
Complex Systems 3 (1989) 229-241

Learning by Minimizing Resources
in Neural Networks

Pal Rujan'
Mario Marchand!

Institut Iiii Festkbipetiorscbung der Kernforschungsanlage,
Jiilich, Postfach 1913, D-5170 Jiilich, Federal Republic of Germany

Abstract. We reformulate the problem of supervised learning in neu­
ral nets to include the search for a network with minimal resources .
The information processing in feedforward networks is described in
geometrical terms as the partitioning of the space of possible input
configurations by hyperplanes corresponding to hidden units. Regu­
lar partitionings introduced here are a special class of partitionings.
Corresponding architectures can represent any Boolean function using
a single layer of hidden units whose number depends on the specific
symmetries of the function. Accordin gly, a new class of plane-cutting
algorithms is proposed that const ruct in polynomial time a "custom­
made" architecture implementing the desired set of inputj'ouput ex­
amples . We report the results of our experiments on the storage and
rule-extraction abilities of three-layer perceptrons synthetized by a
simple greedy algorithm. As expected, simple neuronal structures
with good generalization properties emerge only for a strongly corre­
lated set of examples.

1. Introduction

Connectionist models of cognition attempt to give a microscopic description
of how ensembles of neuron-like units process distributed information in par­
alle l [I]. Simple processing units mimicking neurons are connected into a
multilayered network with visible input and output layers and one or more
internal layers of hidden units. The presence of hidden units is essential if t he
network is to perform complicated tasks, since perceptron-like devices with­
out hidden units have only limited abilities [2J. These feedforward networks

'On leave from Institute for Theoretical Physics, Eotvos University, Bud ap est , Hun­
gary. Electronic mail address (Earn/bitnet): IFFI62@DJUKFAll .

t Pr esent address: Department of Physics, University of Ot tawa , 34 G. Glinski, Ottawa,
Canada KIN-6N5. Electronic mail address (Earn/bitnet) : MMMSJ@UOTTAWA.

© 1989 Complex Systems Publications, Inc.

230 Learning by Minimizing Resou rces

are especially useful because their simple dynamics allows for the recur sive
calculation of the error gradient by the backpropagation method [3].

In these models, learning is considered mainly as a memorization-in-a­
network prob lem: given a task (i.e. , a set of inp ut-output pat tern pairs) and
a network arch itecture (i.e., the list of neurons , layers , and their connectivity)
one tries , with a given learning algorithm, to find the value of each connection
so that the network will perform the tas k. However , it has recently bee n
shown [4] that the problem of deciding whether or not a given task can be
performed by a given architecture is NP -complete. Hence, it is not surpris ing
that there is no known learn ing algorithm that will answer this memorization­
in -a-network problem in a number of steps po lynomial in the problem size
(architecture + examples) , and we sho uld not expect one to be found in the
near future. It is also not surprising that algorit hms like backpropagation
are not guaranteed to converge at all and do get stuck qui te often in local
minima, especially whe n a network wit h a minimum nu mber of neuro ns is
used [3,6].

T he ma in ob ject ive of connectionist learning is, however , not a bare m em­
orization of input-output pairs since this can be accomplished sat isfact orily
(and in a linear number of step s in the numbe r of exa mples) by non-neural
algor it hms like table look-up . Rather , we hope that neural networks will
be ab le to capture the symmetries present in the patterns to be learned so
that when new, unlearn ed patterns are processed , the ou tp ut will be consis­
tent with the ob served symmet ries. This rule extraction ability is required
for pattern recogni tion an d inductive gene raliza t ions and should be possible
only if the task to be performed is "regular," "smooth," or "p redictable" in
the sense to be explained later. Moreover, it is now recognized [5] that this
property can eme rge only when a minimal network (i.e., a network with a
minimum number of units and connections) is used to learn an illustrative set
of examples. Hence, t he majo r prob lem of conneetionnist learning (within
t he supervised learn ing paradigm) is trying to find a minimal network per­
forming a given task rather then trying to load [4] a given task into a given
architecture.

