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Abstract. Neural networks with continuous local tr ansition func­
tions have been recently used for a variety of applications, especially
in learning tas ks and combinatorial optimization. Previous works have
shown that Lyapunov - or "energy" - funct ions could be derived
for networks of binary element s, thus allowing a rather complete char­
acterization of their dynamics. We show here that it is possible to
write down Lyapunov functions for continuous networks as well. We
then use these functions to provide some results for the dynamical
behavior of such networks. We discuss the link with the binary case
and illust rat e our results with some simulations.

1. Int rodu ction

Work on neural networks can be traced back to the 1940s when McCulloch
and Pitts [24] proposed a model of formal neurons based on binary elements.
In 1982 , Hopfield [19] stressed the analogy between spin glass es and formal
neurons and renewed the interest for those networks. Meanwhile, many re­
sults have been reported which show that networks of continuous elements
can be used in the same framework as binary networks and eventually do
provide bet ter results [5]. In particula r , the recent literature on the so-called
backpropagation algorithm [22] is based on such continuous elements.

In these models, the general question of the dynamics is usually not ad­
dressed. For binary networks, it is assumed that the "result" of the compu­
tation is a fixed point of the dynamics run on the network [19]: Lyapunov
functions provide a tool for studying the dynamics. They allow charact eri­
zation of the limit cycles (us ually fixed point s , see be low) and the transient
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272 Energy Functions in Neural Networks

2.3.1 Continuous state, continuous time

Cohen-Grossberg [4] show that , under the assumptions

Wik = Wki ai(S)::::: 0, (2.9)

function V defined by

V(s) = - .L fa°' bid;(x)dx + 1/2. L Wikdi(Si)dkh)
reeL...n t,k=l. ..n

is a Lyapunov function for the dynamics given in (2.2).
In the Hopfield 's case [19] , the "energy" function (2.10) becomes

[ f( o.)
V (s)=L Jo I/RJ-l(X)dx - 1/2 L wik!(Si)!(Sk)

'& =1. ..n i ,k=l. ..n

L IJ(si)
i=1...n

(2.10)

(2.11)

2.3 .2 Discrete state, discrete time

This is the case for example for perceptrons [25], ad alines [29], and so on .
Lyapunov functions have been proposed for different classes of transition
functions.

If S = {O , I} and the transition function! is a threshold function , i.e.:

{
I ifu >O

!(u) = 0 othe;-wise

it can be shown [9,19] that the mapping V defined by

(2.12)

V(S) = - 1/ 2 L s, L WikSk + L b.s, (2.13)
i = l. ..n k=l. ..n i=l. ..n

is a Lyapunov function for the sequential iteration, if W is a symmetric
mat rix with nonnegat ive diagonal.

In th e parallel iteration case

V [S(t) ] = - L WikSi(t + l)sk(t) + L b;[si(t) +Si(t + 1)] (2.14)
i,k=l. ..n i=l. ..n

is a Lyapunov function [14] under the only condit ion th at W be symmetric.
Those results were extended to other it eration modes (e.g ., block sequen­

tial or random [1 4]) or transition functions: multi threshold [8], majority
[12,14]' posit ive [13,15], cellular [17,18].
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2.3.3 Continuous state, discrete time

This is the case in part icular for linear associative memori es [21], (" Brain­
state-in-the-box") BSB models [11], and mult ilayer networks [28].

In the case of t he BSB model, the dynamics is defined [11] by

{

F if a L WikSk(t) +Si(t) ~ F

Si(t + 1) = a 2~.nWikSk (t ) + Si(t) if l ak:~nnWik Sk (t ) + si(t)1 :S F

- F if a L WikS k(t) +Si(t) :S - F
k=I.. .n

(2.15)

It has been shown [11] that

V(s) = -1 /2 L s; L WikSk
i=I...n k=I...n

(2.16)

is a Lyapunov function for the dynamics defined by (2.15) provided that W
is symmetric and either positive semi-definite or a < 2/ IAmin l, where Amin is
the minimum eigenvalue of W .

This is the only case to our knowledge where a Lyapunov fun ction has
been derived for a discr et e time-continuous st ate model. Note that all the
functions given so far are Lyapunov fun ctions under the requirement that
the connection matrix W be symmetric.

At present , the most pervasive neur al network mod el is the multi layer net­
work trained by the gradient backpropagation rule. It is used as a "one-shot"
decision tool: an input is presented , one "iteration" ru n , an d the updated
state is considered as the output of the system . However , when t he output
is of the same dimensionality as the input (as in tasks of auto-association or
"ident ity mapping" [31]), simulations have shown that performances could
be improved by allowing various it erations [5,6] . It would then be useful to
have the Lyapunov funct ion too l to study the asympto tic behavior of this
model, which we do in the following sections .

