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Abstract. Powerful new training algori thms developed for ar tificial
neural networks hold th e promise of identifying regulari ties in the
t raining data and generalizing over the test data. T he backprop a­
gation algorithm is one such training algorithm t ha t, with th e use of
hidden units, can learn functions such as exclusive-or. These fun ctions
can be learned by statis tical techniques such as multiple-linear regres­
sion only by introducing additional parameters . We report experi­
mental comparisons of th e performance of backpropagation, multiple­
linear regression, and an expert system. We conclude that, for the data
studied here, backpropagation is unsuitable for discovering st atist ical
relationships. It may be possible to customize neural-net algorithms
for niche applicatio ns in discovery syst ems.

1. Introduction

Recent years have witnessed an explosive increas e in neural-n et research [10].
This increas e has been fueled partly by t he development of new training
algorithms such as generali zed backpropagation and the Boltzmann ma­
chine. These new algorithms learn functions, such as exclusive-or and parity­
encoder, that require that a group of inputs be considered collectively rat he r
than one at a time to determine the output [10].

At the Uni versity of Minnesota, we have been colla borating with the
Program on Surgical Cont rol of the Hyp erlipidemias (POS CH) , a large mul­
ti center clinical t r ial. We have already developed two expe rt systems for
doing exper t evaluation of clini cal trial dat a and are developing autom ated
tools for doing the statistical analysis of the collec ted data [5-7,11 ]. We
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are developing a discovery system for investigating the rela tionship s amo ng
variables in the clinical trial database.

Neural nets were considered as one tech nique for use in a system that
aut omatically discovers significant relationships in the database. Generalized
ba ckpropagation is one of the better known neural-net algorithms that can
t ra in nets with hidden units. It has the potential of using hidden units to
discover regul arities in the data. These regu larities can be thought of as
probabilistic relationships of higher than first order [10]. If neural nets can
use hidd en units to discover relationships of highe r order with a min imum of
human int eraction, then they provide an imp ortant tool for discovering the
st ructure of a set of data. Our intention was to compare backpropagation
with other techniques to get a feel for how usefu l neural nets would be for
statistical discover y over our data.

Before getting deep ly involved with neural nets, we decided to get a feel
for how backpro pag ation works with rea l-world data, in particular our clinical
trial data. For this purpose, we trained a networ k using the backpropagat ion
algorithm on a subset of the cases used in developing ESCA, an exper t system
developed here for assessment of change in heart disease [5], and tested it out
on the remaining cases. Other da tasets on which we test ed backpropagation
were peripheral disease data and comp uter-generated ra nd om dat a.

Section 2 describes the hypotheses we were testing in the experiments.
Section 3 describes the datasets used and why they were chosen . The results
of using backpropagation and ot her met hods on t he datasets are presented
in section 4. Comments on the predictibility of the netwo rk's performance
are given in section 5. Section 6 comments on the limitations of using back ­
propagation for discovery systems. Sect ion 7 mentions the advantages of the
Boltzmann machine for discovery systems. Section 8 gives conclusions.

2. Hypotheses t ested in the experiment s

We tested the hypothesis that a neural net t ra ined using backpropagation
on a large subset of the data could generalize to the remainder of the sub­
set. This is the train-and-generalize paradigm. T his generalization would be
achieved if the net learn ed to configure itself so as to exploit the regulari ties
in the data being presented. One test of the net having generalized "well"
is th at it could predict the output variables of the ot her set of data when
th e input variables were presented to it. If the net did not pass this test, it
did not generalize well, and we do not know whether the net has learned the
regularities in the data.

There have been attempts to obtain useful syst ems by using backprop­
agation for nets with and without hidden layers in the t rain -and-generalize
paradigm outlined above. These systems can be used as expert system s [3,8] .
These "expert systems" have the limitat ion that they cannot explain their
decision process to the user as an expert system can. One of the motiva­
tions for the development of exper t systems which use rules [13] or inference
fun ctions [12] der ived from th e knowledge of domain experts, is that the
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domain experts feel more comfortable when the systems use domain knowl­
edge in a manner they understand.

