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Abstract. A cellular automaton model for the simulation of fluid
flow in porous media is presented. A lattice and a set of rules are
introduced, such that the flow equations in the continuum limit are
formally the same as the equations for one-phase liquid flow in porous
media. The model is valid in two as well as three dimensions. Numer-
ical calculations of some simple problems are presented and compared
with known analytical results. Agreement is within estimated errors.

1. Introduction

It is well known that the Navier-Stokes equation can be derived by two
alternative methods, which may be called macroscopic and microscopic. The
macroscopic method builds on the hypothesis that fluids are structureless
continua and uses conservation laws of general validity [6]. The viscosity
coeflicients are introduced as constants to be determined by experiments.
The microscopic approach, on the other hand, is based on the molecular
structure of fluids and uses the framework of statistical physics [8]. The
viscosity is here calculable in terms of the intermolecular potential.

There is an analogous division in the theory of flow in porous media
and the Darcy equation. The macroscopic point of view starts with Darcy’s
law, which states that the rate of one-dimensional flow is proportional to
the pressure gradient, and generalizes this law by introducing a permeability
tensor. The components of this tensor are to be determined by experiments.
The microscopic method is represented by an extensive literature (see for
example [9] and references given there) where it is shown that the Darcy
equation arises from an averaging out of Navier—Stokes flow by the pores
and that the permeability tensor is in principle deducible from the pore
geometry. The length scale is here microscopic only as far as the porous
medium is concerned: the pores are visible but the fluid is structureless.

The recent paper by Rothman [7] on the cellular automaton simulation
of flow in porous media is in the microscopic tradition. Using the FHP [3]
triangular-lattice gas it shows how to estimate the permeability of almost
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arbitrary pore geometries by introducing impermeable regions in the lattice.
It is thus a framework for studying permeability.

The present paper is in the macroscopic tradition. A lattice and a set
of rules are devised in such a way that the resulting lattice gas obeys an
equation which is formally identical to the equation of motion of one phase
flow in porous media. The coefficients of the lattice-gas equation of motion
are adjustable so that one is able to match the corresponding coefficients
of the equation to solve. This model is thus a framework for the numerical
solution of a specific equation. The motivation for such a model is that some
important problems are difficult to solve, either analytically or by standard
numerical methods. Irregular boundaries, impermeable layers, large perme-
ability contrasts between adjacent layers are some of the features of such
problems.

Section 2 presents the equation governing one phase flow in porous me-
dia, which is the equation to simulate. The lattice-gas (lattice and rules) is
presented in section 3. The calculations leading to the flow equation for the
lattice gas, following the methods that have been used for simulating hydro-
dynamics [3,4,10], are shown in sections 4 and 5. Finally, sections 6 and 7
present numerical checks.

2. One phase flow in porous media

The differential equation for liquid flow at constant temperature in a porous
medium [1] is essentially a mass conservation equation

Oi(pd) + 8i(d's) = S, (2.1)

where J; and 0! denote partial derivation with respect to time ¢ and co-
ordinate 2%(¢ = 1,2,3). The summation convention is assumed and primed
letters are used for those quantities which will eventually be scaled, reserving
unprimed letters to their dimensionless counterparts to be introduced later
on. S is the mass of fluid, injected (if positive) or removed (if negative) per
unit time and per unit volume of the medium. Further, ¢ is the rock poros-
ity, o’ is the fluid mass per unit volume, and ¢; are the components of the
so-called superficial or Darcy velocity, given by

g = —p  Ki(8p — 0'gj)- (2.2)

Here p is the fluid viscosity, p is the fluid pressure, Kj; is the permeability
tensor, and g; is the acceleration due to gravity with components (0, —g,0) if
the second coordinate-axis is vertical and points upwards. (Such a placement
of coordinate axes is convenient for the presentation of the rest of the paper.
See section 3.)
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For liquid flow at constant temperature one usually assumes [1] that o is
a function of pressure exclusively and that the compressibility

1do
it 2.3
b= (2.9
is a constant.

Equations (2.1-2.3) are usually combined into one equation for the pres-
sure [1]. From the point of view of a cellular automaton simulation it is more
interesting to have p’ as the dependent variable. With the assumption that

o' = ¢'(p) and using equation (2.3) one gets

90" = B’ 9p, (2.4)
and combining this with equations (2.1) and (2.2) one obtains
9,0' = (puB) ™ K0/ (0p — Be’g;) = S, (2.5)

assuming that Kjj, ¢, p, and B are constants. The following assumptions
about the permeability tensor usually allow one to model most cases of prac-
tical interest. It is symmetric, one of its principal axes is vertical, and it is
isotropic in the horizontal direction. The second axis being vertical, these
assumptions imply that

I{,‘j =10 (Z # ]), IX’U = 1{33 = kh, 1(22 = ku,
so that the flow equation, equation (2.5), becomes
oupole’ — kn(0* + 957) 0’ — ku04(850 + Bgo™) = upBS. (2.6)

