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Enumeration of Preimages in Cellular Automata
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Abstract. For a given rule and arbitrary spatial sequence, the preim-
ages of the sequence are defined to be the set of tuples that are mapped
by the rule onto the sequence. The enumeration of preimages provides
information on the probability distribution associated with an automa-
ton rule, determining, for example, the probability of occurrence of a
sequence after one iteration of the rule operating on a random ini-
tial condition. It is shown here that formulae can be obtained for
the exact number of preimages under an arbitrary one-dimensional
nearest-neighbor automaton rule for any spatial sequence. The quali-
tative features of these formulae are determined by the combinatorial
structure of the automata rule tables. The formulae are analytically
and computationally useful for a wide variety of problems, includ-
ing the identification of gardens-of-Eden (spatial sequences with no
preimages), the evaluation of quantities that require knowledge of the
probabilities of occurrence for all possible spatial sequences, and the
characterization of statistical features such as the tendency to produce
long runs of 1’s and 0’s.

1. Introduction

This paper derives formulae for the number of preimages for arbitrary spatial
sequences generated by one iteration of a a one-dimensional cellular automa-
ton on an infinite lattice. The formulae provide information on the statistical
and dynamical features of these systems.

The preimages of any spatial sequence S are defined to be the set of
sequences that are mapped to S by the automaton. The number of preimages
for S determines its probability of occurrence when the automaton rule acts
upon an initial condition in which all spatial sequences appear with equal
frequency.

Preimages have been the subject of many studies, including those focussed
on the relationship among preimages, surjectivity, and reversibility [1-3] the
existence of gardens-of-Eden (sequences with no preimages) [4,5], and the
nature of limit sets for cellular automata [6]. The enumeration of preimages
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was also considered in [7], where it was shown that the number of preim-
ages for arbitrary sequences satisfies a system of recurrence relations with
non-constant coefficients depending on the automaton rule. The recurrence
relations were used in that paper to establish that the total number of preim-
ages for certain well-defined subsets of spatial sequences scales with sequence
length.

In this paper, it is shown that the full system of recurrence relations can be
reduced to two uncoupled systems of linear recurrence relations with constant
coefficients. Although uncoupled, the two systems are interdependent in that
the solution of one serves as the initial value for the other. The systems can
be solved to give formulae for the number of preimages for arbitrary spatial
sequences.

The preimage formulae differ from rule to rule, and yet exhibit qualita-
tive features that permit classification into general types. For example, the
formulae for elementary (nearest-neighbor, binary site-valued) rules can be
loosely characterized as belonging to one of six general types, with the partic-
ular type being determined by the combinatorial structure of the automaton’s
rule table.

Once the preimage formula for an automaton has been found, it is then
possible to characterize its one time-step probability distribution. For exam-
ple, the formulae provide analytically and computationally useful expressions
for the evaluation of quantities (such as the one time-step spatial metric en-
tropy) that require knowledge of the probabilities of occurrence for spatial
sequences. The formulae are also useful for studying the features of the for-
mal languages generated by automata rules, such as the identification of rules
that generate only a finite number of excluded blocks (blocks of site values
with no preimages).

The paper is organized as follows. Section 2 presents the system of recur-
rence relations for the number of preimages for arbitrary spatial sequences,
and outlines the method of its solution. Section 3 discusses qualitative fea-
tures of the different types of preimage formulae, and investigates the con-
nection between the type of formula and the combinatorial structure of the
automaton’s rule table. In section 4, some examples are given of the recur-
rence relations for specific rules and their solution. Section 5 considers the
use of the formulae to characterize the probability distribution and formal
language features of the automaton. Concluding remarks are made in sec-
tion 6, and the appendix lists the preimage formulae for all 32 symmetric
elementary rules.

2. General form of recurrence relations

The general form of a one-dimensional cellular automaton on an infinite
lattice is given by

o4 = f(a!

i—r) "

t {3 . 2r+1
"azia"'7$i+r)’ fiFg — Fy,
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where z¢ denotes the value of site 7 at time ¢, f represents the “rule” defining
the automaton, and r is a non-negative integer specifying the radius of the
rule. The site values are restricted to a finite set of integers Fy, = {0,1,---,k—
1}, and are computed synchronously (in parallel) at each time step.

Let S = s, ---s; be an arbitrary sequence of length n and R be an arbi-
trary cellular automaton rule of radius r. Denote the number of preimages
of S under the rule R by N(S). In [7], recurrence relations were derived
for N(S) in terms of the number of preimages of its subsequences, with the
preimages categorized according to their leading symbols of length 2r. Given
such a count of preimages for a subsequence of length k, for example, it is
clearly possible to determine the number of preimages for the sequence of
length k£ + 1 with a new site value (either 0 or 1) appended.

First consider the recurrence relations for N(.S) moving from right to left
in the sequence. For any integer 0 < m < k%" —1, with m = 3751 mk? 11,
denote by M = myg - - - mg,_; the symbol corresponding to its k-ary represen-
tation. The symbols M thus range over all possible blocks of length 2r. In
the case of elementary rules, for example, the set of symbols M is given
by {00,01,10,11}. The preimages for sequence S will then be grouped and
counted according to their leading symbols, with the total number of preim-
ages being the sum over all M of the number of preimages beginning with

M; that is,
k-1
N(S)= 3. L
m=0

where, for any 7,

L{W = number of preimages beginning on the left

with symbol M for sequence s; - - - s1.

For elementary rules, for example, the number of preimages of a sequence S
of length n

N(S) = Lgy+ Lg; + LTy + LY.
Now define an indicator function

L(z) = lifs; =z,
= 0if s; # =z,

and for 0 <:<k-—1,

i = f(m01"'am2r—1ai)1
M; = my---my_y3,
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that is, M; is the symbol M shifted one component to the left, and with the
element 7 appended on the right. For M = 01, for example, My = 10 and
M; = 11. Then it follows that

Lig =3 Lig Ii(z:), (2.1)

and the above system of recurrence relations can be used to express N(.5) in
terms of starting values L' that are easily computed from the definition of
the automaton rule.

For example, consider Rule 126 defined by

{000,111} — 0, {001,010,011,100,101,110} — 1.

Then from (2.1), the recurrence relations for the number of preimages for
any sequence S can be written as

Ly = Li'Ii(0) + L3 I;(1),
Ly = (L' + HTHIQ),
Ly = (I + L),
Ly, = Li'I(0) + Lig (1)

The recurrence relations can equivalently be written for N(.5) moving left
to right in the sequence S.

The problem now is to solve the system (2.1) for an arbitrary rule and
string S. The solution is obtained by decomposing the full system into two
linear subsystems coupled in the sense that the solution to one subsystem
serves as the initial value for the other, and vice versa. The general technique
is to define one subsystem (I) for the special case of a string of all 0’s, and the
other (II) for the case of a string of all 1’s. Consider an arbitrary string S,
then, as consisting of a series of alternating blocks of 0’s and 1’s. Subsystem
(I) is then a linear system of recurrence relations that can be solved for the
number of preimages of the first block of 0’s. The solution then provides the
initial values for subsystem (II) (again a linear system of recurrence relations)
to be solved for the first block of 1’s, and so on.

3. Solution of recurrence relations

Systematic solution of the recurrence relations for the 88 distinct elementary
rules yields preimage formulae whose exact forms and parameters depend
on the particular rules, but whose qualitative features permit classification
into six types. The types, together with the labels and examples of the rules
belonging to each type, are listed in this section. Note that the preimage
formulae for all 88 distinct elementary rules have been derived [9], and are
available upon request.
The notation used is the following. Let S be an arbitrary string.
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(i) From right to left, divide S into “blocks” of consecutive 0’s and 1’s, and
let

number of consecutive 0’s in the ith block,

a;

b;

number of consecutive 1’s in the 7th block.

For example, with S = 00101001100100, set a; = az = a3 =2, a4 =1,
as =2 and by =1,b; = 2,b3 = by = 1. The convention is used that all
sequences begin on the right with a; 0’s, with a; > 0.

(i1) From right to left, divide S into blocks of consecutive isolated 1’s, and
let

d; = number of consecutive isolated 1’s in the 7th block.

