Complex Systems 3 (1989) 229-241

Learning by Minimizing Resources
in Neural Networks

Pal Rujan*
Mario Marchand!
Institut fiir Festkoérperforschung der Kernforschungsanlage,
Jiilich, Postfach 1913, D-5170 Jiilich, Federal Republic of Germany

Abstract. We reformulate the problem of supervised learning in neu-
ral nets to include the search for a network with minimal resources.
The information processing in feedforward networks is described in
geometrical terms as the partitioning of the space of possible input
configurations by hyperplanes corresponding to hidden units. Regu-
lar partitionings introduced here are a special class of partitionings.
Corresponding architectures can represent any Boolean function using
a single layer of hidden units whose number depends on the specific
symmetries of the function. Accordingly, a new class of plane-cutting
algorithms is proposed that construct in polynomial time a “custom-
made” architecture implementing the desired set of input/ouput ex-
amples. We report the results of our experiments on the storage and
rule-extraction abilities of three-layer perceptrons synthetized by a
simple greedy algorithm. As expected, simple neuronal structures
with good generalization properties emerge only for a strongly corre-
lated set of examples.

1. Introduction

Connectionist models of cognition attempt to give a microscopic description
of how ensembles of neuron-like units process distributed information in par-
allel [1]. Simple processing units mimicking neurons are connected into a
multilayered network with visible input and output layers and one or more
internal layers of hidden units. The presence of hidden units is essential if the
network is to perform complicated tasks, since perceptron-like devices with-
out hidden units have only limited abilities [2]. These feedforward networks

*On leave from Institute for Theoretical Physics, E6tvés University, Budapest, Hun-
gary. Electronic mail address (Earn/bitnet): IFF162@DJUKFA11.

TPresent address: Department of Physics, University of Ottawa, 34 G. Glinski, Ottawa,
Canada K1N-6N5. Electronic mail address (Earn/bitnet): MMMSJQUOTTAWA.

© 1989 Complex Systems Publications, Inc.

230 Learning by Minimizing Resources

are especially useful because their simple dynamics allows for the recursive
calculation of the error gradient by the backpropagation method [3].

In these models, learning is considered mainly as a memorization-in-a-
network problem: given a task (i.e., a set of input-output pattern pairs) and
a network architecture (i.e., the list of neurons, layers, and their connectivity)
one tries, with a given learning algorithm, to find the value of each connection
so that the network will perform the task. However, it has recently been
shown [4] that the problem of deciding whether or not a given task can be
performed by a given architecture is NP-complete. Hence, it is not surprising
that there is no known learning algorithm that will answer this memorization-
in-a-network problem in a number of steps polynomial in the problem size
(architecture + examples), and we should not expect one to be found in the
near future. It is also not surprising that algorithms like backpropagation
are not guaranteed to converge at all and do get stuck quite often in local
minima, especially when a network with a minimum number of neurons is
used [3,6].

The main objective of connectionist learning is, however, not a bare mem-
orization of input-output pairs since this can be accomplished satisfactorily
(and in a linear number of steps in the number of examples) by non-neural
algorithms like table look-up. Rather, we hope that neural networks will
be able to capture the symmetries present in the patterns to be learned so
that when new, unlearned patterns are processed, the output will be consis-
tent with the observed symmetries. This rule extraction ability is required
for pattern recognition and inductive generalizations and should be possible
only if the task to be performed is “regular,” “smooth,” or “predictable” in
the sense to be explained later. Moreover, it is now recognized [5] that this
property can emerge only when a minimal network (i.e., a network with a
minimum number of units and connections) is used to learn an illustrative set
of examples. Hence, the major problem of connectionnist learning (within
the supervised learning paradigm) is trying to find a minimal network per-
forming a given task rather then trying to load [4] a given task into a given
architecture.