It is appropriate, at this point, to scale the primed quantities by introducing
a length scale Ly, a time scale Ty and a density scale pg:

zi = Loz;, t' = Tot, o' = ooo. (2.7)

The dimensionless flow equation is then

B0 — Nw(02 + 32)0 — N,02(d20 + N,0%) = N, (2.8)
where

Ny = knTo/(euBL2), N, = k,To/(puBLg), (2.9)

Ny = gooLof, N, = STo/(¢00)-

The dimensionless form of Darcy’s law, equations (2.2), is
(Lo/To) "¢ 'q1 = =Ny 0™ 'O10,
(Lo/To) "¢ g2 = =N, (07 020 + Ny0), (2.10)

(Lo/To) ¢ g3 = —Nn 07 D50,
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where Lo/Tp has been used as a velocity scale, and where ¢~ 1¢; is the inter-
stitial velocity [1]. It is reminded that interstitial velocity plays the role, in
a porous medium, of the usual fluid velocity.

The orders of magnitude of the dimensionless numbers defined by equa-
tions (2.9) are very dependent on the reservoir. The values given below for
the rock and fluid parameters are meant to fix ideas.

kn o~ 1072m?,  kJky ~ 107,
B =~ 10~°Pa7l, ¢ = 1073Pas,
oo ~ 103kgm™3, g ~ 10ms™2,
e =~ 0.3, S &~ 1lkgm™3s71
Lo ~ lm, To ~ 1s.
One then finds:
Ny =~ 3, N, ~3x1073, (2.11)
N, 1073, N, ~ 3 x1073. )

The purpose of this paper is to find a cellular automaton model for simulating
equation (2.8).

3. The lattice-gas rules

The lattice considered is cubic with grid length A. The time step is denoted
7, and an elementary velocity c is introduced by

A=crT.

The lack of isotropy encountered in the hydrodynamics of the HPP gas [3]
will not arise here because velocity moments [4] larger than the second do not
appear in the calculations. At each node six unit vectors e,, (@ =1,...,6)
indicate the six possible directions for particle movements (figure 1). A
particle with velocity ce, will be referred to as an e,-particle. Greek indices
are defined modulo 6 and the summation convention does not apply to them.

An appreciable number of problems can be studied in two dimensions and,
moreover, the actual computer implementation is easier in two dimensions.
It is thus desirable to have separate cellular automaton models for dimension
two and for dimension three. There is no difference, for the model presented

A €2 I)\

€3 eq
€4

Figure 1: Definition of the lattice. Unit vectors es (pointing forward)
and eg (pointing backward) are not shown.



Cellular Automaton Model for Fluid Flow in Porous Media 387

here, between two and three dimensions, other than appending two extra
vectors to the two-dimensional case and applying the rules to these extra
velocity directions. Since equation (2.8) shows that the vertical direction
plays a special role because of the effect of gravity, vectors e; to e4 will be
considered to be in a vertical plane, with e, pointing upwards. In such a
manner a two-dimensional model, obtained by dropping the two directions
es; and eg, will retain the possibility of reproducing different horizontal and
vertical permeabilities and of simulating gravity effects. The presentation in
the rest of the paper is, as much as possible, independent of the number of
dimensions.
Particle movements are governed by the following three rules.

1. There is at most one particle per state, where a state is specified by
the position and the velocity. Thus there are at most 2d particles per
lattice node, where d is the dimensionality of the space (d = 2 or 3).

2. A particle which is alone at a node at time ¢’ is at one of the 2d
neighboring nodes at time ¢ + 7, with a velocity pointing away from
the node it just left. The transition from direction e, to direction
es takes place with probability p.s (see figure 2). These probabilities
satisfy

2d 2d
Y pup=T(o=1k...,2d), Y pap=1(B=1,...,2d). [3.1)
pB=1 a=1

The first equation is imposed by conservation of probability. The sec-
ond expresses semi-detailed balance [4] and is a matter of choice; its
importance for the present model will be pointed out in section 4.

3. With one exception, particles meeting at a node are not deflected. The
exception concerns any two-particle collision involving an e,-particle.
Such a collision results, with probability v, in both velocities changing
sign. See figure 3. This rule will be seen to give rise to a gravity term
with the desired form.

P12

—>

cey P13 P11

P14

Y
Figure 2: Illustration of rule 2. Transition probabilities for an e;-
particle alone at a node. Transitions to directions 5 and 6 are not
shown.
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Figure 3: Ilustration of rule 3. Any two-particle collision involving
an ep-particle results, with probability -, in an inversion of both ve-
locities.

The rules are seen to be consistent. They conserve particle number but
not momentum. An additional rule concerning particle creation or annihila-
tion will be given in section 6.

