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Abstract . A cellular automaton model for the simulation of fluid
flow in porous media is presented. A lattice and a set of rules are
int roduced, such th at the flow equations in the continuum limit are
formally the same as the equations for one-phase liquid flow in porous
media. The model is valid in two as well as th ree dimensions. Numer­
ical calculatio ns of some simple problems are presented and compared
with known analytical results. Agreement is within estim ated error s.

1. Introdu ction

It is well known that the Navier-Stokes equation can be deri ved by two
alternative methods, which may be called macroscopic and microscopic. The
macroscopic me thod builds on the hypothesis that fluid s are structureless
continua and uses conservation laws of general validity [6]. The viscosity
coefficients are introduced as constants to be determined by experiments.
T he microscopic approach, on the other hand, is based on the molecular
structure of fluids and uses the framework of statistical physics [8]. The
viscosity is here calcu lable in terms of the intermolecular potent ial.

T here is an analogous division in the theory of flow in porous media
and the Darcy equation . The macroscopic point of view st arts with Darcy 's
law, which states that the rate of one-dimensional flow is proportional to
the pressure gradient, and generalizes this law by introducing a permeabili ty
te nsor. T he components of this tensor are to be determined by experiments.
T he microscopic me thod is represented by an extensive literature (see for
example [9] and refere nces given there) where it is shown that the Darcy
equat ion ari ses from an averaging ou t of Navier-Stokes flow by the pores
and that the permeability te nsor is in principle deducible from the pore
geome try. The length scale is here microscopic only as far as the porous
me dium is concerned: the pores are visible but the fluid is struct ureless .

The recent paper by Rothman [7] on the cellular automaton simulation
of flow in po rous media is in t he microscopic tradition. Using the FHP [3]
triangular-lattice gas it shows how to estimate the permeability of almost
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arbit rary pore geometries by introducing impermeable reg ions in the lat ti ce.
It is thus a fram ework for st udying permeab ility.

The prese nt paper is in th e macroscopi c tradition. A lat tice and a set
of ru les are devised in such a way that the result ing lat ti ce gas obeys an
equation which is formally identical to the equat ion of motion of one ph ase
flow in porous media. The coefficients of the latt ice-gas equat ion of motion
ar e adjustable so that one is ab le to match the corresponding coefficients
of t he equat ion to solve. T his model is thus a framework for the numer ical
solut ion of a specific equation . T he motivation for such a mo del is that some
importan t problems are difficult to solve, eit her analytically or by standard
numerical methods. Irr egular boundari es, impermeable layers, large perme­
ability cont ras ts be tween adjacent layers are some of the features of such
problems.

Secti on 2 presents the equation governing one phase flow in porous me­
dia , which is the equation to simulate. The lattice-gas (lattice and rul es) is
pr esen ted in section 3. The calculations lead ing to the flow equation for the
lat tice gas, following the met hods that hav e bee n used for simulating hydro­
dynamics [3,4,10], are shown in sections 4 and 5. Finally, sect ions 6 and 7
present numerical checks.

2 . One phase flow in porous m edia

The differential equation for liquid flow at constant temperature in a porous
medium [1J is essentially a mass conservation equation

(2. 1)

where 8; and 8: denote partial derivation wit h respect to t ime if an d co­
ordinate x;(i = 1, 2, 3). The summation convent ion is assum ed and primed
letters are used for those qu antities which will eventually be scaled, reserv ing
unprimed let ters to their dimensionless counterparts to be introduced later
on . S is the mass of fluid , injected (if positive) or removed (if negative) per
unit time and per unit volume of the medium. Further , ep is the rock poros­
ity, r/ is the fluid mas s per unit volume, and qi are the components of the
so-called superficial or Darc y velocity, given by

(2.2)

Here II is the fluid viscosity, p is the fluid pressure, J{ij is the permeabili ty
tensor, and gj is the acceleration du e to gravity with components (0, - g , 0) if
the second coordinate-axis is vertical and points upwards. (Such a placement
of coordinate axes is convenient for the presentation of the rest of the paper.
See sect ion 3.)
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For liquid flow at constant te mperature one usually assumes [1] that r/ is
a function of pressure exclusively and that the compressibility

1 dr/(J= -­
r/ dp

(2.3)

is a constant.
Equations (2.1-2.3) are usually combined into one equat ion for the pres­

sur e [l J. From the point of view of a cellu lar automaton simulation it is mor e
interest ing to have r/ as the depend ent variable. With the ass umption that
r/ = r/(p) and using equation (2.3) one gets

8jr/ = (Jr/ojP,

and combining this with equations (2.1) and (2.2) one obtains

o;r/ - ( tp/-l(J)- l ](ijo:(8jP - (J r/ gj ) = se:' ,

(2.4)

(2.5)

assuming that ](ij, tp, u, and (J are constants. The following assumptions
about the pe rmeability tensor usually allow one to model most cases of prac­
t ical interest. It is symmet ric, one of its principal axes is vertical , and it is
isotropic in the hor izontal direction . The second axis being vertical , these
assumpt ions imply that

so that the flow equation , equation (2.5) , becomes

tp /-l(J8; r/ - kh(0~ 2 + 8~2 )r/ - kv8~ (8~ r/ + (Jgr/2) = /-l (JS . (2.6)

It is appropriate, at this po int, to scale t he pr ime d quantities by intr odu cing
a length scale Lo, a t ime scale To and a density scale (}o:

x; = LOXi, t' = Tot,
,

(} = (}o(}· (2.7)