Unfortunately, the known learning algorithms are defined for a given,
fixed ar chitecture and thus are not suited to find a minimal net work. Indeed,
they attempt only to answer the memorization-in-a-ne twork pro blem. It is
thus meaningless to pretend that such algorithms like backpropagation have
generalization or rul e-extract ion abili ty since it is the human des igner who
must guess t he minimal architecture that will make generalizatio n possible.
Moreover, because of NP-complet eness, it is computationally intract able to
try to find a minimal ne twork by using these learning algorithms. When
such a strateg y is ad opted , say with backpropagation , one is confronte d im­
med iate ly with t he practical problem of deciding what to do when stuck in
a local minimum: should we try to find a lower minimum that correspond
to a solutio n? Should we add more neurons and connect ions (if we suspe ct
that this tentative architecture cannot perform the task)? Obviously, learn­
ing procedures that aim at constructing a minimal network (without fixing

Pal R ujan and Mario Marchand 231

the architecture) imp lementing a given task are badly needed . This paper
presents our results of such an attempt.

Before summarizing our results, let us make a few remarks on algorithmic
complexity . First, finding a network with the minimum number of neurons
and connections that perform a given t ask is obviously at least as difficult
as trying to load that t ask into a given archi tecture. We ar e not interested,
however, in finding the absolute minimum but only one that give us suffi­
ciently good generalization abilities . How far should we go? T his is perhaps
the most important question in supervised learning theory. In fact , it is
very easy to find a three-layer network that will perform any possible given
task [5J: one only needs to assign one neuron for each pattern of the task ­
the incoming connections to each hidden neuron being determined so th at it
fires only in the presence of that particul ar pattern (see the Grand-Mother
solution in the next sect ion) . This local solution, ob tained in only one pass
through all the patterns, has no generalization ab ility since the output of the
net on the unlearned patterns is not correlated to the output of the net on
t he learned patterns. Reducing the number of hidd en uni ts will build these
correlat ions and hence make generalization possible. We therefore conjecture
that , given any "regular," "smooth ," or "predictible" task, it is poss ible to
construct a network, in a polynomial number of steps , that will have less
neurons than the above solution and will poss ess some generalization ab ility.

To prove this statement , we present in this paper a new class of learning
procedures that aim at constructing a minimal neural network correspond­
ing to the des ired task. Using the not ion of regular partitionings, we show
t hat a simple "greedy" algorithm always finds in polyn omi al time! a solution
regardles s of the regulari ty of the task to be learned . When the task consists
of un correlated patterns, networks wit h many hidden units an d no gene ra l­
ization ab ility are found. On the contrary, if the task consists of strongly
correlated patterns, networks with few hidden units and good generalization
ability are found as solutions.

2. T he concept of r egular partitioning

In order to obtain a learning procedure which constructs the minimal network
for a given task, we have to limit ourselves to certain types of architectures
and neuron-like units; ot herwise, the search space becomes unnecessarily
wide. For ins tance, we cons ider here only feedforwar d layered neural net­
works sin ce their dynamics is simp le but capable of universal computation.
An example is shown in figure 1a. The network consists of simp le logical
threshold McCulloch-Pitts units connected to each other by inhibitory or
excitatory connections. Such an unit is shown in figure l b. T he output is

1 By this we mean that the numb er of elementary computational st eps (like ar ithmeti c
ope rations , comparisons, assignments. . .) that are necessary to find a solution is increasing
polynomialy with respect to the size of the instance of our prob lem which is the number
of bits needed to stor e the patterns to be learned and not only th e number of inpu t un its
of the network - as ofte n incorrect ly used .

232 Learning by Minimizing Resources

output

input

Fig.10

fIx)

_1

e

Fig.1b

Figure 1: A typical feedforward architecture. The informa tion is pro­
cessed from bottom up; feedback loops as the one shown by the broken
line are not allowed. The nodes are additi ve threshold units, calculat ­
ing the output as in equation (2.1). We use the step function obt ained
in the limit m = tan IX ~ 00. Numbers shown on the edges and nodes
stand for the connection and the th reshold strengths , respectively.

calculated as

nout = lim ~ [1 + tanh mx],
m -oo 2 x = L Wi ni -0

all inputs i

(2.1)

where the activations are binary variables, nou t , n i = {D, I }. Not e that equa­
tion (2.1) has a simple geometrical interpretat ion: nout has value 1 on one
side of the plane Vi . ii = 0 and Don the other. The components of the
normal vector Vi are the incident con nections (weights) W i and the threshold
of the unit is 0 . The information is processed syn chr onously and in parallel
from the input to the hidden and t hen to the ou tp ut layer without the pos ­
sib ility of feedback . While a net work with feedback must be ite rate d until
it set t les in its stationary or limit-cycle state, feedfor ward netw orks process
information only unti l the wave of activity reaches the ou tput un it s.

