
Complex Systems 3 (1989) 185-207

The Choice Problem: Neural Network Learning,
Generalization, and Geometry

Alan J. Katz
Dean R. Collins
Marek Lugowski

Texas Instruments Incorporated,
Central Research Laboratories, Dallas, Texas 75265, USA

Abstract. We study the learning and generalization capacity of lay­
ered feed-forward neural networks in the context of mappings of ar­
bitrarily long bit strings into one of three ordered outputs. Many
signal-processing applications reduce to this problem. We use the
back-propagation learning algorithm to train the network. We de­
scribe these mappings in terms of collections of linear partitions of
the input space and the state spaces of the hidden layers of neurons.
This description accounts for the properties of the mappings and sug­
gests that learning and generalization are enhanced by training with
boundary points of the input space. Several examples are included.
We close with implications for layered feed-forward networks in gen­
eral.

1. Introduction

Learning and generalization are key properties of neural networks and un­
derlie much of the interest in neural network computation [1]. In particular,
supervised learning in the neural network domain involves associating a set
of input vectors {A} with some output set of vectors {B}, where {A} and
{B} are not, in general, equivalent sets. Multilayer neural networks learn,
in principle, any arbitrary mapping [2]. For discrete, binary input spaces, a
single layer of hidden neurons proves sufficient for learning an arbitrary map­
ping. Continuous input spaces usually require two layers of hidden neurons
to guarantee neural network learning unless the neurons generate nonlinear
surfaces; in that case, a single layer of hidden neurons is enough. In many
applications, only part of the mapping from the input set {A} to the output
set {B} is known. In such cases, the neural network trains on the incom­
plete mapping. A neural network generalizes when a previously unseen input
stimulates the desired output. Because a large number of mappings are con­
sistent with a given set of partial data, generalization occurs in limited and
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The equation Lj TijXj - O, = 0 defines a hyperplane, which divides
the input space into two regions; points on only one side of the hyperplane
activate the neuron. Each neuron in the hidden layer of the network of
figure 1 defines such a hyperplane. The layer of hidden neurons provides a
partitioning of the input space; each region, bounded by a set of hyperplanes,
activates none of the neurons, one neuron, or more than one neuron (see
figure 2).

Ou tputs from the hidden layer feed into the output layer of neurons in
figure 1. The output from these neurons is given by equation (2.1) , where
we again take the threshold function to be a step-function. If the output
layer has a sing le binary neuron, then the output layer partitions the state
space of the hidden layer of neurons into two regions: one domain maps into
the output 1 and the second domain maps into O. A region in the input
space maps first into a point in the state space of the hidden neurons and
ultimately into a 1 or 0 state of the output neuron.

T he geometry of the inverse image space dictates how many hidden neu­
rons are required to encode the mapping. An upper bound on the required
number of hidden neurons is n - 1 if the binary input space decomposes into
n disjoint reg ions and any regio n is linearly separable from it s complement.

Ao Bo HIDDEN NEURONS

Figure 2: Partitions A and B are defined by neurons A and B re­
spectively. Region I activates neuron A; Region III activates neuron
B; Region IV activates both A and B, whereas Region II activates
neither neuron.
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PARTITIONS IN HAMMING SPACE
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(2.3)

Figure 3: Points that are within a fixed Hamming Distance from the
origin (0,0,0) lie on (a) a hyperplane, or, equivalently, (b) within a
hypersphere, as defined in the text.

An example of a linearly separable region in a binary input space is a hy­
persphere, which is the set of all points within a fixed Hamming radius of a
vertex of the hypercube. To see that hyperspheres are linearly separable, we
can consider hyperspheres about the origin (0,0,0, .. . ,0) without any loss
of generality. For a d-dimensional input space (bit strings of length d), the
hyperplane defined by the equation

d

Ex; = 0
i=1

where Xi denotes the ith bit and the threshold 0 r, clearly separates
points within a Hamming distance r from the remainder of the space. We use
the properties of hyperspheres to analyze the Choice Problem (see figure 3) .