For example, with S = 00101001100100, set d; = 1, dy = 2.

(iii) I(z) is defined to be the indicator function such that I(1) = 1 and
I(z) = 0 otherwise.

Then preimage formulae for all elementary automata rules have been shown
to belong to one of the following six types:

(A) constant;

(B) products of integers representing lengths /; of blocks of;

(C) products of integers representing the l}h terms in;

D) terms in sequences satisfying telescoping recurrence;
q ying ping ;

(E) terms in sequences whose values vary periodically;

(F) solutions to other linear recurrence relations (with non-constant coeffi-
cients) that do not obviously simplify.

For each of the above types, examples, together with a list of the rule
numbers of automata belonging to that type, are given below. The rules
listed are the 88 rules distinct under reflection and symmetry operations.

(A) constant;
Rules 0, 15, 30, 45, 51, 60, 90, 105, 150, 170, 204

Example: For linear (i.e., automata with interaction rules f that are
linear in the site values) and other automata for which the uniform
measure is invariant,

N(S) = 4.
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(B) products of integers representing lengths I; of blocks of consecutive

“units,”

0’s;

Rules 11, 46, 138, 12, 24, 34, 44, 14, 38, 42, 35, 140

Example: For Rule 12, the number of preimages for a sequence S is
given by

where units are either 1’s and 0’s, or combinations of 1’s and

N(S) = 2(a;1+2), ifn=1,
n—1
= 2(a+1)(an+1)[[a, ifn>1landalb=1,
=2

= 0, otherwise.

where the a;’s are defined above and n is the number of distinct blocks
of consecutive 0’s.

Example: For Rule 35, the number of preimages N(S) is given by

n—1

(200 + 2~ a3 = o) TL1 + T(bi-)

— I(aj)] if a1,a, # 0, "

[+ T3 = I(a)] L0+ 1(5520) - ()]
ifay#0,a, =0 ~

= (L4 T2 — 2(ag) + 18] TTIL + 1(5y-1) — I(a)

=3

N(S)

ifag=a,=0

= [20(bnos] + 2 — I(an))[2 — 21(az)

+ (b0 TLIL + I(bj-) — (a3,

=3

ifa1 :O,Gn #0,

where the a;’s, b;’s, and the indicator function I(z) are defined above.

(C) products of integers representing the /;th terms in Fibonacci-like se-

quences, where the [;’s again are lengths of blocks of consecutive units;
Rules 1, 2, 3, 17, 18, 19, 36, 72, 126, 128, 136, 200, 4, 32, 168, 7, 8, 16,
28, 50, 56, 76, 57, 162, 184, 156

Example: For Rule 126, N(S) is given by

N(S) = 2Fb1+37 ifn=1,
n—1

2Fy, 41 Fy, 41 H Fy,_1  otherwise,

=2

where the b;’s are defined above, n is the number of distinct blocks of
l’S, and Fk = Fk—l + Fk_g with Fo = O,Fl = L.
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Example: For Rule 50, N(S) is given by

a—1
N(S) — 2Fd1+2 X HFd. 1 1] + I(b )Fd1+2Fda—1 H Fd‘ 0 1]
=2 i=1

where the d;’s are defined above, « is the number of distinct blocks
of consecutive isolated 1’s (i.e., blocks in which b; = 1), and F} =

Fk[O, 1] = Fyp_1+ Fr_s.

(D) terms in sequences satisfying telescoping recurrence relations;
Rules 5, 6, 9, 33, 37, 54, 122, 94, 132, 146, 160, 23, 232, 62, 110, 108,
40, 130, 73
Example: For Rule 62, N(S) is given by

N(S) e an+4[0 an 1+1[0 Fb2+1[0 FI;I1+1>FI>11—1]7"']7
an- "1[ Fb2+1[0 Fbl+17Fb1 1]7 ]]7

where Fi[fo, f1, f2] satisfies the recurrence relation Fy = Fj_o + Fj_3
with F; = f; for i = 0,1,2, and F} = F[0,0,1].

Example: For Rule 33, the number of preimages N(S) is given by

N(S) = an+3[0 I(bn I)Fan 1[0 I(bn—z’)Fan—z[ Tty
I(b2) Fay [0, I(b1) Fay—1, I1(b1) Fay—1 + Foy 2] - -]l
I(bn-1)Fun, [0, 1(bp-2)Fu, [0, -,
I(bg) Foy [0, I(by) Foy—1, 1(b1) Foy - 1+Fa1—2] 1]
+Fun_1 o [07 I( n—Z)Fan_z [O
I(b2)Fa2[OaI(bl) a1— 1aI(b1) a1— 1+Fa1 2] ]]

where the a;’s, b;’s, and the indicator function I(z) are defined above.

(E) terms in sequences whose values vary periodically depending on the
lengths I; of blocks of consecutive units;

Rules 22, 104, 164, 41, 152, 10, 25, 26, 27, 172, 134
Example: For Rule 152, N(S) is given by

an—2
N(8) =200 + o5 L) + X of,
1=0
where v( " = v( ) if 7 is even, and vj( = vi . if 7 is odd, and
an—1—1
vl = [U(()n)’v§n)] = [vr£:-11)’1 n—-l) Z
i=0
and

v© = [1,I(by)(az +1)],
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where I(z) =1iff z = 1.
Example: For Rule 22, N(S) is given by

N(S) = oY + {Fapt1 + Fapes + Fap 210,00 40 ],

where v(") = ), k=0,1,2and j =k (mod 3), and the vector v(®
is deﬁned to be
L [v("—l) Fyp 1[0, ) T oD BN C ],

bp—1 7 br—1—1 Vb, 1—1 Vbpa+1ls

n—1 1 n—1
F,,-2[0, vzf,,_l)u g:_lll + l(>,._13~1 >

with v = {F! _,, F! 5, 1}, and F}, = F}[2,3,4] = F,_, + Fx_s, and

the b;’s as defined above.

(F) solutions to other linear recurrence relations (with non-constant coeffi-
cients) that do not obviously simplify.

Rules 13, 43, 58, 78, 142, 178, 29, 74, 77 (10)
Example: For Rule 178, N(S) is given by

N(S) = X +I(b— ) n— 1+I(an n—lbn 2)Xn 2
+I(an)1{(bn—l)Xn—37

where

.X" — I{(an)ff(bn_l)X 1+ [I(bn_gb _1)1{((1”)
+I(anan—1)1((bn—2)]Xn—2
+I(anan—1bﬂ—2bn—3)X~n——37

with initial values X1 = I(a1)+K(a1), Xg = K(bl)Xl +I(bl)+I(a1a2),
and X3 = K (b)) Xo+1(b1b2) X1+1(aza3)[K (b1)X1+1(by)], where I(z) =
liffz=1and K(z)=1if z =1 or 2.

The type of preimage formula associated with a rule is determined by
combinatorial features of its rule table. The easiest way to see the connection
is by looking at the De Bruijn graph associated with a rule. This graph is
constructed by assigning a node to each of the 4 possible 2-tuples 00, 01, 10,
and 11, drawing a directed edge between each tuple zy and y (i.e., between
each pair such that the second component of one tuple is the same as the
first component of the other), and then labelling the edge with the value
assigned by the rule to the 3-tuple zy. Figure 1a shows the De Bruijn graph
associated with the generic rule

000 — ap,001 — aq,---,111 — aq,

and the De Bruijn graph for Rule 12 is given in figure 1b.
In discussing such graphs, the terminology used will be as follows. A
path is any sequence of connected edges in the graph. A circuit is a path
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Figure 1: De Bruijn graphs for (a) a general elementary automa-
ton rule; (b) Rule 12 defined by {000,001,100,101,110,111} — 0,
{010,011} — 1.

that begins and ends at the same node. The length of a circuit is the number
of edges in the shortest path traversing the circuit. A constant-valued circuit
is a circuit with all edges carrying the same value. Two circuits are equal-
valued if they are constant-valued and carry the same value. Two circuits
are disjoint if they contain no node in common. A simple constant-valued
circuit is a circuit that is disjoint from all other circuits carrying the same
value.