Unfortunately, the known learning algorithms are defined for a given,
fixed architecture and thus are not suited to find a minimal network. Indeed,
they attempt only to answer the memorization-in-a-network problem. It is
thus meaningless to pretend that such algorithms like backpropagation have
generalization or rule-extraction ability since it is the human designer who
must guess the minimal architecture that will make generalization possible.
Moreover, because of NP-completeness, it is computationally intractable to
try to find a minimal network by using these learning algorithms. When
such a strategy is adopted, say with backpropagation, one is confronted im-
mediately with the practical problem of deciding what to do when stuck in
a local minimum: should we try to find a lower minimum that correspond
to a solution? Should we add more neurons and connections (if we suspect
that this tentative architecture cannot perform the task)? Obviously, learn-
ing procedures that aim at constructing a minimal network (without fixing

P&l Rujan and Mario Marchand 231

the architecture) implementing a given task are badly needed. This paper
presents our results of such an attempt.

Before summarizing our results, let us make a few remarks on algorithmic
complexity. First, finding a network with the minimum number of neurons
and connections that perform a given task is obviously at least as difficult
as trying to load that task into a given architecture. We are not interested,
however, in finding the absolute minimum but only one that give us suffi-
ciently good generalization abilities. How far should we go? This is perhaps
the most important question in supervised learning theory. In fact, it is
very easy to find a three-layer network that will perform any possible given
task [5]: one only needs to assign one neuron for each pattern of the task —
the incoming connections to each hidden neuron being determined so that it
fires only in the presence of that particular pattern (see the Grand-Mother
solution in the next section). This local solution, obtained in only one pass
through all the patterns, has no generalization ability since the output of the
net on the unlearned patterns is not correlated to the output of the net on
the learned patterns. Reducing the number of hidden units will build these
correlations and hence make generalization possible. We therefore conjecture
that, given any “regular,” “smooth,” or “predictible” task, it is possible to
construct a network, in a polynomial number of steps, that will have less
neurons than the above solution and will possess some generalization ability.

To prove this statement, we present in this paper a new class of learning
procedures that aim at constructing a minimal neural network correspond-
ing to the desired task. Using the notion of regular partitionings, we show
that a simple “greedy” algorithm always finds in polynomial time' a solution
regardless of the regularity of the task to be learned. When the task consists
of uncorrelated patterns, networks with many hidden units and no general-
ization ability are found. On the contrary, if the task consists of strongly
correlated patterns, networks with few hidden units and good generalization
ability are found as solutions.

2. The concept of regular partitioning

In order to obtain a learning procedure which constructs the minimal network
for a given task, we have to limit ourselves to certain types of architectures
and neuron-like units; otherwise, the search space becomes unnecessarily
wide. For instance, we consider here only feedforward layered neural net-
works since their dynamics is simple but capable of universal computation.
An example is shown in figure la. The network consists of simple logical
threshold McCulloch-Pitts units connected to each other by inhibitory or
excitatory connections. Such an unit is shown in figure 1b. The output is

1By this we mean that the number of elementary computational steps (like arithmetic
operations, comparisons, assignments. ..) that are necessary to find a solution is increasing
polynomialy with respect to the size of the instance of our problem which is the number
of bits needed to store the patterns to be learned and not only the number of input units
of the network — as often incorrectly used.

232 Learning by Minimizing Resources

Fig.1a Fig.1b
Figure 1: A typical feedforward architecture. The information is pro-
cessed from bottom up; feedback loops as the one shown by the broken
line are not allowed. The nodes are additive threshold units, calculat-
ing the output as in equation (2.1). We use the step function obtained
in the limit m = tan @ — oo. Numbers shown on the edges and nodes
stand for the connection and the threshold strengths, respectively.

calculated as

1
no%t = nlx_r& —2-[1 + tanh mz], = Z win; — O (2.1)

all inputs ¢

where the activations are binary variables, n®, n; = {0,1}. Note that equa-
tion (2.1) has a simple geometrical interpretation: n°** has value 1 on one
side of the plane W - i = © and 0 on the other. The components of the
normal vector W are the incident connections (weights) w; and the threshold
of the unit is ©. The information is processed synchronously and in parallel
from the input to the hidden and then to the output layer without the pos-
sibility of feedback. While a network with feedback must be iterated until
it settles in its stationary or limit-cycle state, feedforward networks process
information only until the wave of activity reaches the output units.

Since a network with one layer of hidden units is sufficient in order to
execute any Boolean function [5,7,8], we discuss here only architectures of this
kind. For the sake of simplicity, we also restrict ourselves to a single output
unit (three-layer perceptrons), even though our method is easily generalized
to the case of multiple outputs (a more detailed account of our work will
appear elsewhere).

