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Abstract. A simple method based on the lattice Boltzmann equatio n
is presented for the evaluati on of the velocity profile of fluid flows near
walls or in the vicinity of the interface between two fluids. The met hod
is applied to fluid flow near a wall, to channel flow, and to the transi­
tion zone between two fluids flowing parallel to each other in opposite
direct ions. The results show good agreement with micrody namical
lattice gas simulati ons and with classical fluid dynamics.

1. The lattice boundary layer p roblem

Since the pioneer ing work by Hardy, Pomeau, and de P azzis in 1973 [1,2]'
Wolfr am in 1983 [3J, and mostly since the recent int rodu ction of the hexag­
onal lattice gas by Frisch, Hass lacher, and Pomeau [4], lat t ice gas methods
have evolved bo th in efficiency and complexity (an extensive introduction to
the subject can be found in [5]). T he theor eti cal and computational devel­
opme nt of the field has been so exte nsive in the last coup le of years that it
has given rise to applications in var ious areas of physics [6J .

Lat ti ce gases share common operational features with cellular automata
and so ar e mos t easi ly implemented on parallel machines, in particular for
fluid dynamical pro blems at large Reynolds nu mb ers [7J which require high
computat ional performances. On the ot her hand, there exists a variety of op­
erationally simple problems of valuable physica l interest that can be solved
wit h modest computational means for which small computers provid e suffi­
cient power . For the class of pr oblems considered here, t he lat t ice gas flow
description can be reduced to a "one-dimens ional" formula t ion; therefore
such problems can be solved wit h low power computational techniques.
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The formation and growth of boundary layers is of cru cial importance
in fluid dynamical flows, in particular as t heir occurrence triggers the de­
velopment of turbulence at high Reynolds numbers . For viscous flow (at
low Rey nolds number) , boundary layer pr oblems can be solved within the
limi ts of reasonable approximations . Such problems so appear as an in­
teresting test for the validity of the lat tice gas method and their solutions
are a prerequisite to the understanding of mor e complex flows and of the
three-dimensionalization in the transitio n to tur bulence. The pur pose of the
present work is to show that laminar boundary flow can be treated efficient ly,
that is, simply and economically, by the lattice gas method .

The basic idea is the following: consider that a lattice gas, initially in
homogeneous un idirectional motion, is suddenly put in contact with a wall.
All lattice gas nodes in any layer parallel to the flow direct ion have the same
particle distribution and, the system being translationally invariant, it suf­
fices to perform one-dimensional computat ion to evaluate the velocity profil e.
T he wall effects on the flow velocity are propagat ed by the particl es at the
microscopic "t hermal velocity," whereas t he flow profil e modifi cations pr opa­
gate via particle interactions, i.e. , at much lower speed. Interactions with the
wall will first be felt on the first layer of the gas (i.e., the layer adjacent to the
wall); at the next time st ep, they will be felt on the first and second layers ,
and progressively the successive lattice layers will be interactively involved.
More pr ecisely, we consider a gas (density d) flowing parallel to a wall wit h
free flow velocity Uo. Momentum is first exchanged between the wall and
the first layer: the flow is slowed down in that layer due to velocity reversal
of the particles colliding with the wall. T he first layer will come to a state of
local equilibrium acquiring velocity U parallel to the wall with U < Uo. All
layers beyond the first one remain at the free flow velocity Uo.

During the second t ime st ep , the transport of the particles from the first
layer will affect the second layer of the gas: particles in the second layer
are now slowed down due to t he lower veloci ty in the first layer. The new
equilibrium populations in the first and second layers ar e computed. The
third ste p in the process will affect the third layer of the gas; however, the
fresh values of the second layer computed from the second time step will
exert an influ ence on the first layer so that equilibrium values for the first
two layers must be up dated before that of the third be evaluated.

