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Abstract. Neural networks with continuous local transition func-
tions have been recently used for a variety of applications, especially
in learning tasks and combinatorial optimization. Previous works have
shown that Lyapunov — or “energy” — functions could be derived
for networks of binary elements, thus allowing a rather complete char-
acterization of their dynamics. We show here that it is possible to
write down Lyapunov functions for continuous networks as well. We
then use these functions to provide some results for the dynamical
behavior of such networks. We discuss the link with the binary case
and illustrate our results with some simulations.

1. Introduction

Work on neural networks can be traced back to the 1940s when McCulloch
and Pitts [24] proposed a model of formal neurons based on binary elements.
In 1982, Hopfield [19] stressed the analogy between spin glasses and formal
neurons and renewed the interest for those networks. Meanwhile, many re-
sults have been reported which show that networks of continuous elements
can be used in the same framework as binary networks and eventually do
provide better results [5]. In particular, the recent literature on the so-called
backpropagation algorithm [22] is based on such continuous elements.

In these models, the general question of the dynamics is usually not ad-
dressed. For binary networks, it is assumed that the “result” of the compu-
tation is a fixed point of the dynamics run on the network [19]: Lyapunov
functions provide a tool for studying the dynamics. They allow characteri-
zation of the limit cycles (usually fixed points, see below) and the transient
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270 Energy Functions in Neural Networks

times. For continuous networks, some results can be found [4,20] in the case
where the dynamics is driven by a differential equation. However, when time
is discrete and state continuous, which is the usual assumption in the “back-
propagation” literature, no results are available. In fact, in these models, no
advantage is taken of the dynamical dimension of the system: “recognition”
is a one-shot process, whereby the data are passed only once through the
network. However, simulation results [5-7] have shown clearly that in auto-
association tasks (i.e., tasks where the input and the output are identical),
performances are always better if the network is allowed to stabilize through
successive iterations. This phenomenon can be intuitively understood as fol-
lows: each iteration step of the network allows the computed output to get
closer to the desired output (usually a fixed point). Thus, allowing only one
iteration usually prevents the network to “finish the job.”

We give in this paper some theoretical results which lay the foundations
for such an intuition in the case of networks with continuous elements and
discrete time evolution: a Lyapunov function is exhibited. Since it decreases
along time, the network, under appropriate assumptions on the connection
matrix, can only be driven to fixed points (for sequential iterations) or limit
cycles of period 2 at most (for parallel iterations). This allows us to provide
bounds for the transient.

The results are then applied in the case of multilayer networks and sim-
ulations are shown for illustration in associative memory tasks.

In section 2, we give some definitions, then state our results in the case
of parallel iterations (section 3) and sequential iterations (section 4). Sim-
ulation results are then given in section 5 to illustrate the theory in the’
case of multilayer networks trained by the gradient backpropagation (GBP)
algorithm.

2. Definitions
2.1 Automata networks

An automaton will be defined here as an element which has an internal state
s in some state space S, receives inputs sp,...,S,, and changes state by
using some transition function f. An automata network is an ensemble of
interconnected automata, the inputs being either the internal states of the
automata or signals sent from the environment along the connections of the
network. The total weighted input to automaton ¢ is A;:

Ai = Z WikSk — b,' (2.1)

k=1..n

where s is the state of automaton k£ and n is the number of automata in the
network.

2.2 Dynamics on automata networks

A dynamical evolution of an automata network is defined through a rule
which tells how the state vector s(¢) changes with time. Various models
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have been proposed depending on whether the time variable ¢ is discrete or
continuous.

1. In the continuous case, Grossberg and coworkers [4] propose a differ-
ential equation:

%Si = ai(si)[bi(si) — D wirdr(sk)] (2.2)

k=1..n
a particular case of which is used by Hopfield [20] and Pineda [26,27]:

d

CigSi = —si/Ri+ Y. wif(sk) + 1 (2.3)
t k=1..n

2. In the discrete case, the dynamics can be viewed as an iteration and
various iteration modes are classically used:

In the parallel iteration mode, all automata change state, one at
a time. The dynamics is thus defined by

si(t+1) = STA() (2.4)
where
A,‘(t) = Z w,-ksk(t) = bi (2.5)
k=1..n

In the sequential iteration mode, the automata change state one
at a time in a prescribed order. If, for example, this order is the
natural permutation of 1...n, the dynamics can be viewed as if
at time ¢t + m/n, element m only changed state

sm(t+1) = f[An(t+ (m —1)/n)] (2.6)
with
Apt+(m=1)/n) = wmsi(t+1)+... (2.7)
+ Wmm—1Sm_1(t +1)
+ > wnksk(t) — bn

k=m...n

The network state at time t + m/n is thus
s(t+m/n) = (s1(t+1),. .., 8m(t+1), 8m41(t), .- ., 5.(1))(2.8)

More iteration modes have been studied in [14].