The uneasiness of experts with systems derived from a purely statistical
basis was a major constraint in using these systems. With neural nets , the
method of predicting outputs is even less understandable or explainable to
a domain expert. Another limitation of neural nets is that it is hard to
decipher the information encoded in the pattern of weights. If neural nets
are used as a learning technique for discovering new knowledge, one has to
be able to report the knowledge concisely so that people can understand it.
Given these limitations, it is necessary to determine how well neural nets
can learn the regularities of a domain. If neural nets do a substantially
better job than multiple-linear regression or symbolic artificial intelligence
techniques at capturing the regularities of a domain, then additional research
can be done to determine how to use neural nets to automatically generate
expert systems or acquire new knowledge. For backpropagation, the train­
and-generalize paradigm is one way to compare its performance at capturing
regularities with that of multiple-linear regression or expert systems.

3. Data used in the experiments

Experiments have been carried out on three sets of data. We can be more
confident of the results because three different sets of data are used. The
backpropagation model was used for all the experiments. Tests were done
with different numbers of layers and a different number of units in each
layer. The algorithm described in Chapter 8 of [10] was used. Values of
0.3 for "eta" and 0.9 for "alpha" were used. The units in all layers were
completely connected with units in their immediate preceding and succeeding
layers.

The rationale behind using completely connected layers is as follows:

If we are to establish the topology of the layers, then we are supplying
the net with information about how units influence each other. Consid­
ering that the networks use a distributed encoding for representation
of information which is hard for humans to understand, it would be
difficult for people to supply this information in a real task.

One has to preset the number of layers and the number of units in
each layer. Even supplying this information results in a large number
of experiments being necessary to determine the best performance. In
addition, supplying the topology increases the number of experiments
that should be carried out. While sparsely connected topologies can
reduce computer training time, the researcher has to spend mor e time
supplying the topologies and comparing the results unless he is sup­
ported by a neural-net experimentation environment. Computer train­
ing time is an important consideration when carrying out neural-net
experiments with real world data. For our experiments, it took more
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than 800 minutes of SUN IIII workstation time to train a particular
network configuration over 700 iterations.

3.1 Experimenting with computer-generated data

Input fields are computer generated and consist of random numbers in the
range 0.1 to 0.9. The output is computed by first mapping the input fields
to intermediate scores when they lie in a pre-specified range and then adding
these intermediate scores together. This weighted addition seems common in
our domain; it has been used for expert systems we have developed and for
computing the indexes of peripheral disease. It is essential for our domain
that the network be capable of learning these mapped scoring functions.

46 input fields and one output field are generated. In Experiment (A),
the input fields are obtained by generating random numbers between 0.1 and
0.9. A score is computed for each field given by

score = 0.0, if 0.1 :::; field:::; 0.4

score = 0.01, if 0.4:::; field:::; 0.7

score = 0.03, if 0.7 :::; field:::; 0.9

The scores for the various fields are added to give a total score. The output
is computed as follows:

output = 0.1, if 0.0 :::; total score:::; 0.3

output = 0.2, if 0.3 :::; total score :::; 0.5

output = 0.3, if 0.5 :::; total score j; 0.9

output = 0.8, if 0.9 :::; total score:::; 0.94

3.2 Experimenting with expert-system data

The data used for testing ESCA, an expert system developed for POSCH to
evaluate data collected on angiograms taken for the same patient some years
apart was used for this experiment [5]. Angiograms are photos taken of the
heart after the coronary arteries are injected with radiographic dye to increase
the contrast. This experiment compares the performance of backpropagation
with an expert system doing the same task. Multiple-linear regression was

ISUN and SUN III are trademarks of SUN Microsystems, Inc.
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NA1-Tr NA1-Ts NA2-Tr NA2-T s
Exact 82.67 64.0 90.67 52.0
Within one 100.0 100.0 100.0 100.0

Table 1: Results of computer-generated data. NA1 has 0 hidden
layers. NA2 has two hidden layers with three hidden unit s in each
layer. Tr = training; ts = test .
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used over the training data to determine the relationship between the output
var iable and the input variables. The coefficients obtained from the regression
were inserted into an equation. This equat ion was then used to pr edict the
output variable from the input variables from the te st data.

