Complex Systems 3 (1989) 331-342

Accelerated Backpropagation Learning: Two
Optimization Methods

Roberto Battiti*
Caltech Concurrent Computation Program,
206-49 California Institute of Technology, Pasadena, CA 91125, USA

Abstract. Two methods for increasing performance of the backprop-
agation learning algorithm are presented and their results are com-
pared with those obtained by optimizing parameters in the standard
method. The first method requires adaptation of a scalar learning
rate in order to decrease the energy value along the gradient direction
in a close-to-optimal way. The second is derived from the conjugate
gradient method with inexact linear searches. The strict locality re-
quirement is relaxed but parallelism of computation is maintained,
allowing efficient use of concurrent computation. For medium-size
problems, typical speedups of one order of magnitude are obtained.

1. Introduction

Multilayer feedforward “neural” networks have been shown to be a useful
tool in diverse areas, such as pattern classification, multivariable functional
approximation, and forecasting over time [2,3,6,8,9,11]. In the “backpropa-
gation” learning procedure, a network with a fixed structure is programmed
using gradient descent in the space of the weights, where the energy function
to be minimized is defined as the sum of squared errors [11].

In a given iteration n, the search direction d,, is defined as the negative
gradient of the energy, while the step Aw,, along this direction is taken to
be proportional to d, with a fixed constant € (“learning rate”), as follows:

d, = —VE(w,) (1.1)
Aw, =¢d, (1.2)

The learning rate is usually chosen by the user to be “as large as possible
without leading to oscillations” [11].

It is well known from the optimization literature that pure gradient de-
scent methods are usually very inefficient. For example, if the steepest de-
scent method is applied to a quadratic function F(x) = cTx + 1/2 xTGx

*Electronic mail address: roberto@hamlet.caltech.edu.

© 1989 Complex Systems Publications, Inc.

332 Accelerated Backpropagation Learning: Two Optimization Methods

using an exact line search to determine the step length, it can be shown that

/\ma - /\ruin ?
Flenis) — F&) ~ (322382 (8(z,) - F&) (13)
where z* is the optimal point and Apqr and Ay are the largest and smallest
eigenvalues of G. This means that the asymptotic error reduction constant
can be arbitrarily close to unity [5]. A casein which this happens is when “the
search space contains long ravines that are characterized by sharp curvature
across the ravine and a gently sloping floor” [11]. The situation can be
ameliorated in part modifying the search direction with the introduction of
a momentum term (and a parameter «), leading to the following rule:

d, = —VE(w,) + (%) AWn_y (1.4)

Aw, =¢d, (1.5)

Recently, an overview of heuristics employed to accelerate backpropaga-
tion has been presented in [10], where it is suggested that each weight should
be given its own learning rate, changing over time during the computation.

Unfortunately, there are no general prescriptions for the selection of the
parameters defining the optimization strategy (like € or «). It is usually
left to the user to find a good or optimal combination of these parameters
that leads to avoidance of local minima and fast convergence times. This is
certainly interesting from the point of view of theoretical research ([15] is a
good example), but leads in general to a waste of time and computational
resources during this meta-optimization phase (optimization of the behavior
of the optimization method).

The objection to using standard optimization techniques is usually that
they require some sort of global computation. Locality is a concept that
depends on the mapping between a given algorithm and the processors (e.g.,
VLSI hardware, biological neurons) responsible for the computation. In this
sense, backpropagation is local if different processors are assigned to the
different weights and “neurons” and if the chain rule for partial derivatives is
used in calculating the gradient, “backpropagating” the errors through the
network. A concept related but different from locality is that of parallelism,
where a given computation can be done by more computational units working
concurrently on different partial tasks (with a speedup in the time required
to complete it). Despite the fact that networks performing local computation
are usually easier to implement in parallel architectures, it is nonetheless true
that parallelism of computation can be obtained also in certain cases where
a global information exchange is required (see [4] for many examples in both
areas).

The focus of this work has been on transferring some meta-optimization
techniques usually left to the user to the learning algorithm itself. Since this
involves measuring optimization performance and correcting some parame-
ters while the optimization algorithm is running, some global information is

Roberto Battiti 333

required (typically in the form of scalar products of quantities distributed
over the network).