At each time step of the process , the new equilibrium values of each
underlying layer are updated from the fresh values obtained for the upper
and lower adjacent layers a t the previous step and the next upper layer is
included in the computation. At any given time, all the layers that have
reached equilibrium and have a velocity value U ~ O.99Uo are considered to
belong to the bo undary layer. Because of the discreteness of the lat ti ce, the
exact value of the boundary layer thickness 8 must be evaluated (in general)
by interpolation. The boundary layer thickness growth is much slower than
the increase in the number of layers: the boundary layer thickness grows
as the square root of the number of time st eps [8], whereas the number of
layers is equal to the number of ti me steps. All the layers that have not



Paul Lavallee, Jean Pierre Boon , and Alain Noullez

Double collision

=>jp,\---...-

'*
Trip le collis ion

I
~-<- H\

(a) (b)

Figure 1: (a) Indices for velocity orientations on lattice nodes;
(b) collision rules.
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yet been included in the calculation are assumed to be at equilibrium with
velocity Uo.

The physical sit uation described by the calculat ion outlined above can be
viewed in the following way: a gas at rest in contact with a wall (t < 0) is
sud denly made to move inst antaneously (at t = 0) with velocity Uo in the
posit ive x direction (it is assumed that the gas reaches stationary velocity U0

instantaneously) . Each "column" of par ti cles behaves like its neighbors and
the boundar y layer grows in a similar way for all columns. At the next time
step, th e boundary layer thickness fj will have grown by an equal amount
for all columns and the number of time st eps elapsed can be interpret ed
either as time (distance from the wall) or space (distance along the wall) .
Hence we obtain "two-dimensional" information from a "one-dimensional"
formulation, with restriction to situations where the flow is parallel to the
boundary (extension to plane laminar two-fluid flow is straightforward).

2. The la t tice ga s model

We use the F HP hexagonal lattice gas with st andard collision rules [9]: only
head-on and t ripl e collisions (shown in figure 1b) lead to momentum t ransfer ;
all other collisions are "transparent ." No rest particles are included here for
simplicity. (We also performed computations with a model including rest
particles an d obtained essentially the same resu lts) .

W it h the indices as given in figure la, the microdynamical equations for
the occupancy states n, (which can be onl y 0 or 1 due to the lat tice gas
exclusion pr inc iple [9]) are

ni (t + 1, r + e.) = ni(t , r ) +~i ( n ); i = 0, 1, . . . , 5 (2.1)
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where ni(t , r) is the propagation term and boi(n) denotes the collision term.

bo~2l (n) ani+1 (t, r )niH (t , r )n.i(t, r )11i+2(t , r )11i+3(t , r )n.i+5 (t, r)
+ (1 - a)ni+2(t , r)ni+S(t, r)n.i(t ,r)n.i+1(t , r )

Zli+3(t, r )ZliH(t , r)
ni(t , r )ni+3(t , r )Zli+! (t, r )11i+2(t , r)
ZliH(t, r )n.i+s(t, r) (2.2)

bo~3l (n) ni+1 (t, r )ni+3(t, r )ni+5(t, r )Zli(t , r )11i+2(t , r )11iH (t ,r)
ni(t, r )ni+2(t , r )niH (t, r hi+!(t, r )n.i+3(t , r h i+S (t , r )

where boFl(n) and bo~3l(n) are th e cont ributions from binary collisions and
from t riple collisions resp ectively, and a is defined in figur e 1b. boi(n ) can take
the values -1 , 0, or +1. Equations (2.1) and (2.2) are the mi crodynamical
equat ions for the hexagonal lattice gas model (without rest particles) . T he
microdynamical equations set the local ru les which are used for lat tice gas
simulations .