The output layer of neurons further divides the state space of the hidden
layer into regions. If the output layer contains a single neuron, which spec­
ifies one partition, then the state space of the hidden layer must be linearly
separable; otherwise, the network fails to encode the mapping. A linearly
separable representation of the state space for the hidden layer always exists
if we provide enough neurons [2J. This claim is clearly true when n - 1 hy­
perplanes suffice to partition an input space with n disjoint regions. In that
case, we arrange for each of n - 1 regions to activate a unique neuron and
the last region to activate none of the hidden neurons. The state space of
the hidden layer then includes the following n vectors, which are n - 1 bits
long:

(0,0,0, ... ,0)
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(1,0,0, ,0)
(0,1,0, ,0)

(0,0,0, ... ,1).
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This representation is linearly separable, no matter how the vectors map
into the output. The nonzero vectors in the above list define a hyperplane in
an n -1 dimensional space, since they form a hypersphere about the origin.
By letting the hyperplane intersect the line segments between the nonzero
vectors and the origin either at a distance 1 - 10 or at a distance 1 + 10 from
the origin (10~ 1), we achieve any desired partition of the state space.

A similar argument applies when more than n - 1 hidden neurons are
needed. We first subdivide the input space into hyperspheres; this can al­
ways be done, though such a procedure does not necessarily lead to the
most efficient representation of the mapping. Since one hyperplane isolates
a hypersphere, a hypersphere is linearly separable from the remainder of the
space. We then assign one hyperplane to one hidden neuron. From this point
on, the argument is the same as the earlier one .

These arguments generalize when the output layer contains several neu­
rons. The state space no longer needs to be linearly separable, since other
partitions of the state space come into play. But for n output states we must
be able to divide the state space into n regions, each linearly separable.

We need to relax our assumption that the threshold function f is a step­
function. In back-propagation, f is sigmoidal and varies smoothly between°and 1 [8J. For continuous threshold functions the partitions are rounded
and the boundaries between regions are no longer sharp [2J ; nevertheless, the
above conclusions hold as long as well-defined regions remain. The mapping
of points near a boundary, however, can be ambiguous.

The geometry of the inverse mapping depends on the representation of the
input data. Changing representation changes the encoding of the mapping.
An increase in the dimensionality of the input space often simplifies the
mapping. The XOR problem [8] in two dimensions, for example, is linearly
separable in three dimensions .

The above picture of feed-forward neural networks offers insight into gen­
eralization. To generalize, the network first learns an appropriate partition­
ing of the input space. If the mapping requires m partitions, then a network
with at least m hidden neurons suffices. We must train the network with
enough points to ensure the m partitions separate the appropriate regions.
In a d-dimensional input space, d x m independent training vectors uniquely
define m hyperplane partitions. In a discrete input space, the hyperplanes
lie between points of the space, and we cannot rigidly constrain the positions
of the hyperplanes. We then train the network, where appropriate, with
2 x d x m points, which define hyperplanes on both sides of every boundary
and constrain the partitions to lie between the boundary points. These ob-
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servations are useful when the mapping is known, and we wish to expedite
learning (see figure 4).

Knowledge of mappings is often incomplete. When this happens, net­
works necessarily fail to generalize. If the geometry of the input space is
unknown, then the number of hidden neurons is unconstrained. The smaller
the number of hidden neurons, the more the network tends to cluster points
and map them into the same output. In many applications, clustering is
preferable to splitting points [9]. But limiting the number of hidden neurons
affects the learning rate [10], so there is a trade-off between generalization
and learning efficiency.

The role of noise and incomplete data in neural network performance
is clear in the context of the geometry of the input space. We assume the
neural network trains on error free data. The effect of corruption of the input
dat a on neural net work generalization and learning grows as the number of
independent regions in the input space increases. The ratio of the number of
boundary points to the total number of points in the input space is a rough
measure of the susceptibility of the mapping to error at small error content.
We say more about the effect of errors on mappings in the next section.

BOUNDARY POINT CONSTRAINTS

B'

a )

B

b)

Figure 4: Boundary points constrain position of hyperplane. Points
marked with B and B' indicate boundary points for two clusters,
which are hyperspheres of radi i 1 about t he unmarked vertices. Two
planes indicated in (a) constrain the position of partition shown in
(b).
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3. The Choice Problem

We apply the results of the last section to an example problem. We wish to
train a neural network to monitor a system or an operation. The network
receives input from N sensors, which track various aspects of the system; the
number N is arbitrary. A sensor outputs one of three states: (+), (0), or
(-) , where (+) denotes an acceptable rating, (-) signifies an unacceptable
rating, and (0) indicates an uncertain rating and warns of potential failures
of the system. We combine the outputs from the N sensors and feed them to
a neural network, which maps the string of sensor outputs to a (+), (0), or
(- ) state. The network is trained to choose a final state based on the sensor
data.