T he dimensionless flow equat ion is then

where

(2.8)

N; = khTo/( tp /-l (JL6),

.Ng = g(}oLo(J ,

N; = kvTo / (tp /-l(JL6) ,

s; = STo/(tp(}o).
(2.9)

The dimensionless form of Darcy's law , equat ions (2.2) , is

(Lo/To)-l tp-lqj = -N« (} -101 (},

(Lo/To) - l tp- l q2 = <N; ((}- 182(} + .Ng(J) ,

(Lo/To) - l tp- l q3 = -N« (}-103(} ,

(2.10)
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where Lo/To has been used as a velocity scale, and where ep- 1qi is the inter­
stitial velocity [I ]. It is reminded that interst iti al velocity plays the role, in
a porous medium, of the usu al fluid velocity.

The orders of magnitude of the dime nsion less numbers defined by equa­
tions (2.9) are very depend ent on the reservoir . The values given below for
the rock and fluid parameters are meant to fix ideas.

kh ::::; 10- 12 m 2 , kv/kh ::::; 10- 1 ,

f3 ::::; 1O- 9 Pa-1 , J-l ::::; 10- 3Pa s,

120 ::::; 103 kg m", g ::::; 10 m s- 2,
ep ::::; 0.3, S ::::; 1 kgm- 3s- 1 ,

Lo ::::; 1m, To ::::; 1 s.

One then finds:

Nh ::::; 3, N; ::::; 3 X 10- 3 ,

(2.11)
Ny ::::; 10- 5 , N, ::::; 3 X 10- 3 .

The purpose of this paper is to find a cellular automaton model for simulat ing
equat ion (2.8).

3 . The lattice-gas rules

The lat tice considered is cubi c with grid length A. The time step is denoted
T, and an elementary velocity c is introduced by

A = CT .

T he lack of isotropy encountered in the hydrodynamics of the HPP gas [3]
will not arise here becaus e velocity moments [4J larger tha n the second do not
appear in the calculat ions. At each node six unit vectors e", (a = 1, . . . , 6)
indicat e the six possible dir ections for particl e movement s (figure 1). A
part icle with velocity ce; will be referred to as an e,,-p ar ticl e. Greek indices
are defined modulo 6 and the summation convent ion does not app ly to them.

An ap preciab le number of problems can be studied in two dimensions and,
mor eover , the actual compute r imp lement ation is easier in two dimensions .
It is thus desirabl e to have separ at e cellular au tomato n models for dimension
two and for dimension three. T here is no difference, for the model presented

Figure 1: Definition of the lattice. Unit vectors e 5 (pointing forward)
and e6 (pointing backward ) are not shown.
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here, between two and three dimensions, other than appending two extra
vectors to the two-dimensional case and ap plying the rules to these extra
velocity dir ections. Since equation (2.8) shows that the vertical directi on
plays a special role becau se of the effect of gravity, vectors e l to e4 will be
considered to be in a ver tical plane, with e2 pointing upwards. In such a
manner a two-dimensional model, obtained by dropping the two dir ecti ons
es and e6, will ret ain the possibili ty of reprodu cing different horizontal and
vertical permeabilities and of simulating gravity effects. The pr esentation in
the rest of the paper is, as much as possible, independent of the number of
dimensions.

Particle movements are governed by the following three rul es.

1. There is at most one par ticle per state, where a state is specified by
the position and the velocity. Thus there are at most 2d par ticl es pe r
lattice node, where d is the dimensi onality of the space (d = 2 or 3) .

2. A particle which is alone at a node at time t' is at one of the 2d
neighboring nodes at t ime i' + 'T" , with a velocity pointing away from
the node it just left. The t ransit ion from dir ect ion e., to direction
e(3 t akes place with probability Pa(3 (see figure 2). These probabilities
sat isfy

2d

L P a (3 = 1 (Q' = 1, . . . , 2d),
(3= 1

2d

L P a (3 = 1 ({3 = 1, . . . , 2d) .
0'=1

(3.1)

The first equation is imposed by conservation of probability. T he sec­
ond expresse s semi-detailed balance [4J and is a matter of choice; its
importan ce for the present model will be pointed out in section 4.

3. With one except ion , particles meeting at a node are not deflected . The
except ion concern s any two-p article collision involving an eTparticle.
Such a collision results, with probability" in both velocities changing
sign . See figur e 3. T his rule will be seen to give rise to a gravi ty te rm
wit h the des ired form.

m P

P12

13 Pn

P14

Figure 2: lllustration of rule 2. Transition probabilities for an el ­
parti cle alone at a node. Transitions to directions 5 and 6 are not
shown.
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Figure 3: illustration of rule 3. Any two-particle collision involving
an e2-particle results, with probability f, in an inversion of both ve­
locities.

The rul es are seen to be consistent. They conserve particle number but
not momentum. An additional rule concerning particle creation or annihila­
tion will be given in section 6.