In all cases, the “standard” backpropagation algorithm is used to find the
values of the energy and the negative gradient for a given configuration. The
differences are in the definition of the search direction and/or in the selection
of a step size along the selected direction.

In the first method proposed, the search direction remains equal to the
negative gradient but the (scalar) step size is adapted during the compu-
tation. This strategy has been suggested in [7,16] and is here summarized
for convenience before using it in the test problems. In the second, both the
search direction and the step size are changed in a suboptimal but apparently
very efficient way.

In both cases, the network is updated only after the entire set of patterns
to be learned has been presented to it.

2. First method: the “bold driver” network

This method requires only a limited change to standard backpropagation. In
general, the number of steps to convergence for a steepest descent method is a
decreasing function of the learning rate up to a given point, where oscillations
in the weights are introduced, the energy function does not decrease steadily,
and good local minima are missed. Performance degradation in this case is
usually rapid and unpredictable.

The proposed solution is to start with a given learning rate and to monitor
the value of the energy function E(w,) after each change in the weights. If
E decreases, the learning rate is then increased by a factor p. Vice versa, if
E increases, this is taken as an indication that the step made was too long
and the learning rate is decreased by a factor o, the last change is cancelled,
and a new trial is done. The process of reduction is repeated until a step
that decreases the energy value is found (this will be found if the learning
rate is allowed to tend to zero, given that the search direction is that of the
negative gradient).

Heuristically, p has to be close to unity (say p &~ 1.1) in order to avoid
frequent “accidents,” because the computation done in the last backpropa-
gation step is wasted in these cases. Regarding the parameter o a choice
of o & 0.5 can be justified with the reason that if the local “ravine” in the
search space is symmetric on both sides this will bring the configuration of
the weights close to the bottom of the valley.

The exponential increase in the learning rate (e = €gp™) is preferred to a
linear one because it will typically cause an “accident” after a limited number
of steps, assuming that the proper learning rate for a given terrain increases
less rapidly. Such accidents are productive because after them, the learning
rate is reset to a value appropriate to the local energy surface configuration.

An example for the size of the learning rate as a function of the iteration
number is given in figure 1.

Learning rate parameter

334 Accelerated Backpropagation Learning: Two Optimization Methods

-

o
4
T

@
1
T

¢ 100 200 so00 400
Cycle

Figure 1: Example of learning rate behavior as a function of the
iteration number for the “bold driver” network.

After experimenting on different problems with this apparently “quick
and dirty” method, I have many indications that its performance (consid-
ering both the number of iterations required and the quality of the local
minimum found) is close and usually better than that obtainable by opti-
mizing a learning rate that is to remain fixed during the procedure. Besides
the momentum term, there are now no learning parameters to be tuned by
the user on each problem. The given values for p and o can be fixed once
and for all, and moreover, performance does not depend critically on their
choice, provided that the heuristic guidelines given above are respected.

3. Second method: conjugate gradient with inexact linear
searches

Let us define the following vectors: g, = VE(w,), pn = W, — Wp_1, and
n = 8n — Bn-1-

Roberto Battiti 335

Conjugate gradient methods [5] are iterative methods to generate succes-
sive approximations to the minimizer w* of a function E(w) in the following
way:

do = —go (3.1)

d, = —VE(w,) + Bnds-1 (3.2)
where

Bo = (%:—i:) (3.3)

W,=W,_1+¢, d, (3.4)
where

€n = mcjn E(W,_1+e€dy,) (3.5)

If the function E(w) is quadratic in an N-dimensional space (E(w) =
cTw + 1/2 wIGw, where G is a positive definite symmetric matrix), this
method is guaranteed to converge to the minimum in at most N + 1 function
and gradient evaluation.

Two critical issues have to be considered in applying conjugate gradient
methods to backpropagation learning. First, computation required during
the exact one-dimensional optimization implied by equation (3.5) is expen-
sive because every function evaluation involves a complete cycle of pattern
presentation and error backpropagation; therefore, efficient approximate one-
dimensional optimization have to be used. Second, since the function in this
case in not quadratic, the convergence properties of the method are not as-
sured a priori but depend on the degree that a local quadratic approximation
can be applied to the energy surface.