To illustrate this Choice Problem, we assume the sensors measure the
status or the performance of a car : th e sensors may track oil pressure, engine
temperature, fuel level, tire pressure, battery charge, mileage, tread wear,
or any of a number of possible variables. At any point in time, each sensor
registers a (+), (0) , or (-) state. If all sensors output a (+) , then the car
perfo rms satisfactorily, and the neural network should map this state into
(+) . On the other hand, if any of the functions is unacceptable, then the
neural network should choose a (-).

We then define the initial Choice Problem, which we designate case A, as
follows:

1. If any sensor output is in a (-) state, then the final output state is also
(-).

2. If no sensor yields a (-) state, then the final state is (+) [(0)] when
a majority of the sensors output (+)'s [(0)'s]. We use odd numbers of
sensors to avoid ambiguity.

The nature of the mapping can be more subtle. For example, we might
include a sensor to measure the road condition (is it wet , icy, rough, or bumpy
?). A (0) status for tread wear combined with a (+ ) rating for all the other
variables may rate no worse than a (0) in the final output. But if the state
of the road condition is also (0), then the combination of a (0) rating for
both t read wear and road condition may lead to a (- ) output state. As the
nature of the mapping becomes higher-order, learning times for the neural
network generally are longer [11] . We consider an example (case B) of this
more comp lex mapping below.

We use a bit -string representation for the input states and the output
states, in analogy to a gauge on a car:

(-) --+ (0 0 1)

(0) --+ (0 1 0)
(+) --+ (1 0 0).

This representation has several advantages. For the N -sensor problem,
the inverse mapping of the output state (- ) occupies a hypersphere that has
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Figure 5: Representation of clusters for three-sensor Choice Problem.
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radius 2(N - 1) in the Hamming metric (which derives from comparing the
states of individual bits) and is centered about the point ((- )( -) .. . (- ))
where each sensor assumes a ( - ) state. Many points within this hypersphere
never ap pear in the mapping, and they are neglected for now (a total of 3N
point s are relevant to the mapping). A single hyperplane bounds the surface
of the hypersphere and separates this set from the remainder of the space.
We also must isolate points that map into (+) from those that map into (0) .
A second hyperplane separates these two sets since the inverse mappings
of the two output states, (0) and (+), cluster into disjoint hyperspheres (if
we ignore (-) states) about the points ((0)(0) . . . (0) ) and ((+ )(+) .. . (+ )),
respect ively (see figure 5).

We need two hyperplanes and, consequently, two hidden neurons to real­
ize the mapping. In case A we can, however, dispense with the hidden layer ,
since the output layer alone, which contains three neurons, can suitably en­
code the mapping. Since we will consider more complicated mappings, which
do require hidden neurons, we include a hidden layer to provide a basis for
comparison. Moreover , back -propagation , which we use for our computer
simulations , finds solu tions by gradient-descent and gets stuck in local min­
ima [8]. Adding hidden neurons eliminates local minima and increases the
number of ways to realize the mapping.

Fig ure 6 shows the learning efficiency for three sensors (9-bit sensor data)
as a funct ion of the number of neurons in the hidden layer and the average
number of presentations of vectors in the training set . We use a three-layer
feed-forward neural network , and we train it by back-propagation. Each data
point represents the average of five runs. The simulations are performed on
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the Neural Network Workstation of Texas Instruments [12]. The algorithm
returns output in analog form: each of the three output nodes or neurons
assumes a value between 0 and 1. We take an output neuron to be in a 1
state if its analog value is > 0.5 and in a 0 state if it s analog value is < 0.5 .

There are 27 vectors to learn. The learning parameters are the same for
all simulations in this study. The smoothing parameter, which corresponds
to a in the learn ing equations of Chapter 8 of [8] and controls the degree of
over-re laxation, is set to 0.9. The rate of learni ng (1] in [8]) is 2.0 in these
simulations. We also include a speed of correction parameter, which we set
to 1; the speed of correction indicates how many errors are found before
the changes are applied to the weight matrix. The order of presentation
of the t raining vectors is random. As figure 6 shows, network learning is
complete with four hidden neurons and at least 300 trials/vector. A hidden
layer wit h a single neuron defines only one hyperplane and cannot divide the
input space into more than two regions. The network also learns this simple
mapping with no hidden neurons, but an average of 400 presentations/vector
is required to ach ieve 100% accuracy.