4. The lattice Bolt zmann equations and their equil ibrium solu tion

Int roducing f ,,(r' ,t') , t he mean popula t ion at no de r ', time t' , and velocity
direction e" , the ru les can be translated into what Frisch et al. [4] call the
"lattice Boltzmann equations." These equations are here written directly
and reference is made to [4] for their just ificat ion in terms of an ensemble av­
erage, using the Boltzmann assumption, of a set of microdynamical equations
between Boolean variables. Keep ing in mind that the Boltzmann assumption
implies that many-particle distribution functions are products of one-particle
dist ribution functions one find s:

where

2d

.o,,/II = L l {J (p{J" - 8{J,,) +"'d2 h",
{J=1

(a = 1, ... , 2d),

(4.1)

(4.2)

are calculated at r ' and t'. The notation in equation (4.2) is as follows:

2d

II = II (1 - f ,,),
,,= 1

(4.3)

and

13 - iI ,
-iI - 13 - 15 - 16,
16 - is.

(4.4)

If d = 2then 15 and 16 are dropped from the expressions for h2 and h4 •
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It is easy to check that, as a consequence of conservation of probability
(see the first set of equations (3.1)) ,

(4.5)

(4.6)

which expresses particle conservation.
Equation (4.1) is valid when r' is at a node and t' is a multiple of T . The

transition to a continuum description is done by assuming that t he fa have
appreciable variations only over a space scale L :::t> ), and a time scale T :::t> T

so that it is possible to interpolate between the discrete points at which the
fa are originally defined. Actually one assumes that the interpolation gives
functions that can be differentiated arbitrarily many times. The left -hand
side of equation (4.1) can then be rep laced by it s Taylor expansion, to yield
a differential form of the lattice Boltzmann equation:

f= ~(TO: + ),eaiO:t fa = na .
n = ! n.

The space and t ime vari ab les are now scaled with the above quantities Land
T:

x;= LXi, t' = Tt, (4.7)

and it is assumed that

(4.8)

Since the purpose of the model is to describe diffusion effects, the time-scale
T must be such that [4]

T/ T = c2
. (4.9)

Using equations (4.7-4.9) in equation (4.6) , the latter takes the following
dimensionless form:

Finally, fluid dens ity is defined by

2d

p(r, t) = L: fa (r, t ),
a=!

(4.10)

(4.11)

while fluid momentum, which is not a conserved quantity, is not used .
An equilibrium solution f~q is now looked for , such that na(f~q ) = 0,

in the form of an expansion in powers of c. This equilibrium solut ion will
depend on the one conserved quantity, p. It is assumed in the present model
that the fluid density is at most of order e:

p = 2dc<p (4.12)
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where the factor 2d is included for convenience. Equation (4.11) shows
that one may try f~q = ed : The expressions defin ing n" (equations (4.2­
4.4)) show that, because of semi -detailed balance (the second set of equa­
tions (3.1)), this expression of f~q is correct to order c. One can thus set

(4.13)

where, to satisfy equation (4.12),

(4.14)

(It will be seen later that terms of order c3 are not needed.) The X" are
found by solving equations n,,(f~q) = °perturbatively to order c2

• One finds
that the X" satisfy

2d

2:= X/3(P/3" - 8/3,,) = 2,(d -1)(8"2 - 8"4)¢>2 .
/3=1

(4.15)

Because of equations (3.1) the matrix with elements P"/3 - 8,,/3 has rank
2d - 1. There are thus 2d independent equations in the set consisting of
equations (4.14) and (4.15), which determines the 2d X" 's uniquely. Note that
the hitherto unspecified matrix P"/3 must satisfy the condition that the rank of
P"/3 - 8,,/3 is 2d - 1. The opposite case is equivalent to the existence of spurious
conservation laws. The calculation of the x" is deferred to section 5.2, where
a special form for the matrix P"/3 is introduced.

5. The perturbation solution and the flow equation

5.1 The perturbation solution

Reference is made to [4J and [10J for a justification of the calculations which
now follow. A solution to the differential Boltzmann equation (4.10) is sought
by perturbing around the equilibrium solution, i.e., by setting

and by requiring that the correction terms do not modify the density:

2d

2:= 1/J~1) = 0,
,,=1

2d

2:= 1/J~2) = 0.
,, =1

(5.1)

(5.2)

(5.3)
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Combining equat ions (4.13) and (5.1) one finds, for the left -hand side of
equation (4.10):

c;2 eaJJi(<p +1/Ji1) ) + C;3 [Ot(<p + 1/Ji1) )

+ eaiOi(Xa + 1/Ji2
) ) + ~ eai eaAOj(<P + 1/Ji1

) ) ]

+ 0(C;4), (5.4)

where the terms of order C;4 involve terms in the expansion of f a which are
of order C;3 (see equ ation (5.1)). To order e, the right-hand side of equa­
t ion (4.10) is

2d

Da = e L 1/J~l ) (P(3a - o(3a) +0(C;2).
/3=1

T his must vanish identically. Accounting for equat ions (5.2) and rememb er­
ing that Pa(3 - oa(3 has rank 2d - 1, one then finds that

1/J~1 ) = o. (5.5)

With this simplification and usin g equ ation (4.15), the right -hand side of
equat ion (4.10) be comes, to order C;2,

2d

Da = C;2L 1/J~2 ) (P(3a - 0/3a ) + 0(C;3).
(3=1

(5.6)

(5.7)

Equating this to the right-hand side of equation (5.4 ), and using equa­
t ion (5 .5), one sees that the 1/J~2) are found by solving

2d

L 1/Ji2)(P/3a - o/3a) = eaiOi<P
/3=1

together with equat ions (5.3). Finally, the macrodynamical or flow equa­
tions [4,10] are found by summing the c;3-term on the right-hand side of
equat ion (5.4) over all values of a and equat ing the result to zero . Using
equat ion (5.5) and