2.3 Lyapunov functions

In some cases, Lyapunov functions have been derived to study the asymptotic
behavior of the network; typically, the trajectory would then lead to a fixed
point.
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2.3.1 Continuous state, continuous time

Cohen-Grossberg [4] show that, under the assumptions
Wik = Wes 0,,‘(8) 2 0, dj(s) 2 0 (29)

function V defined by

Visy=~ Y. /:i bidi(z)dz +1/2 > wad;i(s:)dk(sk) (2.10)

i=1l.n t,k=1...n

is a Lyapunov function for the dynamics given in (2.2).
In the Hopfield’s case [19], the “energy” function (2.10) becomes

V=% [CUR;i @ - 12 T waf)f)

i=l.n t,k=1..n

- 3 Lf(s) (2.11)

i=l..n

2.3.2 Discrete state, discrete time

This is the case for example for perceptrons [25], adalines [29], and so on.
Lyapunov functions have been proposed for different classes of transition
functions.

If S = {0,1} and the transition function f is a threshold function, i.e.:

1 fu>0

0 otherwise (2.12)

=
it can be shown [9,19] that the mapping V defined by

Vis)=-1/2 ) si Y wask+ . bis; (2.13)

i=l..n  k=l..n i=l...n

is a Lyapunov function for the sequential iteration, if W is a symmetric
matrix with nonnegative diagonal.
In the parallel iteration case

V[S(t)] = — Z w,'ks,-(t + 1)sk(t) + Z b,-[s,-(t) + Si(t + 1)] (2.14)

tk=l.n t=1...n

is a Lyapunov function [14] under the only condition that W be symmetric.

Those results were extended to other iteration modes (e.g., block sequen-
tial or random [14]) or transition functions: multithreshold [8], majority
[12,14], positive [13,15], cellular [17,18].
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2.3.3 Continuous state, discrete time

This is the case in particular for linear associative memories [21], (“Brain-
state-in-the-box”) BSB models [11], and multilayer networks [28].
In the case of the BSB model, the dynamics is defined [11] by

F ifa ) wgsi(t)+s:(t) > F
k=l..n
sit+1) = ozk:Xl;nw,-ksk(t) + s:(t) if |ak=zl:nw,~ksk(t) +s(t)| < F
-F ifa Y wisi(t) +si(t) < —F
k=1..n
(2.15)

It has been shown [11] that
V(S) = ——1/2 E S; Z W;kSk (2.16)
=L k=lan
is a Lyapunov function for the dynamics defined by (2.15) provided that W
is symmetric and either positive semi-definite or @ < 2/|Amin|, Where Amin is
the minimum eigenvalue of W.

This is the only case to our knowledge where a Lyapunov function has
been derived for a discrete time-continuous state model. Note that all the
functions given so far are Lyapunov functions under the requirement that
the connection matrix W be symmetric.

At present, the most pervasive neural network model is the multilayer net-
work trained by the gradient backpropagation rule. It is used as a “one-shot”
decision tool: an input is presented, one “iteration” run, and the updated
state is considered as the output of the system. However, when the output
is of the same dimensionality as the input (as in tasks of auto-association or
“identity mapping” [31]), simulations have shown that performances could
be improved by allowing various iterations [5,6]. It would then be useful to
have the Lyapunov function tool to study the asymptotic behavior of this
model, which we do in the following sections.

3. Parallel iterations

In the following two sections, we use an automata network of n elements.
Each automaton is quasi-linear with a transition function f : R — R, con-
tinuous, strictly increasing on an interval S =]a,b[ (¢ < b), and constant
outside:

Ve <a, f(z)=f(a) (3.1)
Vo > b, f(z)=f(b)
For example, f could be a truncated “sigmoidal” function (figure 1) similar

to those classically used in multilayered networks [7].
As previously, we define the total weighted input to 7 by

A= Z Wirsg — b (3:2)

=lLw
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Figure 1: Sigmoid function. The figure shows a quasilinear automa-

ton: s; = f(A;) where f is a sigmoid function f(z) = s[e* —1]/[e** +
1]. Parameter T' = 1/k is the “temperature.”

and the parallel iteration on the network by

[si(t +1) = flA:(?)] (3-3)
We then have the following theorem.

