) = f(u(t))+ f(u(t-l)) =
oand we conclude that !::>'tE < 0 iff x(t + 1) i x(t - 1).•

Corolla ry 1. Under the previous hypothesis, if a trajectory (x(t))t>o of
transformation (1.1) is ultimately periodic, then the period is eithei one
or two.

P roof. Since !::>'tE < 0 iff x(t - 1) i x(t - 1), in the cycle we have x(t + 1) =
x(t - 1), that is, a fixed point or a two-cycle.•

Rem a r k . When A is a nonsymmetric matrix, or f not necessarily odd, we
may have large periods. For instance take the following symmetric matrix:

A = (-1 1)
1 -2

and f( Ut, U2) = (ft (ul),h(U2)) defined by:

{

- I if x < 0 {
ft(x) = 0 ifx =O andh(x) =

+1 if x> 0

-1 if x < 0
o if x = 0
2 if x> 0
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Clearly, f1 is the odd subgradient of 91(X) = Ixl and 12, which is not odd,
is the subgradient of

{
2x if x> 0

92(X) = - x if x:;:: 0

It is easy to show that the transformation (1.1) admits the three-cycle:
(1, 1) -t (1,0 ) -t (0,2).

3 .2 Positive functions analysis

When the function f is st rictly posit ive (i.e. (J(u) - f (v), u) ::::: 0 'Vu ,v E JRn
and equality holds iff f (u) = f (v ) or u = 0) we may obtain a more compact
Lyapunov function. In fact we have :

Theorem 2. Let f : JRn -t lRn be a strictly positive odd function, A a
symmetric n x n matrix, and b a real n-vector such that b 1. (A.j ) (th e
subspace generated by the columns of A ).

Then E (x(t) ) = - (x(t ), Ax(t - 1)) - (b, x(t ) + x(t - 1)) is a Lyapunov
function associated to (1.1).

Proof. Let (x(t) )t;?:o be a trajectory of (1.1) . Since A is symmetric:

!::ltE = - (x(t) - x(t - 2),Ax(t - 1)+ b)

From definition of (1.1) and since f is odd:

!::l tE = -(J(Ax(t -1 ) +b) - f (-(Ax(t - 2) +b)), Ax (t -1) + b)

since b 1. (A.j ) , Ax(t -1) +b =t- 0 and f st rict implies, similarly to the proof
of theorem 1, !::ltE ~ 0 and s ,» < 0 iff x(t) =t- x(t - 2) . •

We shall see in the next sect ion the application of the previous Lyapunov
operators to characterize the periodic behavior and to obtain bounds for the
graph transformation dynamics .

4. Application to the graph transformation dynamic

Let G be a graph with the following incidence matrix :

{

1 if i =t- j and (i ,j) is an edge of G
aij = <d, if i = j where d, is the degree of vertex i

o otherwise

and the transformation:

(4.1)

n

Xi (t +1) = Xi(t) + f;(L aijXj(t)) 1 ~ i ~ n x(O) E ~n (4.2)
j =l
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where 1; : IR -+ ~ is an odd nondecreasing function such that Ifi(X)1~ rl£l
for 1 ~ i ~ n .

Transformation (4.2) with the matrix A defined in (4.1) is a generalization
proposed in [10] for the model of phase unwrapping [6,8] and is a particular
case of (1.1).

Transformation (4.2) is clearly int egral and given an initial state x(O) E
~n it evolves in the finite set ([-M,M]U ~)n where M = maxi IXi(O) I.

Now, we shall give two useful lemmas for non decreas ing functions.

Lemma 2 . Let f : IR -+ ~ be a non decreasing odd function, f. i 0, such
tha t If (x )1~ r~l , d E z: Then there exist s an odd function f : IR -+ ~

verifying h~· = f l~ , Ij(x)1~ r~l Furthermore, its discontinuity points
are of the form m ± ~ ; m E ~.

