
Com plex Systems 3 (1989) 407-4 19

The CHIR Algorithm: A Generalization for
Multiple-Output and Multilayered Networks

Tal Grossman
Department of Electronics, Weizmann Institu te of Science,

Rehovot 76100 Israel

Abstract. A new learning algorithm, learning by choice of int ern al
repr esentations (CHIR), was recently int roduced. Th e basic version
of thi s algoriths was developed for a two-layer, single-out put , feed­
forward network of binary neurons . This paper presents a generalized
version of the CHIR algorithm th at is capable of t raining mult iple­
output net works. A way to ada pt the algorit hm to mult ilayered feed­
forward networks is also presented. 'vVe test the new version on two
typical learning tas ks: the combined parity- symmet ry problem and
t he random problem (random associat ions). The dependence of the
algori th m performance on the network size and on the learning pa­
rameters is st udied.

1. Intr oduction

In this paper we further develop the conc ep t of learning by cho ice of internal
representat ions (CHIR) that was recently int roduce d [1].

Internal representations are defined as the st at es t aken by t he hi dden
un it s of a network when pattern s (e .g., from the training set) are presented
to the input layer of the network.

The CHIR algorit hm views the internal representations associated with
various inputs as t he basic indep enden t variables of the learn ing process .
On ce such represen tation s are formed , t he weights can be found by simple
and local learning procedures such as the perceptron learn ing rule (PLR) [2].
Hen ce the problem of learning becomes one of searching for proper in ter­
nal repres ent ati ons, rather than of minimizing a cost funct ion by varying
the values of weights, whi ch is the approach used by backprop agation (see,
however , [3,4], where "backpropagation of desired st a tes" is describ ed). This
bas ic idea , of viewing the internal representations as t he fundamental enti­
t ies, has been used since by other groups [5- 7]. Some of these works, and
t he main differences between them and our approach, are briefly discussed
in the last section of t his paper. One important difference is that the CHIR
algorit hm , as well as another similar algo rit hm, the MRII [8], try to solve

@ 1989 Complex Systems Publications, Inc.

408 Tal Grossman

th e learning problem for a fixed architecture and are not guarantee d to con­
verge. Two other algorithms [5,6] always find a solut ion, but at th e price
of increasing the network size during learning in a manner th at resembles
similar algorithms developed earlier [9,10].

To be more spec ific, consider first the single-layer perceptron with it s
perceptron learning rule (PLR) [2]. This simple network consists of N input
(source) un its j and a single target unit i. This uni t is a bin ary linear theshold
unit , i.e., when the source un its are set in anyone of p. = 1, .. . M patterns ,
i.e., Sj = e;, the state of unit i, Si = ±1 is determined accord ing to the rule

S, = signCl: Wi jSj +8 i) .
j

(1.1)

Here W ij is the (uni directional) weight assigned to the connection from unit
j to ij 8 i is a loca l bias . For each of the M input pattern s, we require that
the target unit (determined using equa t ion 1.1) will take a preassigned value
~f . Learning takes place in the course of a t raining session. St arting from
any arbitrary initi al guess for the weights, an input v is presented, resulting
in the output taking some value Sf . Now modify every weight according to
the rule

(1.2)

where TJ > 0 is a step-size parameter (~j = 1 is used to modify the bias
8). Another input pat tern is presented, and so on , until all inputs dr aw the
correct output. The perceptron convergence theorem states [2] tha t the PLR
will find a solut ion (if one exists) in a finite number of ste ps. Nevertheless,
one needs, for each unit , both the desired input and output states in ord er
to apply the PLR.