Theorem 1. Let V be defined by

Ai(t-1)
Vs = ¥ was@st-D- T[T feds  (34)

i,k=1..n i=1..n
A.‘(t)
+ [ f(s)ds

where ¢ € S is arbitrary.
Then, if W is symmetric, V is a Lyapunov function for the parallel iter-
ation.

Proof. We will prove that V is decreasing along any trajectory.
Let

AV =V[s(t+1)] = Vs(t)] (3.5)
We will show that A,V <0, Vt > 0.

Ai(t)
AV = Y wasit+Dsi(t)— 3 [/c F(s)ds

k=1 i=l..n

. /CA,»(t+1) Flayda] ~ Z wigsi(t)sk(t — 1)

t,k=1...n

- S s+ [* s

t=1..1
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Assuming W is symmetric, we then have

AV = ' Z w,-ks,-(t)[sk(t + 1) — Sk(t — 1)]
- IZ 14 st [ s
From (3.3), it follows:
AV = ' E w;kf[A.-(t - 1)][sk(t - 1) - Sk(t — l)]

A(t+1)
— Z/ f(s)ds]

=Tt Ai(t-1)

and thus from (3.2):

AV = Z FIA(E = DJ[Ai(t +1) — Ayt — 1)] (3.6)
A(t+1)
;[/ ey T
= _Z fIA(t = D[Ai(t +1) — Ai(t - 1)]

— [Ai(t+1) — Ai(t = 1)]f(d)
= AV = 3 [A(t+1) = A(t = DI[F(A(t = 1)) — f(dy)]

i=l..n

where d; € |A;(t —1), Ai(t + 1)[ (from the mean value theorem).
Since f is increasing, it follows that A; V < 0. B

Remark 1. Equation (3.6) could also be obtained from the limit to the
multithreshold case of the threshold expression [16], by making use of a
morphism between the two cases.

Theorem 2. Let W be symmetric and s(0),...,s(T —1) be a limit cycle of
period T. Then T < 2.

Proof. To prove theorem 2, we just have to show that s(t) = s(t+2), Vt > 0.
From theorem 1, we have

VIs(O)] = VIs(1)] 2 ... 2 V[s(T = 1)] = V[s(T)] = V[s(0)]
= AV=0,¥>0

Then, from (3.6) it follows:.
[As(t +1) — At — D]f[Ai(t - 1)]
L5 fo)ds = [Ae41) — At - D)l

Ai(t-1)
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with
di € JAi(t - 1), Ai(t + 1)[

Case 1. Ai(t—1)<a

Then (3.1) = s;(t) = flA:i(t — 1)] = f(a)

If A;(t+1) < a,then s;(t +2) = f(a) = s;(t), which ends the proof.
If Ai(t+1) > a, then A;(t 4+ 1) — A;(t — 1) # 0 and:

Ai(t+1) a Ai(t+1)
Loy F)s = [ F)dst [T fs)ds
= fla)la— Ai(t — 1)] + [A:(t — 1) — a] f(di)
where d; € Ja, A;(t + 1)[
= [Ai(t+1) - d[f(d) - f(a)] = 0
which is impossible from the strict monotonicity of f.

Case 2. a < A;(t—1)< b
If Ai(t+1) € S then:

either A;(t —1) = Ai(t + 1) = s5;(¢) = si(¢t + 2), which ends the proof
or Ai(t —1) # At + 1) = f[Ai(t — 1)] = f(d;i), which is impossible.

The cases A;(t + 1) < a or A;(t + 1) > b are impossible (the argument goes
similarly to case 1).
Case 3.A;(t — 1) > b The proof is similar to case 1.

Corollary 1. In the case where ¢ = 0 and f(0) = 0, we have

CORI w,-ks,-(t+1>sk(t)+,_‘; Bilsi(t) + si(t + 1)] (3.7)
+ _E[/ 7 (y)dy + /oﬁ(Hl)f‘l(y)dy]
Proof.