P roof. It suffices to prove th is lemma in IR+ and define j (x) = -f(-x)
for x < O. Since f =I 0 is a nondecreasing integral function, there exists an
increasing sequence of natural numbers (eventua lly finite ) {n, h>o, no = 0,
such that f{ni, . . . ,ni+l -I} = {f(ni)} and f(n i) < f(ni+l) ' We define j
as follows: ](x ) = f(O) = 0 for x E [O, nl - Hand, for i ~ 1, ](x) = f (ni)

for x E [ni - ~,ni+l - H· Clearly jl~ = f l~ and I](x)I ~ r~l '
Since the arguments of transformation (4.2) are integers the trajectori es

for functions (i) are the same as those of (Ji). Thus, without loss of gen
erality, we shall suppose that the functions (Ji) have their discontinuities at
points m ± ~;m E ~.

Also, it is not difficult to see that gi(U) = JJ; fi(e)de is an even potenti al
associated to f i verifying gi(O) = O. Furthermore, the functions (Ji) defined
in lemma 2 are strict on ~; in fact we have the following result:

Lemma 3. Let f : IR -+ ~ be a nondecreasing odd function with disconti 
nuity points m ± ~; m E ~, then for any u, v E ~ : B(u,v) = g(u) - g(v) 
f(v )(u - v) ~ ~ iff f(u) i f (v ), where g(x) = Jt f (Ode is the even potential
associated to f.

Proof. Let us suppose f(u) = f (v) , since (J,g) is a subgradient-potential
couple B(u, v) ~ 0 and B(v,u) ~ O. If one of the previous inequalit ies is strict
then B(u, v ) + B(v,u) = (J( v ) - f( u))(v - u) > O. Since f(u) = f( v) we
conclude B(u,v ) = B(v,u) = 0 which is a contradiction with the fact that
B(u,v) ~ ~ > O.

Let us suppose now f( u) i f (v). Since f is odd and 9 is even , it suffices
to analyze the case u > v ~ 0, u,v E ~. Since f is nondecreasing, f (u) >
f(v) ~ 0, then

u

B(u,v) = Jf(e)de - f (v )(u - v)
v
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Since u, v E ~ and f( u) > f( v) there exists at least a discontinuity point
in lv,u [. Let us take the bigger one , q - ! E]v, u[; v +1 ::::: q ::::: U; q E ~ then

" 1 1Jf(Ode ~ f(v)(q - 2 - v) + f(u)(u - (q - 2))'
v

hence
1 1

O(u,v) ~ (I(u) - f(v))(u - (q - 2)) ~ 2

• Clearly, the previous lemma ensures that the functions (Ii) are strict . We
may now characterize the dynamic behavior of the transformation (4.2):

Theorem 3. Let A be the symmetric matrix defined in (4.1) and (Ii) a
collection of non decreasing integral odd functions . Then the transformation
(4.2) admits only fixed points or two-cycles.

Proof. Since for a given x(O) E ~n, transformation (4.2) takes values in
a finite set, any trajectory is ultimately periodic. Furthermore, as I. is a
nondecreasing strict odd function, it is the subgradient of gi(X) = frf f;(Ode.
By defining f(u) = (f;(ui )), g(u) = L:igi(Ui) is the potential associated to
f. We obtain the result directly from theorem 1 and corollary 1. •

Corollary 2. The phase unwrapping transformations (1.3) with rules (1.4)
or (1.5) admits only fixed points or two-cycles .

Proof. For (1.3) with rule (1.4), we have

Xi(t + 1) = Xi(t) + f (L Xj(t) - diXi(t))
lEV;

with f(u) = - 1 if u < 0, 0 if u = 0 and 1 if u > O. Since the argument of f
is integral, it is easy to see that

{

- I if u < _1
. 1 2 1

f(u) = 0 if -2<U<2
+1 otherwise

hence f is strict (see lemma 3) . Thus, E(x(t)) defined in theorem 1 is a
Lyapunov functional with threshold b = O.

