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Abstract. The original lattice gas automaton model requires a den­
sity-dependent rescaling of time, viscosity, and pressure in order to
obtain the Navier-Stokes equation. Also, the corresponding equation­
of-state contains an unphysical velocity dependence. We show that an
extension of this model which includ es six additional par ticles with a
new speed overcomes both problems to a large extent. The new model
considerably extends the ran ge of allowed Reynolds numb er.

1. Introduction

It has been shown theoretically and numerically by Fris ch , Hasslacher, and
Pomeau [1] and others [2-4] that the lattice gas or cellular automaton (CA) is
an effective numerical technique for solving Navier-Stokes equation and many
other types of partial differ ential equations. The important properties of the
local interaction between lattice gas particles and efficient memory utilization
make the lattice gas an ideal method for massively parallel compute rs .

Most of the recent lattice gas studies of two-dimensional hydrodyn amic
problems are based on a hexagonal lattice in which the stress tensor is
isotropic up to fourth order in the sp eed. Du e to both the discret eness
of the lattice and the limited range of velociti es , the lattice gas model is not
Galilean-invariant. The limitation of pr evious models to a single, nonzero
speed causes two problems.

The first problem is that g(n), the coefficient of the convective term
in the Navier-Stokes momentum equation, is not equal to 1, as it should
be in a physical system. This problem can be overcome by a density­
dependent rescaling of time, viscosity, and pr essure. This rescaling decreases
the Reynolds number, requiring additional computational time and sto rage.

The second problem is that the equation-of-state depends on the macro­
scopic speed in the form P = Po(n ,T) +PI (n, T)u2

. Here n is the particle
density, T is the temperature, and u is the field speed. Recently it has been
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(2.1)

demonstrated that a nonzero value of PI in the equation-of-state can cause
unphysical oscillations in kinetic energy decay [5J. All the previous mod­
els have PI directly proportional to g(n). Thus PI = 0 implies g(n) = O.
This means that one cannot overcome these two problems simultaneously for
previous models.

In this paper, we present one type of multispeed, multimass lattice gas
model which allows g(n) = 1 and PI = 0 simultaneously. This model is an
extension of the hexagonal lattice in two dimensions .

2. A general multispeed model

We consider, in general, N types of particles with different speed and mass.
The spatial lattice is triangular. Many particles with different speeds can
occupy the same point at the same time. When the particles occupy the
same site, a momentum-conserving collision can occur and change the particle
directions and speeds. Examples of such scatterings are shown in figure 1. We
as:~iUme N ;::: 3. Let mIT be the masses of particles, e: the particle velocity,
and t:~ the kinetic energy for type a particles; t:~ = 1/2 1e';; 12

• a denotes
the type of particle, 1 ~ a ~ N-1, and a indicates the velocity directions.
1 ~ a :S 6 for hexagonal lattices. a = 0 indicates the rest particles. We have
e: = Ie" I(cos 2~a ,sin 2~a); here Ie"I is the speed of the a particles. Thus we
now consider a lattice gas model with more than two speeds.

Three kinds of collisions are allowed. The first kind of collision includes all
collisions between the same type of particles. We may identify these collisions
by the notation of 2R, 2L, 38, and so on, used by Wolfram [6J . The second
kind of collision includes collisions between different types of particles, but
conserves the number of each type of particle. We can design more than
three body collisions. The third type of collision rules allows a change of the
number of each type of particle. All collisions can conserve mass, momentum,
and energy.

Let the Boolean field S: (x, t) be the particle number of the a type particle
at site x, and moment t, with velocity e:. f: =< S: > is the ensemble aver ­
aged particle distribution. The kinetic equation for the particle distribution
f: may be chosen to be

af: +e" . \1 po = f!"at a J a a'

where n~ represents the change rate of f: due to collisions.
We define the macroscopic mass density, n, fluid momentum field, nil,

and particle internal energy ne by the following equations:

""' mIT po if' = nilL-t J a a ,
a,"

(2.2)

(2.3)
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( a )

(b )

( c )

Figure 1: Some collision rules for the 13-bit lattice gas model. T he
length of the arrows is proportional to speed. Speed one particles
have a unit mass. Speed two particles have 1/2 unit mass. The left
side refers to the states before a collision. The right side refers to
the states after the collision. (a) describes collisions be tween same
type particles, (b ) describes collisions between different types, and (c)
shows collisions which change the number of each type of particle .