Shanno [13] reviews several conjugate gradient methods and suggests one
method using inexact linear searches and a modified definition of the search
direction that “substantially outperforms known conjugate gradient methods
on a wide class of problems.” In the suggested strategy, the search direction
for the nth iteration is defined as

dn = —8n = Anpn + Bnyn (36)

Every N steps (IV being the number of weights in the network) the search is
restarted in the direction of the negative gradient.

The coefficients A, and B, are combinations of scalar products of the
vectors defined at the beginning of this section, as follows:

An=_(1+<y"'y”)> (p"’g">+(y"‘g"> (3.7)
Pn - Yn Pn " Yn Prn - Yn

336 Accelerated Backpropagation Learning: Two Optimization Methods

B, = (ﬂ) (3.8)

Pn - ¥Yn

Correction of the search direction based on previous steps is in part rem-
iniscent of the use of a momentum term introduced in [11], with the added
feature that a definite prescription is given for the choice of the various fac-
tors.

The one-dimensional minimization used in this work is based on quadratic
interpolation and tuned to backpropagation, where in a single step both the
energy value and the negative gradient can be efficiently obtained. Details
on this step are contained in Appendix B.

Results of numerical experiments indicate that the above method, while
requiring only minor changes to standard backpropagation, is capable of
reducing the number of steps to convergence by approximately one order of
magnitude on a large set of problems (tests have been done for small networks
with up to 50 weights). Two example problems and the obtained results are
described in the two following sections.

4. Test: the dichotomy problem

This problem consists in classifying a set of randomly generated patterns in
two classes. It has been demonstrated [1] that an arbitrary dichotomy for any
set of N points in general position in d dimensions can be implemented with
a network with one hidden layer containing [N/d] neurons. This is in fact
the smallest such net as dichotomies which cannot be implemented by any
net with fewer units can be constructed. In this test, the pattern coordinates
are random values belonging to the [0-1] interval.

A dichotomy problem is defined by the number of patterns generated.
The dimension of the space and the number of inputs is two, the number
of middle-layer units is [N/2] by the above criterion and one output unit is
responsible for the classification.

Simulation runs have been made starting from small random weights (to
break symmetry), with maximum size r equal to 0.1. Correct performance
is defined as coming within a margin of 0.1 of the correct answer. Results
of the “bold driver” and the conjugate gradient methods are compared in
figure 2.

The capability of the network does not avoid the problem of local minima.
These points are detected in an approximate way by terminating the search
when the modulo of the gradient or of the weight change becomes less than
1075, In fact, the results show that their number is increasing as a function of
the dimension of the search space (i.e., the number of weights in the network).
Results on 128 tests for each problem (changing the random number seed)
are given in tables 1 and 2.

To obtain the effective speedup of the inexact conjugate gradient method,
the average time required by a conjugate gradient step has been compared
with that required by one backpropagation step. Results for these ratios

Roberto Battiti

25000
T

20000

16000 +

Learaing oyoles

10000 +

5000

337

Number of patterns to dichotomize

Figure 2: Performance comparison: backpropagation with adaptive
learning rate (squares) versus inexact conjugate gradient method (di-
amonds = number of cycles, triangles = effective cycles considering
one backpropagation cycle as unit of measure).

I Patterns I 6

(10

16

%0]

Cases: cycles

Cases: cycles

Cases: cycles

Cases: cycles

correct

loc. min.

127:

1352 (2079)
1:

41401 (0)

113:

4067 (4730)
15:

15443 (17632)

97:

13359 (12788)
31s
16304(16673)

91:
21641 (16711)
ST
30145 (23425)

Table 1: Backpropagation with adaptive learning rate (“bold driver”
method): average number of cycles and standard deviation for con-
vergence (128 tests for each problem).

