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Abstract.
In recent years, cellular automata eCA) have been found capable

of producing complex behavior. Some examples of cellular automata
show remarkably regular behavior on finite configurations. On simple
initial configurations, the generated pattern might be fractal or self
similar. In this paper, regular evolution of totalistic linear CA is
investigated. In particular, it is shown that additive CA will always
produce a highly regular behavior on an arbitrary finite configuration
as the initial seed. Totalistic CA with binary function code of the
form on12mon are also studied. The results are extended to trellis
automata.

1. Introduction

Recently, cellular automata (CA) have been intensively studied as models of
complex natural systems containing large numbers of simple identical com
ponents with local interactions [9,14J. They consist of an array ot'sites or
cells, each with a finite set of possible states. The states of the cells evolve
synchronously in discrete time steps according to identical rules. A cellular
automaton is given by its local rule (CA rule), which specifies how the state
of a cell is determined by the previous states of the cells in a neighborhood
around it. The local rule specifies a deterministic global function on the
configurations of the system.

An interesting application of CA has been in modeling chaotic behavior,
as they provide a large class of examples of apparent chaos. However, there
are some other examples of CA which retain a great deal of regularity that
become mathematically tractable, and it is possible to an alyze their long
term behavior. Based on statistically observed long -term behavior of CA ,
Wolfram [15J suggested a classification of cellular automata. He observed
that cellular automata appear to fall into four classes. For a formal definition
of similar classes, see reference [5]. The majority of the examples of CA seems
to belong to the third class in which the evolution leads to a chaotic pattern.
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They corre spond to the physical systems with so called "st range attractors ."
However , not all the CAs in this class are equally chaotic as already observed
in [1 4]. Interestingly, some of them can generate self-similar figures or fractals
when th e initial seed is a short finite configuration, and others can produce
fractal pat tern s for arbitrary finite initial configurations. Wilson has studied
the generation of fractals by additive CA, that have mod 2 addit ion (XOR)
local rule, when the initial seed is single 1 and has computed the fractal
dimensions for several of such cases [10- 13]. A detailed study of the evolution
patterns of XOR trellis automaton of radius 1 has been made in [2].

We will be interested in analyzing the regular behavior, which is self
similar to some extent , of CA when initial seeds are random finit e config
urations . We will discuss the simulat ion results and restrict ourselves to
totalisti c one-dimensional CA. In section 4, we prove that additive (XOR)
CA will always show a highly regular behavior on an arbitrary finite config
ur ation as the initial seed. In section 5 we study other CA with fract al-like
behavior , in particular the totalistic CA with arbitrary radius T and binary
loca l function of the form on1 2mon, n ~ 1, m ~ (Or ~ 1, 2(m + n) = 2T + 2,
wher e (Or is some constant depending on T . Here, we have a proof only for
finite seeds of certain special form. However, we conjecture that these CA
show regular behavior for all finite configurations as initial seeds. In a similar
way, we also study totalistic trellis automata in section 6. Note that every
CA or trellis automaton can be simulated by a totalistic one [1].

2. Preliminaries

Formally a cellular automaton is a 3-tuple A = (S, T, I) , where S is th e finite
set of states, T is the neighborhood radius, and f is the local function . A CA
can be viewed as a linear biinfinite array of cells. The neighborhood of the
CA is the sequence of relative positions {- r, -T+ 1, . .. , -1, 0,1, . .. ,T - 1, T}.
In other words, t he neighborhood of a cell consists of the cell itself and T of
its neighbors at each side. The local function f : S2r+1 --+ S is a complete
function which computes the next state of a cell from the current states of
all cells in its neighborhood.

A configurati on c is a function c : Z --+ S, which assigns a state in S to
each cell of the CA. The set of all configurat ions is denoted by SZ. The local
function f is extended to the global function Gf : SZ --+ SZ of the set of
configurations int o itself. By definition , for CI,C2 E SZ, Gf(CI) = C2 if and
only if

for all I in Z.
The function Gf descr ibes the dynamic behavior of th e CA: the CA moves

from th e configur at ion c at t ime t to the configurat ion Gf(c) at t ime t + 1.
The st at e of a cell depends only on the states of the cells in its neighbor
hood. Noti ce th at besides being locally defined, the global function Gf is



Fractal and Recurrent Behavior of Cellular A utomata 255

total and translation-invariant . The sequence c, Gf(c),G} (c), .. . describ es
the evolution of the CA on initial configuration (or seed) c.