2d

L eai = 0
0'=1

one finds the following flow equation:

2d 2d

Ot <P + -b L eaiOi (Xa + 1/J~2 ) ) +b L eaieaAoj<P = 0,
a=l a=l

(5.8)

where the Xa and 1/J~2) are implicitly given in te rms of <P by equat ions (4.14)
and (4.15) and equat ions (5.3) and (5.7). Expli cit expressions are given in
the next subsection, after the introduction of a particular Pa(3-matrix.
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5.2 A special transition matrix Pcr{3

A spec ial matrix Pcr{3 is introduced , with elements depending on three para­
meters and general enough to cover all cases of int erest . Remembering tha t
the plane of the four unit vect ors e1, . . . , e4 is vertical, that vect or e2 points
upwards, and that e5 and e6 are appended whenever a three-dimensional
model is desired, a transition matrix with the following properties is consid­
ered. (The properties ar e written for the three-dimensional case .)

The differences between th e prob ab ilities offorward and backward scat­
te ring only depend on whether the original direction of motion is hori­
zontal or vertical:

Pn
P22

P13 = P66 - P65 = P33 - P31 = P55 - P56 == Ok ,

P24 = P44 - P42 == OV' (5.9)

(5.10)

(5.14)

(5.12)

(5.13)

The probabilities for scattering in a tr ansverse directi on are indepen­
dent of the orig inal direction of motion:

Pcr{3 = tv for all a and (:J such that e ., . e{3 = O.

The transit ion matrix has then th e following form :

H + tv H _ tv tv tv
tv V+ tv V_ tv tv

()
H _ tv H+ tv tv tv

Pcr{3 = V Vtv _ tv + tv tv
tv tv tv tv H+ H_
tv tv tv tv H _ H+

where, for two dimensions, the last two columns and the last two lines must
be dropped, and where

H± = (1 ± ok)/2 - (d - l)tv , V± = (1 ± ov)/2 - (d - l)tv . (5.11)

Not e that equations (3.1) are sat isfied and th at the transition matrix is now
symmetric (detailed balance [4]). The requirement that th e matri x elements
be in the interval [0, 1] imposes the limitation that the triplet (Ok , 0v, tv ) be
inside or on the surface of a pyramid defined by lOki :::; 1, lovl :::; 1, and
o :::; tv :::; [2(d - 1)]-1 . Further, th e requirement th at the matrix P",{3 - ocr{3
be of rank 2d - 1 excludes th e base (tv = 0) of this pyramid (see figure 4).

With this transition matrix the expressions for the Xcr (found by solving
equations (4.14) and (4.15)) and for the 1f;~2) (found by solving equat ions (5.3)
and (5.7)) are

X'" = _ 2~~~v1) <p2 ( 0"'2 - Ocr4), (a = 1, . . . , 2d),

1f;~2 ) = - ",,,, e,,,;!Ji<p , (a = 1, . . . , 2d),

where it is reminded that greek indices are not summed, and where

"'1 = "'3 = "'5 = "'6 = (1 - Ok)-l,
"'2 = "'4 = (1 - ov)-l .

The resulting flow equation now follows.
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Figure 4: Allowed values of (Oh, Ov , tv) are inside and on the surface of
the pyramid, except its base. The height of the pyramid is [2(d- 1)t l

.
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(5.15)

5.3 The flow equation

The flow equat ion is found by using equ ations (5.12) and (5.13) , together
with

2d

L:: e",i e ",j = zs.;
0 = 1

in equation (5.8). Keeping in mind that the unit vect ors along the coor­
dinate axes Xl , X2, and X 3 are, respectively, el, e2, and es , and that the
two-dimensional model is obtained by dropping coordin ate X3 and unit vec­
tor es , one finds:

1 + 8h 2 1 + s; ( 4, 2)
at<p - 4(1 _ 8h)al <P - 4(1 _ 8

v
) a2 a2<P + 1 + 8

v
<P = 0

in two dimensions, and

in three dimensions. For a direct comp arison of these equatio ns wit h the
dimensionless equat ions of section 2, a scale <Po of order of magnitude 1 is
introduced for <P,

<P = <Po iP .

Equations (5.15) and (5.16) can now be written

a iP - etdl [a2+ (d - 2)a2JiP - C(dla (a iP +C(dl iP2) = 0t hI 3 v 2 2 9 ,

(5.17)

(5.18)
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whe re d = 2 or 3 and
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(5.19)

C~d) = (2d)- 1(1+ oh )(l - Oh)- l ,

C~d) = (2d)-1(1 + ov)(l - ov)-l ,

C~d) = 4(d - 1),(1 + ov)-l</JO'

Equation (5.18) is now identical to equation (2.8) with no source term, d = 2
corresponding to (! being independent of X 3' Equations (5.19) show that it is
a priori possible to reproduce any set of valu es Nh and s; by choosing Oh and
ov. It is also possible to reproduce Ny as long as its order of magnitude is less
than ab out 1, which should be possible in a wide variety of cases according
to the numerical value shown in equations (2.11) .

Note t hat care has to be taken in simulating so-called layered reser voirs
where k; and hence Nv take different values in different inte rvals along the
vertical ax is. The valu es of C~d) ar e adjuste d by choosing different ov's in
different layers . To obtain identity bet ween Ny and C~d) one must choose
different , 's in different layers in such a way that ,(1+ov)-l remains const ant
throughout.