338 Accelerated Backpropagation Learning: Two Optimization Methods
| Patterns | 6 [10 [16 | 20
Cases: cycles | Cases: cycles Cases: cycles Cases: cycles
correct 106: 53 (88) | 101: 175 (525) | 95: 343 (504) | 93: 418 (476)
loc. min. | 22: 292 (453) | 27: 1734 (5388) | 33: 789 (1523) | 35: 1125 (1111)

Table 2: Backpropagation with inexact conjugate gradient: average
number of cycles and standard deviation for convergence to correct or
suboptimal local minimum (128 tests for each problem).

[Patterns | 6 | 10 [16 | 20 |
ratio 1: 227 [1: 1.89 | 1: 3.02 | 1: 3.32
speedup | 11.23 | 12.29 | 12.89 15.59

Table 3: Comparison of the two “accelerated” backpropagation meth-
ods: timing ratios for a single cycle and resulting speedup.

together with the effective speedups are in table 3. A more detailed study
on the scaling of the speedup with respect to problem size is currently under
investigation.

5. Test: the parity function

Recently, Tesauro and Janssens [15] measured optimal averaging training
times and optimal parameters settings for standard backpropagation with
momentum term. In order to benchmark the two new proposed methods,
the same network is used (n input units, 2n hidden units, one output) and
weights are initialized randomly using the same scale parameter rop and
momentum rate parameter agp; as those given in [15].

The results of 100 simulations for each problem up to n equal to four show
first, that backpropagation with adaptive learning rate produces results that
are close (and even notably better for n = 4) to those obtained by optimizing
parameters in backpropagation with fixed learning rate, and second, that the
inexact conjugate gradient method brings a sizable speedup on both previous
methods. Visual and numerical displays of results are in figure 3, table 4,
and table 5. Since the number of local minima is negligible in this case
(approximately 1% of the cases), only data regarding correct convergence
are shown.

6. Summary and discussion

Both proposed methods can be implemented with parallel hardware (for ex-
ample, one can assign different sets of neurons to different processors, or,
for large grain size MIMD, one can assign different patterns to be learned
to different processors) and require only one global exchange of information
for each backpropagation cycle, in order to choose the next learning rate and
search direction.

Roberto Battiti

Learning oycles

1250

1000

760

s00

260+

‘B ' 3 t py

Number of inputs to parity funotion

Figure 3: Performance comparison: standard backpropagation with
optimal parameters from Tesauro and Janssens (circles), backpropa-
gation with adaptive learning rate (squares), and inexact conjugate
gradient method (diamonds = number of cycles, triangles = effective
cycles considering one backpropagation cycle as unit of measure).

| Inputs | 2 | 3 | 4 l
average cycles | average cycles | average cycles
backprop. 95 (7) 265 (7) 1200 (7)
bold driver 123 (190) 225 (98) 564 (299)
conj. grad. 20 (14) 36 (49) 62 (51)

Table 4: Timing comparison between standard backpropagation with
optimal parameters (from Tesauro and Janssens) and the two methods
suggested in the article.

Inputs | 2 | 3 | 4 |
ratio 1: 1.72 | 1: 2.13 | 1: 1.65
speedup | 2.76 3.45 11.73

Table 5: Comparison of optimized standard backpropagation and in-
exact conjugate gradient. Timing ratios for a single cycle and resulting
speedup.

339

340 Accelerated Backpropagation Learning: Two Optimization Methods

In conclusion, by relaxing the locality requirement for backpropagation,
while maintaining most of its parallelism, one method (“bold driver”) pro-
duces results close to the optimal ones (for fixed parameters), avoiding the
user-driven optimization of parameters, while the second one (conjugate gra-
dient with inexact linear searches) converges in a time that is typically an
order of magnitude smaller than that required by standard backpropagation.

At present we are working on a parallel implementation of these methods
in order to investigate performance for networks with a large number of
weights.

Acknowledgments

This work was done as a research assistant of Geoffrey Fox and benefited
in many ways from his advice. I thank Roy Williams for directing my at-
tention to the conjugate gradient method, used in [18]. I am also pleased
to acknowledge useful discussions with Edoardo Amaldi. Work supported in
part by DOE grant DE-FG-03-85ER25009, the National Science Foundation
with Grant IST-8700064 and by IBM.

Appendix A. One-dimensional minimization

Let us write E(e) for E(x,-1 + €d,) where d,, has been defined in equation
(3.6). First, £(0) and E(e = 4¢,_1) are calculated.