Frequently, a state ii with the property f( ii,ii, . . .,ii) = ii is disti nguished
and called the quiescent st ate. In a CA, there may be more than one state
with the above property, but at most one of them is distinguished as the
quiescent state.

A configuration c is called to be a finite configuration if finit ely many cells
are in nonquiescent states.

A CA rule is called totalistic if the states are integers an d the next st ate of
a cell dep ends only upon the numerical sum of the states of it s neighbors . Let
k and r be the number of states and the neighborhood radius, resp ecti vely,
of a totalistic CA. If k = 2, the fun ction code of th e CA can be then denoted
by a binary number

b2r+1 . .• b2b1 bo,

for b, E {0,1},0::; i ::; 21'+ 1, and it means that

f(s -Tl'" , so,· ·· ,sr) = bi, if S_r + ... + So+ ... + Sr = i.

T hese binary function codes are often converted into decimal numbers for
convenience. For example, for r = 1, the code 10 denotes the CA in which
the next state of a cell is the XOR (exclusive-or) of the values of its neighbors.
In this paper, we will focus only on totalistic CA with st at es {O, I} , the state
"0" being the quiescent st at e.

Trellis autom ata are quite similar to CA and we will informally define
them. The time-space evolution of a trellis automaton of some neighborhood
radius r is shown in figure la. In figure 1b, the first five st eps of evolution
of the XOR trellis automaton for radius 1 is shown when the init ial seed is
a single 1. Not e that the alternate rows are disp laced by half a unit with
respect to each other. The initial configuration resides on the topmost row.
In any time step, the state of a cell on a row is determined by its 21'neighbors
on the row above it, with r neighbors on its each side. Since, this is a space
time evolution pattern, only one row is active at a time. Notice tha t only
the case when r = 1 is referred to as a trellis in literature [3,4,7] and we have
generalized this definition to arbitrary neighborhood radius. Also note that ,
for r = 1, trellis automata are equivalent to one-way CA in computational
power [3].

A self-similar figure is one in which a part, aft er prope r rescaling, re
sembles the whole . In other words, the figure contains the copies of its elf.
Self-similar figures are often called fractals. Mendlebrot [8] has given many
examples of such figures. Fractals can be generated using an initiator and a
generator. A dr awing rule recursively describ es how to generate the fractal
as the limiting case of the drawing pro cess which is started with the initiator.

3. Classificat ion of CA

Wolfram characterized some qualitative features of cellul ar automaton evo
lution [1 5] and gave empirical evidence for the existence of four basic classes
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Figure 1: (a) Time-space diagram of a trellis automaton; (b) evolution
of XOR trellis for r = 1.

of behavior in CA (the example codes in the parentheses are out of the 32
possible legal totalistic rules with k = 2 and r = 2):

1. Evolution leads to a homogenous state (codes 0, 4, 16, 32, 36, 48, 54,
60, and 62).

2. Evolution leads to a set of separated simple stable or periodic structures
(codes 8, 24, 40, 56, and 58).

3. Evolution leads to a chaotic pattern (codes 2, 6, 10, 12, 14, 18, 22, 26,
28, 30, 34, 38, 42, 44, 46, and 50).

4. Evolution lead s to complex localized structures, sometimes long lived
(codes 20 and 52).

The above classification is based on empirical obser vations of the pattern of
configurations generated by evolut ion , when a CA is started with a random
initial configuration. For a more formal definition of similar classification
see [5], which agrees with Wolfram's classification in all examples given above.

When the initial configurations are restricted to random finite configura
tions (it does not make sense to invest igate fractal behavior of CA on infinite
configurations ), the above classification allows further refinement. It is well
known that some CA in Class 3 show more regular behavior, and some may
even generate fractal-like patterns. We will investigate this kind of regular
behavior of Class-3 CA and give mathematical justification for some cases.
Based on empirical evidence, we propose that when restricted to finite con
figurations, Class 3 could be subdivided in the following three types:

Subclass 1. Evolution leads to a high ly regular and recurrent (almost frac
tal) pattern (codes -12, 30, 42). On small initial configurations, the
pattern is pure fractal with computable fractal dimens ion.
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Subclass 2. For random initial configurations, evolutio n leads to a chaotic
pattern , except on short initial configurations for which the pat tern is
fractal or almost fractal (codes 2, 6, 10, 14, 34, 38) .

Subclass 3 . Evolution leads to a chaotic pa t te rn (codes 18, 22, 26, 28, 44,
46, 50) .