4. The lattice Boltzmann equations and their equilibrium solution

Introducing f,(r',%'), the mean population at node r’, time ¢/, and velocity
direction e,, the rules can be translated into what Frisch et al. [4] call the
“lattice Boltzmann equations.” These equations are here written directly
and reference is made to [4] for their justification in terms of an ensemble av-
erage, using the Boltzmann assumption, of a set of microdynamical equations
between Boolean variables. Keeping in mind that the Boltzmann assumption
implies that many-particle distribution functions are products of one-particle
distribution functions one finds:

fa(r' + Xeg, t' +7) — fo (¥, t) = Qq, (4.1)
where
2d .
Qa/H = Zfﬁ(pﬁcx —5ﬁa)+7f2haa (a: 17"'12d)5 (42)
pL=1

are calculated at r’ and ¢'. The notation in equation (4.2) is as follows:

2d
fa =fa/(1 '_foz)7 II= H(]- _fa)> (43)
a=1
and
hiy = —hs = .fo.flav o
b = —hy = —fi—fomfi—fon (4.4)
hs = —hs = fo—fs.

If d = 2 then fs and fg are dropped from the expressions for hy and k.
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It is easy to check that, as a consequence of conservation of probability
(see the first set of equations (3.1)),

2d
Z Qe =0, (45)
a=1

which expresses particle conservation.

Equation (4.1) is valid when 1’ is at a node and ¢’ is a multiple of 7. The
transition to a continuum description is done by assuming that the f, have
appreciable variations only over a space scale L > ) and a time scale T' >
so that it is possible to interpolate between the discrete points at which the
fo are originally defined. Actually one assumes that the interpolation gives
functions that can be differentiated arbitrarily many times. The left-hand
side of equation (4.1) can then be replaced by its Taylor expansion, to yield
a differential form of the lattice Boltzmann equation:

2 1
Z ;;{(Ta; + )‘eaiaf)nfa ={y. (4.6)

n=1
The space and time variables are now scaled with the above quantities L and
T

CL‘; = L.’E,‘, t = Tt, (4:7)
and it is assumed that

AML=e<x 1. (4.8)

Since the purpose of the model is to describe diffusion effects, the time-scale
T must be such that [4]

/T = €~ (4.9)

Using equations (4.7-4.9) in equation (4.6), the latter takes the following
dimensionless form:

Z %(528'5 =+ Eeaiai)nfa = Qa- (410)

n=1

Finally, fluid density is defined by

2d
p(r,t) o Zfa(r,t)v (4.11)

while fluid momentum, which is not a conserved quantity, is not used.

An equilibrium solution f£? is now looked for, such that £,(f%) = 0,
in the form of an expansion in powers of €. This equilibrium solution will
depend on the one conserved quantity, p. It is assumed in the present model
that the fluid density is at most of order &:

p = 2de¢d (4.12)
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where the factor 2d is included for convenience. Equation (4.11) shows
that one may try f&? = e¢. The expressions defining {2, (equations (4.2-
4.4)) show that, because of semi-detailed balance (the second set of equa-
tions (3.1)), this expression of f£? is correct to order €. One can thus set

2 =ed+elxa + O, (4.13)

where, to satisfy equation (4.12),

2d
> ks=0. (4.14)
=1

(It will be seen later that terms of order & are not needed.) The x, are
found by solving equations Q4 (f%?) = 0 perturbatively to order e2. One finds
that the y, satisfy

2d

ﬁg X8(Ppa — 6pa) = 27(d — 1)(8az — Sas)$”. (4.15)

Because of equations (3.1) the matrix with elements pos — dop has rank
2d — 1. There are thus 2d independent equations in the set consisting of
equations (4.14) and (4.15), which determines the 2d x,’s uniquely. Note that
the hitherto unspecified matrix p,g must satisfy the condition that the rank of
Pop —Bap is 2d—1. The opposite case is equivalent to the existence of spurious
conservation laws. The calculation of the y, is deferred to section 5.2, where
a special form for the matrix p,g is introduced.

5. The perturbation solution and the flow equation
5.1 The perturbation solution

Reference is made to [4] and [10] for a justification of the calculations which
now follow. A solution to the differential Boltzmann equation (4.10) is sought
by perturbing around the equilibrium solution, i.e., by setting

fo= fI+ () + %0 + O, (5.1)
and by requiring that the correction terms do not modify the density:

2d

Yo =0, (5.2)
a=1

2d :

Y vd =0 (5.3)

a=1
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Combining equations (4.13) and (5.1) one finds, for the left-hand side of
equation (4.10):

— 1
> O+ ceaill) fa = eaili(d+ L) + %[00+ ¢L)
=

+ eaili(Xa + D) + JeaieajB:0;(¢ + )]
+ 0(g"), (54)
where the terms of order £* involve terms in the expansion of f, which are

of order €3 (see equation (5.1)). To order ¢, the right-hand side of equa-
tion (4.10) is

2d
Q= ¥5 (s — 8a) + O(E?).
p=1

This must vanish identically. Accounting for equations (5.2) and remember-
ing that pag — 64p has rank 2d — 1, one then finds that

»M = 0. (5.5)

With this simplification and using equation (4.15), the right-hand side of
equation (4.10) becomes, to order €2,

2d
Qo = 3 P (Poe — 6pa) + O(?). (5.6)
pB=1

Equating this to the right-hand side of equation (5.4), and using equa-
tion (5.5), one sees that the () are found by solving