Let us first examine closely some geometric properties of this type of net-
works. In order to make our theory more understandable, we show its main
ingredients through the well-known example of the parity-K predicate [2].

P&l Rujén and Mario Marchand 233

The output of the parity-K network should be activated only if the sum of
ones in the NV;,, =K binary input units is odd:

K .
R = (Z nznp> mod 2 (2-2)
=1

The cube shown in Figure 2 represents the input configuration space (or the
switching space) for the parity-3 problem. Each corner of the cube corre-
sponds to a possible input configuration, while the color of the vertex shows
the desired output value (white = 0, black = 1). In general, for Ny, input
units, one must consider an Np,,-dimensional hypercube. The set of white
points shown in figure 2 cannot be separated from the set of black points
by a single plane satisfying equation (2.1). The simplest way to see this is
to construct the convex hull (the smallest convex polytope incorporating all
points in question) of the two set of vertices, Sy and S;. In our example, they
are two tetrahedrons whose intersection is the octahedron shown by heavy
lines in figure 2. On the contrary, when the intersection M = S; N S, is
empty, the space is linearly separable.

Figure 2: The unit cube representation of the parity-3 problem and
the corresponding network. Every corner of the cube corresponds to
one possible combination of the binary input units, while the color
of the corner shows the desired output value (empty circles = 0, full
circles = 1). The two tetrahedrons formed by the white and black set
of points intersect on the octahedron displayed in heavy lines.

234 Learning by Minimizing Resources

Consider now the three planes shown in figure 3a. Their normal vector
is (1,1,1) and the corresponding threshold values are 1/2, 3/2, and 5/2,
respectively. They partition the cube into four disjoint regions, each region
containing vertices of the same color. Each plane represents a hidden unit.
When running the network over the complete set of inputs, one makes the
important observation that the activations of the hidden units form only four
distinct configurations, called internal representations, out of the possible
2% = 8. This is the contraction property: all vertices of the cube contained in
the subspaces bounded by the hidden planes are mapped into a single internal
representation of the hidden (or internal) activation space. Contraction is the
natural way through which the network performs classifications and is defined
as the number of internal representations over the number of input examples.

Note that such partitioning is by no means unique. Another example is
given in figure 3b, where we have simply separated by individual planes all
points of black color. Such a partitioning is called a “grandmother” (GM)
solution of the problem. The name comes from the theory of local represen-
tations, where perception is viewed as filtering the input signals through a
variety of feature detectors activating finally a single neuron on the recogni-
tion of grandmother. In our picture, this means that every single input set
activating the output (black points) has an unique internal representation.
Such a partitioning solves always the memorization problem but requires an
excessively large amount of resources.

The internal (or hidden) configuration space has its own hypercube, whose
dimension equals the number of hidden units N, . We show it for the par-
titioning of figure 3a in figure 3c. Due to the contraction property, however,
only N, + 1 different corners of the hypercube can be colored.

Following these observations, we now define a regular partitioning of the
unit hypercube in K dimensions as a partitioning with hyperplanes (hidden
units) such that:

1. every region contains vertices of the same color,
2. every hyperplane separates corners of different colors, and
3. the planes do not intersect inside the hypercube.

Although regular partitioning is not the only way hidden units may form a
separable space (the class of which we call legal partitionings), we have not
yet found examples of legal partitionings which solve a given problem with
less planes than a regular one. Hence, our strategy will be to find the regular
partition containing the minimum number of planes.

We now show that every regular partitioning is separable by a single
output unit (hyperplane of the hidden space). The proof is quite simple:
imagine a point inside every region, representing a given activation pattern
of the hidden units. Construct a graph connecting all nearest-neighbor points
(see figures 3d and 3e). The N}, edges of this graph must pass through a single
plane delimiting that region and no other edge can cross this plane (from
property 3 and convexity). All nodes of the graph must have neighboring

Pél Rujan and Mario Marchand 235

Fig. 3g

Figure 3: Processing information in feedforward networks. Figure 3a
shows a partitioning with parallel (1,1,1) planes, while Figure 3b is a
“grandmother-type” partitioning. Figure 3c is the configuration cube
of the hidden units (internal layer). We use the same notation as in
Figure 3a, except that unmarked corners can never be reached with
the chosen allocation of hidden units. The corresponding picture for
the grandmother solution involves a four-dimensional cube, not shown
here. Figure 3d and 3e are schematic representations of these regular
partitionings. The points, each representing a whole cluster of corners,
are connected by a bipartite tree (see text). Finally, in figures 3f and
3g, these partitions are expressed as conventional networks solving
the parity-3 problem. Full (broken) lines have strength +1 (—1).

