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Abstract. A simple method based on the lattice Boltzmann equation
is presented for the evaluation of the velocity profile of fluid flows near
walls or in the vicinity of the interface between two fluids. The method
is applied to fluid flow near a wall, to channel flow, and to the transi-
tion zone between two fluids flowing parallel to each other in opposite
directions. The results show good agreement with microdynamical
lattice gas simulations and with classical fluid dynamics.

1. The lattice boundary layer problem

Since the pioneering work by Hardy, Pomeau, and de Pazzis in 1973 [1,2],
Wolfram in 1983 [3], and mostly since the recent introduction of the hexag-
onal lattice gas by Frisch, Hasslacher, and Pomeau [4], lattice gas methods
have evolved both in efficiency and complexity (an extensive introduction to
the subject can be found in [5]). The theoretical and computational devel-
opment of the field has been so extensive in the last couple of years that it
has given rise to applications in various areas of physics [6].

Lattice gases share common operational features with cellular automata
and so are most easily implemented on parallel machines, in particular for
fluid dynamical problems at large Reynolds numbers [7] which require high
computational performances. On the other hand, there exists a variety of op-
erationally simple problems of valuable physical interest that can be solved
with modest computational means for which small computers provide suffi-
cient power. For the class of problems considered here, the lattice gas flow
description can be reduced to a “one-dimensional” formulation; therefore
such problems can be solved with low power computational techniques.
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The formation and growth of boundary layers is of crucial importance
in fluid dynamical flows, in particular as their occurrence triggers the de-
velopment of turbulence at high Reynolds numbers. For viscous flow (at
low Reynolds number), boundary layer problems can be solved within the
limits of reasonable approximations. Such problems so appear as an in-
teresting test for the validity of the lattice gas method and their solutions
are a prerequisite to the understanding of more complex flows and of the
three-dimensionalization in the transition to turbulence. The purpose of the
present work is to show that laminar boundary flow can be treated efficiently,
that is, simply and economically, by the lattice gas method.

The basic idea is the following: consider that a lattice gas, initially in
homogeneous unidirectional motion, is suddenly put in contact with a wall.
All lattice gas nodes in any layer parallel to the flow direction have the same
particle distribution and, the system being translationally invariant, it suf-
fices to perform one-dimensional computation to evaluate the velocity profile.
The wall effects on the flow velocity are propagated by the particles at the
microscopic “thermal velocity,” whereas the flow profile modifications propa-
gate via particle interactions, i.e., at much lower speed. Interactions with the
wall will first be felt on the first layer of the gas (i.e., the layer adjacent to the
wall); at the next time step, they will be felt on the first and second layers,
and progressively the successive lattice layers will be interactively involved.
More precisely, we consider a gas (density d) flowing parallel to a wall with
free flow velocity Uo. Momentum is first exchanged between the wall and
the first layer: the flow is slowed down in that layer due to velocity reversal
of the particles colliding with the wall. The first layer will come to a state of
local equilibrium acquiring velocity U parallel to the wall with U < Uo. All
layers beyond the first one remain at the free flow velocity Uo.

During the second time step, the transport of the particles from the first
layer will affect the second layer of the gas: particles in the second layer
are now slowed down due to the lower velocity in the first layer. The new
equilibrium populations in the first and second layers are computed. The
third step in the process will affect the third layer of the gas; however, the
fresh values of the second layer computed from the second time step will
exert an influence on the first layer so that equilibrium values for the first
two layers must be updated before that of the third be evaluated.

At each time step of the process, the new equilibrium values of each
underlying layer are updated from the fresh values obtained for the upper
and lower adjacent layers at the previous step and the next upper layer is
included in the computation. At any given time, all the layers that have
reached equilibrium and have a velocity value U < 0.99Uo are considered to
belong to the boundary layer. Because of the discreteness of the lattice, the
exact value of the boundary layer thickness § must be evaluated (in general)
by interpolation. The boundary layer thickness growth is much slower than
the increase in the number of layers: the boundary layer thickness grows
as the square root of the number of time steps [8], whereas the number of
layers is equal to the number of time steps. All the layers that have not
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Figure 1: (a) Indices for velocity orientations on lattice nodes;
(b) collision rules.

yet been included in the calculation are assumed to be at equilibrium with
velocity Uo.

The physical situation described by the calculation outlined above can be
viewed in the following way: a gas at rest in contact with a wall (¢ < 0) is
suddenly made to move instantaneously (at ¢ = 0) with velocity Uo in the
positive & direction (it is assumed that the gas reaches stationary velocity Uo
instantaneously). Each “column” of particles behaves like its neighbors and
the boundary layer grows in a similar way for all columns. At the next time
step, the boundary layer thickness § will have grown by an equal amount
for all columns and the number of time steps elapsed can be interpreted
either as time (distance from the wall) or space (distance along the wall).
Hence we obtain “two-dimensional” information from a “one-dimensional”
formulation, with restriction to situations where the flow is parallel to the
boundary (extension to plane laminar two-fluid flow is straightforward).