3 . Parallel iterations

In the following two sections, we use an au tomata ne twork of n elements .
Each automaton is quasi-linear with a tr ansition fun ction f : R -> R , con­
t inuous, strictly increasing on an int erval S =]a, b[ (a < b) , an d cons tant
outside:

"ix :S a, f(x) = f(a) (3.1)

"ix ~ b, f(x) = f(b)

For example, f could be a truncat ed "sigmoidal" fun ction (figure 1) similar
to those classically used in multilayered networks [7].

As previously, we define the total weighted input to i by

Ai = L WikSk - b, (3.2)
k=I.. .n
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Figure 1: Sigmoid function. The figure shows a quasilinear automa­
ton: s, = f(A;) where f is a sigmoid function f(x) = s[ek x _ 1] /[ek X +
1]. Parameter T = l /k is the "temperature."

and the parallel iteration on the network by

[Si(t +1) = f [Ai(t)] (3.3)

We then have the following theorem.

Theorem 1. Let V be defined by

V [S(t) ] r:. L WikSi(t)Sk(t - 1) - .L [ c f(s)ds
s,k=l. ..n 1=1. ..n

r+ c f(s)ds ]

(3.4)

where c E S is arbitrary.
Then, if W is symmetric, V is a Lyapunov function for the parallel iter­

ation.

Proof. We will prove that V is decreasing along any trajectory.
Let

IltV = V [s(t+ 1)] - V [s(t)] (3.5)

We will show that Ilt V ::::; 0, Vt 2: o.
rAi(t)

. L wiksi(t+1)sk(t)-.L [}c f(s)ds
t,k=l. ..n t= l. ..nc:+ c f(s)ds ]- [. L WikSi(t)Sk(t - 1)

t,k =l. ..n

. L [l A i
(t - l ) f(s)ds +r: f(s)ds ]]

t=l. ..n
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Assuming W is symmetric, we then have

i ,k=l...nr: r:.L [ c f (s)ds - c f (s)dsJ
t =1. ..n

From (3.3), it follows:

6.tV = L wikf[Ai(t-1)J[sk(t+1) -sdt-1)]
i ,k=l. ..n

i="f}i~:t(~:;) f(s)ds J

and thus from (3.2):

6 tV L f[Ai(t - l )J[Ai(t + 1) - Ai(t - l)J
i =l. ..n

c:- L [ . f(s)dsJ
i=l...n A. (t -l)

L f[Ai(t - l )J[Ai(t + 1) - Ai(t - l)J
i=l...n

- [Ai(t + 1) - Ai(t - l )J f (di)

=? 6 tV = L [Ai(t + 1) - A;(t - l)J[f( Ai(t - 1)) - f( di)J
i=l. ..n

where d; E JAi(t - 1), Ai(t +1)[ (from the mean value theore m).
Since f is increasing, it follows th at 6 t V ::; o. •
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(3.6)

[Ai(t + 1) - Ai(t - l )Jf[d;]

Remark 1. Equation (3.6) could also be obtained from the limi t to the
multithreshold case of the threshold expression [16], by makin g use of a
morphism between the two cases.

Theorem 2. Let W be symmetric and s(O), . . . , s(T - 1) be a limi t cycle of
period T. Tben T ::; 2.

Proof. To prove theorem 2, we just have to show that s(t) = s(t+ 2), Vt ~ O.
From theorem 1, we have

V [s(O) J~ V [s(l)J~ .. . ~ V [s(T - l )J ~ V [s (T) J= V [s(O)J
=? 6 t V = 0, Vt ~ 0

Then, from (3.6) it follows;

[Ai(t +1) - A;(t - l) Jf[Ai(t - l)J

c:f( s)ds
A;(t- l)
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with

d, E JAi(t - l ), Ai(t + 1)[

C ase 1. Ai(t - 1) :S a
Then (3.1) ~ Si(t) = f[Ai(t - 1)] = f (a)
If Ai(t + 1) :S a, then Si(t + 2) = f(a ) = Si(t), which ends the proof.
If Ai(t + 1) > a, then Ai(t + 1) - Ai(t - 1) -=I 0 and:r: ja r:f( s)ds = f (s)ds + f (s )ds

Ai(t-I) Ai(t-I) a

f(a )[a - Ai(t - 1)] + [Ai(t - 1) - a]f(di)

where d; E ]a, Ai(t + 1)[

~ [Ai(t + 1) - a][f(d;) - f(a) ]= 0

which is impossible from the st rict monotonicity of f.
C ase 2. a < Ai(t - 1) < b
If Ai(t + 1) E S then:

either Ai(t - 1) = Ai(t + 1) ~ Si(t) = Si(t +2), which ends the proof

or Ai(t - 1) -=I Ai(t + 1) ~ f [Ai(t - 1)] = f( di) , which is impo ssible.