It follows that the total number of preimages for a sequence S = sgsy - - - is
given by the total number of distinct paths such that the values of the edges
traversed by the path are given by s¢, $1, and so on. In particular, suppose
(as an exercise) that the problem is to determine the number of preimages for
a sequence of n 0’s, and that the set of edges labelled with 0 are connected as
shown in the various diagrams of figure 2. Suppose further that the preimages
to be counted are only those starting with the components represented by
z and ending with those represented by y. Then the desired number of
preimages is equivalent to the number of distinct paths of length n that can
be constructed starting from the node z and ending with y. Specifically, the
number of preimages is given in each case by

(a) N(S) = 1.
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(a) (b)

(e)

(c) (d)

Figure 2: De Bruijn graphs for which the number of paths of length
n beginning at node z and ending at node y are computed.

(b) N(S) = n. An admissible path is constructed by traversing the loop

z — z for some n; > 0 steps, then following the edge z — y, and finally
traversing the loop y — y for exactly n — (ny + 1) steps. There are n
possible positions for the edge z —y to occur in the path, and therefore
n possible paths.

(¢) N(S) = F,, where F, = F,_; + F,_, with F, = F; = 1. In this case,

the number of paths of length n that begin at = and end at y is the
sum of the number of paths of length n — 1 that end at y and can be
lengthened by one traversal of the loop y — y, and the number of paths
of length n — 2 that end at y and can be lengthened by one traversal of
the circuit y — z — y. Thus the number of paths satisfies a recurrence
relation of degree 2 with Fy = F; =1 (in fact, the Fibonacci relation).

(d) N(S) = Fn—1, where Fy, = Fy_y + Fn_3 with Fy = F; = F, = 1. The

reasoning is similar to that above.

(e) N(S)=11if n odd,

=0 if n even.
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(e)

(d)

Figure 3: De Bruijn graphs for which the number of paths of length
n, beginning at node z and ending at node y, and consisting of edges
with the value 0 together with edges with value 1, are computed.
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Now consider in addition edges labelled with 1’s, as in the diagrams of fig-
ure 3. Suppose that the problem is to find the number of preimages of a
sequence consisting of a; 0’s followed by b; 1’s followed by a; 0’s, and again
that the only preimages to be counted are those starting with the components
z and ending with the components y. By extending the reasoning above, the
number of preimages is found to be

(a) N(S) = 1.
(b) N(S) = aga; if b] = 1,

= 0 otherwise.

(¢) N(S) = Foy—1Fy -1, where Fy, = Fy_; + Fy_p, and Fp, = F; = 1.
The number of paths that start at z, traverse the edges labelled 0
for a, steps, and then traverse the loop z — z for b; steps is Fy,_; with
Fy = F; = 1. The number of paths that start at z, traverse the edges
labelled 0 for a; steps, and end at y is F,, , where Fy = Fy_; + F|_,
with F§ = F{ = F,,_1, or therefore F, 1F, _1.

(d) N(S) = FoyoFpy 1 if by > 1,
= F,,[0,F,,, Fy, + Fy 4] if b; = 1, where Fj, = Fy_1 + Fj_3. The

reasoning in both cases is the same as in (c). The difference when
b; = 1 is that the the initial values of F} cannot be factored out so as
to express the solution as the simple product (without sums) of terms.

(e) N(S) =1 if a1, a; both odd,
= by — 1 if ay, a; both even,

= 0 otherwise.

Note that the above five cases exhibit the qualitative features of types (A)-(E)
listed above.

In general, as the preceding examples suggest, conditions can be derived
relating a rule’s type of preimage formula to the structure of its De Bruijn
graph. Combinatorial arguments establish that the preimage formula for an
elementary rule

(I) is constant if every node has the feature that either all incoming or all
outgoing edges carry distinct values (i.e., either the graph or the graph
with the direction of each edge reversed is deterministic).

(II) consists of “pure” terms (i.e., terms that do not involve solutions to
recurrence relations) only if all constant-valued circuits are disjoint.

(III) contains Fibonacci-like terms if there exist at least 2 distinct non-
disjoint constant-valued circuits Cy, Cs, - - - Cy, of lengths Iy, I, - - - I, (i.e.,
the circuits contain a node common to all). Then the terms satisfy the
recurrence relation Fy = Fy_j, + Fr—p, + -+ - Fr—i,-
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0
(b)

Figure 4: (a) Rule 50, for which blocks of consecutive isolated 1’s are
the basic counting units; (b) Rule 178, for which no constant-valued
circuit of length greater than 1 exists.

Condition (III) can be generalized to treat cases such as Rule 50 (see the
examples following the description of Type C) in which the fundamental unit
is a block containing an isolated 1, rather than a block of arbitrary length
of consecutive 1’s. The De Bruijn graph of Rule 50 (shown in figure 4a)
indicates that with a redefinition of the relevant circuits C, Cy, - - - to permit
the occurrence of an isolated 1, the rule satisfies the condition for a preimage
formula with recurrence relation terms.

A further distinction can be made among rules whose formulae represent
products of simple terms (as in Types B and C), telescoping recurrence terms
(as in Type D), and terms in periodic series (Type E). A preimage formula

(IV) consists of products of Fibonacci-like terms if the conditions of (c)
hold and in addition, denoting by «* a node common to the constant-
valued circuits Cy, Cy, -« - Cp, the number of edges separating z* from
any edge labelled with the same value is at least [, — 1, where ., is
the maximum circuit length. Otherwise the formula belongs to Type D.

(V) belongs to Type E (contains periodic terms) iff there exists a simple
constant-valued circuit of length greater than 1. The length of the
circuit is then the period of the sequence.



434 Erica Jen

Note that the rules classified here as belonging to Type F are characterized
by the absence in their De Bruijn graphs of any constant-valued circuits
of length greater than 1. Such is the case, for example, in the graph for
Rule 178, shown in figure 4b. A re-definition of variables (as in the case of
Rule 50 discussed above) may, however, permit the solution in closed-form
of the recurrence relations for rules of this type.

4. Examples of solving for preimage formulae

In this section, cellular automata exemplifying each of the major types will
be treated in detail. Aspects to be discussed include the method of solution
for each example and the relationship between the combinatorial features
of each rule table and its type of preimage formula. As the discussion in
the previous section made clear, the number of preimages for a sequence is
equal to the number of appropriately defined paths in the reduced De Bruijn
graph associated with the rule. For counting purposes, the De Bruijn graph
given in conjunction with each example will be the reduced graph obtained
by combining nodes equivalent in the sense that all paths through the nodes
carry the same symbol sequences. (See [10] for discussion of equivalent rep-
resentations of De Bruijn graphs for automata rules.)

Case a. As a trivial but nonetheless interesting example, first consider

Rule 30 defined by

{000,101,110,111} — 0, {001,010,011,100} — 1. (4.1)
The recurrence relations for this rule are given by

Ly = L' I;0) + L (1),

L = (Ue' + L),

Lo = L")+ L' 10),

L = (L' + LigHL(0).
Solving the above for the special case of a string of all 0’s, and then for the
case of a string of all 1’s, the system can be rewritten as the two systems

UgO = U£17

Ugl = 0,

Uljo = U&)—l,

Ui, = Uit +UL, (4.2)
Vd’() = ‘/Ojl_l7

Vi o= VB4V,

‘/1];) = %7'1—17

Vi = 0. (4.3)

With U} = U} = 1,UL = 2,U}, = 0 as initial values, system (2) can be
solved to yield Uz = 1,U§ = 0,Ufs = I(a1), Uy} = 3 —1I(aq), implying that



Enumeration of Preimages in Cellular Automata 435

for any sequence of a; 0’s, N(S) = 4. Moreover, for any n > 1, it is easy to
show that

an b an Ty, o
Uss = Voo = Ut = 0,U5g = ](an)%bl s
Usp = Vig™ +[1 = I(aa)]Vor ™,

which together with the fact that Vi = 0, implies that the total number
of preimages for a sequence ending with 1’s on the left is not changed by
adding 0’s. Similarly, it can be shown that N(S) is unaffected by adding 1’s
to the left of a sequence of 0’s, and thus for all sequences S, it follows that
N(S) = 4. The constancy of the number of preimages is of course clear from
figure Ha since exactly one edge with the value 1 and one edge with the value
0 emanate from every node in the graph.