The velocity has not played any role in the calculations because momen­
tum is not conserved by the automaton rules. However, it is interesti ng to
use the definition of velocity Ui (as an ensemble aver age or mean velocity per
node [4,10])

2d

PUi = c L fc, eeri
er=l

to obtain the expression of velocity in this model. Using the expression for
f er (equations (5.1), (5.5), (5.12) , and (5.13)) , together with equations (4.12),
(5.17), and (5.19) one finds , with d = 3:

(L/T)- lU1 = - [3(1 - Oh )t1 <I> - lOl <I> ,

(L/T)-lU2 = -[3(1 - ov )t1 (<I> - 102<I> + 4,<I» , (5.20)

(L/T) - lU3 = -[3(1 - Oh)t1 <I>-103<I> .

These expressions do not give the corre ct expression for the Darcy velocity.
Indeed , eliminat ing gravity and setting the permeabi lities to zero by putting
, = 0 and Oh = S; = -1 (see equations (5.18) and (5.19)) , on e sees that
expressions (5.20) do not give zero velocity. The defining equat ions (5.9)
show that, when Oh = Ov = - 1, particles with no nearest neighbors jump back
and forth between two adj acent nodes; there are simi lar "cycles" involv ing
two or more nearest neighbors . The macroscopic velocity field of a lattice
gas in this state, calculat ed on a single history as a space and time average
with scales Land T , is zero. This suggests the following definition of the
dimensionless Darcy velocity v;:

(5.21)
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Using expressions (5.20) one then find s

_ C( 3)"'-I!::>'"
VI - - h "" ul"" ,

V2 = _C~3) (<1> -182<1> + cy)<1»,

_ C(3) ", -I!::> '"
V3 - - h "" u 3"" ·

395

(5.22)

Comparing equat ions (5.18) an d (5.22) with equations (2.8) and (2.10) one
sees that Vi has the correct exp ression.

It may be objected to this deri vation that the Darcy velocity given by
expressions (2.10) vanishes with the horizontal and vertical permeabilities,
even with a nonzero gravity term, so that the renormalizing te rm in equa­
tion (5.21) should be Ui( -1, - I,,). However, equat ions (5.18) and (5.19)
show that the gravity term for the lat ti ce gas is proport ional to "t / (1 +bv ) so
that it is neces sary to set, = 0 when bv = -1. Also, the argument can be
carried out as a limiting procedure, where bh and bv are made to approach
-1 , so as to avoid a confrontation with the fact that values bh = - 1 and
S; = - 1 ar e not allowed (see figure 4) .

6 . F ir st numerical check: Two-dimensional flo w w ith out gr av it y

In this sect ion , the cellular automaton will be checked agai nst an analytical
calculation . A model is set up in such a way that it is pos sible to solve
the diffusion equat ion analytically, which mean s that very simple boundaries
and boundary conditions are chosen. T he boundary is a square, with the
condition that no flow takes place across it . A source, at the cente r of the
squ are , injects fluid at a (preferably) const ant rate, starti ng wit h no fluid
at zero time. The simulation of such a situat ion with a cellular au tomaton
presents no problems as far as the no-flow boundar y is concerned. Particle
creation at a constant rat e is, however , not st raightforward because of the
rule that there is at mos t one particle per state.

The additional rule concern ing creati on , and t he resulting modification
of equation (5.15) , will be considered first. Let the source be located at
node r~ and let O",,(r',t') be the probability of creat ing an e,,-particle at r'
and t' (O",,(r' ,t') =I 0 only if r' = r~) . Equations (4.1) and (5.18) become,
respect ively,

f ,,(r' + ).e", t' +T) - f ,,(r', i') = n" + 0"",

and

where

4

0" = L 0"".
,,=1

(6.1)

(6.2)
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In equation (6.1), a 1- 0 only inside a squ are region wit h side e an d cent ered
at r~ . The order of magnitude of a can be estimated by referring to the
assumption that the fluid density is at most of order e (see equation (4.12)).
The number of particles created afte r T IT time steps is about (T IT)a . The
first particles created have traveled a distance of the order of .j(T IT) so that
the average particle density created is of the order of (T IT)aI (.j(T IT))2 = a.
Since this must be 'at mos t of order e one may set

a = et/; (6.3)

(6.5)

so that the right-hand side of equa tion (6.1) is vl(4€2) where u, like 5, is
different from 0 only inside a square region with side e and centered at
(Xl = Xl., X2 = X2s )' It follows that, when e -> 0, equation (6.1) can be
written

ati]> - ci2)a;i]> - c~2)a;i]> = (v/4)8(Xl - xls)8(X2 - X2s ), (6.4)

where 8(x) is the Dirac delta function.
As already mentioned, the lattice is assumed to be squa re. Let the length

of its side be N.\ where N is odd so t ha t there is a cent ral node where
particle creation takes place. The automaton can be run when a choice has
been made for 8h , 8v , tv, and for a = ev . T he bound ari es of the square are
such that all particles arriving there are reflected (wit h an initially empty
lattice, there will never be any particles tangential to the boundary). T he
cent ral node creates an e,, -parti cle with a probab ility euI4 if such a particle
does not already occupy the node. Particle densit ies are then calculate d and
compared with the ana lytical solution of equation (6.4) .