I.:m" f: (e';; - it ) . (e';; - it ) = ne .
a,(J

We may define the temperature T of the lattice gas as

(2.4)

(2.5)

where i is the number of degrees of freedom and kB is the Boltzmann constant.
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The conservation of mass, momentum, and energy require the following:

a,"
""' m"n"e: = 0L.-J aa ,
a,"

a,"
(2.6)

In order to obtain the hydrodynamic equation, we assume the local col­
hsions cause the system to approach the local thermodynamic equilibrium
state. According to the Chapman-Enskog expansion method, the equilib­
rium state corresponds to the zero order of collision term in kinetic equation
(2.1), i.e, n~ (O) = O. This leads to the Fermi-Dirac equilibrium distribution

f"(0) = 1 (2 7)
a 1 + exp [m"(a + ,8e'~ . it + I€~)]' .

where a, ,8, and I are Lagrange multipliers which are determined by the
definitions (2.2), (2.3), and (2.4).

Taking moments of (2.1), we obtain the following continuity, momentum,
and energy equations:

an _
at + V' . nu = 0,

anit V'. n = 0at + ,

a(m) (_) _ pA ,,_
~ + V' . nw + V'. q + : v tz = 0,

(2.8)

(2.9)

(2.10)

where n is the symmetric tensor of order 2, IT"/3 = La ,,, m" !::(e':),,(e':)/3, if
is the heat flux, (ij)" = La,,, m"I:! (e': - it)2(e': - it)", and P is the pressure

tensor, P"/3 = La,,, m" i:«: - it),,(e': - itk
To obtain the solutions for n, if, and P, we expand 1:(0) to third order

in speed, assuming litl ~ Cmin, and expand a = ao + al u2,,8 = ,80 + ,81 u2,
and I = 10 + IIu2

. Here Cmin is the minimum nonzero "light" speed. T he
velocity expansion of 1:(0) then has the form

lau(O) da" - da"(l - da")[m" ,80e: . it +m" (al +111e:
2

1)u2
]

+ ~~ (1 - d~)(l - 2d~)m"2,802(e: . it)2

d~ (1 - d~)m",81 (e: . it)u2

+ d~(1 - d~)(l- 2d~)m"2,80(al +Ille:12 )u2

~d~(1- d~)(l - 6d~ + 6d~2)m"3,803(e: . it)3 + . . " (2.11)

where d~ is the equilibrium particle distribution when it = 0,

(2.12)
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Because d~ does not depend on a, we can simplify d~ = du and c~ = cu'
T he coefficients /30 ' /31> a I, and 11 in equations (2.11) and (2.12) are functions
of nand e which will be det ermined from the definitions of (2.2), (2.3) , and
(2.4).

For the models in which the rest particle does not have the internal energy,
we can obtain

(2.13)

where o ",{3 is the Kronecker symbol , g(n, c) is the coefficient of the convective
te rm ,

(2.14)

and

(2.15)

where M is the number of distinct velocity directions and D is the space
dimension,

and
n

PI = 2'(1 - g(n, c)).

(2.16)

(2.17)

In equat ion (2.17), note that PI = 0 when g(n , c) = 1. This very desirable
coincidence is the direct result of including an addit ional speed in the mod el.

Equation (2.16) is the equa t ion-of-state for the ideal gas .
Up to O(u2

) , the heat flux vector can be writ ten

(2.18)

_ L" m" d,,(I-d,,)Ic"I'
where h(n, c) - 2L"m"d,,(I-d,,)Ic"\2' - 2.

Note that FHP-I and FHP-II models are degenerat e cases of equations
(2.14) and (2.16) . After simple algebra, we obtain g(n, c) = ~:::~ and c = ~

for FHP-I, and g(n, c) = ~~~~~~l and c = ¥for FHP-II. These resu lts agree
with reference [9].

Now we consider the isothermal incompressible fluid limi t in the above
multispeed models. We want to recover th e Navier-Stokes equation with no
unphysical te rms at some fixed temp eratures. Note that if e and n both are
constant, the energy equation is automatically satisfied. We know that mass
density n and energy c are defined by (2.2) and (2.4). T hus, for a given mass
density, we can vary the temperature by vary ing the ratios of different types
of particle to mass density k" = du/n . T he temp erature is det ermined by
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these ratios . The quantities, d", we consider here are the equilibrium values,
determined by the equation (2.12).