Vis(@®)]

1

S ws®ut-1- DU S (39

i,k=1..n 1=1...n

[ s
S 1Y wasilt = Dls)~ 3 [/

i=l.n k=1l..n
A;i(t)
[ #s)asl

Since f is continuous, strictly increasing on S, it has an inverse f~! and we

have, Ve,d € S:

d @
[d=dlf(@ — f©) = [ f@)da-[d=df(e) + [ ~f @y

= df(d) - f(e)]

-

Aq(t— 1)

-+
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d 7(d)
= z)dz + ~y)dy = df(d) —
[ @izt [ 50y = di(@d) ~ ef(e)

SV = ¥ s@ae-D+a+ X 0

i=1l.n t=L.an

N /f,:(+ )f_l(y)dy] - 3 [s(®Ai(t-1)

() i=l..n

+ si(t+1DAi(E) — 2¢f()]

= V[s(t)] = —_k; wiksi(t + 1)si(t)

+ D bifsi(t) + si(t + 1)) + 2nef(c)

i=l..n

[ 1wy + / dy
1—12 n Y1) ) (w)ds]

Note that (3.7) is similar to the expression given by Hopfield for the sequential
case (2.11): our result is thus an extension of Hopfield’s. Equation (3.7) is
also quite similar to the Lyapunov function found for the discrete state space
case:

—+

Vis(t)] = — D wasi(t+1)se(t) + D bifsi(t) +s:(t+1)]  (3.9)

i,k=1l..n i=l..n

This is related to the fact that continuous state automata can be shown to
behave in the average in the same way as binary automata with noise [1,7,30].

Theorem 3. Let W be symmetric and AV, Ay be defined by:
AV max{V[s(t)]/s(0) € R} — min{V[s(¢)]/s(0) € R}
Ao min{|A;V|/s(0) € R,s(1) # s(3)}

then, if f(R) is finite or Aq is nonzero, the transient length L of any trajectory
is either 0 or 1 or bounded by

L < AV/A, (3.10)

Proof. Suppose L > 2 and let s(0),s(1),...,s(L),s(L+1),s(L),s(L+1),...
be a trajectory.

Then s(1) # s(3); hence A,V # 0.

Thus Ag # 0 (either by using that assumption or as a min of nonzero
AV on a finite set).

Vis(t+1)]

VIs(t +1)] = V[s(t)] + V[s(t)] = V[s(t - 1)]
-+ V[s(1)]
Z (V[S(k +1)] = V[s(k)]) + V[s(1)]

Z ARV 4 V[s(1)]

k=1,...;t
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Vt < L,s(t +2) # s()
= 3i(1,...,n):s(t+2) # s(t)
= At+1)# At —1)
= AV #0

But

AV = VIs(t+1)] - VIs(?)]

Viz(2)] - V{z(1)]
Ao with z(0) = s(t — 1)

Il

= AV <=/

= Vi< L V[s(t+1)] < —(t+1)A¢+ V[s(1)]

= minV <V[s(t+1)] < —(t+1)A¢ + maxV

= minV<V[s(t+1)]<—(L-14+1)A¢g+maxV
which ends the proof. B

Corollary 2. Under the assumptions of theorem 3 and if in addition f is a
multithreshold function:

flw)= 3> ar- 1, 0. 0(%)

k=0...p

where ag < ... < oy < @ < @y < ... < apand —oo =0 < by < ... <
Or—1 < Ok <41 < ...< 0, < 0,41 = +o00, then there exists n > 0 such that
the transient length is bounded by

L[| W || [@® - aoey)/nAa (3.11)
where ||W|| = T |wik|, @ = max(cyp, —0), Ac = inf{og41 —ax, k= 0...p}.
Proof. We have

Ai(t) = szksk t) = Z wiksk(t) + Z wiksk(t

kiwix >0 k:wix <0

= oy Y, wigxto, >, wig < Alt)

kiw;p >0 kw; <0

<a, Y, wxta Y, wi

k:w; ;. >0 k:wip <0
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Let us denote

W1l =3 lwsl = W]l + W]
ik

with
[Will= 3. waand [W_|l=— > wa

kiw;. >0 k:w;p <0
We thus have:
ao||[Will = apl|W_|| £ Ai(t) < o[ Wa|| — ap|[W-||
Let us denote