2. The lattice gas model

We use the FHP hexagonal lattice gas with standard collision rules [9]: only
head-on and triple collisions (shown in figure 1b) lead to momentum transfer;
all other collisions are “transparent.” No rest particles are included here for
simplicity. (We also performed computations with a model including rest
particles and obtained essentially the same results).

With the indices as given in figure la, the microdynamical equations for
the occupancy states n; (which can be only 0 or 1 due to the lattice gas
exclusion principle [9]) are

n(t+ 1,7+ ¢) =ni(t,r) + Ai(n); ¢=0,1,...,5 (2.1)



320 Lattice Boltzmann Equation for Laminar Boundary Flow

where n;(t,r) is the propagation term and A;(n) denotes the collision term.

Ai(n) = AP(n) + AP (n)

AEZ)(n) = anga (b, P)niga(t, )0t 7)nigo(t, 7)nays(t, 7)niys (2, 7)
+ (1 —a)nipa(t, P)nips(t, 7)ni(t, 7)niyq (¢, 7)
Riya(t, )iy a(t, 7)
= it P)niga(t, P)nag (8 7Rt )
Niya(t, 7)nigs(t, 7) (2:2)

AP(n) = niat,P)nisa(t, P)nirs(t, P)ma(t, 7)mega(t, P)mea(t, v)
= ni(t7r)ni+2(taT)ni+4(t7r)_i+l(ta )_i+3(tar)_i+5(t7r)

where AEZ)(n) and Ags)(n) are the contributions from binary collisions and
from triple collisions respectively, and a is defined in figure 1b. A;(n) can take
the values —1, 0, or +1. Equations (2.1) and (2.2) are the microdynamical
equations for the hexagonal lattice gas model (without rest particles). The
microdynamical equations set the local rules which are used for lattice gas
simulations.

The passage from the deterministic description to a probabilistic one is
made via the Liouville equation which expresses the probability of finding
the system in a given state from the knowledge of its state at an earlier time.
Then, we can define averaged quantities as

N,-(t,r) =< n,-(t, 1’) >
whose evolution is governed by the equation

Ni(t+1,r+¢) = Ni(t,r)
+ < ania(t r)nia(t, m)na(t, 7)
nig2(t, P)niya(t, T)negs(t, 7) >
+ <1 = a)nipa(t, m)nigs(t, m)na(t, 7)
ﬂ-i+1(t7 7‘)-7-7'-i+3(t> T)Q,-+4(t, 7') >
— < ni(t,?)nips(t, P)nga (¢, r)
Dot P)Riga(t, T)nays(t, ) >
+ < nipa(t,?)nips(t, P)nigs(t, 7)
Z”-i(tv r)ﬂi+2 (t7 "')ﬂi+4(t7 7‘) Z
— < ni(t, P)nipe(t, ?)niga(t, )
By (b P)ng (b, P s(t, ) > (2.3)
With the Boltzmann approximation, i.e., assuming that there is no correla-
tion between particles prior to collision, which amounts to setting:

< ninj >=< n; >< n; >= N;N;, (2.4)
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one obtains the “lattice gas Boltzmann equation”

N;(t+ 1,7+ ¢;) = Ni(t,7) + Ai(n) (2.5)

A;(n) = +0.5Ni1 (¢, 7)Nipalt, ) Ny(t,7)
Niyo(t,7) Niys(t, 7) Niys(t, )
+ 0.5N;2(t,7)Nips(t, ) N;(¢, 7)
ﬂi+1(t7 r)ﬂi+3(t’ r)ﬂi+4(ta 1')
- M(tv T)Ni+3(ta r)ﬂi+1 (t7 7')
Nipo(t, ) Nigs (8, 7)Niys(t, )
+ Ni+1(t’ T)Ni+3(t’ T)M+5(t’ T')
Ni(t, ) Nipo(t, 7)Nigy(t, )
—  Ni(t,7)Nigo(t, ) Niga(t, r)
N (b ) Nipa(t, 7)Noys(t, ) (2.6)

where we have set a = 0.5 (equal probabilities for binary collision output
states).