3 .3 Experimenting with peripheral disease data

Data on peripheral disease collected on a sample of POSCH patients was
used in this experiment. Three different indexes of peripheral disease are
mathematically computed from the percentages of st enos es (constrictions
due to lipids deposited on the walls of the arte ries) in the peripheral arte ries.
These indexes based on mathematical scorin g can be expected in most real­
world applications. Other data relate d to peripheral disease, such as the
patient 's history, cholesterol levels , and noise variables such as height and
age, are included. Such noise varia bles have to be considered when doin g a
st atistical analysis. The performan ce of backpropagation to pr edi ct one of
these indexes in the presence of irrelevan t variables is te ste d .

4. The experiments and their results

700 training iterations were used in each experiment. It was observed that
there was little difference in the net 's pr edictions at the 600th and 700t h
it eration. The net's predictions before the 500th iteration on the training set
showed little change with those of the 600th and 700th it eration. To deter­
mine whether training the network further would improve resu lts , additional
experiments were carried out. The results of these experiments and whether
t raining the network further would improve performance are discussed in
sect ion 5.

4 .1 Results with computer-generated data

Seventy-five training cases and 25 test cases were used. The network wit h
no hidden layers and the net with 2 hidden layers with 3 uni ts in ea ch layer
had the best overall predictive performance. The performance of these two
network configurations is given in table l.

The network learned to predict the output exact ly or within one cat egory
of the exact answer for both the training and the test sets. These resu lts
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SP ES MLR-Tr MLR-Ts
Exact 38 46 57 44
Within one 92 93 98 93

Table 2: Results of techniques other than backpropagation with un­
subtracted expert system data. SP is comparison of subpanels with
subpanels. ES is comparison of expert system with subpanel . MLR
compares multiple -linear regression with subpanel. MLR-tr is results
of multiple-linear regression on the training set; MLR-ts is results of
multiple-linear regression on the test set.

indicate that the net should be able to predict correctly when mapped and
summed inputs are present. The generalization performance on this "toy"
data is poorer than the generalization performance reported for other tasks
in the literature [2]. In reference [2], backpropagation was tested with differ­
ent tasks performed on binary patterns. Our patterns require a continuous
encoding, one possible cause of the poorer performance.

4 .2 Results with expert system data

The data used was from comparisons of 200 pairs of angiograms made by
subpanels of human experts. Experts record their observations of the vis­
ibility of the angiograms, the morphology, stenoses, and ratings for change
for arteries viewed. The expert system used the information on stenoses of
23 pairs of arteries . The experts must give a global assessment of change
of atherosclerotic disease on an 8-point scale from - 3 to +3, with - 3 being
much worse and + 3 being much better, -0 being imperceptibly worse and
+0 being imperceptibly better.

The expert system was designed to come up with this global assessment
of change. It agreed exactly with the panel of experts on the test set of
200 cases for 46% of the cases and within one for 93% of the cases. During
quality control studies, it has been discovered that subpanels of experts agree
exactly with each other 38% of the time and within one 92% of the time. The
subpanels make their assessments based on film, rather than the information
encoded from the films, and this introduces one more factor of uncertainty
for the subpanels. The results for subpanel versus subpanel, expert system
versus subpanel, and multiple-linear regression versus subpanel are given in
table 2. They provide an alternative with which to compare the neural net
results.

The neural ne t was trained on the output assessment given the percentage
stenoses observed for the arteries in the angiograms. These ang iograms are
taken at different times for the same patient . In the first experiment, for each
artery the net was given the absolute values of both the percentage stenoses.
Various configurations of the network were used. The results are summarized
in figure 1.

The results for the best configuration are given in table 3. In the second
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Figure 1: Training backpropagation on unsubtracted expert system
data for different configurations. Percentage accuracy of net trained
on uns ubtracted data after 700 iterations for various configurations of
the network. 0_ refers to the net with no hidden layers; 2_10.7 refers
to the net with two hidden layers having ten units in the first hidden
layer and seven in the second hidden layer.
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Figur e 2: Training backpropagation on subtracted expert system data
for different configurations. Percentage accuracy of net trained on
subtracted data after 700 iterations for various configurations of the
network . L5 refers to the net with one hidden layer and five units in
the first hidden layer; 2_10.7 refers to the net with two hidden layers
having ten units in the first hidden layer and seven in the second
hidden layer.

experiment, the net was given the percentage stenoses observed in the first
angiogram, and t he difference in stenoses between the first angiogram and
the second. Figure 2 gives the results. The best results are given in table 4.