236 Learning by Minimizing Resources

nodes of the other color (from property 2). Hence, the graph is a bipartite
tree (loops are forbidden because of property 3). Each edge points in a
different direction because only the corresponding hidden unit changes its
activation along that edge. The median points of the edges form a set of
non-colinear N}, points, defining uniquely a hyperplane in the /V,-dimensional
hidden space. In addition, this plane cannot have 0 connections (every hidden
unit must be connected to the output). An example of the parity-3 problem is
shown in figure 3c. Expressed in another way, the regular partitionings have
the property that when presenting the whole set of examples, the internal
representations are linearly independent vectors in the hidden configuration
space and are thus linearly separable.

3. The learning procedure

Our goal here is to find the regular partition that contains the minimum
number of planes or, conversely, the partitioning with the maximal contrac-
tion. Having found that, it is simple to find the set of connections going to
the output unit by the procedure outlined in the proof, which amounts to
the solution of a set of sparse linear equations. The strategy adopted below
is certainly not unique nor optimal but it proves our point.

First imagine that we have at our disposal a greedy algorithm that pro-
vides us with the plane that separates the largest cluster of corners having
the same color on one of its sides. Cutting out along the plane this set of
corners from the hypercube will leave behind a complicated but still convex
body. Note that the plane cares only about marked corners corresponding to
presented examples. All the other separated but unmarked corners are thus
automatically classified as pertaining to the same category, as represented by
a specific internal representation. The plane obtained in this way defines our
first hidden unit. We can again apply greedy on the remaining convex body
but this time we must accept only planes that do not separate the points
that have already been excluded by the first plane in order to satisfy prop-
erty 3 above. We then repeat this procedure until we find a plane separating
only points of opposite colors. What we have now is a partition satisfying
properties 1 and 3 but not necessarily property 2. However, the planes that
separates points of the same color are easily identified and removed (since
they are not needed). After disconnecting these spurious units, we have a
regular partitioning.

In order to construct the output unit, one has to solve a set of linear
equations corresponding to

T = O, V <i,j > (3.1)

where m;; denotes the middle point of the edge connecting the nearest-
neighbors vertices ¢ and j in the hidden configuration space. Equation 3.1
can be simplified by observing that when substracting from each other any
two equations involving m;; and ;i , respectively, then only two elements
of the vector w°* will remain. This sparse set of homogeneous equations can

Pél Rujan and Mario Marchand 237

be easily solved by following the structure of the graph connecting nearest-
neighbor configurations of hidden units, leaving behind only the (trivial) task
of calculating the threshold ©°*.

We now need to define the greedy algorithm. Again, this step, or subrou-
tine, can be done in many ways and we present here only the most straight-
forward possibility (other variants will be discussed elsewhere). Consider
the “minimal set” of hyperplanes, where the connections (weights) may as-
sume only the values w; = {—1,0,+1} while the thresholds are chosen as
0= —2N;'1, —ZN;*I +1,... 2—"1\}2‘;1 where N_(;) counts the number of —1s
(4+1s) in w. All such planes intersect the unit hypercube but do not contain
any vertex. By a simple counting, we find that their total number is K3¥-1,
the number of possible input patterns being N = 2X, so this number can
be expressed as :1; -log, N - N'3, This set of planes is nevertheless able to
represent any Boolean function (as a grandmother-type regular partitioning,
for instance). This means that if the greedy algorithm implements only a
simple linear search through all these plane, a minimal regular partition will
be found after at most %-log, N- N (2+log23) steps. Of course, faster and more
sophisticated searches could also be implemented, but for the scope of this
paper we have used only a linear search.