Consider now a two-layer perceptron, with N inpu t , H hidden and J{

output units (see figure 1). The elements of the networks are binary linear
threshold units i , whose states S, = ±1 are determined according to (1.1). In
a typical task for such a network, M spec ified out put pat terns, Srt ,1-' = a ut,1-' ,

ar e required in response to p. = 1, . . . , M input pat terns . If a solut ion is
found , it first maps each input onto an internal representation generated on
the hidden layer , which, in turn, produces the correct out put. Now imagine
th at we are not sup plied with the weights that solve the problem; however,
the correct internal representations are revea led. That is, we are given a table
with M rows, one for each inp ut. Every row has H bit s ~;'I-' , for i = 1, ... H,
specifying the state of the hidden layer ob tained in response to input pattern
u , One can now view each hidden-layer cell i as th e target of the PLR, with
the N inputs viewed as source. Given sufficient time, the PLR will converge
to a set of weights Wij , connec t ing input unit j to hidden unit i, so that
ind eed the inpu t-h idden association th at appears in column i of our table
will be realized. In order to obtain the correc t output , we apply th e PLR in
a learni ng process that uses the hidden layer as source and each output unit
as a target , so as to realize the correct output . In genera l, however , one is

The CHIR Algorithm

Output - J(units.

Hidden layer - H units.

Input - N units.

409

Figure 1: A typical three-layered feed-forward network (two-layered
perceptron) with N input, H hidden, and J(output units. Th e uni­
directional weight Wij connects unit j to unit i. A layer index is
implicitely included in each unit 's index.

not supplied with a correct table of internal represent ations . Finding such a
table is the goal of our approach .

During learning , the CHIR algorithm alternates between two ph ases: in
one it generates the internal representations, and in the other it uses the
up dated representations in order to search for weights, using some single­
layer learn ing ru le. This general scheme describes a large family of po ssible
algorithms that use different ways to change the internal representations and
update the weights.

A simple algorithm based on this basic principle was introduced recent­
ly [l J. That version of the CHIR algorithm was tailored for a single-output
network. Here we describe a new, generalized version of the algorithm that
can deal with networks having many output units and more than one layer.

The rest of the paper is divided as follows . In section 2 we describe
in detail the multiple-output version of CHIR. In section 3 we present the
results of several experiments don e with the new algor ithm, and in the last
section we shortly discuss our results and describe some future dir ections.

410 Tal Grossman

2. The a lgorit hm

In this section we describe in det ail th e new algorithm. The CHIR algorit hm
implements the basi c idea of learn ing by choice of internal representations
by breaking th e learning process into four distinct stages:

1. SETINREP : Generate a table of internal representatio ns {e:'''} by
presenting each input pattern from the training set and calcu lating
the state on the hidden layer , using equat ion (1.1), with th e exist ing
coup lings W i j and 8 i .

2. LE ARN23: The current table of internal representati ons is used as th e
train ing set, the hidden layer cells are used as source, and each output
as the target unit of th e PLR. If weights Wij and 8 i th at produce the
desired outputs are found, the problem has been solved. Otherwise
stop after h3 learn ing sweeps, and keep the current weights , to use in
CHANGE INRE P.

3. CHANGE INREP: Generate a new table of int ernal representations
that reduces th e error in th e output. This is done by presenting the ta­
ble sequent ially, row by roW (pattern by pattern) to the hidde n layer. If
for pattern 1/ the wrong output is obtained , th e intern al repres entation
eh,,, is changed.

A wrong output means that the "field" h'k = L:j Wkje;''', produced by
th e hidden layer on output unit k, is eit her too large or too small . We can
then pick a site j (at random) of the hidden layer and try to flip the sign e;'"
in order to improve the output field. If there is only a single output unit,
one can keep flipping the internal representations until the correct output is
achieved (as was done in our origina l algorithm).

When we have more than one output unit, however, it might happen that
an error in one output unit cannot be correected without introducing an error
in another unit. Instead (and this is the main difference between the new
and the old versions of CHIR), we now allow only for a pre-specified number
of attempted flips , lin, and go on to the next pattern even if the output error
was not eliminated complet ely. In thi s modified version we also use a less
"rest rict ive" crit erion for accepting or rejecting a flip. Having chosen (at
random) a hidden unit i , we check th e effect of flipping the sign of e:'" on
the total output error, i.e., the number of wrong bits. If th e output error is
not increased, the flip is accepted and the table of internal representations is
changed accordingly. This procedure ends with a modified, "improved" table
which is our next guess of internal representations. Note that this new table
does not necessarily yield a totally correct output for all the pat terns. In
such a case, the learning process will go on even if this new table is perfectly
realized by the next stage, LEARN12.