The properties of the analytical solution ar e now bri efly examined. It is
convenient for simplicity to introduce the following notation:

- ) C(2)C(2)
p - v h'

The fact that one mus t work with a low density of part icles, toget her wit h
the rule that a particle is created at the central node only if a particle of the
same type does not already occupy the node , means tha t a constant rate of
creation cannot be exactly maintained so that it is necessary t o consider a
time-dependent v on the right -hand side of equa t ion (6.4). Wit h i]> = 0 at
zero t ime one can then wri te the solution as

i]>(~, TJ , B) = ~ (o v (B')G(~, TJ, B- B' )s«,
4p Jo

where the Green function G is given by [2J

(6.6)

00 00

G(~, TJ ,B) = 1 + 2 L e- 4
>r

2
n

2
0j r cos(n1rO +2 L e- 4

>r
2
n

2
0r cos(n1rTJ )

n =l n = l
00 00

+ 4 L L e- 4
>r

2
(m

2
j r+ n

2
r )Ocos(m1rO cos(n1r TJ )· (6.7)

m=l n = l

In these equations, the space coordinates ~ and TJ have their origin at the
cent ral node and vary between - 1 and + 1 (see figure 5). T he t ime var iab le B,
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when related to the number of time st eps i'[r (see section 4), is
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t'/T
0= ­

No'
(6.8)

which shows that the appropriate unit of time, in number of t ime steps, is
No·

Particle densities obtained during the automaton ru n must be compared
with numerical values given by equat ion (6.6) . Actually, the calculation of
particle densities involves an averaging of particle numb ers in both space and
time. In terms of the coordinates (~ , TJ , 0) introduced above, let £l{ be the
linear dimension of the space averaging region and £lo be the t ime averag ing
interval. In lattice terms there will be N2£l~ sites in a space averaging region
and, according to equation (6.8), there will be N 2 £lo/ p ti me st eps in a time
averaging interval. In the automaton runs described below there are two
space averaging regions, centered at (~ = 1/2, TJ = 0) (lab eled E in figur e 5)
and at (~ = 0, TJ = 1/ 2) (labeled N in the same figur e).

Time averaging is done as follows. One first chooses a final time 0 = Of>
a mu ltiple of the averaging int erval £lo. T his determines, through equa­
t ion (6.8), the maximum number of time steps the automaton is to be run ,
namely OfN 2 / p. (It will be shown below that the choice of Of can not be made
arbitrarily.) Space averages are registered at each time ste p, over a number
of time steps corresponding to £lo, namely N 2£lo/ p, and the mean value and
st andard deviation are calculated. This standard devi ation is assumed to be
an est imate of the "experiment al err or" attached to the mean value . In prin­
ciple both the mean value and the standard deviation sho uld be calculated
by repeating the experiment many t imes and recording the space average at
a given time. The standard deviation calculat ed as described above is some-

Figure 5: Lattice and averaging regions (E, N , W, S) for numerical
check without gravity effect. The lattice is square, with side (2M +
1». . The averaging regions are squares, centered halfway to the edges,
and with side (2m +1)>..
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what larger t han its corre ct value because the mean values vary with t ime
inside the time averaging interval.

T he mean value itself could be assumed to be an estimate of particle
density at the center of the space averaging region and in the middle of
the time averaging regio n, to be compared with th e numbers given by the
analytical expression, equa tion (6.6) . It is preferable, however, to compare
the above mean value with the analyti cal expression obtained by averaging
equat ion (6 .6) over the corre sponding space and time regions . This allows to
choose values for ~e and ~B which are not too small.

It remains to define the v-function in equat ion (6.6) . The automaton
run s are started with a "requeste d" crea t ion probab ility (J = (Jreq (i.e., u =
t/req according to equation (6.3)) . T he expected number of particles created
between t ime 8 and 8 + ~B is N 2~B(Jr eq / p . T he act ual number of particles
created var ies, however , because of statistical fluctuations bu t also because of
the ru le that a particle is created only if a particle of the same type does not
already exist at the cent ra l node. For examp le, in one of the runs presented
below, (Jreq = 0.05 and the int erval ~B corre sponds to 1020 time steps , so
that the expected nu mber of particles created per ~B-interval is 51. T he
actua l numbe rs regi stered in successive ~B-intervals are, however ,

50,36,49,52,40,53,40,54, .. . .

To account for these variations , equatio n (6.6) is writ ten

<P(~, TJ, 8) = <Po foBV(8')G(~, TJ, 8 - 8') d8',

<Po = vreq/( 4p), v(8) = v(8)/vreq

where v(8) is defined by

v(8) = Vk for (k - l)~B ::::: 8 ::::: k~B ,

and

(6.9)

(6.10)

(6.11)

, Number of particles create d for (k -l)~B ::::: 8 ::::: k~B
~ = .

N2 ~B!Jreq/P

Referring to the example already mentioned, the first numbers III the Vk
sequence are

50/51,36 /51,49/51,52/51,40/ 51,53/ 51,40/ 51, 54/51, . . . .

Returning now to the averaging of the an alytical expression over space and
time and referring to equatio n (6.9) , a fun cti on (<Ph is defined as the average
of <P/<Po in region E of figure 5 an d in the interval [(k - 1)~B , k~B ] :

1 l ktl e 1 jtleJ2(<P )k = - d8- dTJ
~B (k-l)tl e ~~ - tl eJ2

1
(I+ tl~ ) /2 foB

d~ v ( 8')G (~ , TJ, 8 - 8') d8' .
( 1-tl~)/2 0
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The calculation of this expression with the Green function given by equa­
tion (6.7) is straightforward but tedious. The det ails are not given here.