Since a network with one layer of hidden uni t s is sufficient in order to
exec ute any Boolean function [5,7,8], we discuss here only ar chitectures of this
kind . For the sake of simplicity, we also restrict ourselves to a sing le output
unit (t hree-layer perceptrons), even though our method is easily generalized
to the case of multiple outputs (a more detailed acco unt of our work will
appear elsewhere).

Let us first examine close ly some geometric properties of this typ e of net­
works . In order to make our theory more underst andable, we show it s main
ing red ients thro ugh the well-known example of the parity -K pr edicate [2].

Pal Rujan and Mario Marchand 233

The output of th e parity-K network should be activated only if the sum of
ones in the Ni n p = K binary input units is odd:

mod 2 (2.2)

The cube shown in Figure 2 represents the input configuration space (or the
switching space) for the parity-3 problem. Each corner of the cube corre ­
sponds to a possible input configuration, while the color of the vertex shows
the desired output value (white = 0, black = 1). In genera l, for Ninp input
unit s, one must consider an Ninp-dimensional hypercube. T he set of white
points shown in figure 2 cannot be separ ated from the set of black points
by a single plane satisfying equation (2.1) . The simplest way to see this is
to construct the convex hull (the smallest convex polytope incorporat ing all
points in question) of the two set of vertices, So and S1. In our example, they
are two tetrahedrons whose intersection is th e octahedron shown by heavy
lines in figure 2. On the contrary, when th e intersection M = S1 n S2 is
empty, the space is linearly separable.

Figure 2: The unit cub e representation of the parity-3 probl em and
the corresponding network. Every corner of the cube corr esponds to
one possible combination of the binary input units, while th e color
of the corner shows the desired output value (empty circles = 0, full
circles = 1). Th e two tetrahedrons formed by the white and black set
of points intersect on the octahedron displ ayed in heavy lines.

234 Learning by Minimizing Resources

Cons ider now the three planes shown in figure 3a. T heir normal vector
is (1,1,1) and the corresponding threshold values are 1/2, 3/2, and 5/ 2,
respectively. They partition the cube into four disjoint regions, each region
containing vertices of the same color. Each plane represents a hidden unit.
When running the network over the complete set of inputs, one makes the
important observation that the activations of the hidden un its form only four
dist inct configurat ions, called internal representat ions, out of the possible
23 = 8. This is t he contraction property: all vert ices of the cube contained in
the subspaces bounded by the hidden planes are mapped into a single internal
representation of the hidden (or internal) activation space. Contraction is the
natural way through which the network performs classifications and is defined
as the number of internal representations over the number of input examples.

Note that such partiti oning is by no means unique. Another example is
given in figure 3b, where we have simply separat ed by individual planes all
points of black color. Such a partitioning is called a "grandmother" (GM)
solution of the problem. The name comes from the theory of local represen­
tations, where perception is viewed as filtering the input signals through a
variety of feature detectors activating finally a single neuron on the recogni ­
tio n of grandmother. In our picture, this means that every single input set
activating the output (black points) has an unique internal representation.
Such a partitioning solves always the memorization problem but requires an
excessively large amount of resources.

T he intern al (or hidden) configuration space has its own hypercube, whose
dimension equals the number of hidden unit s Nh . We show it for the pa r­
t itioning of figure 3a in figure 3c. Due to the contraction property, however,
only Nh + 1 different corners of the hypercube can be colored.

Following these observations, we now define a regular partitioning of the
unit hypercube in K dimensions as a partitioning with hyperplanes (hidden
uni ts) such that:

1. every region contains vert ices of the same color,

2. every hyperplane separates corne rs of different colors , and

3. the planes do not intersect inside the hypercube.

Although regular partitioning is not the only way hidden units may form a
separable space (the class of which we call legal partitionings), we have not
yet found examples of legal partitionings which solve a given problem with
less planes than a regular one. Hence , our strategy will be to find the regular
partit ion containing the min imum number of planes.