The cases Ai(t + 1) :S a or Ai(t + 1) 2: b are impo ssible (the argument goes
similarly to case 1).

C as e 3.A i (t - 1) 2: b The proof is similar to case 1.

C or ollary 1. In the case where c = 0 and f (O) = 0, we have

V [s(t )] = - 'E WikSi(t + l) sk(t) + 'E bi [Si(t ) + Si(t + 1)] (3.7)
i,k =l. ..n i=l .. .n

['i tt) ['i(t+I)
+ .'E [Jo f -I(y)dy + Jo r I(y)dy]

t =l ...n

Proof.

(3.8)V [s (t )] r:. 'E Wik Si(t )sk(t-1) -'E [ c f(s)ds
t, k=l. ..n 1=1. ..n

r+ c f (s )ds]

r:.'E [ 'E WikSk(t - l )] si(t) - . 'E [ c f(s )ds
.,t = l. ..n k=l .. .n t=l. ..n

f A i(t)
+ l, f(s )dsJ

Since f is continuous, st rict ly increasing on S, it has an inverse f- I and we
have, Ve,d ES:

l d j,f(d)
[d - e][f(d) - f(e) ]= c f(x)dx - [d - e]f (e) + r I(y)dy

ftc)
- e[J(d) -f(e)]
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l d I f (d)
=> f(x)dx + r 1(y)dy = df(d) - cf(c)

c f tc)
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=> V [s(t )]

=> V [s (t) ]

['itt)L si(t )[A;(t - 1) + bi]+ L [if r 1 (y)dy
i=l...n i = 1...n ftc)

["i(tH)
+ if r 1 (y)dy] - L [si(t)Ai(t - 1)

f tc) i=l.. .n

+ Si(t + l )Ai(t ) - 2cf(c)]

- L WikSi(t + l)sk(t)
i ,k= l. ..n

+ L b;[Si(t) +Si(t +1)] + 2ncf (c)
i =l. ..n

["itt) ['i (tH )
+ L [i f r 1

(y)dy + if r 1
(y)dy]

i= l...n ft c) ft c)

Note that (3.7) is similar to the expression given by Hopfield for the sequential
case (2.11): our result is thus an extension of Hopfield's . Equation (3.7) is
also quite similar to the Lyapu nov function foun d for the discr et e state space
case:

V [S(t)] = - L Wik Si(t + l)sk(t) + L b;[Si(t ) + Si(t + 1)] (3.9)
i,k =l. ..n i =l. ..n

This is related to the fact that continuous state automata can be shown to
behave in the average in the same way as binary automata with noise [1,7,30].

Theorem 3. Let W be symmetric and!::!.V,!::!.o be defined by:

!::!.V = max{V [s(t)]/s(O) E R} - min{V[s(t)]/s(O) E R}

L"..o = min{l!::!.lVI/s(O) E R , s(l ) f:. s(3)}

then, if f( R) is finite or!::!.o is nonzero, the transient length L ofany trajectory
is either 0 or 1 or bounded by

L < !::!'V/L"..o (3.10)

Proof. Sup pose L 2: 2 and let s(O), s(l), . . . ,s(L ), s(L + 1), s(L), s(L + 1), . ..
be a t ra jectory.

Then s(l ) f:. s(3); hence L".. lV f:. O.
T hus L"..o f:. 0 (either by using that assumption or as a min of nonzero

!::!.1Von a finite set ).

V [s (t +1 )] V [s(t +1)] - V [s(t)]+V [s(t) ]- V [s(t - 1)]
+ ...+V [s(l) ]

L (V [s(k + 1)] - V[s(k )]) + V [s(l) ]

L L"..kV +V[s(l)]
k=l.....t
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Vt < L , s(t + 2) =I- s(t )

=? :Ji(l , .. . ,n) : s(t +2) =I- s(t )

=? Ai(t + 1) =I- Ai(t -1)

DotV V [s(t +1)]- V [s(t )]
V [x(2)]- V [x (l )]
Doo with x(O ) = s(t - 1)

=? Vt < L, V[s(t +1)] :::; - (t + l)Doo+V [s(l) ]