A = ao||Wa|| — e[ W_||

and
A= 0| Wy || - |- ]|
We have
A< A <A
vy P _ A\t
/0 f(s)ds = (;CX_: ag[max (0, 0) — rnjn(GkH,A)])
0 P +
/A f(s)ds (E—: [max(0k, A) — min(O41, 0)])
Hence:

- / 2 f(s)ds < / F(s)ds < / F(s)ds

Now, by using the same method, we can bound Y;;, w;s;8k:

QpQ, Z wy, + o Z Wik

kiw;p >0 kiw;p <0

< ZwiksiskSQZ) Z Wik + oty Z Wik

ik kiwi >0

Hence:

oo ||[Wa [l = a?[W_|| < 3 wiksisk < o [[Wel| — coay||[W-]|

ik
Let us denote

W = aooy || W] — o[ W-||

279
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and

W = || W, || — aoes||W-_||
We have

W< Z wipsisy < W

ik

Now, the Lyapunov function V' can be bounded:

W - Zn/ f(8)ds < V[s(t)] < / f(s)ds
hence
. A
AV < W-Wton [ f(s)
< W-W=[2" — aoo][| W] + [W-]]
< [@” — aooy ]| W]
Note that, in the particular case where o, = —ap = a, we have
AV <282 ||W||

From theorem 3, we have L < AV/A,. We have just bounded AV; we now
have to bound Ay, which will be done by bounding A,V.

AV = Z[Ai(t + 1) — At — D] F(A(f — 1)) — F(d:)]

with
d; €)Ai(t — 1), As(t + 1)]

Let
Li(t) = [A(t + 1) — Ai(t = D][f(Ai(t = 1)) — f£(dy)]

L;(t) £ 0, from theorem 1.
If s(t) # s(t + 2), then there exists k such that:

su(t) #sk(t+2) e flA(t—1)] # flAx(t+ 1)}
= Ayt — 1) €]0k,, Ok, 4]
and Ak(t ~+ 1) €]9k279k2+1] with &y ?,é ko

We suppose, in the following, that Ax(t + 1) > Ag(t — 1) > 0. The proof
for the other cases is similar.
Then:

Li(t) = [Ap(t+1) — Ap(t — DI[F(Ax(t = 1)) — f(di)]
= —[Ar(t+1) = Akt — 1)][o — ak,] where a € [ag,, ag,]
= Lk(t) < —[Ak(t + 1) — le] - A«
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We define
E={h:{1...n} - {0...p}}. E is a finite set.
E;r = {h € E]| Z; wjian(i) — 0 > 0}. Ej;, is also a finite set and thus:
Nk = inf{X; wjiane) — Oc/h € Ejx} > 0
and so
n =infn; >0
Thus
At +1) =6, > 17

= AV LSL(t) L —nhAa= |AV|2nAx

= L < AV/A,
< o - aoay]|W]/n.Ac
which in the case where: a, = —ap = a is just

L < 22| W]|/n.Ac

Corollary 3. Under the assumptions of theorem 3 and if in addition f is
sigmoidal truncated:

s[e** —1]/[eF* + 1] if u[—a, +d]
flu)= —s ifu< —a
s ifu>a

where s = f(a). Then the transient length is either 0 or 1 or is bounded by
L < 2||W||s%[3 + 2n]/ Ao (3.12)
Proof. It is easy to see that, from the assumptions on f:

—s<s(t)<s

—s||Will < Ai(t) < s[Will - with [Will = 3 fwi]
k

cin (3.4) was arbitrary in S. B

In the following, we will take ¢ = —||W]||s.

If this does not lie in S =] — a, a[, we could take ¢ = a[—||W]|s]: for a
small enough, ¢ would be in S, but the bound in (3.11) would have to be
slightly modified (see below).
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Then

Ai(t) Dl - V’i,t
= / * f(e)dz = (u—c)f(d) with d €]e, ]

= —(u—c)s< /cuf(a:)dm <(u-—c)s

From (3.4) it follows that

—[Wlls* — s 37 [Ai(t = 1) + Ai(t) — 2¢]

i=l..n

< Vsl < Wlls* —s 30 [t —1) + Ai(t) - 2d]

i=l..n

= =lWls* — s 3 [2s|Will -2

i=l..n

< VIs@I < [Wls* +5 3 [2s|Wi - 2d]

i=l..n

With ¢ = —||W]||s, the bound in (3.11) follows.
If ¢ = o[—||W]||s], the bound must be modified to