2d
E 1/)(&2)(?,801 - 6,30:) — eaiai¢ (57)
B=1

together with equations (5.3). Finally, the macrodynamical or flow equa-
tions [4,10] are found by summing the e*term on the right-hand side of
equation (5.4) over all values of & and equating the result to zero. Using
equation (5.5) and

2d
Z Eni = 0

a=1

one finds the following flow equation:
2d 2d
b+ 5D eaili(xa + V) + & D eaieaj8idid = 0, (5.8)
a=1 a=1

where the X, and %?) are implicitly given in terms of ¢ by equations (4.14)
and (4.15) and equations (5.3) and (5.7). Explicit expressions are given in
the next subsection, after the introduction of a particular p,g-matrix.
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5.2 A special transition matrix p,s

A special matrix pyg is introduced, with elements depending on three para-
meters and general enough to cover all cases of interest. Remembering that
the plane of the four unit vectors ey, ..., ey is vertical, that vector e, points
upwards, and that es; and eg are appended whenever a three-dimensional
model is desired, a transition matrix with the following properties is consid-
ered. (The properties are written for the three-dimensional case.)

The differences between the probabilities of forward and backward scat-
tering only depend on whether the original direction of motion is hori-
zontal or vertical:

Pui — P13 = Pes — Pes = P33 — P31 = Pss — Ps6 = On,

P2 — P2 = Pas — Pa2 = 6. (5.9)
The probabilities for scattering in a transverse direction are indepen-
dent of the original direction of motion:

Pap = w for all @ and f such that e, - eg = 0.

The transition matrix has then the following form:

w H w w w
Vi w V. w w
w H w o o
V. w V, w w
w w w Hy H_
w w w H_ H

(Pap) = (5.10)

999 g™

where, for two dimensions, the last two columns and the last two lines must
be dropped, and where
Hy=(1x6)/2—-(d—-1)w, Voa=(01%£46,)/2—-(d-1Dw. (5.11)

Note that equations (3.1) are satisfied and that the transition matrix is now
symmetric (detailed balance [4]). The requirement that the matrix elements
be in the interval [0,1] imposes the limitation that the triplet (ép,6,,w) be
inside or on the surface of a pyramid defined by |6x] < 1, |6,] < 1, and
0 < w < [2(d —1)]7! . Further, the requirement that the matrix pos — dap
be of rank 2d — 1 excludes the base (w = 0) of this pyramid (see figure 4).

With this transition matrix the expressions for the y, (found by solving
equations (4.14) and (4.15)) and for the ¢(?) (found by solving equations (5.3)
and (5.7)) are

Xo = —BERE (6, — 6ua),  (a=1,...,2d), (5.12)
PO = —kaeailid, (a=1,...,2d), (5.13)

where it is reminded that greek indices are not summed, and where

K1 = k3 = ks = ke = (1 — &)77,
Ko = K4 = (1 a 6,,)_1. (514)

The resulting flow equation now follows.
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On

Figure 4: Allowed values of (6, 6,,w) are inside and on the surface of
the pyramid, except its base. The height of the pyramid is [2(d—1)]~*

5.3 The flow equation

The flow equation is found by using equations (5.12) and (5.13), together
with

2d

Z €ai€aj = 261,7,

a=1
in equation (5.8). Keeping in mind that the unit vectors along the coor-
dinate axes z1, z2, and x5 are, respectively, e;, e;, and es, and that the
two-dimensional model is obtained by dropping coordinate z3 and unit vec-
tor es, one finds:

146 146, 4y ) _
¢ 41— )8 ié - 41— )82 < 1+6, (3:13)
in two dimensions, and
B 146, 2 o 146,
0~ 5 =iy O+ 8~ g iy (agqs 1+5 )_o (5.16)

in three dimensions. For a direct comparison of these equations with the
dimensionless equations of section 2, a scale ¢y of order of magnitude 1 is
introduced for ¢,

&= o (5.17)
Equations (5.15) and (5.16) can now be written

8,0 — CII9? + (d —2)82]8 — CD8,(8,® + CW®?) = 0, (5.18)



394 Paul Papatzacos

where d = 2 or 3 and
CiY = 2d)7 (1 + &)(1 — &)Y,
C = (2d)71(1 + 6,)(1 — 6,)71, (5.19)
C4D = 4(d — 1)7(1 + 8,) " ¢o.

Equation (5.18) is now identical to equation (2.8) with no source term, d = 2
corresponding to ¢ being independent of z3. Equations (5.19) show that it is
a priori possible to reproduce any set of values A, and N, by choosing 8, and
8,. It is also possible to reproduce N as long as its order of magnitude is less
than about 1, which should be possible in a wide variety of cases according
to the numerical value shown in equations (2.11).

Note that care has to be taken in simulating so-called layered reservoirs
where k, and hence N, take different values in different intervals along the
vertical axis. The values of C{%) are adjusted by choosing different §,’s in
different layers. To obtain identity between N, and Céd) one must choose
different 4’s in different layers in such a way that v(1+8,)~! remains constant
throughout.