We now show that every regular partitioning is separable by a single
output uni t (hyperplane of the hidden space). T he proof is quite simple:
imagine a point inside every region, representing a given activation pattern
of the hidde n units. Construct a graph connecting all nearest-neighbor points
(see figures 3d and 3e). The Nh edges of this graph must pass through a single
plane delimiting that region and no other edge can cross this plane (from
property 3 and convexity). All nodes of the graph must have neighboring

Pal Rujan and Mario Marchand 235

Fig. 30 Fig.3b Fig.3c

Fig.3e

Fig .3f

Fig.3g

Figure 3: Processing information in feedfor ward networks. Figure 3a
shows a partitioning with parallel (1,1,1) planes, while Figure 3b is a
"gran dmother-type" partitioning. Figure 3c is the configuration cub e
of the hidden uni ts (internal layer). We use th e same notation as in
Figure 3a, except that unmarked corners can never be reached with
the chosen allocation of hidden units . The corresponding picture for
the grandmother solution involves a four-dimensional cube , not shown
here. Figure 3d and 3e are schematic representations of the se regul ar
parti tionings. The points, each representing a whole cluster of corners,
are connected by a bipartite tree (see text) . Finally, in figur es 3f and
3g, these partitions are expressed as conventional networks solving
the pa rity-3 problem. Full (broken) lines have strength + 1 (-1) .

236 Learning by Minimizing Resources

nodes of the other color (from property 2). Hence, the graph is a bipartite
tree (loops are forbidden because of property 3). Each edge points in a
different direction because only the corresponding hidden unit changes its
activation along that edge. The median points of the edges form a set of
non-colinear Nh points, defining uniquely a hyperplane in the Nh-dimensional
hidden space. In addition, this plane cannot have 0 connections (every hidden
un it must be connected to the output). An example of the parity-3 problem is
shown in figure 3c. Expressed in another way, the regular partitionings have
the property that when presenting the whole set of examples, the internal
representations are linearly independent vectors in the hidden configuration
space and are thus linearly separable.

3. T he learning procedure

Our goal here is to find the regular partition that contains the minimum
number of planes or, conversely, the partitioning with the maximal contrac­
tion . Having found that, it is simple to find the set of connections going to
the output unit by the procedure outlined in the proof, which amounts to
the solution of a set of sparse linear equations. The strategy adopted below
is certainly not unique nor optimal but it proves our point.

First imagine that we have at our disposal a greedy algorithm that pro­
vides us with the plane that separates the largest cluster of corners having
the same color on one of it s sides . Cutting out along the plane this set of
corners from the hypercube will leave behind a complicated but still convex
body. Note that the plane cares only about marked corners corresponding to
presented examples. All the other separated but unmarked corners are thus
automatically class ified as pertaining to the same category, as represented by
a specific internal representation. The plane obtained in this way defines our
first hidden unit. We can again apply greedy on the remaining convex body
but th is time we must accept only planes that do not separate the points
that have already been excluded by the first plane in order to satisfy prop­
erty 3 above. We then repeat this procedure until we find a plane separating
only points of opposite colors. What we have now is a partition satisfying
properties 1 and 3 but not necessarily property 2. However, the planes that
separates points of the same color are easily identified and removed (since
they are not needed). After disconnecting these spurious units, we have a
regular partitioning.

In order to construct the output unit, one has to solve a set of linear
equations corresponding to

(3.1)

where mij denotes the middle point of the edge connecting the nearest­
neighbors vertices i and j in the hidden configuration space. Equation 3.1
can be simplified by observing that when substract ing from each other any
two equations involving mij and mjk , respectively, then only two elements
of the vector wout will remain. This sparse set of homogeneous equations can

Pal Rujan and Mario Marchand 237

be easily solved by following the structure of the graph connecting nearest ­
neighbor configurations of hidden units, leaving behind only the (trivial) task
of calculating the threshold eou t

•

We now need to define the greedy algorithm. Again, this step, or subrou­
t ine, can be done in many ways and we present here only the most straight­
forward possibility (other variants will be discussed elsewhere). Consider
the "minimal set" of hyperplanes, where the connections (weights) may as­
sume on ly the values Wi = {- I 10, + I} while the thresholds are chosen as
e - 2N_ - l 2N_ - l 1 ~ h Nth b . f 1- --2-' - - 2- + , . . ., 2 were -(+) coun s t e num er 0 - s
(+ ls) in w. All such planes intersect the unit hypercube but do not contain
any vertex. By a simple counting, we find that their total number is K3K - 1,

t he number of poss ible input patterns being N = 2K
, so this number can

be expressed as ~ . log2 N . N)og, 3 . This set of planes is nevertheless ab le to
repr esent any Boolean function (as a grandmother-type regular partitioning,
for inst an ce). This means that if the greedy algorithm implements only a
simple linear search through all these plane, a minimal regular partition will
be found after at most ~ ·log2 N . N(2+)og, 3) steps. Of course, faster and more
sophisticated searches could also be implemented, but for the scope of this
paper we have used only a linear search.