LEARN1 2: Present an inp ut pattern; if the output is wrong, apply
t he PLR with the first layer serving as source, t reating every hid den

Th e CHIR Algorithm 411

layer sit e separately as target. If input v does yield th e corre ct output ,
we insert th e curr ent state of the hidden layer as the int ernal represen­
tation associated with pattern v, and no learning steps are taken. We
sweep in this manner the training set, modifying weights Wi j (between
inpu t and hidden layer), hidden-layer thresholds 8 i , and, as explained
above, int ernal represent ations. If the ne twork has achieved error-free
performance for the ent ire training set, learning is completed. Other­
wise, afte r I 12 training sweeps (or if th e current int ernal representation
is perfectly realized) , abo rt the PLR stage, keeping the present values
of Wi j , 8 i , and start SETINREP again.

The idea in trying to learn th e current internal representation even if it
does not yield th e perfect output is tha t it can serve as a better input for the
next LEARN23 stage. That way, in each learning cycle the algorithm tries
to improve the overall performance of the network. The flow chart of the
result ing algorithm is shown in figure 2. Note again that "success" means
that the pres ent ation of every input pattern gives rise to the corre ct output.

This algorithm can be further gener alized for multilayered feed-forward
networks by applying the CHANGE INREP and LEARN12 procedures to
each of the hidden layers , one by one , from the last to the first hidden layer
(see figure 3) .

There ar e a few details that need to be added.
The "impatience" parameters, I12 and I23 , which are rather arbitrary,

are int roduced to guarantee that the PL R stage is aborted if no solution
is found . This is necessary since it is not clear that a solution exists for
the weights , given the current t able of int ernal representations. Thus, if the
PLR stage does not converge within the time limit specified, a new table of
internal representations is formed. The parameters have to be large enough
to allow the PLR to find a solution (if one exists) with sufficiently high
probability. On the other hand , too large values are wasteful , since they force
the algorithm to execute a long search even when no solution exist s. Similar
considerations are valid for th e t in parameter , the number of flip attempts
allowed in the CHANGE INREP pro cedure. If this number is too small, the
updated int ernal repres ent ations may not improve. If it is too large, the new
internal representations might be too different from the previous ones , and
therefore hard to learn . The fourth parameter of the CHIR algorithm is the
"time limit" f m . :", i.e., an upper bound to the total number of learning cycles.

In practice, one would like to use an optimal choice of the learn ing pa­
rameters. The optimal values depend, in genera l, on the problem and the
network size. Our experience indicates; however , that once a "reasonable"
range of values is found , performance is fairly insensitive to th e precise choice.
In addition, a simple rule of thumb can always be applied: "Whenever learn­
ing is getting hard , increase th e parameters ." This issue is studied in more
detail in th e next section.

412

N

ISet In.R ep.I

ILearL 31

Tal Grossman

e.g, random weights .

Present each patte rn ­
and record the In.Rep.

Use PLR and the
current In.Rep.

a solution is foun d.

Use PLR and the
current In.Rep.

a solution is found.

Figure 2: The flow chart of the CHIRalgorithm, t raining single hidden
layer networks.

Th e CHIR Algorithm

Initialize
e.g. random weights.

Set In.Rep.
Present each pattern ­
and record the In.Rep.

Update weights from the last
hidden (L), to the output layer.

a solut ion is found.

N

Change In.Rep.

413

repeat for all hidden layers

I, from last to first.

N

new cycle.

on layer I.

Updat e weights between hidden

layers l-1 and I.

a solution is found.

Figure 3: The flow chart of the CHIR algor ithm, training multilayered
netwo rks .

414 Tal Grossman

The weights upd ating schemes. In our experiments we have used the
simple PLR with a fixed increment (T/ = 1/2, 6.W i j = ±1) for weight learning.
It has th e ad vantage of allowing the use of discrete (or integer) weights.
Nevertheless, it is just a component that can be replaced by other, perhaps
more sophisticated methods, in order to achieve faster convergence (e.g., [11])
or better st ability [12] .

3. Testing the algorithm

In this section we test the multiple-output version of CHIR on two typical
learning tasks . We study the following issues:

(a) How the performance of th e algorithm (the learning time) scales
with th e syst em size and problem complexity.