By a pure fractal, we mean tha t the evolut ion can be characterized by a
recursive formula, which essent ially will correspond to Mend lebrot's dr awing
rule. Pieces of the evolution pattern, when appropr iately magnified, are same
as the whole pattern. One can compute the fractal dimension of the pattern
from the recursive formula. Note that because of the presence of Subclass 2,
th e CA form a rather continuous spectrum when classified on the basis of
their capability to generate fra ctals.

4. Fractal generat ion by CA with additive rules

In this paper, we are mainly interested in CA that exhibit regular (fract al)
behavior. In this section, we will study the CA with addit ive (XOR) rules
that are are most tractable to theoretical analysis . For r = 2, such rule is
code 42, but we will analyze th e XOR rules for arbit ra ry r. We will prove
that for any arbitrary r, the CA with XOR rule always generates a regular
pattern, namely when started on a st ring w whose length n is a power of
2 (any arbitrary initial finit e string can be made to have a length which is
a power of 2 by appending appropriate number of as) , afte r n time steps
the configuration is W

2r+1. The XOR code for radius r is 2(4r+1 - 1)/3.
In figure 2a, two example evolution patterns for r = 1, code 10 are shown.
The pat tern on the left-hand side is generated by th e simp lest initial seed
consisting of single 1, and the pattern on th e right -hand side has a random
finite configuration as the initial seed . Notice the regular appeara nce of
triangular clearings in th e patterns. Similarly, in figure 2b the evolution of
r = 2, code 42 is shown, the left pattern generated by the seed with single l.
In the right-hand side pattern, which is generated on a random seed, only
the first level of the recurrence is clearl y visible.

Lemma 1. Let f be th e XOR CA rule for radius r . Th en, when started on
the configuration consisting of a single 1, for any n where n is a power of 2,
we obtain after n time steps the configuration which is 2r + 1 repetitions of
the string formed by a 1 followed by n -lOs, i.e., Gj (l) = (lon-1)2r+1 .

The above lemma, which can be proved by induction , expla ins why XOR
CAs generate perfect fractal patterns on an initi al seed containing a single l.
The following lemma is the well-known speed-up theorem for linear CA stated
in our terminology.

Lemma 2. Let f be a CA rule for radiu s r. Th en th ere exis ts anoth er CA
rule 9 for radius rn , n ~ 1, such that n time steps of Gf are sim ulated in one
time step ofGg i.e, Gj(O:) = Gg(o:) where 0: is an arbitrary con figurat ion.
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Figure 2: Evolution of (a) code 10, r = 1, and (b) code 42, r = 2.
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We will denote 9 by j (n), if it simulates j for n st eps. An interesting
question that can be asked is how easy is it to compute j(n) for an arbitrary
CA rule j and an arbit rary n . In general, it may require exponential effort
in n , bu t in the case of XOR CA rules, due to the prop erties of th e XOR
fun ction, one can come up with a shorthan d form ula. The following lemma
tells us how, for the case of XOR CA rules, this speed-up rule can be com
puted if we know the fractal pattern gener ated by the CA on an ini t ial seed
containing a single 1 at cell O. More precisely, it states that if we know the
configuration in the pattern after nth t ime step, then we can write down j(n) .

We will denote the state of cell i afte r n time steps by (Gj(l ));, where it is
assumed that cell 0 contains 1 and all other cells contain 0 at the beginning.

Lem m a 3. Let j be the XOR CA rule for radius r. Then, for all n ~ 1, the
speed -up CA rule j(n) is given by

where k = rn and j tS, 1 :s; t :s; m , are exact ly those values of i for which
(Gj (l)); = 1.

Proof. The proof follows by induction on n. For the basis (n = 1), we have
(G}( l)); = 1 for - r :s; i :s; r . Hence,

S_r EEl . . . EEl So EEl . . . EEl Sr

j (s- r, "" So, .. . ,Sr)

Clearly, j is the speed-up of itse lf for one time step. Assume that the hy
pothesis holds for some n ~ 1. Consider the speed-up of j for n + 1 time
steps. Let k = r (n + 1). Now,

j (n+l )(Lk ' .. . , Sk)

= j(n) (f(Lk' . . . , Lk+2r) , j(Lk+l " .. , L k+1+2r ) , ' .. , j(Sk-2n' .. ,Sk) )

EEl (Sj _r EEl . . . EEl Sj+r) (by Induct ion Hypothesis) (1)
(Gj( l )) j=O

where, Sj" 1 :s; t :s; m , is a term in the expression

iff Sj, appears odd number of t imes in (1)

iff there are odd numb er of js in (1) such th at (G/ (l) )j = 1 and i, - r :s;
j :s; i. + r

iff (G/(l) )j ,-r EEl .. . EEl (G/ (l ))j, +r = 1
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Figure 3: Proof of theorem 1 for r = 1.
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As an example of the above lemma, for r = 2, n = 4, and therefore k = 8,
we have

Theorem 1. Let f be the XOR CA rule for radius r . Then, for all n , where
n is a power of 2,

G'}(W) = w2r+l

for every finite configuration W of length n (note that W may start or end
with zeros).

