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Abstract . Two methods for incr easing performance of th e backprop­
agat ion learning algorithm are present ed and their result s are com­
pared with those obtained by optimi zing par ameters in the standard
method . The first method requires adaptation of a scalar learning
rat e in order to decrease th e energy value along the gradient direction
in a close-to-optimal way. Th e second is derived from the conjugate
gradient method with inexact linear searches . The strict locality re­
quirement is relaxed but parallelism of computation is maintained,
allowing efficient use of concurrent computation. For medium-size
probl ems, typical speedups of one order of magnitude are obtained.

1. Introduction

Multilayer feedforward "ne ural" net works have been shown to be a useful
tool in divers e areas, such as pat tern classification, multi variable functional
approximation, and forecasting over t ime [2,3,6,8,9,I1J. In t he "backpropa­
gation" learning procedure, a network with a fixed structure is prog rammed
using gradient descent in the space of the weights, where the energy fun ction
to be minimized is defined as the sum of squ ar ed err ors [I1J.

In a given iteration n, the search direction d., is defined as t he negati ve
gr adient of the ene rgy, while the step 6.wn along this direction is taken to
be proportional to d n with a fixed constant E ("learning rate" ) , as follows:

(1.1)

(1.2)

The learning rate is us ually chos en by the user to be "as large as possible
without lead ing to oscillations" [11J.

It is well known from the optimization lit erature that pure gradient de­
scent methods are usually very inefficient. For exam ple, if t he steepes t de­
scent method is applied to a qu adrati c fun ction F( x) = cT

X + 1/2 x T Gx
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using an exact line search to determine the st ep length, it can be shown that

( )

2
* Amax - Amin

F (Xn+l ) - F(x ) ~ >.. >.. . (F( xn ) - F (x*))
max + nu n

(1.3)

where x" is the optimal poi nt an d Am ax and Am in are the largest and smallest
eigenvalues of G. This means that the asymptotic error reduct ion constant
can be arbitrarily close to unity [5]. A case in which this happens is when "the
search space contains long ravines that are characterized by sharp curvature
across the ravine and a gently sloping floor" [11]. T he sit uation can be
ameliorated in part modifying the search direction with the int roducti on of
a momentum term (and a parameter a), leading to the following rule:

(1.4)

(1.5)

Recent ly, an overview of heuristics employed to accelerate backpropaga­
tion has been presented in [10], where it is suggested that each weight should
be given its own learning rate, changing over time during the computation.

Unfortunately, there are no general prescriptions for the selection of the
parameters defining the optimizatio n strategy (like (', or a). It is usually
left to the user to find a good or optimal combination of these parameters
that leads to avoidance of local minima and fast convergence t imes . This is
cer tainly interesting from the point of view of theoret ical resea rch ([15] is a
good example), but leads in general to a waste of time and computat ional
resources during this meta-optimization phase (op timization of the behavior
of the optimization method).

The objection to using standard op timizat ion techniques is usually that
they require some sor t of global comp utation. Locality is a concept t hat
depends on the mapping between a given algorithm an d the processors (e.g. ,
VLSI hardware, biological neurons) responsible for the computat ion. In this
sense, backpropagation is local if different processors are assigned to the
different weights and "neurons" and if the chain ru le for part ial deriva tives is
used in calculating the gradient, "backpropagating" the errors through the
network. A concept related but different from locality is that of parallelism,
where a given computation can be done by more computational uni ts working
concurrently on different partial tasks (with a speedup in the t ime required
to complete it). Despite the fact that networks performing local computation
are usually easier to implement in parallel architectures, it is nonetheless true
that parallelism of computation can be obtained also in certain cases where
a global information exchange is required (see [4] for many examples in both
areas).

The focus of this work has been on transferring some meta-optimization
techniques usually left to the user to the learning algorithm itself. Since this
involves measuring optimization performance and correcting some parame­
ters while the optimization algorithm is running, some global information is
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required (typi cally in the form of scalar products of quantities distributed
over the network).

In all cases, the "st andard" backpropagation algorithm is used to find the
values of the energy and the negative gradient for a given configuration. T he
differences are in the definition of the search direction and/or in the select ion
of a step size along the selected directi on.