(b) The dep end ence of the algorithm performan ce on the choice of the
learning par ameters.

(c) The possibility of using the generalized algorithm with mul til ay­
ered networks.

(d) Comparison of the performance of the CHIR algorithm with back­
propagation (BP).

The "time" paramet er that we use for measuring performance is the num­
ber of sweeps t hrough the training set of M patterns ("epo chs") needed in or­
der to find th e solut ion, namely, how many times each pattern was pre sent ed
to the network. In the experiments presented here, all possible input patterns
were presented sequentially in a fixed order (within the perceptron learning
sweeps). Therefore in each cycle of the algorithm there are 112 +123 +1 such
sweeps. Note that according to our definition, a single sweep involves the
updating of only one layer of weights or internal representations. For each
problem, and each par amet er choice, an ensemble of n independent runs ,
each starting with a different random choice of initial weights, is created. As
an initial condition, we chose th e weights (and thresholds) to be + 1 or - 1
randomly.

In general , when applying a learning algorithm to a given problem, there
are cases in which th e algorithm fails to find a solution within the specified
time limit (e.g., when BP gets stuck in a local minimum) , and it is impossible
to calculate th e ensemble average of learning times. Therefore we calculat e,
as a performance measure, one (or more) of the following quantities:

(a) The medi an number of sweeps, tm •

(b) The "inverse average rate," T , as defined by Tesauro and Janssen
in [13].

(c) The success rate , S, i.e. , th e fraction of runs in which the algorithm
finds a solution in less than th e maximal number of training cycles
I m ax specified.

The CHIR Algorithm

N 112 123 lin L; ax n t m T S
4 12 8 7 40 200 50 33 1.00
5 14 7 7 250 200 900 350 1.00
6 18 9 7 900 100 5250 925 0.98
7 40 20 7 900 55 6000 2640 1.00
8 60 30-40 7-11 900 41 18300 11100 0.98

Table 1: Combined parity and symmetry with N : 2N : 2 architecture.

N 112 123 lin 1m ax tm T S
4 12 12 7 50 39 27 0.87
8 16 16 7 50 160 140 0.94
16 20 20 7 50 410 380 0.97
32 50-64 50-64 11-27 500 9130 3480 0.69

Table 2: Random problem with N :N :N architecture and M = 2N
patterns.

415

The first problem that is studied is the combined parity and symmetry
problem: In the symmetry problem , one requires sout = 1 for reflection­
symmetry inputs and - 1 otherwise. This can be solved with H 2 2 hidden
units. In the parity problem, one requires sout = 1 for an even number of + 1
bits in the inp ut , and - 1 otherwise. Both of these problems are considered
difficult for neural network learn ing (see, e.g., [1,13]). It seems , therefore,
that the combination of these two problems can be a fair challenge for the
new learning algorithm.

In th e combined parity and symmetry problem the network has two out­
put units, both connected to all hidden units. The first output unit per­
forms the parity predicate on the input, and the second perfo rms the sym­
metry pre dicate. The network architecture was N :2N:2 and the resu lts for
4 :::; N :::; 8 are given in t able 1. The choice of parameters is also given in
that table .

We consider these good results , due to the high success rate and compared
to the results obtained earlier for the parity prob lem alone (with the same
architecture) by the previous version of CHIR [1] or by BP [13]. It would be
nice to have , for comparison, BP resu lts on this problem.

As a second test for the new version, we used the "random problem" or
"random associations," in which one chooses M random patterns as input and
the network is requ ired to learn M random patterns as the desired output . In
our test we used an architecture of N:N:N, and the number of pa tterns was
M = 2N. The components of the input and output patterns were chosen
randomly and independently to be + 1 or - 1 with equal probability. The
results , wit h the typ ical parameters, for N = 4, 8, 16, and 32 are given in
table 2.