Adding hidd en neurons increases the number of ways to realize the map-
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Figure 6: Learnin g accuracy as a function of number of hidden neurons
and the average number of trials or presentations per training vector .
There are 27 vectors in the training set ; the order of presentation is
random.
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ping. As the number of hidden neurons grows in figure 6, the learning ef­
ficiency is enhanced. When the average number of presentations per vector
falls below 300, however, increasing the number of hidden neurons does not
fully compensate for the insufficient number of training trials. At 10 tri­
als /vector the addition of hidden neurons has no effect. As the number of
hidden neurons increases from four to sixteen, the learning accuracy system­
atically appears to decrease for 100 and more trials/vector. This trend is
within the statistical variance of the simulation, however.

We next increase the complexity of the problem by altering the definition
of the Choice Problem: in case B the point (( - )( - )( - )) now maps into (+)
instead of (-), but the rest of the mapping remains the same. The learning
parameters take the same values they did in case A. The mapping has the
character of the XOR problem, since two disjoint sets of points produce the
same output point. This mapping is not possible without the use of hidden
neurons. Figure 7 shows the training efficiency for all points in the mapping,
except for (( - )( -)( - )), as a function of the number of copies and the total
number of presentations of (( - )( - )( -)); for a particular abscissa value in
figure 7, the average number of presentations of the other 26 vectors is simp ly
the abscissa divided by the number of copies of (( - )(-)( - )) in the training
set. Each data point represents an average of seven simulation runs; four
hidden neurons are used. The recognition accuracy for the set of 26 vectors
decreases with increasing number of copies of (( - )( - )(- )) in the training
set . If only one copy of ((-)(-)(-)) appears, the network readily learns
to map the 26 vectors in the training set. The corresponding state of the
network (that is, the matrix of weights) is at a relatively deep local minimum
of the energy function (here measured in terms of distances between desired
and actual outputs). The probability of finding the global minimum (all 27
states learned) is small, however (see figure 8).

The situation changes if we weight the training procedure in favor of the
point (( - )( -)( - )). Both the asymptotic limit of the learning accuracy and
the rate of learning decrease fairly steeply with increasing number of copies
of (( - )( - )(- )). Increasing the number of copies can enhance the learning
of the complete mapping (all 27 vectors), but adding too many copies may
produce new minima in the energy function and impede the convergence of
the network to the desired state. In figure 8, we show the learning accuracy of
the mapping of the point (( - )(- )(- )) alone as a function of the total number
of presentations of (( - )(-)(-)) --> (+) during learning. The family of
curves represents, as in figure 7, results for training sets with varying numbers
of copies of the exceptional case. The recognition accuracy of the exceptional
case increases with number of training trials and number of copies. For a
fixed number of training trials the learning accuracy increases rapidly with
the number of copies of the exceptional case in the training set .

Figure 9 illustrates what happens to learning when the network first trains
on the 27-vector training set and then trains on the exceptional case alone.
The network forgets the original mapping exponentially fast and maps all
vectors into (+), the output state of (( -)(-)( - )). Figure 10, on the other



Alan Katz, Dean Collins, and Marek Lugowski

500 1000 1500

Tota l Number of Presentations of ((- ) ( - ) (-))

196

".....

~
'-"
+J
V
(f)

~

0
+J
U
V
>
I

<0
N
~

0
'I-

c-,
o
0
~

:J
U
U«
O'l
c
c
~ 200
v a-l

Figure 7: Learning accuracy for 26 vectors (the point ((-)(-)(-»
is excluded) in the three-sensor Choice Problem as a function of the
total number of presentations and of the number of copies of the vector((-)(-)(-»in the training set . The vectors are presented in random
order; there are four hidden neurons. The numbers in parentheses
denot e the number of copies of ((- )(- )(-»in the training set .

hand, shows how rapidly the network learns the exceptional case when it
trains on that vector alone .

To test how well the network generalizes case A, we train the network on
subsets of the input list and test on vectors not previously seen . Figure 11
plots the recognition accuracy for datapoints not previously seen versus the
number of vectors in the training set for the three-sensor problem. Vectors in
the training set are chosen randomly; the hidden layer contains four neurons .
Each point in figure 11 represents an average over different training sets and
over initial st arting conditions for a particular training set.