T he passage from the deterministic descr iption to a probabilistic one is
made via the Liouville equation which expresses the probability of finding
the system in a given state from the knowledge of it s state at an earlier time.
T hen , we can define averaged quantities as

Ni(t, r) =< ni(t ,r) >

whose evolut ion is governed by the equation

Ni(t + 1, r + Ci) Ni(t , r)
+ < ani+1 (t , r)niH(t , r)Zli(t, r)

ni+2(t, r)Zli+3(t, r)Zli+s(t, r) >
+ < (1-a)ni+2(t,r)ni+5(t,r)n.i(t ,r)

11i+1 (t, r )Zli+3(t, r )ZliH(t, r) >
< ni(t, r)n i+3(t, r)n.i+1(t, r )
Zli+2(t, r)ZliH(t, r) 11i+5(t, r) >

+ < ni+! (t, r )ni+3(t, r )ni+S( t , r )
11;(t, r )n.i+2 (t, r )n.i+4(t, r ) >
< ni(t,r )ni+2 (t,r )niH (t, r )
11i+1(t, r)Zli+3 (t, r )Zl;+s (t, r) > (2.3)

With the Boltzmann approximation, i.e ., assuming that there is no correla­
t ion between particles prior to collision , which amounts to setting :

(2.4)
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one obtains the "lat tice gas Boltzmann equation"

Ni(t + 1, r +Ci) = Ni(t, r) +6.i(n )

6.i(n) = +0.5Ni+l(t , r) Ni+4(t , r)Ni(t, r)
su,«.r)Ni+3(t, r)Ni+S(t, r )

+ 0.5Ni+2(t, r)Ni+S(t,r)!:L(t,r)
Ni+l(t , r)Ni+3(t, r)Ni+4(t , r )
Ni(t , r )Ni+3(t, r )N i+l(t, r)
N i+2(t, r)!:L+4(t, r)!:L+s(t, r)

+ Ni+1(t , r )Ni+3(t , r )Ni+s(t,r)
Ni(t, r )!:L+2(t , r )!:L+4(t, r)
Ni(t, r) Ni+2(t, r )Ni+4 (t, r)
Ni+1(t , r) N i+3(t, r )Ni+s(t , r)
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(2.5)

(2.6)

where we have set a = 0.5 (equal probabi lit ies for binary collision output
states).

Solving the lattice Boltzmann equation offers an alte rn at ive to micrody­
namical simulations; however the variables are then cont inuous rather than
Boo lean. From (2.5) the ensemble averaged hydrodynamic quantities, e.g.,
t he density and the velocity field are obtained.

p = 'L Ni; U = IIp'L(Ni ci)

3. Interaction with a sol id boundary

(2.7)

We next consider the interact ion mechanism of the gas wit h the wall . Par­
ti cles can undergo pure specular reflections, "bounce-back" reflections (fig­
ure 2) or any combination of these. Pure specular reflections meet the con­
dition of a perfectly slippery boundary and should not affect the velocity
profi le of the flow (this feature can be used as a test to check whether the
model is performing correct ly). Pure bo unce-back reflections yield zero flow
velocity along the wall, which corr esponds to no-slip condition. T he model

Figure 2: (a) Specular reflection; (b) bounce-back reflection.
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Figure 3: Configuration of the lattice near the wall.

can be implemented so as to handle either type of reflection or a comb ination
of both in any proportion.

Knudsen's experimental results suggest that, in a real system, the gas
molecules impinging on a wall at a constant angle of incidence are reflected
back in randomly distributed directions [10]. This corresponds to a comb i­
nation of equally weighted specular and bounce-back reflections in a lattice
gas (t hat is a bounce-back reflection coefficient r = 0.5, with r = 1 for pure
bounce-back reflections). However, the interaction mechanism in a lat ti ce
gas differs from that of a real gas in that all interactions on the lattice are
synchronized and particles can only be located at "quantized" distances from
the wall. This should be taken into account if the model is to match actual
situations.

The wall is denoted as row number zero (j = 0) in the model configuration
(figure 3). Since particle velocities can be oriented in only two directions on
row number zero (particles are not allowed to move tangentially on the wall),
no equilibrium state is computed for this row. A particle leaving row number
one at time t along direction 4(5) will necessarily return to row one at time
t + 2 as a particle in direction 2(1) after specular reflection or direction
1(2) after bounce-back reflection. The computation proceeds as exp lained in
section 1, the wall acting as a "reflector" for particles.