The velocity has not played any role in the calculations because momen-
tum is not conserved by the automaton rules. However, it is interesting to
use the definition of velocity u; (as an ensemble average or mean velocity per

node [4,10])

2d
pu; = ¢ Z faeai
a=1

to obtain the expression of velocity in this model. Using the expression for
fa (equations (5.1), (5.5), (5.12), and (5.13)), together with equations (4.12),
(5.17), and (5.19) one finds, with d = 3:

(L/T) uy = —[3(1 = 6,)] 7 @710, @,
(L/T)  ug = —[3(1 — 6,)]7* (@710, ® + 4~®), (5.20)
(L/T) 'ug = —[3(1 — &,)]* @ 18:®.

These expressions do not give the correct expression for the Darcy velocity.
Indeed, eliminating gravity and setting the permeabilities to zero by putting
v =0 and §, = &, = —1 (see equations (5.18) and (5.19)), one sees that
expressions (5.20) do not give zero velocity. The defining equations (5.9)
show that, when 6, = §, = —1, particles with no nearest neighbors jump back
and forth between two adjacent nodes; there are similar “cycles” involving
two or more nearest neighbors. The macroscopic velocity field of a lattice
gas in this state, calculated on a single history as a space and time average
with scales L and T, is zero. This suggests the following definition of the
dimensionless Darcy velocity v;:

v; = (L/T)  [wi(8h, 6us ) — wi(—1,—1,0)]. (5.21)
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Using expressions (5.20) one then finds

U1

- 919,90,

Il

- (9710,9 + CP @), (5.22)

V2

V3 = —C}?) @“1834).

Comparing equations (5.18) and (5.22) with equations (2.8) and (2.10) one
sees that v; has the correct expression.

It may be objected to this derivation that the Darcy velocity given by
expressions (2.10) vanishes with the horizontal and vertical permeabilities,
even with a nonzero gravity term, so that the renormalizing term in equa-
tion (5.21) should be u;(—1,—1,v). However, equations (5.18) and (5.19)
show that the gravity term for the lattice gas is proportional to v/(1+6,) so
that it is necessary to set v = 0 when 8, = —1. Also, the argument can be
carried out as a limiting procedure, where 8§, and §, are made to approach
—1, so as to avoid a confrontation with the fact that values §, = —1 and
6, = —1 are not allowed (see figure 4).

6. First numerical check: Two-dimensional flow without gravity

In this section, the cellular automaton will be checked against an analytical
calculation. A model is set up in such a way that it is possible to solve
the diffusion equation analytically, which means that very simple boundaries
and boundary conditions are chosen. The boundary is a square, with the
condition that no flow takes place across it. A source, at the center of the
square, injects fluid at a (preferably) constant rate, starting with no fluid
at zero time. The simulation of such a situation with a cellular automaton
presents no problems as far as the no-flow boundary is concerned. Particle
creation at a constant rate is, however, not straightforward because of the
rule that there is at most one particle per state.

The additional rule concerning creation, and the resulting modification
of equation (5.15), will be considered first. Let the source be located at
node r/, and let o,(r’,#') be the probability of creating an e,-particle at r’
and ¢’ (o4(r',t') # 0 only if v’ = r)). Equations (4.1) and (5.18) become,
respectively,

Ja(&' + Xeg, ' +7) = fo(x', 1) = Q4 + 0,
and
8@ —CP020 — CP92d = o /(46%), (6.1)

where

o= z_: Ou- (6.2)
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In equation (6.1), o # 0 only inside a square region with side € and centered
at rl. The order of magnitude of o can be estimated by referring to the
assumption that the fluid density is at most of order € (see equation (4.12)).
The number of particles created after 7'/7 time steps is about (T'/7)o. The
first particles created have traveled a distance of the order of 1/(T'/7) so that
the average particle density created is of the order of (T'/7)o/(\/(T/7))? = 0.
Since this must be at most of order & one may set

o =c¢ev, (6.3)

so that the right-hand side of equation (6.1) is v/(4¢€?) where v, like s, is
different from 0 only inside a square region with side & and centered at
(z1 = @15,T2 = Tg,). It follows that, when € — 0, equation (6.1) can be
written

8,8 — CP02® — CP 2D = (v/4)6(z1 — 71,)8(z2 — T35), (6.4)

where §(z) is the Dirac delta function.

As already mentioned, the lattice is assumed to be square. Let the length
of its side be NA where N is odd so that there is a central node where
particle creation takes place. The automaton can be run when a choice has
been made for &, §,, @, and for o = ev. The boundaries of the square are
such that all particles arriving there are reflected (with an initially empty
lattice, there will never be any particles tangential to the boundary). The
central node creates an e,-particle with a probability ev/4 if such a particle
does not already occupy the node. Particle densities are then calculated and
compared with the analytical solution of equation (6.4).