Figure 5 shows four space averaging reg ions, labeled E, N, W, and 5,
centered halfway from the lat t ice center to the edges , and with side equal to
t.~. Because of symmet ry, the analytical particle density averaged, at a given
t ime, in region E can be compared to the average number of particles, at the
corresponding t ime step , in region E +W (or in region E +W +N +5 if r = 1).
If r =I- 1, t he average number of particles in region N +5 can, because of the
form of the Green function, be compared to the above mentioned analytical
aver age provided l /r is substituted to r in equation (6.7).

Finally, the space-time averages of particle numbers obtained from run­
ning the automaton must be normalized in a manner which is comparable
to the normalization of (<I» k' i.e . by dividing them by <I>o . Recalling equa­
t ion (4.12), one must also divide by 4c, so that the normalized and averaged
particle number is

(p )f

Po

(Space-t ime average of particle numbers)/Po,

O'req / p,

(6.12)

where k refers to the interval [(k - l )t.o, kt.o], and R is either E + W or
N +5 (when r = 1, R is E +W +N +5). Note that neither (<I>h nor (P)k
directly depend on c. This parameter is, however, indirectly present through
O'req which must be at most of order c.

The results of two experiments are shown in figures 6 and 7. The para­
met er values for each experiment are given in table 1.

Note that the lat tice sizes are chosen so that N 2 is approximately 104

for one case and 105 for the other. These figure s are plots of (P)k and (<I> h
against {} , each average being allocated to the value of {} which is in the middle
of the t ime-averagi ng interval. While r = 1 in figure 6, figure 7 shows the
result of a run with r = 0.1 (mean ing that C~2)/d2

) = 0.01).

The final value of {}, {}f> can not be arbitrarily large because the model
assumes low particle dens ities so that the particle creation process must be
sto pped when the density reaches some number less than one. It will now
be shown that the requirement of a maximum overall particle density of
order c determines the upper bound of (}f up to a factor of order 1. The

Figure 6 Figure 7
N = 101 C~2) = 1 N = 317 C~2) = 10

Oh = 3/5 C~2) = 1 s, = 39/41 C~2) = 1/10
Ov = 3/5 r = 1 Ov = - 3/ 7 r = 1/10

tv = 1/10 p =l tv = 1/82 p =l
O'req = 0.05 No = 10201 O'r eq = 0.05 No = 100489

t.~ = 0.2, t.e = 0.1 t. ~ = 0.2, t.e = 0.1

Table 1: Parameter values for the automaton runs illustrated in the
indicated figures.
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2.0

1. 0

1.0 2.0

Figure 6: Plot of the space and time averaged particle-numbers given
by equat ion (6.12) ((- ) with "error bars " extending one standard de­
viation above and one below) , and of the corresponding analytical
averages given by equation (6.11) (0) versus time fl. Th e parameter
values are given in table 1. In particular, r = 1.

2.0

1.0

1.0 2.0

Figure 7: Plot of the space and time average d particle-numbers given
by equation (6.12) ((-) for the E + W averages and (x ) for the N +
S averages, with "error bars" extending one standard deviation above
and one below) , and of th e corresponding analytical averages given
by equation (6.11) ((0) and (0)) versus time fl. The parameter values
are given in table 1. In particular, r = 0.1.

number of time steps necess ary to reach 8J being N 28J/ p, the approxim ate
total number of particles created is N 28

jO"req /P , so that the maximum overall
density is 8jO"req/P. W ith O"req = cVr eq on e sees t hat

where t he proportionality factor is of order 1. T hus , for given P, the way
to explore large t imes is to reduce the particle creation probabi lity. In both
automaton "exp eriments" presented above one has in mind a value of e equal
t o 0.1 and the value of 8J corresponds to a m aximum overall particle den sity
eq ual to 0.1.
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All other parameters being constant, the standard deviati ons are roughly
pr oporti onal to N - 1

/
2

. It should also be noted that, a value of 8f being given ,
calculation time on a sequential computer is proportional to N 4 (N5

) for a
to-dimensional (three-dimensional) simulation. A power of 2 (3) accounts for
the number of nod es and an additional power of 2 accounts for the number
of time steps.

Equ ations (5.18) and (5.19) show th at the probability for right angle
scattering, tv, is not "measura ble," i.e., it does not appear in th e numerical
coefficients. The particular choice of tv in any automat on run is thus only
limited by the fact that the point of coordinates (Ok,ov, tv) must be inside th e
pyramid of figure 4. In the automaton runs referred to in this and the next
section, tv has been arbitrarily chosen halfway up from the point (Ok ,Ov,O)
on the pyramid base, to the point (Ok, ov, tvmax) on the pyramid side.

It shou ld finally be noted that the flow equations without the gravity
term are linear. The quantity denoted above by (P) , given by a cellular
automaton run , is then a numerical solut ion of equation (6.1) where <P is
replaced by <P - <Pi (with <Pi an arbitrary constant, for example an initi al
value of <p). It is also a numerical solution of the same equation with <P
replaced by <Pi - <P and 0" replaced by - 0" , meaning that one has a practical
way of simulating dep letion by an automa ton run with particle crea t ion and
a subsequent change of sign in the int erpretation of the results.