Now, for (1.3) with rule (1.5) it was proved in [7] that for any step t in
the periodic phase and for any sitei : Xi(t + 1) =/: Xi(t), which implies that
the argument of f never vanishes . Hence, rule (1.5) coincides with (1.4) in
steady state. We then conclude that in the periodic phase E(x (t) ) is also
a Lyapunov functional for (1.3) with rule (1.5) . Finally, the two periodic
behavior holds directly from previous comments and corollary 1. •

Also we may study the transient length, T , of transformation (4.2):
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Theorem 4. Let A be the matrix defined in (4.1) and let (Ii) be a set of
odd non decreasing strict integral funct ions . Then the Lyapunov function
associated to the transformation (4.2)

E(x(t)) = -(x(t),Ax(t) ) - g(Ax(t))

is bounded by
IE (t)1S; M2 11AIII = 4M2e, for t ~ 1

where M = max, IXi(O)I, II AII I = L:i,j laijl and e is the number of edges in
the graph G.

P ro of. As in the proof of theorem 1, we have

E(x(t)) = - (x(t -l),Ax(t)) - (J(Ax(t -l)),Ax(t)) - g(Ax(t))

whereg(UI ' . . . 'Un ) = L:i=lgi(ui)isthepotentialoff(u) = (!I(uI ), ... ,fn(un)).
Since gi(X ) = Jrf f;(Od~, gi(O ) = 0 Vi = 1, . . . n; from lemma 1, prop erty 1,
we have g(Ax(t)) S; (J(Ax(t )), Ax(t )); and from the definit ion of the t rans
formation (4.2), x(t + 1) - x(t -1) = f(Ax(t)) + f(Ax(t - 1)) we get

E(x(t)) ~ - (x(t + l),Ax(t)) )

On the other han d, since E(x(t)) = - (x(t) , Ax(t) ) - g(Ax(t )) and f(O) =
0, from lemma 1, property 2, we obtain E(x(t)) S; - (x(t),Ax (t )); hence,

- (x(t + l),Ax(t) ) S; E(x(t)) S; - (x(t ),Ax(t) ) for t ~ 1

and thus IE(x(t)1S; M211AI II = 4M2e for t ~ 1. .

Corollary 3. By the previous hypothesis, the transient length of transfor
mation (4.2) is bounded by

P roof. It suffices to point out that Vt ~ 1 such that x(t + 1) =f x(t - 1),
IlltE I ~ ~ (lemma 3). The result follows directly from theorem 4. •

Corollary 4 . Let G be an undirect connected graph. Then, the transient
lengt h for the phase unwrapping trans format ion (1.3) with local rule (1.5) is
boun ded by T S; 16Me +2M - 3 S; IBMe, where e is the number of edges
in G and M = max, IXi(O)I.

P roof. As in the proof of corollary 2, we may consider the equivalent function
f with discontinuity points ±~ , which is strict . Thus E(x(t)) is a Lyapunov
functional for (1.3) with b = 0 and connection matrix (4.1).

Let n (t ) = max{ (x(t),Ax(t) ), (x(t + 1), Ax(t))}. Similar to the proof of
theorem 4, I E(x(t)) IS; n(t ). On the other hand, it is easy to see that for
any site i,
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(a) ISi(t) Is:: 2di '*1Si(t + 1) Is:: 2di
(b) ISi(t) I> 2di '*1Xi(t) 1< M - 2

From (b) it is direct that for t ~ 2M - 3, I S;(t) Is:: Zd, and from (a) we
conclude that this property remains in time. Then, for t ~ 2M - 3,

n

IE(x(t)) Is:: D(t) s:: 2MLdi = 4Me
j=1

On the other hand, since the function f is strict with discontinuity points
±~ , I !:ltE I ~ ~ , then we conclude T s:: 16Me +2M - 3 s:: IBMe.•

5. Positive-definite matrices

Let A be a positive-definite symmetric matrix; hence , A = t RR. Let f be a
subgradient of a convex function g and b a rea l n-vector. For any trajectory
(x(t)k~o of transformation (1.1), we define

E (x(t)) (x(t ), Ax(t -1)) - g(Ax(t) +b) - g(Ax(t -1) +b) -
n 1 n n 1 n

- L 2"(L TijXj(t))2 - L 2"(L TijXj(t _1 ))2
i =1 j=1 i=1 j=1

where R = (Tij ) such that A = tRR.