The properties of the analytical solution are now briefly examined. It is
convenient for simplicity to introduce the following notation:

p=vcPc?,  r=1cPc?. (6.5)

The fact that one must work with a low density of particles, together with
the rule that a particle is created at the central node only if a particle of the
same type does not already occupy the node, means that a constant rate of
creation cannot be exactly maintained so that it is necessary to consider a
time-dependent v on the right-hand side of equation (6.4). With ® = 0 at
zero time one can then write the solution as

1 78
o(en,0) = ¢ [ 00660~ 0)de, (6.6)

where the Green function G is given by [2]

G(&n,0) =1 + 2> e~ 70T cos(nmé) + 2 > gl cos(nmn)

n=1 n=1
o0 [ee]
+ 4> e 140 cos(maé) cos(nn).  (6.7)
m=1n=1
In these equations, the space coordinates ¢ and 7 have their origin at the
central node and vary between —1 and +1 (see figure 5). The time variable 8,
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when related to the number of time steps t'/7 (see section 4), is

'
0=""  N=Np (65)
Ny

which shows that the appropriate unit of time, in number of time steps, is
Np.

Particle densities obtained during the automaton run must be compared
with numerical values given by equation (6.6). Actually, the calculation of
particle densities involves an averaging of particle numbers in both space and
time. In terms of the coordinates (¢,7,6) introduced above, let A¢ be the
linear dimension of the space averaging region and Ay be the time averaging
interval. In lattice terms there will be N?AZ sites in a space averaging region
and, according to equation (6.8), there will be N2A,/p time steps in a time
averaging interval. In the automaton runs described below there are two
space averaging regions, centered at (£ = 1/2,n7 = 0) (labeled E in figure 5) -
and at (£ = 0,7 =1/2) (labeled N in the same figure).

Time averaging is done as follows. One first chooses a final time 0 = 0,
a multiple of the averaging interval Ay. This determines, through equa-
tion (6.8), the maximum number of time steps the automaton is to be run,
namely 0;N?/p. (It will be shown below that the choice of §; can not be made
arbitrarily.) Space averages are registered at each time step, over a number
of time steps corresponding to Ay, namely N2A,/p, and the mean value and
standard deviation are calculated. This standard deviation is assumed to be
an estimate of the “experimental error” attached to the mean value. In prin-
ciple both the mean value and the standard deviation should be calculated
by repeating the experiment many times and recording the space average at
a given time. The standard deviation calculated as described above is some-

n

-1

Figure 5: Lattice and averaging regions (£, N, W, §) for numerical
check without gravity effect. The lattice is square, with side (2M +
1)A. The averaging regions are squares, centered halfway to the edges,
and with side (2m + 1)A.
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what larger than its correct value because the mean values vary with time
inside the time averaging interval.

The mean value itself could be assumed to be an estimate of particle
density at the center of the space averaging region and in the middle of
the time averaging region, to be compared with the numbers given by the
analytical expression, equation (6.6). It is preferable, however, to compare
the above mean value with the analytical expression obtained by averaging
equation (6.6) over the corresponding space and time regions. This allows to
choose values for A, and Ay which are not too small.

It remains to define the v-function in equation (6.6). The automaton
runs are started with a “requested” creation probability o = 0., (i.e., ¥ =
Vreq according to equation (6.3)). The expected number of particles created
between time 6 and 6 + Ag is N2A0,¢q/p. The actual number of particles
created varies, however, because of statistical fluctuations but also because of
the rule that a particle is created only if a particle of the same type does not
already exist at the central node. For example, in one of the runs presented
below, 0,¢, = 0.05 and the interval A, corresponds to 1020 time steps, so
that the expected number of particles created per Ag-interval is 51. The
actual numbers registered in successive Ay-intervals are, however,

50,36,49, 52,40, 53,40, 54, . . ..

To account for these variations, equation (6.6) is written
0
®(6,m,0) = Do [ 9(8)G(€,1,0 ) de, (6.9)
0

Do = vreg/(4p),  #(0) = v(0)/vreq (6.10)
where 7(0) is defined by

p(0) =i for (k—1)Ay <8 < kA,
and

Number of particles created for (k —1)Ay <0 < kAe
N? A0‘7'7‘1':q/p

Referring to the example already mentioned, the first numbers in the 7
sequence are

50/51,36/51,49/51,52/51,40/51,53/51,40/51,54/51, .. ..

Vp =

Returning now to the averaging of the analytical expression over space and
time and referring to equation (6.9), a function (®) is defined as the average
of ®/®, in region E of figure 5 and in the interval [(k — 1)Ag, kAq]:

1 kb A¢/2
S TR
(@ Ag (k—l)Ag A A5/2

/ ol e /0 D(0)G(¢,n,0 — 0)do. (6.11)

(1-4¢)/2
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The calculation of this expression with the Green function given by equa-
tion (6.7) is straightforward but tedious. The details are not given here.