Proof. The best way to present the proof is by illustrating it with a diagram.
Consider the case when r = 1. Let W be the initial finite configuration of
length n, where n is some power of 2, shown as AB in figure 3. In the figure,
IAB I = ICDI = ID EI = IEFI = n . After n time steps, the configuration is
C F. Consider three cells a, b, and c, at a distance i not more than n, to the
right of C, D, and E respectively. By lemma 1 and lemma 3,

a = d ffi e ffi ui, = 0 ffi 0 ffi Wi = Wi,

b = e ffi ui, ffi f = 0 ffi Wi ffi 0 = Wi,

c = Wi ffi f ffi 9 = ui, ffi 0 ffi 0 = Wi·

i.e., each of the three cells is in state uu, Therefore, CD = DE = EF = w,
i.e., W repeats itself three times after n time steps.

For the general r, by lemma 1 and lemma 3

2r

j '(n )( ) _ ill ,S-k, .. . , Sk - W S -k+m

i=O
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W

Figure 4: illustration of corollary 1.
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where k = Tn . Let w be the initial finite configuration of length n, where
n is a power of 2, residing in cells 0 to n - 1. Then, after n time steps,
(Gj(W)) -k+in+i, 0 ::; i ::; n - 1, is the exclusive-or of 21' + 1 cell values,
exactly one of which is ui, and the rest are 0 and is therefore equal to ui, for
all values of j such that 0 ::; j ::; 21' . The reader can easily verify this and
see why it implies that Gj(w) will be w2r+l . •

An immediate corollary of the above theorem:

Corollary 1. Let W be a seed that starts and ends with 1, and let 2k - 1 <
Iwi ::; 2k for some k > o. Then, if f is the XOR CA rule for radius 1',

Gnw) = (w02n-lwl?rw

for all n ;:::: k.

As an illustration, see figure 4 for r = 1 and for a random initial seed w.
Corollary 1 explains the appearance of triangular clearings of Os in the evolu 
tion of the CA and the fractal nature of the generated pattern (see figure 2a,b
for r = 1 and l' = 2, respectively) .

5. Fractal generation by other CA

Another CA which generates regular behavior is the one with code 12. The
reason why this CA shows recurrent behavior on seeds of the form (00 + 11)*
is that it simulates XOR trellis automaton for radius 1, under the mapping
00 -t 0,11 -t 1. However, even when the CA is started on an arbitrary
configuration, it seems that it always settles down to a configuration of the
form (00 + 11)* and then generates a regular pattern as the XOR rules for
trellises always produce regular evolution (see theorem 2 in section 6). In
terms of physics, an arbitrary configuration can be seen as consisting of nice
subwords or "phases" of the form (00+11)* separated by "defects" consisting
of 01 and 10. It can be seen empirically that these two defects do not grow
and mutually annihilate each other. Ultimately, the system settles down to
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a single phase without any defects . In figure 5a, the evolution pattern for
code 12 on a random initial finite configuration is shown. The defects in the
evolut ion, shown in figure 5b, exhibit Class-4 behavior. Another example is
given in figure 5c whose defects, shown in figure 5d, disappear sooner. A
similar observation for phys ical systems was made by Grassberger et al. [6].
The XOR trellis rule is also simulated by code 6 for radius 1, in a similar way.
Code 30 for r = 2, in turn, simulat es code 6 when rest ricted to configurations
of the same form; code 38 for r = 2 simulates XOR CA rule for r = 1
(code 10).

Note that code 12 has the binary form 001100 and for code 30 it is 011110.
Based on empirical observations, we propose the following conjecture.

Conject ure. Every totalistic CA with radius r and binary function code
of the form onI 2mon,n ::::: I ,m::::: e, ::::: 1,2(m + n) = 2r + 2, where f r is a
constant dep ending on r , produces regular behavior for every finite initial
configuration. This behavior shows some initial "defects" which eventually
disappear. Empirical evidence suggests that fl = f2 = 1 and es = 2.