In both exp eriments , the neural net was trained on 125 case s from the data
used to test the expert system and tested on the remaining 75 cases. Differ ent
numbers of hidden layers with different numbers of units in each hidden layer
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NBl-tr NBl-ts NB2-t r NB2-ts
Exact 42 33 57 39
Within one 95 76 98 84

Table 3: Results of backpropagation with unsubtracted expert system
data. NBI is neural net with no hidden layers compared to subpanel.
NB2 is neural net with three hidden layers with three units in each
hidden layer.

NCltr NClts NC2tr NC2ts
Exact 80 16 32.8 22.67
Within one 100 46.7 62.8 60.0

NC3tr NC3ts NC4tr NC4ts
Exact 45.6 25.3 43.2 10.7
Within one 84.8 62.6 97.6 53.34

Table 4: Results of backpropagation with subtracted expert system
data. NCI is neural net with two hidden layers. The first hidden
layer has seven units; the second has ten units. NC2 has three hidden
layers with three units in each hidden layer. NC3 has three hidden
layers with five units in each hidden layer. NC4 has one hidden layer
with five units. NCltr refers to training performance of NCl; NClts
refers to test performance of NCl.
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were used . T he performance of the net with no hidden layers compared
favorably with the best performance obtained. The best performance at
pred icti ng the data during both test and training in terms of the number of
assessments accurately predicted were observed for the net trained with the
absolute pe rcentages (figure 1). T hat particular net had three hidden layers
with three units in each layer. The resu lts for the subpanels, the expert
system , an d backpropagation are summarized in table 3. T he ne ural net
performance on the t raining set is better than the experts. On the test set it
is poorer than the experts, the expert system, and multiple-linear regression .

The net with subtracted data did not perform as well as the net with
unsubtracted data. For subtracted data, a network configuration that would
do well on the training set would do poorly on the test set (figure 2). For
un subtract ed data, there are configurations that do well on both the training
set and the tes t set (figure 1).

Several factors can exp lain the difference.

Percentage changes were supplied to the net with subtracted data. Per­
cent changes vary more (from -100 to +100) than absolute percent­
ages (0 to 100). In mapping percent changes to a floating point num­
ber between 0 and 1, the dynamic range is reduced more than when
mapping absolute percentages. When backpropagation was tested wit h
exclusive-or, wit h 0 enco ded as .005 and 1 encoded as .095, the net work
was unable to learn the funct ion .



304 Irani, Matts, Long, Slagle, and the POSCH group

It may well be impossible to predict the performance of backpropa­
gation in individual configura tions. Another configuration of the net­
work with percentage changes might do as well as the network trained
on the absolute percentages.

Experiments have shown that single-layer networks using backpropa­
gation can explain human learning mechanisms [4]. It is possible that
human experts view data in terms of the absolute percentages rather
than a first measurement and a change . In that case, the network that
used absolute percentages was a more faithful representation of the
decision-making process.

4.3 Results with peripheral disease data

The peripheral disease data has several features that potentially make it more
difficult for a neural network to predict outputs both over the training set
and the test set.

1. The neural net is asked to predict an index of peripheral disease math­
ematically computed from some of the input fields. Some of the other
input fields are potential causes for the mathematically relevant fields ,
causing interference for the network.

2. Much data that is poss ibly irrelevant, such as patient height, is mixed
with data that measures causes of peripheral disease (such as choles­
terol, ratios of HDL/LDL cholesterol, smoking history) and data used
to compute the indices of disease (the percent stenoses in each artery).
By comparison, in the angiogram experiment only the data that were
determined most useful by the experts to arrive at the global assessment
was input to the net.

3. Some of the information has non-numeric connotation and was mapped
to real numbers (e.g., sex was mapped to either 0.4 or 0.8, type of
smoker cigar/cigarette/pipe or a combination was mapped to numbers
from 0.1 to 0.5) .

4. The dynamic range of the data was much larger. While stenoses range
from 0 to 100 with peripheral disease data there are inputs such as
weight that could be above 200 pounds, and cholesterol measurements
in milligrams that could range up to 500 milligrams.