Figure 5 shows four space averaging regions, labeled £, N, W, and S,
centered halfway from the lattice center to the edges, and with side equal to
A¢. Because of symmetry, the analytical particle density averaged, at a given
time, in region E can be compared to the average number of particles, at the
corresponding time step, in region E+W (or in region E+W+N+Sifr =1).
If r # 1, the average number of particles in region N 4.5 can, because of the
form of the Green function, be compared to the above mentioned analytical
average provided 1/r is substituted to r in equation (6.7).

Finally, the space-time averages of particle numbers obtained from run-
ning the automaton must be normalized in a manner which is comparable
to the normalization of (®), i.e. by dividing them by ®,. Recalling equa-
tion (4.12), one must also divide by 4¢, so that the normalized and averaged
particle number is

(P)F
Py = Oreq/ps

where k refers to the interval [(k — 1)Ag, kAg], and R is either £ + W or
N+ S (whenr=1, Ris E+ W + N+ 5). Note that neither (®); nor (P)
directly depend on e. This parameter is, however, indirectly present through
Oreq Which must be at most of order e.

The results of two experiments are shown in figures 6 and 7. The para-
meter values for each experiment are given in table 1.

Note that the lattice sizes are chosen so that N? is approximately 10%
for one case and 10° for the other. These figures are plots of (P); and (D)
against 0, each average being allocated to the value of 6 which is in the middle
of the time-averaging interval. While » = 1 in figure 6, figure 7 shows the
result of a run with » = 0.1 (meaning that Cf,z)/ng) =0.01).

The final value of 6, 0, can not be arbitrarily large because the model
assumes low particle densities so that the particle creation process must be
stopped when the density reaches some number less than one. It will now
be shown that the requirement of a maximum overall particle density of
order ¢ determines the upper bound of §; up to a factor of order 1. The

= (Space-time average of particle numbers)/ Py, (6.12)

Figure 6 Figure 7
N=101 | cP=1 N=317T | ¢P=10
6 =3/5 CA=1 |6 =39/41| CP® =1/10
8, =3/5 r=1 8, ==-3/7| r=1/10
w=1/10 p=1 w=1/82 p=1
Oreq = 0.05 | Ny = 10201 || 0oy = 0.05 | Ny = 100489

A: =02, Ap=0.1 Ae=02, Ag=0.1

Table 1: Parameter values for the automaton runs illustrated in the
indicated figures.
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1.0 2.0

Figure 6: Plot of the space and time averaged particle-numbers given
by equation (6.12) ((-) with “error bars” extending one standard de-
viation above and one below), and of the corresponding analytical
averages given by equation (6.11) (o) versus time §. The parameter
values are given in table 1. In particular, 7 = 1.

20

1.0 | +s}ﬁ

1.0 2.0

Figure 7: Plot of the space and time averaged particle-numbers given
by equation (6.12) ((-) for the E + W averages and (x) for the N +
S averages, with “error bars” extending one standard deviation above
and one below), and of the corresponding analytical averages given
by equation (6.11) ((o) and (¢)) versus time §. The parameter values
are given in table 1. In particular, » = 0.1.

number of time steps necessary to reach 6; being N?0;/p, the approximate
total number of particles created is N20;0,¢,/p, so that the maximum overall
density is 050,eq/p. With 0,eq = €Vreq One sees that

afmaz & p/Vreqa

where the proportionality factor is of order 1. Thus, for given p, the way
to explore large times is to reduce the particle creation probability. In both
automaton “experiments” presented above one has in mind a value of € equal
to 0.1 and the value of 8; corresponds to a maximum overall particle density
equal to 0.1.
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All other parameters being constant, the standard deviations are roughly
proportional to N=/2. It should also be noted that, a value of §; being given,
calculation time on a sequential computer is proportional to N* (N?) for a
to-dimensional (three-dimensional) simulation. A power of 2 (3) accounts for
the number of nodes and an additional power of 2 accounts for the number
of time steps.

Equations (5.18) and (5.19) show that the probability for right angle
scattering, w, is not “measurable,” i.e., it does not appear in the numerical
coefficients. The particular choice of @ in any automaton run is thus only
limited by the fact that the point of coordinates (6, §,, ) must be inside the
pyramid of figure 4. In the automaton runs referred to in this and the next
section, w has been arbitrarily chosen halfway up from the point (8, 6,,0)
on the pyramid base, to the point (4,8,, @maz) on the pyramid side.

It should finally be noted that the flow equations without the gravity
term are linear. The quantity denoted above by (P), given by a cellular
automaton run, is then a numerical solution of equation (6.1) where ® is
replaced by ® — ®; (with ®; an arbitrary constant, for example an initial
value of ®). It is also a numerical solution of the same equation with @
replaced by ®; — ® and o replaced by —o, meaning that one has a practical
way of simulating depletion by an automaton run with particle creation and
a subsequent change of sign in the interpretation of the results.