L < 2||W||s*[3 + 2na]/ Ao

Remark 2. Corollaries 2 and 3 allow to compare the transient times for
the threshold and the sigmoidal cases. Suppose that we have on one side a
network made up from threshold units:

flu)=1 ifu>0

—1 otherwise

and on the other a network with elements using a (truncated) sigmoid func-
tion (3.1) with b = —a =1, then

L, <2||W|| /Aot for the threshold case,
L, < 2||W||[3 4+ 2n]/A0s for the sigmoid case

Hence, if ever A0t and AOs are the same, then the sigmoid case should
require more iterations than the threshold case: we will verify this result in
the simulations presented in section 5.
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4. Sequential iterations
The dynamics of the network is now defined by

st +1) = f[An(t + (m — 1)/n)] (4.1)
withm =1,...,n and

An(t+(m—=1)/n) = wmsi(t+1)+...+ Wnm-1Sm-1(t +1) (4.2)
+ Z wmksk(t) — b,

k=m...n

Theorem 4. Let V be defined by

V[S(t)]= == 1/2k_z: 'w,-ks,-(t)sk(t) (43)
4 _Z 0 [ (s)ds + 30 bisi(t)

Then, if W is symmetric, with nonnegative diagonal, V is a Lyapunov
function for the sequential iteration.

Proof. We will give the proof in the case where the threshold b; = 0. The
extension to the general case is straightforward.

AV = V[s(t+1)] = V[s(t)]
SV
with
‘/,' = — [S,‘(t + 1) = S,‘(t)] Zk:wiksk(t) = w,-,-/?[s;(t -|- 1) = S,‘(t)]2

si(t+1) si(t)
L7 5 eds = [T 1)

The quadratic term —w;;/2[s;(t+1) ——.s,-(t)]2 is clearly negative. For the other
terms, let us denote

u = Zw;ksk(t)
k
v o= Zwiksk(t—l)
k
Then

1)~ st [ 5 s)as — [ 5 as

Since

L s = @) - [ 1(e)as
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we have
) - S+ [ s = [ s = (w—)f(0)
+ [ fe)ds— ["fs)as <o
which ends the proof. i

Remarks. The Lyapunov function, given in (4.3), is very similar to expres-
sion (2.11) given by Hopfield for the case of sequential iterations where time
is continuous. We could also derive in a way similar to the parallel case a
bound for the transient length.

5. Simulations

We will present in this section simulation results that we have run on mul-
tilayer networks trained by the gradient backpropagation (GBP) algorithm
[23,28]. We assume that the network has one hidden layer only and denote by
Wi and W, the weight vectors from the input to the hidden layer and from
the hidden to the output layer, respectively. We restrict our study to the
auto-association case — or identity mapping — where the input and output
vectors have the same dimensionality.

Let n be the dimension of the inputs z and p the number of hidden units.
W1 is a pxn matrix and W, a n X p matrix. Let us now consider the automata
network with n + p elements, no hidden layer, and a connection matrix W

defined by

0 W,

W=lw o

(5.1)

This network is obtained from the previous one by folding the output layer
on the input layer.

Then, running the multilayer network with connection weights W; and
W, in the “usual” way, i.e., layer after layer, is equivalent to running the
network with connection matrix W in block-sequential fashion, i.e., running
in parallel all first n elements, and then run in parallel the last p elements.
In that case, the output of the multilayer network when it is shown a vector
z as input can be read as the next state of the network with no hidden layer
after it has run one iteration on the initial state z.

It has been shown [3] that when all the elements of the multilayer network
are linear, or at least the elements in the output layer are, then one solution
of the GBP algorithm is the principal component analysis matrix where

W2 = Up

and U, is a n X p matrix, the columns of which are the eigenvectors of
the inputs covariance matrix X X' associated to its p largest eigenvalues.
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This link with standard data analysis techniques also stands in the case
of classification tasks (heteroassociation): the linear multilayer network has
then been shown to perform a discriminant analysis on the inputs [10].

In the case of (5.1,2), it is clear that W is a symmetric matrix with
nonnegative diagonal. Hence, all the results in the previous sections apply
to the network with no hidden layer when it is run either in parallel or in
sequential. By using techniques very similar to those of the previous sections,
it could be easy to extend our results to block sequential iteration, which we
will not do here (such extensions were proved [14] for discrete state space).
Taking this extension for granted, we can then apply all the results of the
previous sections to the multilayer network as well.