Solving the lattice Boltzmann equation offers an alternative to micrody-
namical simulations; however the variables are then continuous rather than
Boolean. From (2.5) the ensemble averaged hydrodynamic quantities, e.g.,
the density and the velocity field are obtained.

p=> N; U=1/p> (Nic:) (2.7)

3. Interaction with a solid boundary

We next consider the interaction mechanism of the gas with the wall. Par-
ticles can undergo pure specular reflections, “bounce-back” reflections (fig-
ure 2) or any combination of these. Pure specular reflections meet the con-
dition of a perfectly slippery boundary and should not affect the velocity
profile of the flow (this feature can be used as a test to check whether the
model is performing correctly). Pure bounce-back reflections yield zero flow
velocity along the wall, which corresponds to no-slip condition. The model
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Figure 2: (a) Specular reflection; (b) bounce-back reflection.
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Figure 3: Configuration of the lattice near the wall.

can be implemented so as to handle either type of reflection or a combination
of both in any proportion.

Knudsen’s experimental results suggest that, in a real system, the gas
molecules impinging on a wall at a constant angle of incidence are reflected
back in randomly distributed directions [10]. This corresponds to a combi-
nation of equally weighted specular and bounce-back reflections in a lattice
gas (that is a bounce-back reflection coefficient r = 0.5, with » = 1 for pure
bounce-back reflections). However, the interaction mechanism in a lattice
gas differs from that of a real gas in that all interactions on the lattice are
synchronized and particles can only be located at “quantized” distances from
the wall. This should be taken into account if the model is to match actual
situations.

The wall is denoted as row number zero (j = 0) in the model configuration
(figure 3). Since particle velocities can be oriented in only two directions on
row number zero (particles are not allowed to move tangentially on the wall),
no equilibrium state is computed for this row. A particle leaving row number
one at time ¢ along direction 4(5) will necessarily return to row one at time
t + 2 as a particle in direction 2(1) after specular reflection or direction
1(2) after bounce-back reflection. The computation proceeds as explained in
section 1, the wall acting as a “reflector” for particles.

4. Flow parallel to a solid boundary

We first examine fluid flow parallel to a flat wall. The translational invari-
ance and the orthogonality of the flow direction of the model eliminate the
advection term U - VU in the Navier-Stokes equation which reduces to:

Ou 0%

o "oy
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where u is the z component of U and v is the kinematic viscosity. The
solution to this equation reads [8]:

U = Uoerf {y/ (4vt)/?} (4.1)

The results of the lattice Boltzmann computation are given in figure 4 for
the first few time steps of the boundary layer growth and its later evolution.
When the boundary layer becomes sufficiently thick (approximately after
five time steps), the characteristic velocity profile of laminar boundary flow
emerges clearly. The boundary layer thickness is seen to broaden as time
progresses. These results are confirmed by our lattice gas simulations. In
figure 5, we compare the simulation velocity profile with the theoretical error
function profile (the Blasius profile [11] is given as a reference).

Theory predicts that the boundary layer thickness grows as the square
root of the distance from the leading edge of the wall. Figure 6 shows that
the results of the lattice gas simulation are in excellent agreement with theory
(as soon as the number of layers in the boundary exceeds three). Note that
the results obtained for the error function profile and for the boundary layer
growth are also in good agreement with lattice gas simulations performed
with the microdynamical equations [12].

J A J
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- + - + - +
- + - + - +
- + - + - +
- + - + o +
Sk + Sk + St +
- + o + - +
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1} + " 1F+ i 1h+ y
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0 1>, 0 1>, 0 1.,

Figure 4: Velocity profile obtained from lattice Boltzmann computa-
tion of flow parallel to a horizontal flat wall. Gas density d = 0.233;
free-flow velocity Uo = 0.35; j denotes the lattice row number (wall at
j = 0); time ¢ is given in lattice time step units; bounce-back reflection
coefficient r = 1.
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Figure 5: Theoretical error function and Blasius profiles and lattice
gas simulation data after 150 time steps (particle density d = 0.1833,
free-flow velocity Uo = 2.72, bounce-back reflection coefficient r = 1).
y norm is the normalized space coordinate measuring the distance
from the wall. y norm = 4.995/jo where jo is the interpolated row
index value corresponding to U = 0.99U0. The factors 4.99 and 0.99
are standard in boundary layer theory [11].

We next examine the effect of the bounce-back reflection coefficient . We
observe that deviations from the theoretical profile increase as r decreases
(figure 7). As soon as specular reflections are present, the velocity on the wall
becomes nonzero. This velocity component can be evaluated from the values
of the velocity components toward the wall on layer 1. The experiments
conducted by Knudsen show that a ratio » = 0.5 would be appropriate [10].
This apparent discrepancy can be explained by the fact that in lattice gases,
no particle can be closer to the wall than one interlayer distance, whereas in
real gases, the average distance of molecules from the wall is of the order of
the mean-free path: unless the gas is extremely rarefied, the velocity on the
wall is vanishingly small. However, if a lattice gas simulation with a reflection
coefficient 7 = 0.5 is run for a sufficiently long time, velocity on the wall will
get arbitrarily close to zero. On the other hand, pure specular reflection
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Figure 6: Boundary layer growth with distance (up to 41 distance
units). Same conditions as given in caption of figure 4. y norm is
defined in caption of figure 5. The distance from the leading edge is
tU*. Since the boundary layer thickness is defined at U* = 0.99U o, we
define = by converting directly ¢ into distance (ignoring the constant

factor U*).
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conditions produce no boundary layer whatsoever, as expected (perfect slip

on the wall).