Given a set of examples, this algorithm will construct a three-layer archi-
tecture where the units are connected layerwise with all other units through
inhibitory and excitatory connections of unit strength (0 corresponds to a
missing connection). This seems reasonable from a biological point of view
and is also advantageous for digital implementations of such networks. Al-
though one is not guaranteed to find any longer the optimal partitioning with
this set of planes, one still expects solutions with good data compression and
good generalization properties.

4. Numerical results

To test our learning procedure’s capability of dealing with any Boolean func-
tion, we have chosen at random 200 Boolean functions defined on 6 bits
(among the 22° possible choices). As expected, our procedure was always
successful in finding a network. An average of 15.8 4 2.2 hidden units was
found, significantly lower than the one obtained from the GM solution: 32.
Nevertheless, generalization was completely inexistent for these functions.
Indeed, using our learning procedure on only half of the 64 input patterns,
the network obtained was able to correctly classify only half of the remain-
ing 32 unlearned patterns. This is just as good as a random guess. Note,
however, that by choosing a function at random, we have a very high proba-
bility of obtaining a function with no regularities and hence no “predictabil-
ity.” Moreover, we have not being able to obtain any data compression for
these functions. Quite on the contrary, compared with the 64 bits needed to
tabulate the function, we needed 226 + 36 bits to store the network (2 bits
per connections and log,K bits per threshold are needed). This feature is
also present when one is trying to compress a random file with a standard

238 Learning by Minimizing Resources

data compression technique like Huffman coding.

Our results change drastically when symmetric and regular tasks are
used. For instance, when running the parity-K problem on the full set of
input/output patterns, we always found the optimal solution of K parallel
hidden units (planes) with the normal vector of (1, 1, ..., 1) (or rotated)
plane. Moreover, generalization was very good: learning only half the pat-
terns with our procedure yields a network that correctly classify almost all the
remaining patterns (we have obtained more than 85% success with parity-6).
This is consistent with the fact that these functions are regular and “pre-
dictable.” In fact, they are made of strongly correlated patterns: changing a
bit in the input always changes the output bit.

Now we want to find out if our learning procedure is capable of generating
networks with good generalization ability when the function to be learned
is somewhere in between these two previous extreme cases — that is, the
patterns to be learned are correlated, but not perfectly. Hence, we first need
some way to control the correlations between the patterns in a function. For
this, consider the set of all Boolean functions defined on Nj,, input units.
Each function can be viewed as a possible configuration of the 2Mm binary
variables {n;} (logical variables, spins) defined on the vertices of the unit
hypercube of dimension Ni,,. We want to control to what extent the color
of a vertex depends on the color of the nearest-neighbor vertices. This can
be achieved by introducing an energy for each Boolean function as

E({n:}) = =J > (2n: = 1)(2n; — 1), (4.1)
<ig>
which is the Ising Hamiltonian. The sum runs over all <z, j > pairs of vertices
connected by an edge of the hypercube. We will then choose the Boolean
functions according to the Boltzmann distribution

Prob({n:}) ~ exp(~E({n:}) (4.2)

This distribution gives a higher probability for functions having large corre-
lations (low-energy configurations) than for functions having small correla-
tions (high-energy configurations). J > 0 favors positive correlations like in
a ferromagnet whereas J < 0 favors negative correlations like in an antifer-
romagnet (parity-like function). |J| plays the role of an inverse temperature.
For |J| = 0, all Boolean functions have an equal probability of being cho-
sen and hence most probably one picks up a random one. On the oposite
limit |J| — oo, one obtains with probability one either a ferromagnetic (all
vertices have the same color, separable case) structure if J > 0 or an antifer-
romagnetic (parity function) structure on the hypercube if J < 0. For finite,
nonzero J, we will have a certain probability of choosing a function in which
the patterns are partially correlated. Hence, J is a parameter controlling the
correlations between the input patterns.