In the first me thod proposed , th e search direction remains equal to the
negati ve gradient bu t the (scalar ) step size is adapted during the compu­
tation. This strategy has been suggeste d in [7,16] and is here summar ized
for convenience before using it in the test problems. In the second, both the
search dir ection and the ste p size are changed in a suboptimal but apparent ly
very efficient way.

In both cases, the network is updat ed only after the entire set of patterns
t o be learned has been presente d to it.

2. First method: the "bold driver" network

This method requires only a limi ted change to standard backpropagation. In
general, th e number of ste ps to convergence for a stee pest descent method is a
decreasing funct ion of the learning rat e up to a given po int , where oscillations
in the weights are introduced, the energy function does not decrease steadily,
and good local minima are missed. Perform ance degrad ation in this case is
usually rapid and unpredictable.

The proposed solution is to start with a given learning rate an d to monitor
the value of the energy fun ct ion E (w n ) aft er each change in the weights. If
E decreases, the learning rate is then increased by a factor p. Vice versa, if
E increases, this is taken as an indication that the ste p made was too long
and the learning rate is decreased by a factor a , t he las t change is cancelled,
and a new trial is done. The process of redu ction is repeated until a step
th at decreases the energy value is found (this will be found if the lea rn ing
rate is allowed to tend to zero, given that the search direct ion is that of the
negative gradient).

Heuri stically, p has to be close to unity (say p ~ 1.1) in order to avoid
frequent "accidents," because the computation done in the last backpropa­
ga tion step is waste d in these cases . Regardin g the parameter a a choice
of a ~ 0.5 can be justified with the reason that if the local "rav ine" in the
search space is symmetric on both sides this will bring the configurat ion of
t he weights close to the bottom of the valley.

The exponent ial increase in the learning rate (E = Eopn) is pr eferr ed to a
linear one because it will typi cally cause an "accident" after a limi ted number
of steps , assuming that the proper learning rat e for a given te rrain increases
less rapidly. Such accidents are productive because afte r them, the learning
rate is reset to a value appropriate to the local energy surface configurat ion .

An example for the size of the learning rate as a funct ion of the iteration
number is given in figure 1.
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Figure 1: Example of learning rate behavior as a function of the
iteration number for the "bold driver" network.

After experimenting on different problems with this apparently "quick
and dirty" method, I have many indications that its performance (cons id ­
ering both the number of iterations required and the quality of the local
minimum found) is close and usually better than that obtainable by opti­
mizing a learning rate that is to remain fixed during the procedure. Besides
the momentum term, there are now no learn ing parameters to be tuned by
the user on each problem. The given values for p and !7 can be fixed once
and for all , and moreover, performance does not depend critically on their
choice, provided that the heuristic guidelines given above are respected.

3. Second method: conjugate gradient with inexact linear
searches

Let us define the following vectors: gn

Yn = g n - g n -l'

W n - Wn- l, and
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Conjugate gradient methods [5] are it erative methods to generate succes­
sive approximations to the minimizer w * of a function E(w) in the following
way:

whe re

e, = (~)Yn'dn

where

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

If the function E(w) is quadratic in an N -dimensional space (E(w) =
cTw + 1/2 wTGw, where G is a positive defin ite symmetric matrix), this
me thod is guaranteed to converge to the minimum in at most N + 1 fun ction
and gradient evaluation.

Two critical issues have to be considered in applying conjugate gradi ent
methods to backpropagation learning. First , computation required during
the exact one-dimensional optimization imp lied by equation (3.5) is expen­
sive because every function evalua tion involves a comp let e cycle of pattern
presentation an d error backpropagation ; therefore, efficient approximate one­
dimensional optimization have to be used. Second, sin ce the function in this
case in not quadratic, the convergence properties of the method are not as­
sured a priori but depend on the degr ee that a local quadratic approximation
can be applied to the energy surface.

Shann o [13] reviews several conjugate gradient methods and suggests one
method using inexact linear searches and a mo dified definition of the search
direction that "substantially outperforms known conjugate gradient methods
on a wide class of problems. " In the suggested strat egy, the search direction
for the nth iteration is defined as

(3.6)

Every N steps (N being the number of weights in the network) the search is
restarted in the direction of the negative gradient .