The results reflect peculiarities in both the Choice Problem and the back­
propagation learn ing algorithm. When the network train s on a single vec­
tor, the recognition accuracy is around 0.50. This high recog nit ion acc uracy
reflects two facts: (1) the majority of vectors (19 out of 27 in the three­
sensor problem) map into (-) and (2) the back-propagation learning algo­
rithm trains the network to map everything into the output state given by
the training vector. We then calculate a recognit ion accuracy of 0.49 from
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the probability of choosing to train with a vector that maps into (-), which
is 0.7, times the recognition accuracy for that case, which is again 0.7. When
the network trains with no vectors, the recognition accuracy drops to zero
because the output from the network is always ambiguous.

We improve the ability of the network to generalize by training only with
vectors that fall along the boundaries between regions of the input space.
These points are the most difficult ones for the network to learn. Once it
learns these points, the positions of the hyperplanes are constrained to lie
along the boundaries between regions, and the network generalizes. In section
2, we estimated the minimum size of the training set: M est . = 2 X d X m,
where d is the dimensionality of the space and m is the number of partitions
(hyperplanes). For the N -sensor problem d = 3 X Nand m = 2. In practice,
our approximation overestimates the minimum size of the training set: some
of the boundary points constrain more than one hyperplane. Figure 12 shows
the number of vectors we used to learn the mapping for cases N = 3, 5,
and 7 and the t heoret ical curve : M e•t . = 2 x d x m. The total number of
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Figure 8: Learning accuracy of the mapping ((- )( -)(-)) -> (+)
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of copies in the training set of the point (( - )( - )(- )). The vectors
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presentations/vector); then it trains on the mapping «-)(-)(-» -+

(+) alone.

points in the input space scales exponentially with N, whereas the size of
the training set scales linearly.

Figure 13 shows how rapidly the network performance for the five-sensor
problem degrades as we randomly remove vectors from the hand-chosen train­
ing set. The initial training set is the same as the one used in figure 12 for
N = 5. Network performance does not degrade rapidly until the number
of boundary points falls below 30. These results indicate that our estimate
of the minimum size of the training set is not a strict one.

In many situations, the data are incomplete and noisy. -Figure 14 sum­
marizes how well the network generalizes for N = 3, 5, and 7 as a function
of the noise content . To generate noisy data, we change each bit of an input
data string to its complementary state with probab ility iI>. We train, how­
ever, on noise-free data. The recognition rate for noisy data increases wit h
N for most values of the probability iI>. This trend is understandable. At
smaller values of iI>, the ratio of points near the boundary to interior points
controls the susceptibility of the mapping to errors: the smaller this ratio,
which decreases with N, the greater the error to lerance should be . As iI>
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approaches 1, on the other hand, the fraction of points that map into the
correct state approaches 1 asymptotically with N .

To understand the results of figure 14 in more detail, we calculate the
performance of the network for q> = 1: each bit changes its state with
probability 1. Our calculation depends on how the input space divides into
distinct regions . As an example, we take the three-sensor case and assume
the network "learns" to isolate all points within a Hamming radius of five (for
the N -sensor problem, the radius is 2N - 1) of the point ((- )( - )(- )) from
the other points in the space. A second hyperplane fur ther separ at es points
that map into (+) from those that map into (0). For this realization of th e
mapping, only points that are a Hamming distance of four from (( - )(- )(- ))
map into the correct output. This implies a recognition rate of 0.44, which
agrees with the experimental result. For N = 5 and N = 7, we calcul at e
recognition rates of 0.67 and 0.77, respectively, which do not agree with the
experimental resul ts.

To explain this discrepancy, we illust ra te with the five-sensor problem a
second way to realize the Choice Problem. The dimensionality of the input
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Figure 10: Lear ning accuracy of the case (( -)(- )(-» -> (+) as a
fu ncti on of the number of presentations of the vector (( - )(- )( - ».
The network first trains on the 27-vect or set (300 presenta­
tions/ vector) ; then it train s on the mapping (( -)( - )(-» -> (+)
alone.
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Figure 11: Recognition accuracy versus number of vectors in the train­
ing set for the three-sensor Choice Problem. The training sets are cho­
sen randomly from the complete list of 27 vectors (no vector repeats,
however). Each point in the figure represents an average over at least
four different training sets and over five initial weight configurations.
On average, each vector in the training set is presented around 1000
times. The order of presentation is always random. The hidden layer
contains four neurons .

space for the five-sensor Choice Problem is 15 and, therefore, 15 independent
points define a hyperplane in this space. Using this fact, we isolate the 16
points that map into (+) with one hyperplane and isolate the 16 points that
map into (0) with a second hyperplane. With these partitions in place, only
points at a Hamming distance between four and eight from (( - )(- )( - ))
continue to map into the correct state at <P 1. We now calculate a
recognition rate of 0.82, which is more in line with the simulations. Similar
arguments carryover to higher-dimensional problems. These calculations and
simulations demonstrate how ambiguous network performance is unless we
impose enough constraints to guarantee a unique realization of the mapping.