4. Flow parallel to a solid boundary

We first examine fluid flow parallel to a flat wall. The translational invari­
ance and the orthogonality of the flow direction of the model eliminate the
advection term U· VU in the Navier-Stokes equation which reduces to:
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where u is the x component of U and v IS the kinematic viscosity. T he
solution to this equation reads [8J:

U = Uoerf{y /(4vt)1/2} (4.1)

The resul ts of the lattice Boltzmann computation are given in figure 4 for
the first few time steps of the boundary layer growth and its later evolution.
When the bo undary layer becomes sufficiently thick (approximately after
five time steps), the characteristic velocity profi le of laminar boundary flow
emerges clearly. The bo undary layer thickness is seen to broaden as time
progresses . T hese results are confirmed by our lattice gas simulations. In
figure 5, we compare the simulation velocity profile with the theoretical error
funct ion profile (t he Blasius profile [11] is given as a reference).

Theory predict s that the boundary layer thickness grows as the square
root of the dist an ce from the leadi ng edge of the wall. Figure 6 shows that
the result s of the lat t ice gas simulat ion are in excellent agreement with theory
(as soon as the number of layers in the boundary exceeds three) . Note that
the res ult s obtain ed for the erro r fun ct ion profile and for the bo undary layer
growth are also in good agreement wit h latt ice gas simulations performed
with the micro dynamical equations [12J.

J J J
t=2 t=3 t=5

S S S +
+

+ +
+ + +

1 + 1 + 1 +

0 1. % 0 1. U/u . 0 1. %• .
J J J

10 t=10 + 10 t=20 + 10 t=40 +
+ + +
+ + +
+ + +
+ + +

S + S + S +
+ + +

+ + +
+ + +

1 + 1 + 1 +

0 1. U/u• 0 1.
Uiu 0 1.

Uiu• •

Figure 4: Velocity profile obtained from lat tice Boltzmann computa­
tion of flow parallel to a hori zont al flat wall. Gas density d = 0.233;
free-flow velocit y U0 = 0.35; j denotes the lattice row number (wall at
j = 0); time t is given in latti ce time ste p units; bounce-back reflection
coefficient r = 1.
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Figure 5: Theoretical error function and Blasius profiles and lat tice
gas simulation data after 150 time steps (particle density d = 0.1833,
free-flow velocity U0 = 2.72, bounce-back reflection coefficient T = 1).
Y norm is the normalized space coordinate measuring the distance
from the wall. y norm = 4.99j fjo where jo is the interpolated row
index value corresponding to U = 0.99Uo. The factors 4.99 and 0.99
are standard in boundary layer theory [11].

We next examine the effect of the bounce-back reflection coefficient T . We
observe that deviations from the theoretical profile increase as r decreases
(figure 7) . As soon as specular reflections are present, the velocity on the wall
becomes nonzero. T his velocity component can be evaluated from the values
of the velocity components toward the wall on layer 1. The experiments
con ducted by Knudsen show that a ratio r = 0.5 would be ap prop riate [10] .
This apparent discrepancy can be explained by the fact that in latt ice gases,
no part icle can be closer to the wall than one inte rlayer dist an ce, whereas in
real gases , t he aver age dist an ce of molecules from the wall is of the or der of
the mean-free path : unless the gas is ext remely rarefied , t he velocity on the
wall is vanishingly small. However, if a lattice gas simulation with a reflection
coefficient r = 0.5 is run for a sufficiently long time, velocity on the wall will
get arbitrarily close to zero. On the other hand, pure specular reflection
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Figure 6: Boundary layer growth with distance (up to 41 distance
units). Same conditions as given in caption of figure 4. y norm is
defined in caption of figure 5. The distance from the leading edge is
tU* . Since the boundary layer thickness is defined at U* = O.99U0, we
define x by converting directly t into distance (ignoring the constant
factor U*).

conditions produce no boundary layer whatsoever, as expected (perfect slip
on the wall).