As a further detail, the decomposition of the preimages by leading com-
ponents exhibits a structure described by

bn _ , (n—1) bn _ o (n=1) b _ , (n—1) bn _
Voo = ”b,,,l—lan" = Vb4 Vg = Up_q=-27 Vir =0,

where v](n) = v,(cn), k=0,1,2and j =k (mod 3), with the vector v(*) being
one of the four vectors [0,3,1], [0,1,3], [0,4,0], or [0,0,4]. Initially v© = [0,3,1],
and the vector evolves, as the sequence grows right to left, according to the
rules:

[0,3,1]
b,' =2
b= 1) B e [0,4,00 =  [0,0,4]
bi = 1,2
/ b,‘ =1
[0,1,3]

The above should be interpreted to mean that the vector changes in the
fashion indicated by the arrow depending on each new value of b; (mod 3),
where b; is the number of 1’s in the next-to-the last block of 1’s. (If b; assumes
a value not associated with an arrow, the vector remains unchanged.) For
a sequence with a total of b, blocks of 1%, in other words, the vector »(®
is determined by the values of by, by, --b,_;, and the number of preimages
according to leading left components is then given by the b,th component
of the vector. For instance, in a sequence with b; = 0,2 (mod 3) for all 7,
the vector v(*~1) is given by [0,3,1] if the number of b; =2 (mod 3) is even,
and by [0,1,3] if the number of b; =2 (mod 3) is odd, and the number of
preimages of the sequence that begin with 01 is given by the kth component
of v(*=1) where b, =k (mod 3).
Case b. Next consider Rule 12 defined by

{000,001,100,101,110,111} — 0, {010,011} — 1. (4.4)
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Figure 5: Reduced De Bruijn graphs for Rules (a) 30, (b) 12, (c) 126,
(d) 18, (e) 232, (f) 22.

The recurrence relations for this rule are given by

J
Lo

L
T
.

(Lo
(L3
(L] o' & L"l)fj(O),
(L1

o1 )L(0),
)IJ(l)y

10)1;(0).

Solving the above for the special case of a string of all 0’s, and then for the
case of a string of all 1’s, the system can be rewritten as the two systems

- J- J
U =

-1

b
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Ugl = 0,

B = Ut + Ui,

o= U+ UL (4.5)
Ve = 0,

V& = ViV,

Vh = 4,

Vi, = 0. (4.6)

The definition of the rule implies
Ugo = Ullo = Ulll =2, Uf}l =0.

With these as initial values, system (4.5) yields for a string of a; 0’s,
Ugd = Ud = 2,05t = 0,U5¢ = 203

For a string that consists of b; 1’s appended on the left to the first block of
0’s, system (4.6) yields (using the above as starting values)

Va =V =V =0, Vi =2I(b)(a: +1),

where I(z) = 1 iff z = 1. The values above are then used as starting values
for system (4.5) with a; 0’s, and continuing the process yields the general
solution

n—1 n—1
Uss =Ujg =2(ar +1) [] &, Ugp =0, Up = 2(ar +1)(an — 1) I] @,
1=2 =2

for the case that b; = 1 for all z. Since the total number of preimages is
equal to the sum of the individual terms above, it follows that the number
of preimages is given by

N@S) = 2(a1+2), ifn=1,
n—1

= 2@ +1)(an+1)J]a, ifn>1landallb; =1, (4.7)
=2
= 0, otherwise.

It is straightforward to show that the same formula holds true in the case
when either a; or a, is equal to 0.

The De Bruijn graph for Rule 12 (shown in figure 5b) indicates that
all constant-valued circuits are disjoint, and therefore the rule satisfies the
condition for a Type A preimage formula.

Case c. Consider Rule 126, defined by

{000,111} — 0, {001,010,011,100,101,110} — 1. (4.8)
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The recurrence relations for the number of preimages N (.S) were given in the
previous section. System (2.2) for this rule can be decomposed into the two
systems

Ugo = Ugt;l,

Ugl = 07

UiiO = 01

Ui, = Ui (4.9)
Vb = V&,

Vi o= VT4V

Vi = Vio '+ Vo,

Vi o= Vi (4.10)
The definition of the rule implies

U=, Uy ==, U} =1.
With these as initial values, system (4.9) yields for a string of a; 0’s,

Ugs = Uit =1, Usi =Ujg =0,

For a string that consists of b; 1’s appended on the left to the first block of
0’s, system (10) yields (using the above as starting values)

Vol:)1 = Vlbll = Fy, 1[0, 1], V()bl] = Vlb& = F},[0,1],

where F}, = Fj_y + Fy_, (e.g., the kth Fibonacci number) with starting
values Fy = z,F} = y. The values above are then used as starting values
for system (4.9) with a; 0’s, and continuing the process yields the general
solution

n—1
VO% = Vlbl" = %bln_la Obln = VllgL = anFb1—1 H Fba—la
1=2
where the terms Fj[0,1] have now been abbreviated as Fj. Since the total
number of preimages is equal to the sum of the individual terms above, it
follows that

n—1

N(S) =2F, 41Fp 41 x [ Fy,-1, (4.11)
1=2
independent of the values of the a;’s.

The De Bruijn graph for Rule 126 is shown in figure 5c. Given any se-
quence of consecutive b; 1’s (bordered in general by 0’s on the left and right),
with 1 <7 < n, a preimage for the sequence is constructed by concatenating
the nodes of a path that starts at node x, then uses some combination of
traversals of loops x-y-x and loop y-y, and finally ends at node x. The num-
ber of preimages is the number of possible such paths. Let Fjy denote the
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number of paths of length k that start and end at x. Statement (III) from
section 3 states that Fj, satisfies the recurrence relation Fy = Fy_q + Fj_s.
Moreover, the “distance” between the node x (labelled 0) and node y is 1,
and therefore the distance is < k& — 1, where k is the degree of the recur-
rence relation. Thus, statement (IV) from section 3 implies that the total
number of paths that can be constructed for an arbitrary sequence satisfies a
formula expressible as the product of Fibonacci terms, and the total number
of preimages for the entire string is given by the above expression for N(.5).
Case d. Next consider Rule 18, defined by

{000,011} — 0, {001,010,100,101,110,111} — 1. (4.12)
The two systems corresponding to the cases of all 0’s and all 1’s are given by

Uo = U™,

Uél = U{{la

Uf() = 0, )

By = 0. (4.13)

Voo = Vol

‘/0]1 = ‘/110_1’

Vl{) = Vo]o_1 4 VoJ1_la

1'71 = Vljo_l + VlJl_l- (4.14)

It is easy to see that all b; must be either 1 or 2 in order for the number of
preimages to be nonzero. Since

Uéo = U(}l =1, U110 o U111 =0,
system (3.3) yields for a string of a; 0’s,
Ug& = 1’ = 17 Ugll = Ulall = Fa1—l[2a 3]7 Ufé = Fax—l[za 3]”

For a string that consists of b; 1’s appended on the left to the first block of
0’s, system (3.4) yields (using the above as starting values)

Vi = 1(b1)Foya[2,3], Voi = Vit =0, Vig = I(b) + I(by — 1)Fo, 1 [2,3],

where F}, again denotes the kth Fibonacci number, and I(z) is an indicator
function such that I(1) = 1 and I(z) = 0 otherwise. The values above are
then used as starting values for system (4.13) with a; 0’s, and continuing the
process yields the general solution

Uss = I(bn—l)Ugln_la Ulat')m = U(‘)lln_l’

Ug = Uit = Fa,[I(ba-1bn—2)Us7 ™ + I(bp—1 — 1)Uo" "], (4.15)
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where Fj denotes Fj[0,1]. A closed-form expression can be given for the
above system by defining kz,, kgr to be the leftmost and rightmost values of
1 such that b; = 2. Then

Ugr = FagFas T Fuis

icAUB
where
Fpy = F‘:l_lFasn-Fukn, kg even,
= FyFy--Fo, kpodd,
Fu = FoFay-Fuyyy n—hy odd,

= 0, n—kg even,
and
A={i| by =2},
B = {i| 3k, ky with ky < ko, and by, = by, = 2,
bj=1forall ky <j <ksy, ki odd and i = k1 +3,k1 +5,---,k2}.
If there exists &y, k satisfying the conditions above but with k, —k; even, then

B is defined to be the set {0}. The other values Ugo, Uro, U1y are determined
from equation (4.15). The total number of preimages is thus given by

n—kp—3
N(S) = (2Fan+Fan—l) H Fan_,'Fa; H Fan n—kL 0dd1
7=2,j even i€AUB
n—kp—3
= H Fo_jFup H F,,, n—kg even,
j=1,; odd AB

for strings with all b; equal to 1 or 2, and N(S) = 0 otherwise.