If E(e = 4e,-1) is greater or equal to E(0), the parameter € is divided
by four until E(e) is less than E(0). Since d is guaranteed to be a descent
direction this point will be found. Then, the minimizer €, of the parabola
going through the three points is found. The process is then repeated with
the three points obtained after substituting €n;, for one of the three previ-
ous points, in order to reobtain the configuration with the function value
at middle point less than that at either end. The process continues until
the difference in the last two approximation to the minimum value is less
than 107,

On the contrary, if E(e = 4€,_1) is less than E(0), the parameter € is
multiplied by four until E(e) is greater than E(0)+€eE’(0) (to assure existence
of a minimum in the quadratic minimization step). If this is found, the final
€ is set either to the quadratic minimizer of the parabola through £(0) and
E(e) with initial derivative E’(0) or to 4¢,-1, depending on the minimum
value of the energy function for these two points. If this is not found after a
reasonable number of trials (5 in our case), the final € is set to 4e,_;.

The efficiency of the method is due to the fact that only a very limited
number of iterations are actually done in the two cases. Furthermore, in the
second case, the derivative E’(0) is obtained rapidly with the scalar product
of d,, and g,, which in turn are found together with the value E(0) during
the last backpropagation step.

Roberto Battiti 341

References

[1]

2]

(3]

(4]

(5]

(6]

(7]

(8

=

[9]
(10]

(11]

(12]

(13]

[14]

(15]

[16]

E.B. Baum, “On the capabilities of multilayer perceptrons,” Journal of Com-
plexity, 4 (1988) 193-215.

A. Borsellino and A. Gamba, “An outline of a mathematical theory of
PAPA,” Nuovo Cimento Suppl. 2, 20 (1961) 221-231.

D.S. Broomhead and D. Lowe, “Multivariable functional interpolation and
adaptive networks,” Complex Systems, 2 (1988) 321-355.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving
Problems on Concurrent Processors (Prentice Hall, New Jersey, 1988).

P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization (Academic
Press, 1981).

R.P. Gorman and T.J. Seinowski, “Analysis of hidden units in a layered
network trained to classify sonar targets,” Neural Networks, 1 (1988) 75-89.

A. Lapedes and R. Farber, “A self-optimizing, nonsymmetrical neural net for
content addressable memory and pattern recognition,” Physica, 22D (1986)
247-259.

A. Lapedes and R. Farber, “Nonlinear signal processing using neural net-
works: prediction and system modeling,” Los-Alamos Preprint LA-UR-87-
1662.

T.J. Seinowski and C.R. Rosenberg, “Parallel networks that learn to pro-
nounce english text,” Complex Systems, 1 (1987) 145-168.

R.A. Jacobs, “Increased rates of convergence through learning rate adapta-
tion,” Neural Networks, 1 (1988) 295-307.

D.E. Rumelhart and J.L. McClelland, eds., Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Vol. 1: Foundations (MIT
Press, 1986).

D.E. Rumelhart and J.L. McClelland, eds., Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Vol. 2: Psychological and
Biological Models (MIT Press, 1986).

D.F. Shanno, “Conjugate gradient methods with inexact searches,” Mathe-
matics of Operations Research, 3(3) (1978) 244-256.

G. Tesauro, “Scaling relationship in backpropagation learning: dependence
on the training set size,” Complex Systems, 1 (1987) 367-372.

G. Tesauro and B. Janssens, “Scaling relationship in backpropagation learn-
ing,” Complex Systems, 2 (1988) 39-44.

T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, “Accelerat-
ing the convergence of the backpropagation method,” Biological Cybernetics,
59 (1988) 257-263.

342 Accelerated Backpropagation Learning: Two Optimization Methods

[17] P.J. Werbos, “Generalization of backpropagation with application to a re-
current gas market model,” Neural Networks, 1 (1988) 339-356.

[18] R.D. Williams, “Finite elements for 2D elliptic equations with moving
nodes,” Caltech C3P Report, (1987) 423 (available from Concurrent Com-
putation Project, Caltech, Pasadena, CA 91125).