=? min V :::; V [s(t + 1)] :::; -(t + l )Doo+max V

=? min V :::; V [s(t + 1)] :::; -(L - 1 + l)Doo +max V

which ends th e proof.•

Corollary 2. Under the assumptions of theorem 3 and if in addi tion f is a
multithreshold function:

f(u ) = L Qk' 1jok,o.+d(u)
k =O...p

where Q o < . . . < Qk-l < Qk < Qk+! < . . . < Q p and -(X) = 00 < 01 < . .. <
Ok-l < Ok < Ok+! < . . . < Op < Op+! = +00, then th ere exists T) > 0 such that
the transient length is bounded by

(3.11)

Proof. We have

A;(t) = L WikSk(t) = L WikSk(t) + L WikS k(t)
k k:Wik>O k:Wik<O

=? Q o L Wik+Q p L Wik :::; Ai(t )
k :Wik > O k :Wik <O

:::; Q p L Wik + Q o L Wik
k:Wik>O k :Wik< O
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Let us denote

II WII = L IW i kl = II W+II+ II W-II
i k

with

II W+II = L W i k and II W-II = - L W i k

k :Wik>O k :Wik<O

We thus have:

Let us denote

and

We have

A ::; Ai(t ) ::;A

Hence :

J
0 fAi( t ) fA

- Af(s )ds::; Jo f (s)ds ::; Jo f (s)ds

Now, by using the same method , we can bound L ik WikSiSk :

CYoCYp L W ik + g? L Wik

k :Wik>O k :Wik < O

< L W i k Si Sk ::; Q.2 L Wik + CYoCYp L W i k

ik k :Wik >0 k:Wik < 0

Hence:

CYoCYp IIW+11- Q.
2 I1 W_1I ::; L W ikSiSk < Q.2 II W+ II - CYoCYpIIW_11

i k

Let us denote

279
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and

W = g? llw+lI - O'oO'p IIW_1I
We have

W :S ~WikSiSk :S W
ik

Energy Functions in Neural Networks

Now, the Lyapunov function V can be bounded:

W - 2n faA f(s)ds :S V [s(t) ] :S W + 2n J: f(s)ds

hence

~V < W -W + 2n t A f (s )ds

:S W - W = [Q.2 - O'oO'p][IIW+11+ II W-II]
< [Q.2 _ O'oO'p]IIWII

Not e that, in the particular case where O'p = -0'0 = a, we have

~V:S 2a 211WII
From theorem 3, we have L :S ~V/ ~o . We have just bounded ~V; we now
have to bound ~o , which will be done by bounding ~tV.

~tV =~[Ai(t +1) - Ai(t - 1)][ f (Ai(t - 1)) - f (di)]

with

d, E]Ai(t - 1), Ai(t + 1)[

Let

Li(t) = [Ai(t +1) - Ai(t - 1)][f (Ai(t - 1)) - f( di)]

Li(t) :S 0, from theorem l.
If s(t) =I- s( t + 2), then there exists k such that :

Sk(t) =I- Sk(t +2) i.e. f[Ak(t - 1)] =I- f[Ak (t +1)}

=} Ak(t -1) E]lhl ,Okl+l]

and Ak(t + 1) E]Ok"Ok2+l ] with k1 =I- k2

We suppose, in the following , that Ak(t + 1) > Ak(t - 1) > 0. T he proof
for the other cases is similar.

Then:

Lk(t ) [Ak(t + 1) - Ak(t - 1)][f(Ak(t - 1)) - f (dk)]
- [Ak(t + 1) - Ak(t - 1)][0' - O'kl ] where 0' E [O'ku O'k2]

=} Lk(t) < -[Ak(t +1) - Okl ]' ~O'
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We define
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E = {h : {l. . .n} -4 {O .. . p}}. E is a finite set.

E jk = {h E E/ Li Wjiah(i) - (h > U}. Ejk is also a finite set and thus:

TJjk = inf{LiWjiah(i) - Ok/h E Ejk} > 0

and so

TJ = inf TJ jk > 0

Thus

Ak(t + 1) - Ok! ?."

=> .6.t V ~ Lk(t) ~ -TJ..6.a => l.6.t VI ? ."..6.a

=> L < .6.V/ .6.0
< [g 2 _ aoap JIIWII /TJ ..6.a

which in the case where : a p = - ao = a is jus t

Co rollary 3 . Under the assumptions of theorem 3 and if in addition f is
sigmoidal truncated:

s[ek U
- 1J/[ek U + 1J if u[-a, +aJ

f(u) = -s ifu ~ - a
s if u?a

where s = f(a). Then the transient length is either 0 or 1 or is bounded by

(3.12)

P roof. It is easy to see that, from the assumptions on f:

- sll Wdl ~ Ai(t) ~ sllWi li with II Wi II = L jWik l
k

c in (3.4) was arbitrary in S.•
In the following, we will take c = -IIWlls.
If this does not lie in S =J- a,a [, we could take c = a[- IIWllsJ: for a

small enough, c would be in S, but the bound in (3.11) would have to be
slight ly modified (see below).
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Then

Ai (t) ~ c Vi, t

=} 1'"f(x)dx =(u -c)f(d) withd E]c,u[

=} - (u - c)s s 1'" f( x)dx S (u - c)s

From (3.4) it follows that

s L [Ai(t - 1) + Ai(t) - 2c]
i=l. ..n

< V[s(t)] S IIWII s2
- s L [Ai(t - 1)+Ai(t) - 2c]

i=l. ..n

s L [2sllWi li - 2c]
i = l. ..n

< V[s(t)] S II WIIs2 + s L [2sllWi li - 2c]
i =l. ..n

With c = - II W lls, the bound in (3.11) follows.
If c = a[- II W lls], the bound must be modified to

Remark 2. Corollaries 2 and 3 allow to compare the transient times for
the threshold and the sigmoida l cases. Suppose that we have on one side a
network made up from threshold units:

f (u) = 1 if u ~ 0
- 1 otherwise

and on th e other a netwo rk with elements using a (truncated) sigmoid func ­
tion (3.1) with b = - a = 1, then

L, s 211WIII ~Ot for the threshold case,
L, S 211WII[3 + 2nJl~Os for th e sigmoid case

Hence, if ever ~Ot and ~Os are the same, then the sigmoid case shou ld
require more iterations than the threshold case: we will verify this result in
the simul ations presented in secti on 5.
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4 . Sequential iterations

The dyna~ics of the network is now defined by

Sm(t +1) = f[Am(t + (m - l )/ n )]

with m = 1, . . . ,n and

283

(4.1)

Am(t + (m - l) /n) WmlSl(t + 1) +...+Wmm -lSm- l(t + 1) (4.2)

+ L WmkSk (t) - bm
k=m ...n

T heorem 4. Let V be defined by

V[s(t) ] = - 1/2 L WikSi(t)Sk(t)
i ,k=l. ..n

(';(I)
+ .L [lo r 1(s)ds + .L bisi(t)

1= 1...n 1= 1...n

(4.3)

Then, if W is symmetric, with nonnegative diagonal, V is a Lyapunov
function for the sequential it eration.

Pro of. We will give the proof in the case where th e threshold b, = O. The
extens ion to the general case is straightforward.

fl V V [s (t +1)] - V [s (t )]

LV;

with

V; = [Si(t + 1) - Si(t)]L WikSk(t) - wi;/2[Si(t + 1) - Si(t)]2
k

(';(I+1 ) (';(I )
+ lo r 1(s)ds - lo r1(s)ds

The quadratic term - wi;/ 2[si(t+ 1)- si(t )]2 is clearly negative. For th e other
terms, let us denote

u LWikSk(t)
k

v L Wiksk(t -1)
k

Then

( I (u ) (I(v)
- [f (u) - f(v) ]u + lo r1(s)ds - lo r1(s)ds

Since

(I( x) r
lo r 1(s)ds = x f (x ) - lo f (s )ds



-[f (u) - f(v)]u +
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we have

Energy Functions in Neural Networks

[f(u) [f(v)
J
o

rI(s)ds - Jo rI(s)ds = (u - v)f(v)

+ lV f(s)ds -lu f(s)ds ~ 0

which ends the proof.•

Remarks. The Lyapunov function, given in (4.3), is very similar to expres­
sion (2.11) given by Hopfield for the case of sequential iterations where time
is continuous. We could also derive in a way similar to the parallel case a
bound for the transient length.

5. Simulations

We will present in this section simulation results that we have run on mul­
tilayer networks trained by the gradient backpropagation (GBP) algorithm
[23,28]. We assume that the network has one hidden layer only and denote by
WI and W2 the weight vectors from the input to the hidden layer and from
the hidden to the output layer, respectively. We restrict our study to the
auto-association case - or identity mapping - where the input and output
vectors have the same dimensionality.

Let n be the dimension of the inputs x and p the number of hidden units.
WI is a p x n matrix and W2 a n x p matrix. Let us now consider the automata
network with n +p elements, no hidden layer, and a connection matrix W
defined by

(5.1)

This network is obtained from the previous one by folding the output layer
on the input layer.

Then, running the multilayer network with connection weights WI and
W2 in the "usual" way, i.e., layer after layer, is equivalent to running the
network with connection matrix W in block-sequential fashion, i.e., running
in parallel all first n elements, and then run in parallel the last p elements.
In that case, the output of the multilayer network when it is shown a vector
x as input can be read as the next state of the network with no hidden layer
after it has run one iteration on the initial state x.