Our results are summarized in figure 4 for Boolean functions defined on
six input units. For each of these points, we have generated by a Monte
Carlo method [9] 100 different Boolean functions and applied our learning

P4l Rujén and Mario Marchand 239

nC
n- np A
1.0 1
/\INI ; o J=0.8
b —’4 J=0.6
] /I J=04
054 - I S i S e S _I—J_=_0_2

Figure 4: Generalization ability in networks with six input units. At
each temperature we have generated by a Monte Carlo method 100 dif-
ferent Boolean functions and applied our learning procedure to each.
From the total of 64 patterns, Npat randomly chosen patterns have
been learned, then the remaining patterns have been presented to
the net. In total N, such inputs have been correctly classified and
G = N;/N — Npatt has been calculated. A random guess corresponds
to a value of G = 0.5.

procedure to each. For thermalization, we used 106 Monte Carlo (MC) steps,
followed by 10* MC steps between each sample taken.

It is pretty clear that our learning procedure generates networks with
good generalization ability for Boolean functions chosen at low temperature.
For example, we see that we have roughly 80% success for J = —0.8 and
Npare = 32. At these temperatures, the regular (parity) structure breaks into
some large clusters requiring only a few additional hidden planes, as seen in
figure 5. Presenting a few points from each cluster will create the desired
architecture and the system will still be “predictable.” However, it is clear
that the generalization ability decreases drastically at higher temperature as
the patterns become less correlated. In large networks, this sudden deterio-
ration is triggered by a second-order phase transition of the underlying Ising
model. Moreover, we have observed also a reduction in the average number
of hidden units < N, > needed to learn the task as |J| is increased, as shown
by figure 5.

240 Learning by Minimizing Resources

20
(]

=

[=

= 15

c

[

-]

=l

T

- 101

o

)

(4]

2

[

S 51

2

>

<

0 T T T T T T
0 10 20 30 40 50 60 70

Number of Learned Patterns

Figure 5: Average number of hidden units constructed by the greedy
alogorithm in order to learn the same examples as in figure 4.

5. Conclusion

The main message of this paper is the following: since learning cannot be
a generically hard optimization problem, one has to think about learning in
a much broader context. Instead of trying to load a given task into a given
architecture, as done in other approaches [1-3], we try to synthetize a mini-
mal network in order to learn fast and obtain good generalization properties.
We have shown that it is possible to define learning procedures that will
find, in polynomial time, networks that have good generalization properties
for “regular” tasks (when the patterns to be learned are correlated). Us-
ing the notion of regular partitionings, we have presented one such learning
procedure, although many more variants are possible.

One obvious deficiency of our actual implementation is that the amount of
computation necessary to find a network increases as the number of possible
input patterns N = 2¥ and not only with the actual number of patterns to be
learned Npage, which in most practical problems is much smaller. As Npage/N
decreases, so does the efficiency of our greedy algorithm. It nevertheless
remains polynomial as long as this fraction is finite. Obviously, we now need
an algorithm that scales as N,y in order to attack some real world pattern
recognition tasks. Only then could one possibly fulfill some of the ambitious
claims made recently.

Note added. After submission of this paper for publication, we ob-
tained a preprint of an independent work by M. Mézard and J.P. Nadal (ENS
preprint, 1989) adopting the same philosophy of constructing a network dur-

P&l Rujén and Mario Marchand 241

ing learning. Their algorithm is quite different from ours (for example, they
might need to construct several layers of hidden units before the projection
of the task on the last hidden layer is linearly separable) but their results
concerning generalization ability are similar to ours. Their algorithm has the
advantage, however, of depending mainly on the number of actual examples.

References

[1] D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing,
Vols. 1, 2 (Bradford Books, MIT Press, Cambridge, 1986).

[2] M.L. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry (MIT Press, Cambridge, 1969).

[3] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Nature, 323 (1986) 533~
536.

[4] S. Judd, Proceedings of the IEEE First Conference on Neural Networks,
Vol. II, San Diego, IEEE Cat. No. 87TH0191-7 (IEEE, 1987) 685-692.

[5] J. Denker, D. Schwartz, B. Wittner, S. Solla, J. Hopfield, R. Howard, and
L. Jackel, Complex Systems, 1 (1987) 877-922.

[6] G. Tesauro and B. Janssens, Complex Systems, 2 (1988) 39-44.
[7] W.V. Quine, American Mathematical Monthly, 62 (1955) 627-631.
[8] E.J. McCluskey Jr, Bell System Technical Journal, 35 (1956) 1417-1444.

[9] K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical
Physics (Springer-Verlag, Heidelberg, 1988).