5. Channel flow

We consider two walls separated by an integer number of layers and impose
the appropriate reflection rules on these walls. The limitations of the method
are obvious in channel flow simulation. In the flow near a wall as investigated
in section 4, the gas with a velocity Uo away from the boundary layer acts
as the driving force for the whole fluid. In channel flow, as soon as the two
boundary layers meet, this driving force is no longer present, and friction
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progressively brings the fluid to rest. Therefore, appropriate scaling must
be introduced to display our computational results as Poiseuille flow. The
comparison with theory is shown in figure 8. We also obtain good agreement
with channel flow simulations from the microdynamical equations [12-14]
(Note that [13] shows channel flows that have not yet fully developed to
Poiseuille flows.)

6. Transition zone in two-fluid flow

We consider two-fluid flow and examine the velocity profile in the transition
zone between two gases with identical physical properties flowing parallel
to each other. The separation layer is labeled with index zero and the net
velocity component parallel to the flow direction at j = 0is U = 0 (in the
reference frame of the mean of the two velocities). The equilibrium state at
time ¢ for each layer (j) is computed from the Ni values for adjacent layers

y norm

0 T T ey . s ey . .
0.0 0.2 0.4 0.6 0.8 1.0
U/Uo

Figure 7: Velocity profiles for various bounce-back reflection ratios.
(Gas density: d = 0.233; free-flow velocity: Uo = 0.500). The data
shown were obtained after 20 time steps.



Paul Lavallée, Jean Pierre Boon, and Alain Noullez 327

10 4 — Theory

b4 Computation

0 . " sy
0.0 0.2 0.4

O.IG ' 0?8 ) 1.0
U/Uo

Figure 8: Comparison of lattice Boltzmann computation of channel
flow with scaled theoretical Poiseuille flow (' is the transverse dis-
tance in the channel measured in lattice units; channel width is 18
lattice units; particle density d = 0.267; free-flow velocity Uo = 0.312;
reflection coefficient 7 = 0.5). The profile is shown after 47 time steps.

j+1and j — 1, and layer j itself, evaluated at time (¢ — 1). From classical
hydrodynamics, the solution to this problem, for flows in opposite directions,
reads as for the flow parallel to a wall [8]:

U = Uoerf {y/(4vt)*/?} (6.1)

where 2Uo0 is now the difference between the two velocities and y is the
continuous variable corresponding to j (with y = 0 corresponding to j = 0);
v is the kinematic velocity. Here the kinematic viscosity v is computed from
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Figure 9: Transition zone between two anti-parallel flows: comparison
between theory (6.1) and Boltzmann computation. Z is the normal-
ized distance variable Z = y+/4vt. Upper gas flow velocity U1 = —0.1,
lower gas flow velocity U2 = 40.1. Density for both gases is d = 0.25.
The profile shown was obtained after 11 time steps of computation.

the actual collision rules of the model [9]. The Boltzmann computation®
yields excellent agreement with the theoretical expression as illustrated in
figure 9; recent microdynamical simulations [15] are also consistent with our
results.

7. Conclusion

The lattice Boltzmann method presented here has been shown to provide
excellent agreement with classical theoretical predictions and with lattice
gas simulations. Being free from Monte Carlo noise, the computations are

1Note that the factor g(p) entering the macrodynamical equations (see:[5]) has been
taken into account in our computation.
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both fast and accurate because no averaging process is required to eliminate
noise. The method is well suited to simple, rectilinear, infinite and semi-
infinite boundary flows. Application to more complex geometries is possible
by converting the procedure to a fully two-dimensional prescription [16,17]
at the expense of loss of simplicity. However, such extensions of the method
are of great interest, in particular as a next step toward the simulation of
turbulence. On the other hand, microdynamical simulations can presently
be conducted at reasonably high Reynolds numbers where the Boltzmann
approximation is questionable. A study of the limits of validity of the Boltz-
mann equation method for boundary layer flows is presently in progress. As
the method presented here sheds some light to the interaction mechanism
between a moving fluid and a solid boundary, we are also investigating the
importance of the reflection coefficient r in order to study flows subject to
interactions with boundaries of variable roughness.
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