It has been shown [3] that when all the elements of the multilayer network
are linear, or at least the elements in the output layer are, then one solution
of the GBP algorithm is the principal component analysis matrix where

(5.2)

and Up is a n x p matrix, the columns of which are the eigenvectors of
the inputs covariance matrix xxt associated to its p largest eigenvalues.
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This link with standard data analysis techniques also stands in the case
of classificat ion tasks (heteroas sociation) : the linear multilayer network has
then been shown to perform a discriminant analysis on the inputs [10J.

In the case of (5.1,2), it is clear that W is a symmetric matrix with
nonnegative diagonal. Hence, all the results in the pre vious sections app ly
to the network with no hidden layer when it is run either in parallel or in
sequential. By using techniques very similar to those of the previous sect ions,
it could be easy to extend our results to block sequential iterat ion, which we
will not do here (such extensions were proved [14] for discrete state space).
Taking this extension for granted, we can then apply all the results of the
previous sections to the multilayer network as well.

We have run simulations for an auto-association task [6,7J : random binary
patterns 16 bits long are generated and a network is trained to retrieve those
patterns from noisy inputs . The gradient backpropagation algorithm is used
for t raining. The training set contains 10 noisy versions at noise levell , 2,
and 3 (i.e., with 1, 2, or 3 bits inverted) for m patterns set at ra ndom from
{- l ,+l }n, with n = 16. We used training sets with m = 10 and 20.

Two architectures were tested:

1. a network with two layers: the input and the output .

2. a network with t hree layers : the input and output layer s and one hidden
layer with p = 8 (for m = 10) and 14 (for m = 20) units.

All th e units had a sigmoidal transition funct ion (figure 1). It is well
known [5J that if the units were linear, then the network with no hidde n
layer would just compute the optimal auto-associative map of Kohonen [21].
However, if it is furt her tested with nonlinear mappings, then [5J th e sigmoid
mapping yields better results than the threshold mapping. By varyi ng the
"temperature" T of the sigmoid, we can test for the influence of the nonlin­
earity of the mapping. We used two different values of tempera t ure T : T = 1
and T = 1/ 8 (figure 1). We will see that our simulation result s demo nst rate
that the influence of the temperature is not important when the network is
trained with the same nonlinear mapping .

In order to illustrate the results of the previous sections, we had to make
sure that the assu mption of symmetry (5.2) was valid . We thus measured
the deviatio n from this assumption by computing

(5.3)

Figure 2 shows that th is deviation remains relatively small.
Training was always practically complet e: all m "pure" patterns were

correctly memorized in both architectures, even though they were never pre­
sented to th e network during learning (figure 3). Learning was slight ly slower
for T = 1/8 th an for T = 1: paramet ers were har der to tune, espe cially in
the arch itecture with hidden layer. The netwo rk without hidden layer (shown
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Figure 2: Deviation from symmetry for the two layer networks for
T = 1 (left) and T = 1/8 (right).
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Figure 3: Learning for the two network architectures for T = 1 (left )
and T = 1/8 (right). The symbol marked m - k refers to the network
with k hidden layer (k = 0 or 1) trained on m patterns. The unit on
the iteration axis is the presentation of one example.

by a rectangle: 10-0 and 20-0) always learned faster than the network with
hidden layer (shown by a triangle) .

Generalization was then investigated: the m memorized patterns were
modified by inverting d bits and the networks were then tested on these noisy
patterns. We first tested for generalization as usually done for mu ltilayer
networks, by presenting the input to the network and then checking the
output (one shot process). The results (figure 4) show that the network
with one hidden layer did better than the other and also that memorizing
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Figure 4: Generalization rates of patterns at distance 1 for the differ­
ent architectures, for T = 1 (left) and T = 1/8 (right).
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Figure 5: Iterated generalization rates of patterns at distance 1 for
the different archit ectures, for T = 1 (left) and T = 1/8 (right) .

20 pat terns was probably beyond the capacity of the networks . (However ,
performances degraded "gracefully" even in this case of overloading. )

We then allowed for iteration: the input was presented to the net work,
the output read and then refed into the netwo rk until "correc t" retrieval ,
i.e., corresponding bit signs identical in computed and desired out puts . The
results show that the performances were always increased, especially in those
cases where the performances were relatively poor, i.e., for the network wit h
no hidden layer , for the network with a hidden layer , overloaded with 20
patterns (figure 5) , or the retrieval of very noisy patterns (d large: figur e 6) .
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Figure 6: Generalization rates for the one hidden layer network at
different levels of noise, for T = 1 (left) and T = 1/8 (right), in
the case of one-step retrieval (top) and iterated retrieval (bottom).
Architecture 10-1.