Given a set of examples, this algorithm will construct a three-layer archi­
tecture where the units are connected layerwise with all other units through
inhibitory and excitatory connections of unit strength (0 corresponds to a
missing connection) . This seems reasonable from a biological po int of view
an d is also advantageous for digital implementations of such networ ks. Al­
though one is not guaranteed to find any longer the optimal partitioning with
this set of planes, one still expects solutions with good data compression and
good gene ralization properties.

4 . N umer ica l results

To t est our learn ing procedure's capability of dealing with any Boolean func ­
t ion, we have chosen at random 200 Boolean functions defined on 6 bits
(among the 226 possible choices). As expected, our procedure was always
successful in finding a network. An average of 15.8 ± 2.2 hidden units was
found, sign ificantly lower than the one obtained from the GM solution: 32.
Nevertheless, generalization was completely inexistent for these functions.
Indeed , using our learning procedure on only half of the 64 input patterns,
the network obtained was ab le to correctly classi fy only half of the remain­
ing 32 un learned patterns. This is just as good as a random guess. Note,
however, that by choosing a function at random, we have a very high proba­
bility of obtaining a function with no regularities and hence no "predictabil­
ity." Moreover, we have not being able to obtain any data compression for
these funct ions. Quite on the contrary, compared with the 64 bits needed to
tabulate the function, we needed 226 ± 36 bits to store the network (2 bi ts
per connections and log2K bits per thresho ld are needed). This feature is
also present when one is trying to compress a random file with a standard

238 Learning by Minimizing Resources

data compression technique like Huffman coding.
Our results change drastically when symmetric and regular tas ks are

used. For inst ance, when running the parity-K problem on the full set of
input/output pat terns, we always found t he optimal solution of K parallel
hidden units (planes) wit h the norm al vector of (1, 1, ... , 1) (or rotated)
plane. Moreover, generalization was very good: learning only half the pat­
terns with our procedure yields a network that correctly class ify almost all the
remaining patterns (we have obtained more than 85% success with parity-6) .
This is consistent with t he fact that these functions are regular and "pre­
dictable." In fact, they are made of st rongly correlated patterns: changing a
bit in the input always changes the output bit.

Now we want to find out if our learning proce dure is capable of generat ing
networks with good generalization ability when the function to be learned
is somewhere in between these two prev ious extreme cases - that is, the
patterns to be learned are correlated, but not perfectly. Hence, we first need
some way to control the correlations between the patterns in a function . For
this, consider the set of all Boolean functions defined on N inp input units.
Each function can be viewed as a possible configuration of the 2N i np binary
variables {nil (logical var iables, spins) defined on the verti ces of the un it
hypercube of dimension N inp ' We want to control to what extent the color
of a vertex depends on the color of the nearest-neighbor vertices. This can
be achieved by introducing an energy for each Boolean function as

E({nil) = - J L (2ni - 1)(2nj - 1),
«v.i>

(4.1)

whi ch is the Ising Hamiltonian . The sum runs over all < i, j > pairs of ver ti ces
connected by an edge of the hypercube. We will then choose the Boolean
functions according to the Boltzmann distribution

Prob({nil) '" exp(- E ({ni}) (4.2)

This distribution gives a higher pro bability for functions hav ing large corre­
lat ions (low-energy configurations) than for functions having small correla­
t ions (high-energy configurations). J > 0 favors positive corr elations like in
a ferromagnet whereas J < 0 favors negative correlations like in an antifer­
romagnet (parity-like funct ion). IJI plays the role of an inverse temperature.
For IJI = 0, all Boolean functions have an equal probability of being cho­
sen and hence most probably one picks up a random one. On the oposite
limit IJI -+ 00, one obtains with probability one either a ferromagnet ic (all
vertices have the same color, separable case) structure if J > 0 or an antifer­
romagnetic (parity function) structure on the hypercube if J < O. For fini te,
nonzero J, we will have a certain probability of choosing a function in which
the patterns are partially correlated. Hence, J is a parameter controlling the
correlations between the input patterns.

Our result s are summarized in figure 4 for Boo lean functions defined on
six input units. For each of these points, we have generated by a Monte
Carlo method [9J 100 different Boolean functions and applied our learning

Pa,] R ujan and Mario Marchand

1.0
J= 0.8
J =0.6

239

0.5

28 36 44 52 60

Figure 4: Generalization ability in networks wit h six input units. At
each temperature we have generated by a Monte Carlo method 100 dif­
ferent Boolean fun ctions and applied our learning procedure to each.
From the total of 64 patterns, Np at t randomly chosen patterns have
been learned, then the remaining patterns have been presented to
the net. In total N c such inputs have been correctly classified and
G = Nc /N - Np a t t has been calculated. A random guess corresponds
to a value of G = 0.5.

procedure to each. For thermalization, we used 106 Monte Carlo (MC) steps,
followed by 104 Me steps between each sample taken .