The results in figure 14 are dominated by the fact that as N -t 00

the fraction of states that maps into either (+) or (0) becomes negligibly
small. In figure 15, we plot the recognition accuracy versus <P for only those
states that map into either (+) or (0) . The seven-sensor case is shown. The
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theoretical curve in the figure is given by the function f(~) = (1 - ~)7,

which is the probability to flip at least one of the seven bits that signal a ( - )
state.

All mappings up to this point derive from the simple rules described ear­
lier (case A mapping). We next study network learning for random mappings
(case C). A random mapping assigns outputs randomly to each input vector.
Such a mapping cannot be written in terms of a simple algorithm. More
generally, a mapping is random if the shortest algorithm that generates the
mapping exceeds some threshold length [13]. The set of random mappings
is an important class of mappings and includes many pattern-recognition
problems.

Random mappings are hard for feed-forward neural networks to learn
because of the geometry of the inverse mapping of the output space. To
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Figure 12: Size of t raining set as a func ti on of the number of sensors
to obtain essentially complete recognition. The point s in t he trainin g
set s are hand-chosen to lie at the boundaries be tween regions and to
be noncolinear. The average number of presentations /vector in the
training set is around 400, and the order or presentation is random;
the hidden layer contains four neurons. For the three- and five-sensor
cases, the recognition accuracy is 100%; it is greater than 99.9% for
the seven-sensor case. The theoretical curve is a plot of the function
M e•t . =:: 2 X d X m .
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Figure 13: Degradation of network performance for the five-sensor
choice problem. The simulation conditions and parameters are the
same as the ones described in figure 12.

illustrate the problem, we examine the mapping from R2
=} {O,I} , where

we represent R by a triangular lattice of points. We assume each point in
the plane takes the value 1 or 0 with probability 0.5. This mapping defines
a site percolation problem in two dimensions [14], which is well known to
have a percolation threshold at 0.5. At the percolation threshold, the inverse
mappings for both 1 and 0 are fractal geometries [15], which have structure
at all length scales. To realize this mapping requires an infinite number of
partitions as the lattice spacing or smallest lengt h scale in the problem goes
to zero or as we let the size of the input space go to infini ty.

A key question then is how the average number of disjoint clusters of
points and the geometry of these clusters scale with the dimensionality of
the input space for the random mapping problem. For a random Boolean
mapping of a discrete, high -dimensional input space, where input strings of
l 's and O's map with equal probability into 1 or 0, the average number of hy­
perplane partitions needed to realize the mapping with a feed-forward neural
network grows with N, the dimensionality of the input space. Such a prob­
lem is hard in the sense defined by Minsky and Papert [7]. Learning times
with the back-propagation learning algorithm for other such hard problems
are known to scale exponentially with N [11 ].
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In the Random Choice Problem, a fraction of the total points in the input
space appears in the mapping, so the scaling problem is somewhat less severe.
Within the subset of points of interest, no two points ever get closer than a
Hamming distance of two . We therefore define two points to be contiguous
in this discussion if their separation in the Hamming metric is two. We
present an example of a random mapping for three sensors in table 1. How
successfully a feed-forward neural network with four hidden neurons learns
such a mapping relates both to the number of disjoint or noncontiguous sets
formed by the inverse mappings of the output vectors and the geometry and
topology of these sets .