An interesting question is whether it is possible to exploit the regu lar
evolution of Subclass-I CA to compute the state of an arbitrary cell at an
arbitrary time step in a way simpler than to run the CA. The answer to the
question is positive. First of all, note that the evolution of a XOR CA rule
on a configuration with a single 1 is fractal, and therefore it can be specified
by a recursive ru le. Hence, it is possible to compute the value of (Gj(I) )i
in lemma 3 in log n application s of the recursive rule, for any i . It follows
then from the lemma, that we can compute j (n), and hence with an extra
work linear in the length of initial configuration, the state of any cell can
be computed at nth time step . Note that in some cases it is poss ible to
have a closed form formu la to compute (Gj(I ));. For example, XOR trellis
automaton for radius 1 generates on seed "one" the well-known Pascal's
triangle of binomial coefficient s in which an odd coefficient is replaced by 1
an d an even one by O.

In the case of code 12, the situation is different. Here, one has to carry
out the init ial irregular part of the evolution in which the CA settles down
to a configuration of the form (00 + 11)*. Only after this settling down it is
possible to exploit lemma 3.

6. Trellis automata

The results and observatio ns of the previous two sect ions can be extended
to t rellis automata. Like in the case of CA, it is possible to classify trellis
automata int o four classes on the basis of their long-term evolu tion on random
initial configurations (the example codes are for r = 2):

C lass 1. codes 0, 4, 8, 16, 24, 28, 30.

Class 2. code 26.
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Figure 5: Example evolutions of code 12, r = 2 and corresponding
defects (see section 5).
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Class 3 . codes 6, 10, 12, 14, 18, 22.

Class 4. code 20.

Karel Culik and Sim ant Dube

It is interesting to note that code 20, which is in Class 4 for CA, r = 2,
shows Class-4 behavior in the case of trellis automata too. See figure 6a
and figure 6b for the evolution of code 26 and code 20 on random initial
configurations. Note that figure 6a suggests that the evolution of this t rellis
lead s to a set of separated simple stable states or periodic structures, which
is Wolfram's characterization of Class 2. However, for a trellis they might
appear as slanted stripes in the time-space diagram (un like the vertical ones
for CA) .

When the initial configurations are restricted to random finite configura
tions, Clas s 3 can be subdivided in the following three ty pes :

Subclass 1. codes 10, 14.

Subclass 2. codes 6, 12, 18.

Subclass 3 . code 22.

The presence of code 10 in Subclass 1 is expecte d as it is the XOR t rellis
automaton rule (see figure 6c). An example evolution of code 14 is shown in
figure 6d. Note tha t binar y form of code 14 is 01110, which resembles those
of code 12 and code 30 of CA classificat ion. It is possible to generalize th e
conjecture proposed in sectio n 5 to trellis ru les with binar y funct ion codes of
the form on1 2m +1on.

Moreover, we can prove th e following theorem whose proof is along the
same lines as that of theorem 1.

Theorem 2. Let f be the XOR trellis automaton rule for radius r. Then ,
for all n , where n is a power of 2,

G'}(w) = W
2T

where w is any finite configuration of length n .

The above theorem, which explains the regular pattern in figure 6c, leads
immediately to the following corollary, which is analogous to corollary 1.

C orollary 2. Let w be a seed that starts and ends with 1, and let 2k
-

1 <
Iwl :s: 2k for some k > O. Then , if f is the XOR trellis automa ton rule for
radius r,

for all n ~ k.
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(a)

(c)

. 'f4'.~ .
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(d)

Figure 6: Examples of trellis rules for T = 2 (a) code 26, (b) code 20,
(c) code 10, (d) code 14.
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7. Conclusions

We investigated the fractal and recurrent behavior of linear totalistic CA and
of trellis automata. We have proved that XOR (additive mod 2) rules will
always generate a highly regular evolution pattern for every size of neighbor
hood. This regular evolution allows one to compute the value of a cell after
arbitrary number of time steps in a more efficient way than to actually run
the CA. We have convincing empirical evidence and some mathematical ex
pl anation but no proof that the CA and trellis rules with the binary function
code of the form onl2mon, e.g., rule 12 for CA with r :=: 2, give always an
evolution that, after possible initial "defects," stabilizes to a highly regular
pattern. As the defects in the initial part of the evolution show the Class-4
behavior, it might be difficult to prove that they always disappear.
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