It is pretty clear that our learning procedure generates networks with
good generalization ab ility for Boolean functions chosen at low temperature.
For example, we see that we have roughly 80% success for J = - 0.8 and
Np at t = 32. At these temperatures, the regular (parity) structure breaks into
some large clusters requiring only a few additional hi dden planes, as seen in
figure 5. Presenting a few points from each cluster will create the desired
architecture and t he sys tem will st ill be "predictable." However, it is clear
that the generalization ability decreases drastically at h igher temperature as
the patterns become less correlated. In large networks, this su dden deterio­
ration is triggered by a second-order phase transit ion of the underly ing Isin g
model. Moreover, we have observed also a re duction in the average number
of hidden units < Nil > needed to learn the task as IJI is increased, as shown
by figure 5.

240 Learning by Min imizing Resources

20..-----------------------,

til-'2
::;)

c
CD
'C
'C
:i:-o..
CD.c
E
::I
Z

:i

15

10

5

---0-- J z -0.2
---- J '" -0.4
-- J--0.6
--0-- J '" -0.8
----- J '" -2 .5

70605040302010
O+--.--..,.-~--r-----.-..,._~___,r__~__._-.....-...._~___i

o

Number of Learned Patterns
Figure 5: Average number of hidden units construc ted by the greedy
alogorithm in order to learn the same examples as in figure 4.

5. Conclusion

The main message of this paper is the following: sin ce learning cannot be
a gene rically hard optimization problem, one has to think about learn ing in
a much broader context. Instead of trying to load a given task into a given
archi tecture, as done in other approaches [1- 3], we t ry to synt he t ize a mini­
mal network in order to learn fast and obtain good generalization pro perties.
We have shown that it is pos sible to define learning procedures that will
find, in polynomial t ime, networks that have good generalizati on propert ies
for "regular" tasks (when the patterns to be learned are correla te d). Us­
ing the notion of regular partitionings, we have presented one such learn ing
procedure, although many more var iants are possible.

One obv ious deficiency of our actual implementation is that the amount of
computation necessary to find a network increases as the number of possible
input pat tern s N = 2K and not only with the actual number of pat terns to be
learned N pat t, which in most practical pro blems is much smaller. As NpattlN
decreases, so does the efficiency of our greedy algorithm. It nevertheless
remains polynomial as long as this fraction is finite. Obviously, we now nee d
an algorithm t hat scales as N pat t in order to at tack some real world pat te rn
recognit ion tasks . Only then could one possibly fulfill some of the ambitious
claims made recently.

N ot e added. After submission of this paper for pub lication, we ob­
tained a preprint of an independent work by M. Mezard and J. P. Nadal (ENS
preprint, 1989) adopting the same philosophy of cons tructing a network dur-

Pa,} Rujan and Mario Marchand 241

ing learning. Their algorithm is quite different from ours (for example, they
might need to construct several layers of hidden units before the projection
of the task on the last hidden layer is linearly separable) but their results
concerning generalization ability are similar to ours. Their algorithm has the
advantage, however, of depending mainly on the number of actual examples.

References

[1] D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing,
Vols. 1, 2 (Bradford Books, MIT Press, Cambridge, 1986).

[2] M.L. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry (MIT Press, Cambridge, 1969).

[3] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Nature, 323 (1986) 533­
536.

[4] S. Judd, Proceedings of the IEEE First Conference on Neural Networks,
Vol. II, San Diego, IEEE Cat. No. 87TH0191-7 (IEEE, 1987) 685-692 .

[5] J. Denker, D. Schwartz, B. Wittner, S. Solla, J. Hopfield, R. Howard, and
L. Jackel, Complex Systems, 1 (1987) 877-922.

[6] G. Tesauro and B. Janssens, Complex Systems, 2 (1988) 39--44.

[7] W.V. Quine, American Mathematical Monthly, 62 (1955) 627-63l.

[8] E.J. McCluskey Jr, Bell System Technical Journal, 35 (1956) 1417-1444.

[9] K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical
Physics (Springer-Verlag, Heidelberg, 1988).