In the iterated generalization experiment, we also estimated the average
transient length necessary for convergence: this is plotted in figure 7, which
shows that the transient length is remarkably small and gradually increases
with the difficulty of the task. It usually takes just one step to retrieve a
pattern at distance 1 and three steps for a pattern at distance 5.

Those results thus show that allowing for iterative generalization helps
improve the generalization performances, thus supporting the intuition that
each "pass" through the network produces some reduction of the noise-to­
signal ratio at the output. The theory we have developed also indicates that
only fixed points could be reached by iteration. We thus tested whether this
was true for our networks and also what the fixed points obtained were.

Figure 8 shows that all "pure" patterns lead to fixed points. These were
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Figure 8: Fixed points obtained when starting from pure patterns
(T = 1, one hidden layer). The figure shows the ten memorized
patterns (first line) with the corresponding fixed point (second line)
and the error, i.e., the distance from the fixed point to the memorized
pattern. The sigmoid was allowed to vary between - 1 and 1.

slightly different in value, but not in sign . Gradient backpropagation thus
does not ensure that the memorized patterns be fixed points of the dynamics,
but it enforces fixed points, close to these patterns and lying in the same
region of the space. This "restructuration" of the basins of attractions must
certainly help for better generalization, i.e ., noise reduction.

The simulations presented in this section thus show that our theoretical
results apply to the case of multilayer networks trained through gradient
backpropagation. It thus means that iterative dynamics leads to improved
generalization performances and one should expect for fixed points (usually
close to the memorized patterns, at least in the binary case tested here).
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We have presented in this paper theoretical result s which show that a Lya­
pu nov function can be used to des cribe the dyn amics of neural networks with
cont inuous state and discrete time. This Lyapunov function allows to sh ow
that the dynamics on such networks can only lead to fixed points or limi t
cycles of length two (in the parallel it eration case) , provided the connection
matrix be symmetric. The transient has been bounded by making use of the
Lyapunov funct ion .

The theoretical results have been tested on multilayer netwo rks trained
by the gradient backpropagation algorithm. Departure from the symmetry
condition was sufficiently low to allow for good concordance between theory
and simulation results : when using such networks, one should allow for re­
it eration in order to improve performances in a sign ificant fashion.

This feature has not been used yet in the literature; it remains to be
tested on real-size applications.

Acknowledgments

This work has been partially supported by PRC-GRECO Intelligen ce Artifi­
cielle (F.F.S.), Fondo Nacional de Ciencias FNC-88-Chile (E.G.), and FNC­
88-Chile S.M.), DIB Universidad de Chile (E.G. and S.M.), and Service de
Coo peration Technique, Ambassade de Fran ce (F.F.S., E.G. , an d S.M .).

References

[1] B. Angeniol, unpublished manu script (1987).

[2] A.G. Barto, "Game-theoretic cooperativity in networks of self-inte rested
units ," In Neural networks for computing, Snowbird 1986, J .S. Denker , ed.,
American Institute of Physics, Conf. Proc . No. 151 (1986) 41- 46.

[3] H. Bourlard and Y. Kamp, "Auto-association by multil ayer perceptrons and
singular value decomposition," Biological Cybernetics, 59 (1988).

[4] M.A. Cohen and S. Grossberg, "Absolute stabil ity of global pattern forma­
tion and parallel memory storage by competitive neural networks," IEEE
Trans. on Systems, Man and Cyb ernetics, 13 (1983) 815-826.

[5] F. Fogelman Soulie, P. Gallinari, Y. Le Cun, and S. Thiri a, "Automat a net­
works and artificial int elligence," In Automata Netwo rks in Compu ter Sci­
ence, Th eory and Applications , F. Fogelman Soulie, Y. Robert , M. Tchu ente,
eds. (Manchester Univ. Press, Princeton Univ. Press , 1987) 133-1 86.

[6] F. Fogelman Soulie, P. Gallinari, Y. Le Cun, and S. Thiri a, "Evaluation
of network architectures on test learning tasks," IEEE 1st Intern. Conf. on
Neural Networks, San Diego 1987, Vol. II (1987) 653- 660.



292 Energy Functions in Neural Networks

[7] F . Fogelman Soulie, P. Gallinari, Y. Le Cun, and S. Thiria , "Network learn­
ing," In Machine Learning, Vol. 3, Y. Kodratoff, R. Michalski, eds. (Morgan
Kaufmann, to appear).