Table 5 gives the results of the neural net on peripheral disease.

5. Predictability of the net 's performance

The net's performance cannot be predicted. There is no guarantee that
increasing the number of layers or increasing the number of units in a layer
or both will improve either test or training performance. The performance
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NC-Tr NC-Ts
Exact 83 64
Within one 100 100

Table 5: Results of peripheral disease data. NC is neural net with no
hidden layers. Tr = training; Ts = test .
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on the t raining set is not a good indicator of the performance on the test set
for subtracted or unsu btracted data.

To determine t he effect of additional training iterations on the same net­
work configuration, additional experiments were conducted with the con­
figurat ions hav ing t he best test performance for 1, 2, and 3 hidden layers
(figur e 3). T hese configurations were trained for 2,250 iterations of the en­
ti re training set . The absolute fractional changes for all weights for each
connection for an iterat ion was calculated. These fractional weight chan ges
were then added together to get the total absolute fra ctional weight cha nge.
The total absolute fractional weight changes occurring over the last 250 iter­
ations is plotted for every 250th iteration, along with the information on the
accuracy of the networks predictions for the training and test set s (figur e 4).
A further run of the net with three hidden layers was done. During this
run, the floating-po int precision for representing weights was reduced to six
digits after the decimal point by introducing random noise after the sixth
digit . The result s are shown in figures 5 and 6. This reduction of precision
is necessary when running the simulations on the CRAY-II. 2 Floating-point
precision on the CRAY-II is so high that the network fails to predict sim­
ple fun ctions like exclusive-or during training. Reducing precision seems to
introduce enough random noise to keep the network from getting stuck in a
local minimum.

T he performance over the test set for the three network configurations
worsened when the number of iterations was increased over 1000. The perfor­
mance of the training set worsened over 1000 iterations for the network with
three hidden layers. T he performance of the t raining set for the other two
network configu rations improved with incr easing ite rat ions . We carried ou t
tests with nets with more than three hidd en layers; the results were no better
th an for the nets with fewer hidden layers. The deterioration in performance
with extended training runs of 2,250 iterations seems to indicate that even
three layers may be too many. It has been pr eviously reported in [2] that
mult ilayer architectures do no better than those with two hidden layers.

The possibility of the network getting stuck in a local minimum in rare
cases is discussed in reference [10]. The unpredictabili ty discussed here is of
a different nature. It refers to the lack of features in the network that can
be used to determine a good network configurat ion or when to stop training.

2Cray and Cray-II are trademarks of Cray Resear ch, Inc .
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The training time for each network configuration is large. We can try to
reduce the training time by training the network in the early ite rat ions on
a randomly selected subset of the training da ta. An alternat ive is to select
a different network learning algorithm that does no t require experimen ting
with different configurations .

6. Limitations of u sing backpropagation for discovery sys t em s

The limi tations of using backpropagation for discovery systems are as follows:

1. A completely connected network has too many weights to analyze . If
we are supposed to make a prior assumption about the layout of the
network, we are making assumptions about the flow. If we are going
to make assumpt ions about the flow, we might as well use standard
statistical techniques . Besides, in backpropagatio n , the int eraction be­
tween weights is complex and distributed. It is not realist ic to expect
a researcher to supply the topology that would bes t represent the flow
of influence.

2. Compared to backpropagation, st andard st at istical techni ques give re­
sults that are easier to interpret and take a significantly smaller amount
of computer time. The backpropagation simu lations take more than a
day to run on a SUN III. Even on a CRAY, considering the scheduling
of other jobs on the system , a batch of 20 backpropagation t raining
runs for our experiment took days; ultimately, the ru ns were don e over
several SUNs.

3. Another difficulty with backpropagation is that it does not pro duce
conci se models of what happened in the world. In discovery systems,
der iving the numerical relationships of t he flow of influen ce between
variables is tedious . Extracting symbolic information from the weigh ts
in backpropagation is an even more difficult task at this stage because
the information encoded in the weights is dist ributed in nat ure.

4. Backpropagation's generalization performance to the test set is unpre­
dic table for numeric data or for numeric data with non-numeric con­
notation. Our application and several real-world applications where
statistical discovery is used consi st of either numeric or symbolic da ta.
In addition, statistical techniques seem bet ter ab le to predict data and
deliver easily interpretable results .