In order to study the dependence of the performance on the choice of the
algori thm parameters, we run the algorithm on the same task, with different

416 Tal Grossman

(a)
112 123 lin i.; t m S
4 4 7 500 176 0.95
5 5 7 400 158 0.95
8 8 7 250 160 0.93
12 12 7 167 180 0.92
16 16 7 125 205 0.95
20 20 7 100 215 0.95
25 25 7 80 265 0.93

(b)
112 123 lin i.: tm S
5 5 19 400 324 1.00
8 8 19 250 230 1.00
12 12 19 167 257 1.00
16 16 19 125 278 1.00
20 20 19 100 326 0.995
25 25 19 80 365 1.00
30 30 19 80 382 0.99

Table 3: (a) Random problem with N = 8 and M = 16 patterns.
(b) Random problem with N = 16 and M = 32 patterns.

choices of parameters. Here we present the results for the random prob lem
with an N:N:N network, N = 8, 16 and M = 2N. Table 3a shows how
tm varies with the impatience parameters 112 , 123 , for N = 8. Note that we
keep 112 = h3 and the total number of sweeps available I m ax (I12+123) fixed .
Similar resu lts for N = 16 are presented in table 3b. For all choices of the
parameters 112 = 123 listed in the table our success rate was 0.9 or larger. For
each entry in those tables, an ensemble of 20 different random tasks was sim­
ulated, with 10 independent runs on each, i.e., n = 200 in these experiments.

In another experiment we fix 112 and 123 and try several values of lin'

The results are presented in table 4.
It is clear that at least for these problems, the performance of the al­

gorithm is quite insensitive to the choice of parameters. Success rate and
learning time do not change significantly within a reasonable range of pa­
rameters. Of course, when the learning task becomes harder, the sensitivity
to the choice of parameters may increase. In particular, failure of the algo­
rithm to find a solution usually indicates that the impatience parameters are
smaller than needed. This is where the "increase the parameters" thumb rule
mentioned before can be applied. This effect is demonstrated by the scaling
of the (roughly optimized) parameters with problem size, as presented in
tables 1 and 2.

Finally, we present the results of a few experiments already done before
with the BP algorithm [3]. The problem studied in these experiments is
again the random problem. With a network architecture of 10:10:10 and

The CHIR Algorithm

112 123 lin i.: tm S
5 5 3 400 174 0.95
5 5 5 400 150 0.93
5 5 7 400 158 0.98
5 5 9 400 139 0.95
5 5 11 400 141 0.98
5 5 13 400 128 0.98
5 5 15 400 127 0.96
5 5 17 400 132 0.97
5 5 19 400 121 0.97

Table 4: Random problem N = 8 and M = 16 patterns.

417

M = 20 random associat ions, BP needed an average of 212 sweeps through
the training set in order to reach a solution. Using the CHIR algorithm on
the same architecture and M, with t12 = t23 = 8, t in = 11, tmax = 400, we get
an average of 300 sweeps (averaged over 20 different choices of the random
associations, 10 runs on each), success rate was 0.985, an d the time "paid"
for the failures is also summed for the average. T he median number of sweeps
is t-: = 190. It should be noted that every BP sweep costs, com putat ionally,
more than twi ce as much as a CHIR sweep. .

In three mor e experiments we test ed the scaling of the algorithm with
the number of layers. For that purpose, we applied the multilayer version of
CHIR, briefly described above. The task was M = 10 random asso ciations
and three different networks are test ed . These networks had one , two , and
four hidden layers, where each layer (including the input and output layers)
contained ten units. The impatience paramet ers that we used were : 112 =
123 = .. . = 10 (for each layer of weights) and l in = 11 for each of the hidden
layers. The median number of sweeps needed was 27, 39, and 67 for these
three networks respectively. Such an increase of the learning time with the
number of hidden layers was also observed in BP experiments.

4. D iscu ssion

We presented a generalized version of the CHIR algorit hm that is capable of
training netwo rks with multiple outputs and hidden layers, and found that
it fun ctions well on various network architectures and learning task s. We
studied the manner in which t raining time var ies with network size, and
the dep end ence of perform ance on the choice of parame te rs. An appealing
feature of the CHIR algorithm is th e fact that it does not use any kind of
"global cont rol" that manipulates the internal represent ations (as is used for
example by Mezard and Nadal , or by Rujan an d Marchand [5,6]). The mech­
anism by which the internal representations are changed is local in the sense
that the change is done for each uni t and each pattern without conveying
any information from other units or patterns (representations). Moreover,
the feedback from the "teacher" to the system is only a single bit quanti ty,