The De Bruijn graph of Rule 18 is shown in figure 5e, and clearly indicates
a Fibonacci-structure for the preimage formula. The presence of the 0-valued
loop x-x complicates the counting procedure for this graph, and in particular
induces a dependence on the odd versus even nature of the number of blocks
of 0’s.

To illustrate the use of the preimage formula, let

S =110001010110000011010.

Then n = 7 (since by assumption all strings begin and end with 0), and
kr = 6, kr = 2. Hence

Fu = Fp = F.
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Also, the set A is defined to be A = {a3, a4}, and B to be the set B = {a¢},
and N(S) is given by

n—kp—3
N(S) = (2Fan+Fan—l) H Fan—jFﬂf H Fa;,
7=2,7 even i€AUB
F_ R FsF Fs,
10.

Case e. Next consider Rule 232, defined by
{000, 001,010,100} — 0, {011,101,110,111} — 1. (4.16)

Then from (2.1), the special cases of a string of all 0’s and a string of all 1’s
can be written, as in the preceding examples, as

A
oo = 0

Ul = Ui,
1‘17_0 = Ug'l_lv ¢
U = UG 4+ui™ (4.17)

Voo = Voo Ve,

Vgl = ‘/110_1»

Vio = Vojo_ly

Vin = 0. (4.18)
For a string S beginning on the right with a; 0’s, the system (4.17) yields

U(‘Jl(;_:l = 0, Ugll—l = Fa1—2[27374}a
Ulal%_:l Fa1—3[27 314]7 1a11_1 = Fa1—1[273a4]a

Il

with Fi[zg, 1, 2] defined as the value satisfying the recurrence relation Fj =
Fy_q + Fy_s with initial values Fy = zg, F} = x1, Fy = z5. Then for a string
of by 1’s, system (4.18) yields (using the above as starting values)

Voo = F4,[0,Fay-2[2,3,4], Fay—2[2,3,4] + Foy3[2,3,4]],

%bll = Fbl—2[07Fal—2[27 3v4]a Fa1—2[27 374] + Fa1—3[27374]]7
Vl%l = Fbl_l[o’Fﬂl—2[27374])F0'1‘2[2’3’4] + Fal—3[27374]]7
Vit =0

Continuing the process yields the general solution
Ug = 0,
Ust = U™,
Uig = Ui
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ljlalrl . Fﬂ-n[O’an—l—1[07Fan—1—2[07"',Fa2—2[03Fb1——1[07 al—Z’F’

a3 —2
+F, —3],
Fbl 2[0 31—2’ a1—2 + —3]] ]]7
an—1—2[0a Fan—1—2[07 0-2 2[0 Fb1—1[0 a1—2a F;1—2
+F’ —3]7

Fbl 2[0 a1—27F’ —2+ ;1—3]]a""]]]a

where the terms Fj[2,3,4] have now been abbreviated as Fy, and all other
terms represent solutions to the recurrence relation with specified initial val-
ues. It follows that

N(S) = Fan+2[0’an—x—l[OaFan—1~2[0a F - 2[0 Py~ l[Oa al_za

I a;—2 + I —3]
Fy, - 2[0 a1— 27F¢:1 2+F¢:1—3]]a"'a]]a
an_l_z[O Fan_l_g[O, woy Fogei |05 Py - 047 95
1 -2 + —3])
Fbl 2[07 Fa;—z» a1—2 i Fél—-:i]] a]]]’ (4‘19)

and thus the total number of preimages for any string is obtained as the
solution to a telescoping recurring relation.

Again, the De Bruijn graph for Rule 232 (shown in figure 5e) serves as
the basis of a combinatorial proof of the formula for N(S). The graph can
be decomposed into two connected subgraphs, one generating strings of all
0’s and the other generating strings of all 1’s. Each subgraph consists of
two loops, one of order 1 (v-v and z-z) and one of order 3 (edges x-z-y-x
and x-y-v-x). Thus, for each case, the number of paths Gj that can be
constructed corresponding to a string of length k£ can be shown, using an
argument analogous to that used for Rule 126 above, to satisfy the relation
Gr = Gg_1 + Gi_s.

Case f. Finally consider Rule 22 defined by

{0o0o,011,101,110,111} — 0, {001,010,100} — 1. (4.20)
The full system is given by

Ly = Li'L;0)+ Lir ;1)

Ly = (Lo + Lir)L(D),

Ly = (L' + L)L),

Ly LT 1;(0) + Lig I;(1).

Il

With
LtlJo = Ltl)l = Lio = I’Lil =2.
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as initial values, the above system yields for a string of a; 0s,
Uss = L,Upi = Fa,- 2[2 3, 4] Ui~ = Fa1[273v4] Uit = 41—1[2,3’4]:
where Fi[zo, z1, T] satisfies the relation Fy = Fy_;+Fj_3, with Fy = o, F} =

21, Fy = z5. For a string that consists of b; 1’s appended on the left to the
first block of 0’s, (using the above as starting values)

V0b01 = {a1—21 a1—3’1}bn

‘/()bll - Vb1—2

b1 b1 —1
‘/10 - V("JO b
Vit =0,

where Fy[2,3,4] has been abbreviated as F}, and the expression on the right
hand side is defined as follows:

{230, 331712}/: = Zj, 7=0,1,2, k=3 (mOd 3)
Continuing the process leads to
N(S) = viy) + {Fansr + Fapmr + Fapa} (0,001, 00y + 0],

where vJ(") =o™ k=0,1,2and j =k (mod 3), and the vector v(® is
defined to be

(vl(;:__ll)v Fan—l [0 UIS:._llllv U!E:_ll) 1 + le::II—z—l])

-1 1 n—1
Fan—Z[O’ vl(;:_llp vIE:_lzl l(a,, 13-1])’

with v® = {F} _,,F. _3,1}, and F| = Fy[2,3,4] = Fi_y + Fr_s.

The De Bruijn graph for Rule 22 is shown in figure 5f. Statement (V)
in section 3 asserts that the periodic structure in the number of preimages
arises from the existence of the simple circuit of length 3 and all edges with
the value 1.

5. Applications of preimage formulae

The formulae for preimages derived in section 3 provide information on the
statistical and dynamical features of cellular automata. Examples of uses
of preimage formulae include the analysis of the complexity of automata
rules, the calculation of specific statistical quantities that require knowledge
of probabilities of sequences, and the characterization of the probability dis-
tribution of spatial sequences generated by one iteration of the rule. In this
section, some applications of the preimage formulae are discussed.
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5.1 Gardens-of-Eden

A finite-complement regular language is defined to be a regular language with
a finite number of excluded blocks. Since blocks excluded after one iteration
of a cellular automaton rule are termed “gardens-of-Eden” [1,4,5], a rule
that generates a finite-complement regular language at time ¢ = 1 has the
property that there exists an L < oo such that any garden-of-Eden sequence
of length greater than L contains a garden-of-Eden sequence of length < L.
In [10], Wolfram describes a test for determining whether a rule generates a
finite-complement regular language. The test involves determining the size
= of the minimal DFA graph associated with the language, and checking
for excluded blocks of length < 2=. If the only excluded blocks are those
of length < =, the language is a finite-complement language. If there exist
excluded blocks of length greater than = and less than 2=, as well as of length
< =, then the language cannot be a finite-complement language. Since the
size of the minimal DFA can be as great as 15 [see table 1 in [1]), the test
requires in some cases that all strings of size up length 30 be checked.