Theorem 5. With the previous hypothesis E(x(t)) is a Lyapunov function
associated to the transformation (1.1).

Proof. Clearly !:ltE = (Ax(t ) -Ax(t -2), x(t - 1)) - g(Ax(t) +b) +g(Ax(t 
2) + b) - 2:?=1 H2:j'=1 TijXj(t))2 + 2:?=1 H2:j'=1 T;jXj(t - 2))2 .

From transformation (1.1) and by defining u(t) = Ax(t) + band v(t) =
Rx(t) we have

!:ltE (u(t ) - u(t - 2), f(u(t - 2))) - g(u(t)) + g(u(t - 2))
n 1 n 1

+ (v(t ) - v(t - 2), v(t - 2)) - L - v; (t ) +L - v;( t - 2)
;=1 2 j=1 2

since g is the potential of f:
n 1 n 1

!:ltE < (v(t ) - v(t - 2), v(t - 2) ) - L 2"v;(t) + L 2"v?(t - 2)
;=1 ;=1

< i:{(-~v;(t ) + ~v?(t - 2) +Vi (t - 2)(Vi(t) - v;(t - 2))
i= 1 2 2

Since x is the gradient of the strictly-convex function ~X2 and as A is
invertible, we conclude

!:ltE s:: 0 and !:ltE < 0 iff x(t) i- x(t - 2).

•



Local Graph Trans formations Driven by Lyepuiiov Functionals 183

Corollary 5. Let A be a positive-definite symmetric matrix. Then, if a
trajectory of (1.1) is ultimately periodic, the period is one (a fixed point).

Proof. Clearly from the previous theorem, the cycles if they exist are of
period one or two. Let {x(O),x(l)} be a limit cycle. Since A is a positive
definite matrix, let

0:::; I (x(O) - x(l), A(x(O) - x(l)) ) =

= (x(O), (Ax(O) + b) - (Ax(l) + b)) + (x (l ), (Ax(l) + b)
- (Ax(O) + b))

Now, from the definition of (1.1),

(x(t ), Ax(t) (Ax(t - 1)) = (Rx(t -l),Rx(t) - Rx(t - 1)) +
+ (f(Ax(t - 1)+ b),(Ax(t) + b) - (Ax(t - 1) + b))

1 n n 1 n n

< 2" :L(Er;jxj (t )? - 2" :L(:Lr;jXj(t -I)?
;=1 j=1 ; = 1 j=1

+ g(Ax(t ) + b) - g(Ax (t - 1)+ b)

since (x(O),x(l)) is a limit cycle:
1 n n 1 n n

I :::; 2" :L(:L r;jxj(O)? - 2" :L(:L r;jxj( 1))2 +g(Ax(O) + b) -
.=1 ] =1 .=1 ]=1

1 n n 1 n

g(Ax( l ) + b)+ 2" :L(:Lr;jxj(1)? - 2" :L(:Lr;jxj( O))2 +
;=1 j=1 ; = 1 j=1

+ g(Ax(l) + b) - g(Ax(O) + b) = 0

as A is a pos itive-definite matrix we conclude x(O) = x(l) .•

R emark. It is interesting to point ou t that, in this case , the results hold for
any cyclically monotone function f (not necessarily odd).

6. Concl usions

We have determined Lyapunov functionals for a class of automata networks.
This fact is important because these functionals drive the network dynamics
and allow us to characterize the steady state and the transient behavior: very
short periods (one or two) and polynomial transient time. The application
of our approach to the phase unwrapping gives better bounds for the con
vergence of the algori thm in case of t ie (1.5) . Unfortunately, this approach
is not powerful enough to st udy the convergence ti me for t he tie ru le (1.4 ),
but we conjecture that the two tie rules have a similar behavior.

It is also important to point out that the symmetry assumption for the
connection graph G is crucial to obtain Lyapunov operators . If not, it is easy
to built networks with nonbounded periods in the size of graph G.

Finally, the class studied here may be seen as a generalization of neural
networks, where only two states are possible and also the synchronous update
admits a Lyapunov functional [1,2].
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