The neural network fails to learn the example after an average of 1300
presentations per vector of the input set. The inverse mapping of (+ ) yields
only one contiguous region, but decomposes into at least three linearly sep­
arable clus ters. The inverse mappings of (0) and (-) yield three and four
disjoint regions, respectively, and require at least that many hidden neurons.
A network wit h four hidden neurons, therefore, cannot learn thi s mapping
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Figure 14: Generalization capacity with noisy data: results are shown
for the N = 3, 5, and 7-sensor problems. Training is done with error­
free data. The training sets are the same as the ones described in
figure 12. Each vector in the training set is presented on average 400
times. The order of presentation is random. Testing is done on noisy
data. Each point in the figure represents an average over ten test sets .
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Example
((+) )(+)(+)) =} (0) ((0)(+ )(+)) =} (+ ) ((-)(+)(+)) =} (+ )
((+ ))(0)(0)) =} (+ ) ((0)(0)(0)) =} (0) ((- )(0)(0)) =} (0)
((+))(-) (-)) =} (+ ) ((0)(-)(-)) =} ( -) ( ( - ) ( -) ( - )) =} (-)

((0))(0)(+ )) =} (+) ((-) (0)(+ )) =} (-) ((+ )(0)(+ )) =} (0)
((0))(- )(0)) =} (+ ) ((-)(- )(0)) =} (+) ((+) (-)(0)) =} (+ )
((-))(+)(-)) =} (0) ((+)(+)(-) ) =} (-) ((0)(+)(-)) =} (0)
((-))( -)(+)) =} (+) ((+)(-)(+)) =} (+) ((0)(- )(+)) =} (0)
((+))(+)(0)) =} (+) ((0)(+ )(0)) =} ( -) ((-) (+)(0)) =} (+)
((+))(0)( -)) =} (+) ((0)(0)(-)) =} (+) ((- )(0)(-)) =} (0)

Table 1: An example of random choice problem for the three-sensor
case.
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without errors.

4. Discussion and conclusions
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The Choice Problem demonstrates how the geometry of the inverse mapping
relates to learning and generalization in neural networks. Feed-forward net­
works realize arbitrary mappings. But to obtain an arbitrary mapping, we
must understand what partitions of the input space and the state spaces of
the hidden layers give rise to the mapping. Once we do this , we gain insight
into the degree of difficulty of the mapping, how to train the network in an
optimal way, the sensitivity of the mapping to noise, the ability of the net­
work to generalize the mapping, and the influence of representation on the
mapping .

There are many ways to carry out a specific mapping. The number of
ways depends on the architec ture of the network . For example, the number
of hidden neurons in the networ k controls the number of partitions and the
size of the state space of the hidden layer . Characterizing a mapping in te rms
of a single realization of the mapping is meaningless. Instead, properties of
the mapping should be expressed as averages over an ensemble of realizations
of the mapping.

The nonrandom and random Choice Problems represent two extremes.
T he nonrandom problem is straightforward to realize and does not require
additional neurons as we increase the number of input sensors. On the other
hand, the random case requires more and more neurons as we scale up the
problem; generalization makes little sense in the context of the random prob­
lem . An entire spectrum of mappings falls between these limits. We can
include any level of correlation between bits in the input strings. A priori
knowledge of what level and type of correlations enter into the problem bears
on the choice of network architecture and representation of the input data.
The level of correlation in important classes of problems (e.g., vision) is not
arbitrary [16], so we can always constrain our choices of architecture and
representation.

Decomposing the input space of the Choice Problem into disjoint clusters
reveals the types of correlation in the problem. For example, in the nonran­
dom Choice Problem, we define a Boolean funct ion , which performs an OR
operation on the set

A = {xi li= 2n + 1,n =1, 2, . . .}, (4.1)

where Xi is the ith bit in an input st ring. Only points that return "true"
belong to the inverse mapping of (-) . Clusters form arbitrarily in the ran­
dom Choice Problem. No underlying rule or operation governs what clusters
appear. Only the statistics of the clusters, which we determine from consid­
ering an ensemble of realizations, matters. Quantities like the probability of
observing a cluster of size S (S is the number of points in the cluster) are
the meaningful ones .
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The analysis of the Choice Problem shows how generalization and learning
in feed -forward networks sensitively depend on the geometric structure of the
inverse mapping. A feed -forward network encodes mappings simply by parti­
tioning the input space and the representation spaces of the hidden layers into
disjoint regions: each linear-threshold neuron defines one hyperplane parti­
tion. Generalization occurs only when the training set provides enough con­
straints to position the hyperplanes properly. The back-propagation learning
algorithm provides an automatic procedure to determine the appropriat e par­
titions. Back-propagation, however, has severe limitations. Small changes in
the definition of simple maps (such as from case A to case B) radically alter
the computational complexity of the mapping and the learning performance
of the network.
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