The formulae derived in section 3 provide an analytical check of whether
an automaton rule generates a finite-complement regular language after one
iteration. In many cases, the answer is obvious. For instance, equation (4.11)
clearly indicates that a sequence is a garden-of-Eden for Rule 126 iff b; = 1
for some 1 < ¢ < n. Therefore, in this case, every garden-of-Eden contains
the subsequence 010, and the sequences generated by one iteration of the
rule constitute a finite-complement language.

In this section, the preimage formulae derived in section 3 will be used
to provide proofs that a rule does or does not generate a finite-complement
language for less obvious cases. The first case to be considered is Rule 22,

defined in (4.16).

Proposition 1. The sequences generated by one iteration of Rule 22 do not
constitute a finite-complement language.

Proof. Consider the infinite set of sequences Sy = 1050101, where S denotes
a sequence of k = 3q 1’s, for any value of gq. Clearly, Sy does not contain
any sequence S; for j < k. Show that N(Si) = 0 for all k£ = 3¢, where N(S)
is the expression (19). For any Sy, the associated parameters are given by
al:0,a2=a3:a4=bl=b2=b4=l,b3=k. Then

v(l) = []-aF—2[2:374]7F—3[27374]] = [1a 11 1]7

,U(2) = [17F0[01172]7F—1[0a172]] = [17071]7
v(S) = [O,FO[O,l,Q],F.1[0,1,2]] == [07(],1]7
o = [0, F[0,1,1],F_4[0,1,1]] = [0,0,0],

and thus N(Sg) = 0 for all k, and the rule is not a finite-complement lan-
guage. H
The next case to be considered is rule 54, defined by

{000,011,110,111} — 0, {001,010,100,101} — 1.
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In [10], on the basis of computational searches as described earlier in the
section, Rule 54 is included in the set of rules that do not generate finite-
complement languages after one iteration; it will be shown here that the
reverse is true.

Proposition 2. The sequences generated by one iteration of Rule 54 con-
stitute a finite-complement language.

Proof. The number of preimages for a sequence S under Rule 54 is given by

N(S) = an+3[07 an—1—2[0’ J(aﬂ—-l)an_z Ty J(G'?)Fbx [0’ 2+ J(al)’ 1

+ J(al)]’ e 1]
+ J(an)Fy,_,[0,J(@n-1)Fy,_, - -+, J(a2) F3,[0,2 + J(a1),1
+ J(al)]a S a]7

J(an)Fy, [0, J(an-1)Fs, , -+, J(az)Fy, [0,2 + J(a1),1
a5 J(al)]’ . 7]]7

where Fy, = Fy_3+ Fy_3 and J(z) =1 if > 1 and J(z) = 0 otherwise.

It is easy to show using the above expression that the four sequences
10110, 10101, 01101, and 10111101 are gardens-of-Eden. Let S, be any
other sequence such that N(S) =0 and a, # 0. Show that S, must contain
one of the four sequences.

Assume the contrary. First consider the case that J(a;) = 0 for ¢ =
n,n — 1. For any m, define S,, to be the sequence that matches S, in all
entries starting from the right up to the mth block of consecutive 1’s. From
the preimage formula,

N(Sﬂ) = an+3[07 an_1—2[0, Z, 0], 0]

where Z = F,,_,_2[0, Fb,_,—2[0,--+,0],0]. Since S, is assumed to contain no
smaller garden-of-Eden, it follows that Z ## 0 since otherwise Fj,_, 430, Z,0] =
0, and therefore N(S,—1) = 0. But then b, + 3 must assume one of the values
—1, 0, or 2 in order for N(S,) to be equal to 0, and this contradicts the defini-
tion of the parameters b;’s. It follows therefore that Fy,_,_5[0, Z,0] = 0, and
bp—1—2 must assume one of the values —1, 0, or 2; in other words, b,_; = 1,
2, or 4. If b,_y = 1, then the sequence begins on the left with the values
10101; if b,_; = 2, then it begins with 101101; if b,_; = 4, then it begins
with 10111101.

Next suppose that J(a;) = 1 for either i = n or ¢ = n — 1. It is easy to
show using reasoning similar to that above that S, must contain either the
sequence 01101 or 10111101.

Finally, consider the case J(a,) = J(a,—1) = 1. Then

N(S,) = Fi430, X + Y, Y],
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where

X = Fy,_,20,Z,+ Z,,27,),

Y = F,, 0,21+ Z3, Z,),

Zy = Fy,_,2[0,F;,_,_,[0,---,0],0],
Zy = F,, [0, F;,_,—2[0,---,0],0],

In order for N(S) to be equal to zero, it must be true that X =Y = 0.
It follows then that b,_; = 2 and Z; = 0. The fact that Z;, = 0 implies
that b,_, = 2 and either J(an—2) =0 or Fy,_,_5[0,---,0] = 0. If the former
is true, then the case reduces to one of the cases discussed above. If the
latter is true, then the argument can be continued either until J(a;) = 1 for
some ¢, or until the end of the sequence S, is reached. If J(a;) =1 for all ¢,
then in order for S, to be a garden-of-Eden not containing any of the four
smaller gardens-of-Eden, it must be true that F},[0,3,2] = 0 or b, = 0, which
is a contradiction. Therefore S, cannot be a garden-of-Eden distinct from
the four given sequences, and therefore the language is a finite-complement
regular language.

Finally, note that the preimage formulae identify, in addition to the
gardens-of-Eden, the sequences that are not excluded after one iteration of
the rule, and therefore presumably are useful in the characterization of the
regular languages that can be generated as the one time-step image of an
automaton [11]. B

5.2 Computations of spatial measure entropy

The closed-form formulae of section 3 are useful for the calculation of quanti-
ties such as spatial metric entropy that require knowledge of the probabilities
of occurrence for the entire set of spatial sequences of length n. In general,
such calculations are limited by bounds on memory and are restricted to
block length n < 20 [see, for example, table 6 of [1]). With the closed-
form formulae, the only fundamental limits on such calculations are those of
computation time.

The spatial measure entropy hff) provides a measure of the “information
content” of cellular automata spatial configurations, and is defined as the
limit as L — oo of the quantity

1
A fZPilOgPi, (5.1)

where the sum is taken over all sequences of length L, each with probability
of occurrence p;. In the case that the initial condition is chosen randomly,
the probability p; of any sequence S is exactly determined by the number of
preimages N(S), and thus the one time-step spatial measure entropy can be
evaluated for any finite length L.
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As an example, consider Rule 12 defined by (4.4). The number of preim-
ages for any string is shown in section 3 to be

N(S) = 2(a1 +2), ifn=1,
= 2(a1 +1)(an+ D1 a;, ifn>1andall b =1,
= 0, otherwise.

Finite estimates of the spatial measure entropy can of course be obtained by
generating all 2 sequences of length L, and substituting the above expression
into (5.1). A computationally more efficient formula is obtained by using
techniques of generating functions and partitions of integers. In particular,
decompose the set of all sequences of length L into (i) the sequence of all 0’s,
(ii) sequences containing exactly one 1, and (iii) sequences with more than
one 1. Denote by E®, EG) and EG#%) respectively, the associated terms
contributed by each set of sequences to the expression in (5.1). In other
words,

E® = 2(L+2)log(L+2),

L-1
E® = 3" 2(p+1)(q+1)log[2(p + 1)(g +1)]
p=0
F,—8 Lisp =3 [ﬂ‘;'_l_l/, n!
EGD = 5 5 2p+1)(g+1) Y, 3 kol kil
p=0 g¢=0 n=1 ‘Yn(m""+1) 1 i

xlklzkz - (m —n+ l)km—n+1
x log2(p + 1)(g + 1)1%2% ... (m — n 4 1)fm-nt1],

where m = L —p—q—3 represents the maximum possible length of an “inner”
sequence bounded on the left and right by p and ¢ 0’s, respectively, the term
[z]’ is defined to be the largest odd integer < z, and -y,4(c) is defined to be
the set of compositions (unordered partitions) of the integer ¢ into d parts;
i.e., each member of v4(c) is an unordered set of non-negative multiplicities
{k, ko, -, ka} with Y,y ki = d, and Y ;—; tk; = ¢ . The final term above
thus represents a sum over all possible blocks of p 0’s on the left and ¢
0’s on the right, with the number of 1’s in the middle varying from 1 to
approximately half the length of the sequence (since 1’s must be isolated). For
each such sequence, the contribution to the entropy is given by the number
of its preimages weighted by the number of ways to distribute the 0’s. Then
further calculations yield