We have run simulations for an auto-association task [6,7]: random binary
patterns 16 bits long are generated and a network is trained to retrieve those
patterns from noisy inputs. The gradient backpropagation algorithm is used
for training. The training set contains 10 noisy versions at noise level 1, 2,
and 3 (i.e., with 1, 2, or 3 bits inverted) for m patterns set at random from
{—1,+1}"*, with n = 16. We used training sets with m = 10 and 20.

Two architectures were tested:

1. a network with two layers: the input and the output.

2. anetwork with three layers: the input and output layers and one hidden
layer with p = 8 (for m = 10) and 14 (for m = 20) units.

All the units had a sigmoidal transition function (figure 1). It is well
known [5] that if the units were linear, then the network with no hidden
layer would just compute the optimal auto-associative map of Kohonen [21].
However, if it is further tested with nonlinear mappings, then [5] the sigmoid
mapping yields better results than the threshold mapping. By varying the
“temperature” T of the sigmoid, we can test for the influence of the nonlin-
earity of the mapping. We used two different values of temperature ' : ' = 1
and T' = 1/8 (figure 1). We will see that our simulation results demonstrate
that the influence of the temperature is not important when the network is
trained with the same nonlinear mapping.

In order to illustrate the results of the previous sections, we had to make
sure that the assumption of symmetry (5.2) was valid. We thus measured
the deviation from this assumption by computing

W _Wt 2
2w, way = Dl
2

(5.3)
Figure 2 shows that this deviation remains relatively small.

Training was always practically complete: all m “pure” patterns were
correctly memorized in both architectures, even though they were never pre-
sented to the network during learning (figure 3). Learning was slightly slower
for T' = 1/8 than for T' = 1: parameters were harder to tune, especially in
the architecture with hidden layer. The network without hidden layer (shown
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Figure 2: Deviation from symmetry for the two layer networks for
T =1 (left) and T' = 1/8 (right).
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Figure 3: Learning for the two network architectures for 7' = 1 (left)
and T' = 1/8 (right). The symbol marked m — k refers to the network
with k hidden layer (k = 0 or 1) trained on m patterns. The unit on
the iteration axis is the presentation of one example.

by a rectangle: 10-0 and 20-0) always learned faster than the network with
hidden layer (shown by a triangle).

Generalization was then investigated: the m memorized patterns were
modified by inverting d bits and the networks were then tested on these noisy
patterns. We first tested for generalization as usually done for multilayer
networks, by presenting the input to the network and then checking the
output (one shot process). The results (figure 4) show that the network
with one hidden layer did better than the other and also that memorizing
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Figure 4: Generalization rates of patterns at distance 1 for the differ-
ent architectures, for T = 1 (left) and 7' = 1/8 (right).
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Figure 5: Iterated generalization rates of patterns at distance 1 for
the different architectures, for 7' = 1 (left) and 7' = 1/8 (right).

20 patterns was probably beyond the capacity of the networks. (However,
performances degraded “gracefully” even in this case of overloading.)

We then allowed for iteration: the input was presented to the network,
the output read and then refed into the network until “correct” retrieval,
i.e., corresponding bit signs identical in computed and desired outputs. The
results show that the performances were always increased, especially in those
cases where the performances were relatively poor, i.e., for the network with
no hidden layer, for the network with a hidden layer, overloaded with 20
patterns (figure 5), or the retrieval of very noisy patterns (d large: figure 6).
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Figure 6: Generalization rates for the one hidden layer network at
different levels of noise, for T' = 1 (left) and 7" = 1/8 (right), in
the case of one-step retrieval (top) and iterated retrieval (bottom).
Architecture 10-1.

In the iterated generalization experiment, we also estimated the average
transient length necessary for convergence: this is plotted in figure 7, which
shows that the transient length is remarkably small and gradually increases
with the difficulty of the task. It usually takes just one step to retrieve a
pattern at distance 1 and three steps for a pattern at distance 5.

Those results thus show that allowing for iterative generalization helps
improve the generalization performances, thus supporting the intuition that
each “pass” through the network produces some reduction of the noise-to-
signal ratio at the output. The theory we have developed also indicates that
only fixed points could be reached by iteration. We thus tested whether this
was true for our networks and also what the fixed points obtained were.