418 Tal Grossman

namely, whether the output is getting worse or not (in contrast to BP, for
example, where one informs each and every output unit about its individ­
ua l error). The major difference between our algorithm and those described
in [5,6] is the fact that they add units to the network while the CHIR al­
gorithm is training a fixed architecture network . In that sense, the "plane
cut ting algorithms" of Rujan and Marchand [5], and the "Tiling algorithm"
of Mezard and Nadal [6] are closer to the threshold logic design approach [9]
of the 60's, or the more recent "generation-reweighting" algorithm presented
by Honavar an d Uhr [10].

Ot her advantages of our algorithm are the simplicity of the calculations,
the need for only integer weights and binary uni ts, and the good performance.
Alt hough in a few cases it seems, in terms of the number of training sweeps,
t hat the CHIR algorithm does not outperform BP-it should be ment ioned
again that the CHIR training sweep involves much less computations than
t hat of backpropagation. The price is the extra memory of M H bits that is
needed during the learning process in order to sto re the intern al represen­
tations of all M training patterns. This feature is biologica lly imp lausib le
and may be practically limiti ng. We are developing a method t hat does not
requi re such memory. Another learn ing method that is similar to ours should
be ment ioned here. This is the MRII ru le, tha t was recent ly presente d by
Wi drow and Wi nter in [8]. This algorithm is also designed for fixed architec ­
ture , feed forwa rd networks of binary units, by adapting the ou tput and the
hidden units localy, It differs from the CHIR algorithm in the adaptation
scheme of the hidden units and it applies a different criterion for changing
their activity (t he "minimal disturbance" pr inciple). It seems that further
research will be needed in order to study the practical differences an d the
relative advantages of the CHIR and the MRII algorithms.

Other directions of current study include extensions to networks with
continuous var iables, and to networks with feedback.

Acknowledgments

I am grateful to Prof. Eytan Domany for many useful suggestions and com­
ments . This research was partially supported by a grant from Minerva.

References

[1] T. Grossman, R. Meir, and E. Dornany, Comp lex Systems, 2 (1989) 555.

[2] M. Minsky and S. Papert , Perceptrons (MIT, Cambridge , 1988); F . Rosen­
blatt , Principles of Neurodynamics (Spartan, New York, 1962).

[3] D.C. Plaut, S.J. Nowlan, and G.E. Hinton, Tech. Report CMU-CS-86-126,
Carnegie-Mellon University (1986).

[4] Y. Le Cun, Proc . Cognitiva, 85 (1985) 593.

The CHIR Algorithm 419

[5] P. Rujan and M. Marchand, in Proceedings of the First International Joint
Conference Ne ural Networks, Washing ton D.C ., 1989, Vol. II, pp . 105, and
to appear in Comp lex Systems.

[6] M. Mezard and J .P. Nadal, J. Phys. A, 22 (1989) 2191.

[7] A. Krog h, G.!. Thorbergsson, and J .A. Hertz, in Proc. of the NIPS Confer­
ence, Denver, CO, 1989, D. Touretzky, ed . (Morgan Kau fmann , San Mat eo,
1990); R. Rohwer , to appear in the Proc. ofDANIP, GMD Bonn, April 1989,
J . Kinderman and A. Linden, eds .; D. Saad and E. Merom , preprint (1989).

[8] B. Widrow and R. Winter, Comp uter, 21(3) (1988) 25.

[9] S.H. Cameron, IEEE TEC, E C-1 3 (1964) 299; J .E. Hopcroft and R.L. Matt­
son, IEEE TEC, EC-14 (1965) 552.

[10] V. Honavar and L. Uhr, in Proc. of the 1988 Connectionist Mod els Summer
School, eds . D. Touretzky, G. Hinton , and T. Sejnowski (Morgan Kaufmann,
San Mateo, 1988).

[11] 1. Abbot and Keppler, BRX -TH -255 preprint , Brandeis University (1988).

[12] W. Krauth and M. Mezard, J . Phy s. A , 20 (1988) L745.

[13] G. Tesauro and H. Janssen, Comp lex Systems, 2 (1988) 39.