Ep = 2(L+2)log(L+2),
L-1

+2_2(p+1)(g+1)logl2(p +1)(¢ + 1)]
L—-1L-p-1

+3 3 20+ 1)(g+1)25 7P log2(p + 1)(g + 1)]

p=0 ¢=0
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L-3L-p-3
+3 3 20+ 1) (g+D){(L-p—q—2)log[L —p—q—2]
p=0 ¢=0
L—-p—q—5 .
+ X 2L -p-g—j+8)jlog]
Jj=1

+2(L-p—q—4)log(L—p—q—4)},

as an approximation, using exact probabilities for sequences of length L, for
the spatial entropy hff). The above, its awkward appearance notwithstand-
ing, represents a considerable computational saving. It should be noted in
this context that the value A{") = .51771 for Rule 4 given in table 6 of [1]
was obtained using the assumption that the rule generates spatial sequences
with no correlations beyond 3 sites. Since higher-order correlations do in fact
exist, the true value of the entropy is considerably lower. (For L = 36, for
example, the above yields .5111 for the entropy.) The values obtained for Ey,
can be used to bound the true entropy from above, since the expression (5.1)
monotonically decreases as a function of sequence length L.

5.3 Characterization of probability distributions

The formulae can be used to characterize the form of the probability distribu-
tion for spatial sequences generated by one iteration of a cellular automaton.
As a prototypical example, consider Rule 12 whose preimage formula is given
by (4.7) and whose distribution analysis, while simpler than most other rules,
provides a broad outline for the general case. For a fixed sequence length
L, define X to be a random variable with X = N(S). The objective is to
characterize the probability distribution of X as S varies over all possible 2F
sequences.

First let n, the number of blocks of 0’s, be fixed, and let S* be any se-
quence of length L with n blocks of 0’s. Then the set of a;’s can be considered
the “spacings” [12] between n random variables uniformly distributed over
the integers (0, L). It follows [13] that the random variable

Y =log N(5*) = _ log(a;)
is asymptotically normal, implying that N(S*) is asymptotically log-normal.

The variable n ranges from 1 to %, with a probability density function
given by )
c[L —(z—1),2
flo) = LoE1he
= OL~—$,:::—
——ﬁ—i, (5.2)

where ¢[p, q] is defined to be the number of compositions of p with exactly ¢
parts (i.e., the number of ways to express p as the sum of ¢ positive integers
when order counts), and C,, is the usual binomial coefficient. It follows
therefore that the random variable X can be considered a “mixture” [14] of
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asymptotically log-normal random variables, with the mixture parametrized
by the variable n with density function given by (5.2).

5.4 Identification of sequences with maximal probability

The preimage formulae can be used to find the sequences with the maximum
probability under one iteration of the rule. Even cursory examination of
computer simulations shows that rules vary greatly in this respect, with some
rules favoring spatial sequences consisting of long runs of constant value, and
others appearing to prefer sequences in which 1’s and 0’s are more evenly
sprinkled. The propensity to generate sequences of a certain type is linked
to qualitative features of the rule’s dynamical behavior, such as the tendency
of rules like Rule 126 to generate large “upside-down” triangles (whose bases
consist of long runs of one value).

First consider Rule 12 whose preimage formula is given in (4.7). A
straightforward calculation shows that, for a fixed length L, the expression
N(S) is maximized for b; = 1 for all 7 and a; = a, = o — 1, a; = « for
t # 1,n, where «a satisfies the equation

ot
a=e€ o .

Since the a;’s are constrained to be integers, it follows that the maximal
probability is attained for sequences of isolated 1’s separated by blocks of 0’s
of length a; with 2 < aq,a, <3 and 3 < a; <4 for 7 # 1,n. (Note that the
sequence of length L with maximal number of preimages is uniquely defined
iff L=1 (mod 4). The sequence in this case consists of a core of £32 blocks
of three 0’s separated by single 1’s, with a block of two 0’s at each end; the
number of preimages in this case is 2 X 3%, For other values of L, multiple
maximal sequences exist.)

The same reasoning implies that the sequence of alternating 1’s and 0’s
has maximal preimages for Rule 76. On the other hand, for rules such as
Rule 126 discussed in section 3 with preimage formula given by (4.7), it is
easy to see from the expression for the number of preimages that the sequence
of all 1’s has 2F}, preimages, and this represents for fixed L, the maximal
number of preimages.

In general, for rules whose preimage formulae involve products, telescopes,
or alternating series of “pure” terms, the number of preimages is maximized
for (short) sequences with blocks of uniform length. For rules whose preimage
formulae involve products, telescopes, or alternating series of recurrence-
type terms, preimages are maximized for the sequence consisting of a single
block of either 1’s or 0’s (for those rules whose preimage formulae depend
only on either the a;’s or the b;’s, defined in section 3), or a single block of
alternating 1’s and 0’s (for those rules depending upon the d;’s, also defined
in section 3). Thus the circuit structure of an automaton rule table can be
used to determine immediately the sequences of maximal probability under
one iteration of the rule.
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Finally note that the preimage formulae determine the scaling of the max-
imal probability with sequence length. In the case, for instance, of Rules 12
and 76, the maximal probability scales as @™, where n is the sequence length.
In the case of Rule 22, on the other hand, the maximal probability scales as
does the n—th Fibonacci number; i.e., as ¢17] + cor5.

5.5 Enumeration of preimages with constraints

The preimage formulae can be used with slight modification to enumerate for
an arbitrary sequence the number N* of its preimages that satisfy specified
constraints. Examples of the types of constraints that can be incorporated
are the enumeration of preimages in which:

(1) no 100 occurs;
(2) no 1000 occurs.

In the first case, with the constraint given in terms of a string (100) of
length 3, the general system can be modified so as to preclude the occurrence
of 10 followed by 00. In the second case, with the constraint in terms of a
string (1000) of length 4, the first-order recurrence relations must be first
re-expressed as second-order relations, and then modified so as to preclude
the sequential appearance of 10, 00, and 00.

For example, consider the problem of finding N* for preimages satisfying
(1) or (2) for Rule 12. The full set of recurrence relations for this rule is given
in section 4b. The constraint in (1) is satisfied by preimages enumerated by
the system

L = (L' +Li")5(0),
Ify = (Lo + LiTHL(),
Ly = Li'I(0),

Ly = (L7 + LigHI;(0).

since the above relations omit from counting the preimages in which 10 occurs
followed by 00. The solution to the above system is easily computed to be

N*(S) = 6, if S begins, ends with 0,
= 3, if S begins with 0, ends with 1,
= 4, if S begins with 1, ends with 0,

4, if S begins, ends with 1.

In the case of (2), the system is first re-expressed in second-order terms

as
L = (L&' + L& )5(0),
Ly = (Lig’ +Liy )Ii(1),
Ly = (L' + Ly )(0),
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= (L’ + I + L) 10),
(L3 + LigHI;(0).

L,
In order to satisfy the constraint, the third relation in the system is rewritten
as

Lio = (L4 + Lir ") 1;(0),
which has the solution
n—1
N*(S) = e [I[1 + I(as)),
=2
where I(z) =1 iff £ = 1, and

if S begins, ends with 0 and a, > 1,
= 15, if S begins, ends with 0 and a, =1,

c

Il
—_
o

= 5, if S begins with 0, ends with 1,

= 4, if S begins with 1, ends with 0 and a, > 1,
= 6, if S begins with 1, ends with 0 and a, =1,
= 2, if S begins, ends with 1

6. Summary

This paper is concerned with the enumeration of preimages for one-dimensional
cellular automaton rules on infinite lattices. For a given rule and arbitrary
spatial sequence of values, the preimage of the sequence is defined to be the
set of tuples that are mapped by the rule onto the sequence. The number of
preimages of a sequence can be interpreted as determining the a priori prob-
ability of occurrence of the sequence after one iteration of the rule applied
to an initial condition with uniform measure.