Figure 8 shows that all “pure” patterns lead to fixed points. These were
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Figure 7: Transient length for the different architectures and different
levels of noise: 1(6.2%) top, 3 (18.7% ) middle, and 5 (31.3% ) bottom,
for T =1 (left) and 7' = 1/8 (right).
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N° error
1 0.09714
-1.00 100 1.00 1.00 -1.00 -100 1.00 -1.00 1.00 1.00 1.00 1.00 -1.00 1.00 1.00 1.00
-0.59 099 0.95 0.28 045 -099 1.00 -0.73 095 048 1.00 093 -0.82 095 0.64 0.80
2 0.01593
100 -1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00
096 -0.66 094 092 1.00 -089 1.00 -0.83 1.00 -0.82 1.00 093 -0.81 0.88 0.98 -1.00

3 0.01438
100 1.00 100 1.00 100 1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00
0.79 097 099 0.71 095 096 1.00 099 085 -074 1.00 -0.99 -0.99 -0.96 -0.98 -0.97

4 0.01400
-1.00 1.00 1.00 1.00 -1.00 1.00 1.00 1.00 -1.00 -1.00 100 100 -1.00 1.00 1.00 100
-098 1.00 1.00 0.99 -1.00 093 099 087 -0.57 -091 099 099 -092 097 098 1.00

5 0.00198
-1.00 -1.00 -1.00 -1.00

1 1.00 1.00 -1.00 1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 -1.00
-0.92 -1.00 -1.00 -0.88 1

.00 ; 3
.00 095 098 -1.00 1.00 098 098 -098 0.95 0.96 -0.96 -1.00

6 0.01378
1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 100 100 -1.00 1.00 1.00 1.00 1.00 1.00 -1.00
0.82 0.76 -090 092 0.80 -098 099 083 098 -093 099 099 0.88 100 0.92 -0.86

7 0.00450
1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00
099 099 -094 1.00 085 088 -098 -0.98 -0.99 092 097 098 086 -096 0.98 -1.00

8 0.00685
1.00 -1.00 100 1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00
097 092 096 097 091 -083 098 -1.00 -0.77 098 098 -0.97 -097 -1.00 -0.94 -1.00

9 0.01106
1.00 1.00 1.00 -1.00 -1.00 -1.00 1.00 100 1.00 -1.00 1.00 1.00 1.00 1.00 -1.00 1.00
097 1.00 1.00 -0.82 092 090 099 099 085 -098 099 096 0.83 0.76 -0.88 095

10 0.04605
1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 100 1.00 1.00 -1.00 -1.00 1.00 -1.00
073 0.80 0.88 -044 092 -098 1.00 -099 100 080 1.00 079 -0.99 -0.59 0.88 -0.86

Figure 8: Fixed points obtained when starting from pure patterns
(T = 1, one hidden layer). The figure shows the ten memorized
patterns (first line) with the corresponding fixed point (second line)
and the error, i.e., the distance from the fixed point to the memorized
pattern. The sigmoid was allowed to vary between —1 and 1.

slightly different in value, but not in sign. Gradient backpropagation thus
does not ensure that the memorized patterns be fixed points of the dynamics,
but it enforces fixed points, close to these patterns and lying in the same
region of the space. This “restructuration” of the basins of attractions must
certainly help for better generalization, i.e., noise reduction.

The simulations presented in this section thus show that our theoretical
results apply to the case of multilayer networks trained through gradient
backpropagation. It thus means that iterative dynamics leads to improved
generalization performances and one should expect for fixed points (usually
close to the memorized patterns, at least in the binary case tested here).
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6. Conclusion

We have presented in this paper theoretical results which show that a Lya-
punov function can be used to describe the dynamics of neural networks with
continuous state and discrete time. This Lyapunov function allows to show
that the dynamics on such networks can only lead to fixed points or limit
cycles of length two (in the parallel iteration case), provided the connection
matrix be symmetric. The transient has been bounded by making use of the
Lyapunov function.

The theoretical results have been tested on multilayer networks trained
by the gradient backpropagation algorithm. Departure from the symmetry
condition was sufficiently low to allow for good concordance between theory
and simulation results: when using such networks, one should allow for re-
iteration in order to improve performances in a significant fashion.

This feature has not been used yet in the literature; it remains to be
tested on real-size applications.
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