7. Second numeri cal check: One-dimensional flow with gravity

As in the previous section, an automaton run is checked against an analytical
solution of equation (5.18) , where d = 2 and <P is assumed independent of
X l> so that it becomes

(7.1)

(7.5)

This equat ion is nonlinear and no analytical solut ion is known . It is however
possible to chose the start and boundary condit ions in such a way tha t the
solut ion evolves to a time independent function , <P 00 (X2)' One can th en
compare the long time prediction of the automaton with <P 00 (X2)' A possible
set of such start and boundary conditions is the following :

<P = 1 at X2 = 0, (7.2)

<P=O at X2 = Ne, (7.3)

<P=O at t = O. (7.4)

It is reminded that the automaton lat t ice is square, with side N A, which
explains the right-hand side of equat ion (7.3) . Function <p oo is the solution
to equations (7.1) (without th e Or term) , (7.2), and (7.3). The differential
equation is of the Riccati type and one finds [5J

<p oo = tan[a(l - OJ ,
tan a
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where

and a is the solution of the t ra nscendental equat ion

Paul Papatzacos

(7.6)

(7.7)atana = C~2)N£ = 4£<po INc .
1 + u"

On the right -hand side of this last equation, <Po is a scale for ep (see equa­
tion (5.17)) . Since ep is set equal to 1 at the lower boundary by equation (7.2),
the product 4£<po is, in lattice terms , the particle density at the lower bound­
ary. Thus the automaton is run with reflecting right and left boundaries,
a lower boundary with a constant particle densi ty and an upper boundary
with zero particle density. The condition at the upper boundary is easi ly
implemented by annihilating all particles ar riving there . The condition at
th e lower boundary is managed as follows. At the end of each time ste p, afte r
the rul es for particle movement have been applied , all particles are removed
from the lower boundary and then, at preselected site s (say at each tenth
site from the left , for a lat tice with 100 sites on a side) particles of random
types are created.

To compare the automaton output with equation (7.5) it is necessar y t o
know the t ime scale of the solution of equation (7.1). An est imate of this
time scale can be obtained by linearizing the equation, i.e., setting C~2) = o.
The solution of the linear equation, with start and boundary conditions given
by equations (7.2-7.4), is [2]

where ~ is defined by equation (7.6) and (compare with equation (6.8))

t']«
B= No ' (7.8)

eplin is very nearly time-independent as soon as Breaches the value 1 because
of the exponent ial factors in the sum. It is therefore assumed that the au­
tomaton stabilizes, except for statistical fluctuations, for all time steps larger
than 2No.

A square lattice with N = 100 sites on a side has been chosen, toget her
with constant particle density at th e lower boundary 4£<po = 0.1, and C~2) =
1. This implies No = 104

. Apart from that, two cases are pres ented with
different scattering probabilities, as shown in table 2. Particle averages are
calcu lat ed in space with .0.e = 0.1 and normalized through division by the
particle density at the lower boundary (4£<po) . Each space average is recorded
for all time steps, starting at time step number 2 x 104 (B = 2) and ending
at time step number 4 x 104 (B = 4). Mean values and st andard deviations
are calculated and the mean values are compared to th e values given by
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Figure 8 Figure 9
Ok = 3/5 Ok = 0
s; = 3/5 Ov = 3/5

tv = 1/10 tv = 1/10
,=1 ,= 1/2

Table 2: Parameter values for the automaton runs illustrated in th e
indicated figures.
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equat ion (7.5). Actually, since the space averag ing region D.{ is ap prec iably
large , the comparison is done with

(<1» ( = _1 (AI <1>00(0 d~ = 1 In cos[a(l - £D.{)] (7 9)
D.{ J«(-l)A I D.{a t an a cos[a(l - (£ - 1)D.{ ]· .

The space averaging intervals are numbered from the bottom (£ = 1) to the
top (£ = 1/D.{) of the lat t ice.

The results are shown in figures 8 and 9, wh ere each space averaged
value is allo cated to the ~- coordinate in the middle of the int erval. T here is
agreement to within one standard deviation for most po ints .

8 . Conclusions

A cellular automaton model for the simulation of one-phase liquid flow in
porous media has been derived , and a set of simple checks has b een pr esented.
The simulations were don e with FORTRAN programs on a MicroVax 3500.
It took somewhat more than a CPU-hour to produce the dat a for figur e 6 and
about five days to produce the data for figur e 7. More effect ive simulations

1.0

0 .5

t +
+

0 .5 1.0

Figure 8: Plot of the space averaged particle numb ers ((- ), with "error
bar s" exten ding one standard deviation above and one below), and of
the corresponding analytical averages given by equation 7.9 (0) , versus
coordinate t . The parameter values are given in table 2. In particular ,
, =1.
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1.0

t
0.5

0 .5 1.0

Figure 9: Plot of the space averaged particle numb ers ((- ), with "error
bars " ext ending one standard deviation above and one below), and of
th e corresponding analytical averages given by equation 7.9 (0), versus
coordinate ~. Th e parameter values are given in table 2. In particular ,
'Y = 1/2.

are in preparation, using parallel-C on a transputer card fitted to a personal
computer . The pur pose of these simulations is to explore some of the po s­
sibilit ies and limitations of the model. The possibility of three-dimen sion al
simulation, for example, remains to be tested . The most obvious limitation
of the mo del is its requirement of low densities. T his limit at ion is especially
illust rat ed in the examples presented in section 6 where simulation t ime is
limi ted by the necessity to stop particle creation so as to remain in t he low
den sity regime.
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