5. Channel flow

We consider two walls separated by an integer number of layers and impose
the appropriate reflection rules on these walls. The limitations of the method
are obvious in channel flow simulation. In the flow near a wall as investigated
in section 4, the gas with a velocity U0 away from the boundary layer acts
as the driving force for the whole fluid. In channel flow, as soon as the two
boundary layers meet, this driving force is no longer present, and friction
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progress ively brings the fluid to rest. Therefore, appropriate scaling must
be introduced to disp lay our computational results as Poiseuille flow. The
comparison with theory is shown in figure 8. We also obtain good agreement
with channel flow simulati ons fro m the micro dynamical equations [12- 14]
(Note that [13] shows channel flows that have not yet fully deve loped to
Poiseuille flows.)

6. Transition zone in two-fluid flow

We consider two-fluid flow an d examine the velocity profi le in the transition
zone between two gases wit h identical physical properties flowing parallel
to each other. The separation layer is labeled with index zero and the net
velocity component parallel to the flow direction at j = 0 is U = 0 (in the
reference frame of the mean of the two velocities) . The equilibrium state at
ti me t for each layer (j ) is computed from the N i values for adjacent layers

5-r----------------------_=o
-e-- r=1.0

Eo
l:

UlUo

Figure 7: Velocity profiles for various bounce-back reflection ratios.
(Gas density: d = 0.233; free-flow velocity: U0 = 0.500). The data
shown were obtained afte r 20 time steps.
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Figure 8: Comparison of lat tice Boltzmann computation of channel
flow with scaled theoretical Poiseuille flow (S is the transverse dis­
tance in the channel measured in lattice units; channel width is 18
lattice units; particle density d = 0.267; free-flow velocity U0 = 0.312;
reflection coefficient r = 0.5). The profile is shown after 47 time steps .

j + 1 and j - 1, and layer j itself, eval uated at t ime (t - 1) . From cla ssical
hydrodynamics, the solution to this problem, for flows in opposite directions,
reads as for the flow parallel to a wall [8]:

U = Uoerj{yj(4//t) 1/2} (6.1)

where 2U0 is now the difference between the two velocities and y is t he
continuous variable corresponding to j (with y = 0 corresponding to j = 0);
// is the kinematic velocity. Here the kinematic viscosity // is computed from
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Figure 9: Transition zone between two anti-p arallel flows: comparison
between theory (6.1) and Boltzmann computation. Z is the normal­
ized dist ance variable Z = y..;4Vi. Upp er gas flow velocity U1 = -0.1,
lower gas flow velocity U2 = + 0.1. Density for both gases is d = 0.25.
The profile shown was obtained after 11 time steps of computat ion .

t he actual collis ion rules of the model [9J. The Bolt zmann computation !
yields excellent agreement with t he theoretical expression as illustrat ed in
figure 9; recent micro dynamical simulati ons [1 5J are also cons istent with our
resul ts .

7. Conclusion

The lat t ice Boltzmann method presented here has b een shown to provide
excellent agreeme nt with classical theoreti cal predictions and with lattice
gas simulations . Being free from Monte Carlo noi se , the computations are

1 Note tha t th e fact or g(p) ente ring the macrodynarnical equations (see ·[5]) has been
take n int o account in our computation.
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both fast and accurate because no averaging process is required to eliminate
noise. The method is well suited to simple, rectilinear , infini te and semi­
infinite boundary flows. Application to mor e comp lex geometries is possible
by converti ng the proced ure to a fully two-dimensional prescription [16,17J
at the expense of loss of simp licity. However, such extensions of the method
are of great interest , in particular as a next step toward the simu lation of
t urbulence . On the ot her hand, micro dyn ami cal simulations can presently
be conducted at reasonably high Reynolds numbers where the Boltzmann
approximation is questionable. A study of the limits of valid ity of the Boltz­
mann equation method for boundary layer flows is presently in prog ress. As
the method presented here sheds some light to the interaction mechanism
between a moving fluid and a solid boundary, we are also investigating the
imp ortance of the reflection coefficient r in order to st udy flows subj ect to
interactions with boundaries of variable rou ghn ess .
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