T he coefficients An and En are combinations of sca lar products of the
vectors defined at the begi nning of this section, as follows:

An = _ (1 + (Yn:Yn)) (Pn:gn ) + ( Yn : gn )PnYn PnYn PnYn (3.7)
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Bn =(~)
Pn ' Yn

(3.8)

Correction of the search direction based on previous steps is in part rem­
iniscent of the use of a momentum term introduced in [11], with the added
feature that a definite prescription is given for the choice of the various fac­
tors.

The one-dimensional min imization used in this work is based on quadrat ic
interpolation and tuned to backpropagation, where in a single step both the
energy value and the negative gradient can be efficiently obtained. Det ails
on this step are contained in Appendix B.

Resu lts of numerical experiments indi cat e that the above method, while
requiring only minor changes to standar d backpropagat ion, is capable of
reducing the number of steps to convergence by approx imately one order of
magnitude on a large set of problems (tests have been done for small networks
with up to 50 weights). Two example problems and th e obtained results are
described in the two following sections.

4 . Te st: the d ichot om y problem

This problem consists in classifying a set of randomly genera ted patterns in
two classes . It has been demonstrated [1] tha t an arbitrary dichotomy for any
set of N points in genera l pos it ion in d dimensions can be implemented with
a network with one hidden layer containing [N/ dJ neurons. This is in fact
the smallest such net as dichotomies which cannot be impl emented by any
net with fewer un its can be constructed. In this te st, the pat tern coordinates
are random values belonging to the [O-IJ interval.

A dichotomy problem is defined by the number of pat terns generated .
The dimension of the space and the number of input s is two, the number
of middle-layer units is [N/2J by the above criterion and one output unit is
responsible for the classificatio n.

Simulation runs have been made starting from small random weights (to
break symmetry), with maximum size r equal to 0.1. Correct perfo rmance
is defined as coming within a margin of 0.1 of the correct answer. Results
of the "bold drive r" and the conjugate gradient methods are compared in
figure 2.

The capability of the network does not avoid the problem of local minima.
These points are detected in an approximate way by terminati ng the search
when the mo dulo of the gradient or of the weight chan ge becomes less than
10- 6 . In fact , the results show th at their number is increasing as a fun ction of
the dimension of the search space (i.e., the number of weights in th e network) .
Result s on 128 tests for each problem (changing the random number seed)
are given in tables 1 and 2.

To obtain the effective speedup of the inexa ct conjugate gradient method,
the average t ime required by a conjugate gradient step has been compared
with that require d by one backpropagation step. Results for these ratios
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Figure 2: Performance comparison: backpropagation with adaptive
learning rate (squares) versus inexact conjugate gradient method (di­
amonds = number of cycles, triangles = effective cycles considering
one backpropagation cycle as unit of measure).

1
16

1
10

Cases: cycles Cases: cycles Cases: cycles Cases: cycles
correct 127: 113: 97: 91:

1352 (2079) 4067 (4730) 13359 (12788) 21641 (16711)
locomin. 1: 15: 31: 37:

41401 (0) 15443 (17632) 16304(16673) 30145 (23425)

I Patterns I 6

Tab le 1: Backpropagation with adaptive learning rate ("bold driver"
method): average number of cycles and standard deviation for con­
vergence (128 tests for each problem).
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2016106

Cases: cycles Cases: cycles Cases: cycles Cases: cycles
correct 106: 53 (88) 101: 175 (525) 95: 343 (504) 93: 418 (476)
locomin. 22: 292 (453) 27: 1734 (5388) 33: 789 (1523) 35: 1125 (1111)

I P atterns I

Table 2: Backprop agation with inexact conjug ate gradient : average
number of cycles and standard deviation for convergence to correct or
suboptimal local minimum (128 tests for each problem) .

Table 3: Comparison of the two "accelerated" backpropagation met h­
ods: timing ratios for a single cycle and resulting speedup.

together with the effective sp eedups are in table 3. A more detailed study
on the scaling of the speedup with resp ect to problem size is currently under
invest igati on .