7. Second numerical check: One-dimensional flow with gravity

As in the previous section, an automaton run is checked against an analytical
solution of equation (5.18), where d = 2 and @ is assumed independent of
z1, so that it becomes

0@ — —CP8,(8,% +CP9?) = 0. (7.1)

This equation is nonlinear and no analytical solution is known. It is however
possible to chose the start and boundary conditions in such a way that the
solution evolves to a time independent function, ®*°(z;). One can then
compare the long time prediction of the automaton with ®*°(z,). A possible
set of such start and boundary conditions is the following:

®=1 at z,=0, (7.2)
®=0 at z,= Ng, (7.3)
=0 at t=0. (7.4)

It is reminded that the automaton lattice is square, with side N A, which
explains the right-hand side of equation (7.3). Function @ is the solution
to equations (7.1) (without the O;-term), (7.2), and (7.3). The differential
equation is of the Riccati type and one finds [5]

® = tanfa(1 —§)] (7.5)

tana
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where
€ = zo/(Ne) (7.6)
and «a is the solution of the transcendental equation
yN
atana = ng)Ne = 4e¢01 e (7.7)

On the right-hand side of this last equation, ¢, is a scale for @ (see equa-
tion (5.17)). Since ® is set equal to 1 at the lower boundary by equation (7.2),
the product 4e¢y is, in lattice terms, the particle density at the lower bound-
ary. Thus the automaton is run with reflecting right and left boundaries,
a lower boundary with a constant particle density and an upper boundary
with zero particle density. The condition at the upper boundary is easily
implemented by annihilating all particles arriving there. The condition at
the lower boundary is managed as follows. At the end of each time step, after
the rules for particle movement have been applied, all particles are removed
from the lower boundary and then, at preselected sites (say at each tenth
site from the left, for a lattice with 100 sites on a side) particles of random
types are created.

To compare the automaton output with equation (7.5) it is necessary to
know the time scale of the solution of equation (7.1). An estimate of this
time scale can be obtained by linearizing the equation, i.e., setting Cy) =0.
The solution of the linear equation, with start and boundary conditions given
by equations (7.2-7.4), is [2]

pfn =1 —¢— - Z(n)‘le_"2“2e sin(n¢),
n=1

where ¢ is defined by equation (7.6) and (compare with equation (6.8))

__t'/'r
=N

0 Ny = N?/CP, (7.8)

®"" is very nearly time-independent as soon as 6 reaches the value 1 because
of the exponential factors in the sum. It is therefore assumed that the au-
tomaton stabilizes, except for statistical fluctuations, for all time steps larger
than 2Ng.

A square lattice with N = 100 sites on a side has been chosen, together
with constant particle density at the lower boundary 4e¢o = 0.1, and C{?) =
1. This implies Ny = 10%. Apart from that, two cases are presented with
different scattering probabilities, as shown in table 2. Particle averages are
calculated in space with A¢ = 0.1 and normalized through division by the
particle density at the lower boundary (4e¢o). Each space average is recorded
for all time steps, starting at time step number 2 x 10* (§ = 2) and ending
at time step number 4 x 10* (§ = 4). Mean values and standard deviations
are calculated and the mean values are compared to the values given by
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Figure 8 | Figure 9
b =3/5 bp=0
6,=3/5 | 6,=3/5
w=1/10 | @ =1/10
y=1 y=1/2

Table 2: Parameter values for the automaton runs illustrated in the
indicated figures.

equation (7.5). Actually, since the space averaging region A is appreciably
large, the comparison is done with

1 /‘Ae 1 In cos[a(l — £A¢)]

(@) = Ag Jie-a S e Agatana  cosfa(l — (£ —1)A¢]

. (1.9)

The space averaging intervals are numbered from the bottom (£ = 1) to the
top (£ = 1/A¢) of the lattice.

The results are shown in figures 8 and 9, where each space averaged
value is allocated to the é-coordinate in the middle of the interval. There is
agreement to within one standard deviation for most points.

8. Conclusions

A cellular automaton model for the simulation of one-phase liquid flow in
porous media has been derived, and a set of simple checks has been presented.
The simulations were done with FORTRAN programs on a MicroVax 3500.
It took somewhat more than a CPU-hour to produce the data for figure 6 and
about five days to produce the data for figure 7. More effective simulations

1.0

0.5 *
t

f
t
fay

! &
0.5 1.0

Figure 8: Plot of the space averaged particle numbers ((-), with “error
bars” extending one standard deviation above and one below), and of
the corresponding analytical averages given by equation 7.9 (o), versus
coordinate £. The parameter values are given in table 2. In particular,
Fy=1.
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1.0

it A

0.5 1.0
Figure 9: Plot of the space averaged particle numbers ((-), with “error
bars” extending one standard deviation above and one below), and of
the corresponding analytical averages given by equation 7.9 (o), versus
coordinate . The parameter values are given in table 2. In particular,

aq=1/2.

are in preparation, using parallel-C on a transputer card fitted to a personal
computer. The purpose of these simulations is to explore some of the pos-
sibilities and limitations of the model. The possibility of three-dimensional
simulation, for example, remains to be tested. The most obvious limitation
of the model is its requirement of low densities. This limitation is especially
illustrated in the examples presented in section 6 where simulation time is
limited by the necessity to stop particle creation so as to remain in the low
density regime.
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