If all the particles are in statistical equilibrium, the collisions between
the different types of particles should satisfy the detailed balance condit ion.
After eliminating 0:0 and 10 in (2.12), we have

(2.19)

which is required by the principle of the detailed balance. d; ~, x =
mi«~ <j)' Y = m.«~ <k)' and z = ~)<j~<k + <i~<J Note here we have N + 1
variables but only N equations. The internal energy is still a free parameter.
We may add the equation of g(n, t) = 1, or equivalently, PI = 0 and ask
whether physical solutions exist for these equations. The physical solutions
require the conditions l~d" ~ 0 and t m ar ~ t ~ O. Here (J" varies from 0 to
N-l and t m ar is determined by the model geometry. For the physical solu t ion
of equations , we may write d" = d,,(n) and t = t(n) . We show later that
physical solutions exist.

Because the lattice gas model has density fluct uations, we cannot exactly
satisfy the equation g(n, t ) = 1. Instead, we can write down the velocity
dependence of n = no + nl u2 and t = to + tlu2

• Consequently we have
g(n,t ) = 1 + O(u2

) and PI = O(u2
) . One can show that these u2 corrections

contribute terms of order u4 to the Navier-Stokes equation. Hence the order
of accuracy of the Navier-Stokes equation is unchanged by corrections of
order u2 in the density and internal energy.

3 . A simple example: The three-speed model

To illustrate our theoretical results, we examine the three-speed, mul ti mas s
model. The particles have speeds 0, 1, and 2 and masses 3/2, 1, and 1/2
respectively. The collisions between different types particles are given by
figure 1. Up to the second order of litl,we obtain the equilibrium distributions
do, dl , and d2 and the energy e as a function of den sity n . We have four
variables from the four equations,

3
"ido +6dl +3d2 = n ,

3dl +6d2 = ne,

(1 - dl ) 2 = (1 - do)( 1 - d2 ) ,

dl do d2

nd l(1 - dd(1- 2dl ) + 2d2(1 - d2)(1 - 2d2 )

= 12[dl(1 - dl ) + d2(1 - d2 )j2. (3.1)

In figure 2, we show the numerical solution of do, dl , and d2 when n :=; 2.5.
Other allowed physical solutions appear for 3 :=; n :=; 4.5 and 7 :=; n :=; 10.5.
For other values of n, some d, becomes unphysically negative.
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Figure 2: E(n) plots for 9 = 0.9 (dash), 1.0 (solid), 1.2 (dot), 1.5 (chain
dash), and 2.0 (chain dot) . This figure illustrates the range of 9 for
which physical solutions exist .

In figure 3, the solid line shows those values of t and n for which 9 = 1.
Physical solutions exist all along this line. We also plot physically allowed
t(n) for other values of g. T here are two reasons to be interested in the
dependence of the solution of g. First , one would like the t (n) to be slowly
vary ing with g , so that small density fluctuat ions cause sm all changes in g.
We see that this is true. Second, we could carry out the usual g-scal ing
of time, viscosity, and pressure and obtain a corresponding change in the
Reynolds number, Re = qul]« . Here u is a characteristic velocity, 1 is a
characteristic length, and v is the viscosity. In previous calculations, 9 is
about 1/3. Having 9 = 1 allows at least a factor of 3 higher Reynolds
nu mb er. Let ting 9 be higher than one and scaling allows higher Reyn olds
numbers if the viscosity is un changed. It is expecte d that the viscosity can
be less in multi speed mod els be caus e more collisions are allowed.

In figure 4, we give the numerical results of this 13-bit model for the
energy decay in the Kolmogorov flow compared with the FHP-I model [5].
We find that the oscillation in kine tic energy decay greatly decreases be cause
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Figure 3: Equilibrium distributions for speed zero (solid), speed one
(dash), and speed two (dot , right vertical coordinate) when g(n , E) =
1. This figure demonstrates the existence of physical solutions when
g , the coefficient of the iI · 'Vii term, is unity.

PI equals to zero in the present model. The internal energy decay rate is
wit hin three percent of the theoreti cal prediction.

4. Conclusions

The multispeed lattice gas automaton model is the simple extension of FHP
lat ti ce gas mod el by adding mor e speeds. This method leads to thermohy­
dr odynamic equations. One impor tant result of the additio nal flexibility is
that we can have g(n} = 1 and PI = 0 to second-order accuracy in the speed
u . The expense of adding more bits to the model is offset by the increase
in the allowed range of Reyn olds number. The extens ion of this work to
three-dimensional hydrodynamics is straightforward.
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Figure 4: The streamwise kinetic energy for Kolmogor ov flow. Uo =
0.3 sin(y). The solid curve is the 13-bit result with n = 2.0 and
f = 0.25. The dashed curve is the 6-bit result when n = 1.8 and e =
0.5. The unphysical oscillation presented in the 6-bit resul t is reduced
significantly in the 13-bit result because the u2 term in th e pressure
has been eliminated .
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