[8] F. Fogelman Soulie and E. Goles, "Knowledge representation by automata
networks," In Computers and Computing P. Chenin, C. di Crescenzo,
F. Robert, eds. (Masson-Wiley, 1986) 175-180 .

[9] F. Fogelman Soulie,E. Goles, and G. Weisbuch, "Transient length in sequen­
tial iterations of threshold functions," Disc. Appl. Math., 6 (1983) 95-98.

[10] P. Gallinari, S. Thiria, and F . Fogelman Soulie, "Multilayer perceptrons
and data analysis," IEEE 2nd annual International Conference on Neural
Networks, San Diego, 1988, Vol. I (1988) 391-401.

[11] R.M. Golden, "The "Brain-state-in-a-box" neural model is a gradient descent
algorithm," J. Math. Psychol., 30(1) (1986) 73-80.

[12] E. Goles, Comportement Dynamique de Reseaux d 'Automates, These
d'Etat, Grenoble (1985).

[13] E. Goles, "Dynamics of positive automata networks," Theor. Comp oSci., 41
(1985) 19-32.

[14] E. Goles, E.Chacc, F. Fogelman Soulie, and D. Pellegrin, "Decreasing energy
functions as a tool for studying threshold functions ," Disc . Appl. Math ., 12
(1985) 261-277.

[15] E. Goles and S. Martinez, "Properties on positive functions and the dynamics
of associated automata networks," Disc. Appl. Math., to appear.

[16] E. Goles and S. Martinez , "A short proof on the cyclic behaviour of mul­
tithreshold symmetric automata," Information and Control , 51(2) (1981)
95-97.

[17] E. Goles and A.M. Odlyzko, "Decreasing energy functions and lengths of
transients for some cellular automata," Complex Systems, submitted.

[18] E. Goles and G.Y. Vichniac, "Lyapunov functions for parallel neural net­
works," In Neural Networks for Computing, Snowbird 1986, J .S. Denker,
ed ., Am. Inst . of Physics, Conf. Proc. , 151 (1986) 165-181.

[19] J .J . Hopfield, "Neural networks and physical systems with emergent collec­
tive computational abilities," Proc. Nat. Acad. Sci. USA, 79 (1982) 2554­
2558.

[20] J.J . Hopfield and D.W. Tank, "Collective computation with continuous vari­
ables," In Disordered Systems and Biological Organization, NATO workshop
Les Houches 1985, E. Bienenstock, F. Fogelman Soulie, and G. Weisbuch,
eds. , NATO ASI Series in Systems and Computer Science, F20 (Springer
Verlag, 1986) 155-170.



F. Fogelman Soulie, E. Gales, S. Martinez, and C. Mejia 293

[21] T. Kohonen, "Self-organization and associative memory," Springe r series in
Information sciences, Vol. 8 (Springer Verlag, 1984) .

[22] Y. Le Cun, "Learning process in an assymetric threshold network," In Dis­
ordered Systems and Biological Organization , E. Bienenstock, F . Fogelman
Soulie, and G. Weisbuch, Eds. , NATO ASI Series in Computer and Systems
Sciences, F 20 (Springer Verlag, 1986) 233-240.

[23] Y. Le Cun, Modeles Connexionnistes de l 'Apprentissage, These, Paris (1987) .

[24] W.S . McCulloch and W. Pitts, "A logical calculus of the ideas immanent in
nervous acti vity ," B ull. Math. Biophys., 5 (1943) 115--133.

[25] M. Mins ky and S. Papert , Perceptrons, expanded edit ion (MIT Press , 1988).

[26] F .J. Pineda, "Generalization of backpr opagation to recurrent neural net ­
works," Phys . Rev. Lett., 59(1 9) (1987) 2229-2232.

[27] F.J. Pineda, "Dynamics and architec ture in neural comp utation," Journal
of Complexity, to appear.

[28] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning internal repre­
sentations by error propagation," In Parallel and Dist ributed Processing: Ex­
plorations in the Micro-structure of Cognition, D.E. Rumelhart and J .L. Mc­
Clelland, eds ., Vol. 1 (MIT Press, 1986) 318-362.

[29] B. Widrow and M.E. Hoff, "Adaptive switching circuits ," IRE Wescon Conv.
Record, Part 4 (1960) 96--104.

[30] R .J. Williams, Reinforcement Learning in Connectionist Networks: A Mat h­
ematical Analysis, Institute for Cognitive Science, UCSD, ICS Report 8605
(1986).

[31] D. Zipser , "Programming neural nets to do spatial computations," In A d­
vances in Cognitive Science, N.E . Sharkey, ed. , Vol. 2, Chichester, Ellis Hor­
wood, to appear.