5. The necessity of running several configurations of the network makes
backpropagation more difficult to use . A huge amount of compute r
time is needed to run the different configurations. Ru nni ng several
configurations makes the research frust rating, as comparisons have to
be made to determine the best configurations . Neural ne t programs
have not reached the state of maturity of statistical packages in terms
of flexibi lity of supplying input, reporting results, and so on .
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Figure 3: Accuracy observed in test and training the best nets with
1, 2, and 3 hidden layers for 2,250 iterations. (a) Training the net
with one hidden layer containing seven hidden units. There are 125
cases in the training set and 75 cases in' the test set . (b) Training
the net with two hidden layers having seven units in the first hidden
layer and five in the second hidden layer. There are 125 cases in the
t raining set and 75 cases in the test set. (c) Accuracy observed in test
and t raining the best nets with 1, 2, and 3 hidden layers for 2,250
iterations. Training the net with three hidden layers and three units
in each hidden layer . There are 125 cases in the training set and 75
cases in the test set.
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and 75 cases ar e used in the test set. The floating-point accuracy of
represent ing weights has been reduced to six digits afte r the decimal
point.
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Figure 6: Fractional Weight changes observed when training the best
net with 3 hidden layers for 10,000 iterations. Fractional weight
changes are calculated by summing th e absolute fractional weight
changes over all connections in the network for the last 250 ite rations.

6. The lack of a network-based criteria of when the net work has converged
to a stable state. How does one decide when to stop training? T he
answer to that question is not clear with generalized backpropagation.

7. The inability of the backpropagation algorithm to deal with miss ing
data. Backpropagation exp ects all input fields to be pr esent . This
is unrealistic in the real world . Statistical packages allow the user to
decide whether to ignore missing fields or supply the aver age. Other
neural net algorithms can deal with missing fields and may be better
suited for the real world .

7. Further neural net research for discovery systems

Further work involves testing the Boltzmann machine paradigm for the same
set s of data. The Boltzmann machine parad igm seems to be more applica ble
to discovery systems than backpropagatio n for reasons given below. Anoth er
reason we are experimenting with the Boltzmann machine and the mean
field theory approximation for the Boltzmann machine is that they may be
useful for tasks such as robotic cont rol where the input information is mor e
perceptual in nature. In this case, coars e coding as used in reference [8] can
help. Testing on the clinical data is a way of gaining familiarity with the
Boltzmann machine algorithm.

The Boltzmann machine seems mor e applicable to real world tasks than
backpropagation for several reason s.

1. An estimate of stochastic relations using the mean field th eory spee ds
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up the settling algorithm considerably and yields qualitatively better
results [9].

2. It is not necessary to determine how many units to have in each layer .
This makes designing the network easier.

3. The connection strengths between units are adjusted based on esti­
mates of correlational statistics. This may yield connection strengths
more suitable for human interpretation.

4. The Boltzmann machine does not make a distinction between input
and output units . It will predict values for all units whose values are
not supplied. Values can be missing when data was not collected for
a particular patient or was not possible to record. For instance, in
recording stenoses for angiograms, the stenoses in arteries might not
be recorded because they were poorly visualized or because an upstream
stenosis in an artery completely blocked the flow of dye.

5. It should be possible to develop subroutines for a Boltzmann machine
that would disable a connection once the weight falls below a certain
threshold. In this fashion, a structure of flow of influence can be ob­
tained.

8 . Conclusions

The present state of maturity of neural net research requires extensive exper­
imentation on the part of the researcher. In our experience, backpropagation
has consistently done worse than statistical techniques or expert systems on
both training and test set s. There may be applications where a simple train­
ing scheme that delivers sub -optimal results can be used in an automatic
system, but the large training times required by backpropagation to find an
optimum configuration makes it unsuitable. The Boltzmann machine with
the mean field approximation can reduce overall training times and may yield
more in terpretable connection strengths; testing its performance is a possible
future task. Neural net algorithms need to be customized further if they are
to be used for discovery of statistical relationships in data where there may
be used as specialized niche techniques, for ins tance over nonsymbolic data.
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