5. Test: the parity function

Recently, Tesauro and Janssens [15J measured optimal averaging training
times and optimal parameters settings for standard backpropagation with
momentum term. In order to benchmark the two new proposed methods,
the same network is used (n input units, 2n hidden uni ts, one output) and
weights are initialized randomly using th e same scale parameter ropt and
momentum rate parameter (}opt as those given in [15J.

T he result s of 100 simulations for each problem up to n equal to four show
first, t hat backpropagation with adaptive learning rate produces results that
are close (and even notably better for n = 4) to those obtained by optimizing
paramet ers in backpropagation with fixed learning rate, and second, that the
inexact conjugate gradient method brings a sizable speedup on both pr evious
methods . Visual and numerical disp lays of resu lts are in figure 3, t ab le 4,
and table 5. Since the number of local minima is negligible in this case
(approximately 1% of the cases), only data regarding correct convergence
are shown.

6. Sum mary and discussion

Both proposed methods can be implemented with parallel hardware (for ex­
ample, one can assign different sets of neurons to different processors, or,
for large grain size MIMD, one can assign different patterns to be learned
to different processors) and require only one global exchange of information
for each backpropagation cycle, in order to choose the next learning rate and
search direction.
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Figure 3: Perfor mance comparison: standard backpropagation with
optim al paramete rs from Tesau ro an d Janssens (circles) , backpropa­
gation with adapt ive learning rat e (squ ares) , and inexact conjugate
gradient method (diamonds = number of cycles, triangles = effect ive
cycles considering one backpropagation cycle as unit of measure) .

I Inputs 2 3 4

average cycles average cycles average cy cles
backprop. 95 (?) 265 (?) 1200 (?)
bold driver 123 (190) 225 (98) 564 (299)
conj . grad. 20 (14) 36 (49) 62 (51)

Table 4: Timing comparison between standard backpropagati on wit h
optimal parameters (from Tesaur o and J anssens) and the two methods
suggested in the article .

Table 5: Comparison of optimized st and ard backpropagation and in­
exact conjugate gradient. Timing ratio s for a single cycle and resulting
spee dup.
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In conclusion, by relaxing the locality requirement for backpropagation,
while maintaining most of its parallelism, one method ("bold driver") pro­
duces results close to the optimal ones (for fixed parameters), avoiding the
user -driven optimization of parameters , while the second one (conjugate gra­
dient with inexact linear searches) converges in a t ime that is typically an
order of magnitude smaller than that required by standard backpropagation.

At present we are working on a parallel implementation of these methods
in order to investigate performance for networks with a large number of
weights .
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A ppendix A. One-dimensional m inimization

Let us write E( f) for E( Xn-I + fd n ) where d ., has been defined in equation
(3.6). First, E(O) and E( e = 4fn - I ) are calculated.

If E( e = 4fn - I) is greater or equal to E(O), the parameter e is divided
by four until E(f) is less than E(O). Since d is guaranteed to be a descent
direction this po int will be found. Then, the minimizer fmin of the parabola
going through the three points is found. The process is then repeated with
the three points obtained after substi tut ing fmin for one of the three previ­
ous points , in order to reobtain the configuration with the function value
at middle point less than that at either end. The process continues until
the difference in the last two app roximation to the minimum value is less
than 10-6 .

On the contrary, if E( f = 4fn _I) is less than E(O), the parameter f is
multiplied by four until E( f) is greater than E(O) +fE'(O) (to assure existence
of a minimum in the quadratic min imization step). If this is found, the final
f is set either to the quadratic minimizer of the parabola through E(O) and
E( f) with initial derivative E'(O) or to 4fn - I , depending on the minimum
value of the energy fun ction for these two points. If this is not found after a
reasonable number of tri als (5 in our case), th e final f is set to 4fn _ I .

The efficiency of the method is due to the fact that only a very limited
number of iterations are actually done in the two cases. Furthermore, in the
second case, the der ivative E'(O) is obtained rapidly with the scalar product
of d ., and gn, which in turn are found together with the value E(O) during
the last backpropagation step.
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