Recurrence relations are presented here for finding the number of preim-
ages of general spatial sequences. These relations group and count preimages
according to their endtuples, and then, for any sequence, express the number
of its preimages beginning (either on the left or right) with a particular end-
tuple in terms of the number of preimages beginning with other endtuples
for its subsequences.

The preimage formulae for nearest-neighbor rules are found to be essen-
tially one of the following types:

(A) constant;

(B) products of integers representing lengths I; of blocks of consecutive
“units,” where units are either 1’s and 0’s, or combinations of 1’s and

0’s;

(C) products of integers representing the /;th terms in Fibonacci-like se-
quences, where the [;’s are defined as above;
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(D) terms in telescoping Fibonacci-like sequences where, on any level, the
initial values are given by the [;th terms in the sequences on “lower”
levels;

(E) terms of periodic sequences whose elements are determined either by
the lengths [; or by the [;th terms in Fibonacci-like sequences;

(F) solutions to more general recurrence relations.

Applications of the preimage formulae include the identification of ex-
cluded blocks (blocks of site values with no preimages), identification of rules
that generate only a finite number of excluded blocks, computation of quanti-
ties such as spatial metric entropy that require knowledge of the probability
(or equivalently, the number of preimages) of all possible sequences, and
enumeration of preimages with specified constraints.

Finally, the preimage formulae are of interest because they directly re-
late the structure of a cellular automaton’s rule table to the one time-step
behavior generated by the automaton. As mentioned above, the combinato-
rial properties of the De Bruijn directed graph associated with a rule table
determine the automaton’s type of preimage formula, which in turn deter-
mines a number of central features of the rule’s one time-step probability
distribution. The combinatorial structure of the rule table can be shown, for
example, to determine the propensity of the automaton after one iteration
on a random initial condition to generate “runs” of consecutive 1’s or 0’s.

Appendix A.

Listed below are the preimage expressions for the 32 symmetric elementary
rules. The notation is as follows:

(i) For a string S, let a; be the number of 0’s in the zth block of consecutive
0’s counting from the right, and let b; be the number of 1’s in the ith
block of consecutive 1’s. It is assumed unless otherwise stated that S
begins and ends with 0’s, implying that either a; or a, is equal to 0 if
that is not the case.

(ii) From right to left, divide S into blocks of consecutive isolated 1’s, and
let d; be the number of consecutive 1’s in the sth block, and « be the
number of distinct blocks of consecutive isolated 1’s.

(iii) Filzo,z1,-*",Tn_1) denotes the kth term in an nth degree recurrence
relation with initial values given by Fy = o, F1 = @1, +, ey = Tp1.
(iv) Let v = {ug,u1, "+, Un—1}. Then vg = {uo, U1, -, un_1}x is defined to

be the term u; where k =j (mod n).

(v) I(z) is an indicator function defined so that I(z) = 1 if z = 1 and
I(z) = 0 otherwise.
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To conserve space, the formulae are given only for the cases where the
sequence begins and ends with a 0, and contains at least one 1; the other
cases differ only slightly.

The numbers to the left of each preimage expression are the rule numbers
given according to the labelling scheme of [1]. The full table of formulae for
the 88 distinct rules is available upon request [9].

4,32 N(S) = FoyyslFoppo + Fo i Fo,
where Fy, = F},[0,1,1,1] = Fy_1 4+ Fy_o + Fj_y4.
18,72 N(S) = (2Fu, + Farm1) T120% waen Fane Fos Tlicaus Fais
n — ki, odd,

H;L f? o:%id Ap—j ;HA,B Fan n— kL even,
=0 if some b; > 2.
where Fy, = Fy[0,1] = Fp—q + Fy—q, and kg, a}, A, B defined in
example (4d) of text.

22,104 N(S) = o 4 {Fypp1 + Fap 1+ Fap 230,00 08 401,
where v(® = [vb"*l) F,,_4[0, v,E: 11)1,1;,&:_1111 + ,En_ll_H],
Fan—2[0 'UIE: 11)17 IEZ 11)1 + IE: 11-)}—1]7
v = { a1 —29 Fél—sa 1}51’
where F| = Fy[2,3,4] = Fp—q1 + Fr—s

36 N(S) =2F 11 b1 H?=_21 Fya
where Fi = F[0,1] = Fi—q + Fr—2

50 N(S) = 2Fd1+2 H;'!:_zl Fdi+1 + I(bn)Fdl-l-ZFda—l qu:ll Fdi [0, 1]
where Fj. = Fi,[0,1] = Fr—1 + Fi—2.

54: N(S) = an+3[0, an_l_g[o, J(an_l)an_2 B3 J(ag)Fbl [0, 2
+J(a1)’ L4 J(al)]7 e 7]
+J(an)Fy, [0, J(an-1)Fy,_, -+, J(az)Fy, 0,2
+J(a1)a 1+ ‘](0’1)]7 T 7]7
+J(an)an—1 [07 J(aﬂ—l)an—z T '](az)Fbl [07 2
+J(a1),1+ J(a1)}, -+, 1],
where Fy, = Fj_3 + Fj_s, and J(z) =1 — I(x)

76 (S) Fd1+2[2Fda+2 £ I(bn— )Fda 1)Hr—2 Fd;
where Fy, = Fi,[1,1] = Fy_y + Fy_s.

90,150,204 N(S) = 4.
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94,122 N(S) = an+3[0, I(an)an_l_z[O, I(an—l)an_2—2[07 sty
Fb1[0’1(a1) + 1,]((11 + 1),1]]7 . ,]]
+an_1—3[0a I(an—l)an—2—2[Oa e 7Fbl [07 I(al)
+1,I((l1 + 1)7 1]]7 et 7”
where Iy, = Fy_3 + Fj_4.

108 N(S) = an+4[(1 - I(bn—l))an—1+1[(1 S0 I(b"—Z))an—z[' iy

(1 = I(b2)) Fyy1[(1 — I(8,)),0,2 + I(ay)]], -+, ]
where Fj, = Fj_y + Fj_s.

126,300 N(S) = 2F;,41Fp, 41 [T Fiia
where F, = Fk[O,l] = Fy_1+ Fi_s.

128,254 N(S) = Foyq2Fu, 12 ]—[1_ Foiq
where Fj, = F[0,0,1] = Fy—1 + Fy—o + Fi_s.

132,222 N(S) = Fy 1[0, I(b_1)Fa,_,[0, I(ba—2)Fa,_,]0,
(b2)Fa2 [0 I(bl)Fa:t 1, I(bl)Fal 1+ Fal—Q] o ]]7
I(bp-r)Fs,_,[0,1(bp_s)F, [0, -
I(bZ) uz[o I(bl) a1 — laI(bl) ar-1+ Fa1—2] : ]]
+Fan_1 1[0 I(bn 2)Fan_2[ )
1(b2) F, [0, I(bl)Fal—laI(bl)Fal—l + Fya] * 1l

146,182 N(S) = Fu,43[0,I(bs) Fu,_,—2[0, I(bp—1)Fy,_ 2_2[0 R
Fou[0,I(by) +1,1(by +1),1],--,]]
+Fan_1—3[07 I(bn—l)Fan_2-2[0a | Fa1 [0’ I(bl) + 1’
I(bl + 1)7 1]]a e 7]]
where Fj, = Fj,_q + Fj_3.

160,250 N(S) = F,,42[0,0,(I(bp—y) + 1)F,,_,—2[0,0,---(I(b1) +1)
Fa; 3 + I(bl)Fa1—47
(21(b1) + 1)Fa1-3 + I(b1)Foy-al,-]]
+I(bn 1) ﬂn—1—3[0 0 (I(bl) + 1)Fa1_3+1(b1) a1—4)
2I(b) +1)Fo—3 + I(bl)Fa1_4], 1,
@) 4 1, oal00, = (T} + 1)
Fal—3 + I(bl) a1—4»
(2I(by) + 1) Foy -3 + I(bl)Fal—da xeaf]
+1(bn_1)Fa,_;—3[0,0, - (I(b1) + 1) Foy—a + I(b1) Fay-s,
(2I(b1) * I)Fa1—3 + I(bl) 01—4] ]]7

164,218 N(S) - a"+3[0 fl(n_l) f(n_l)+f("—1),f(n—1)+f2(n_1)+f3(n—1)]

whete fiD) = ) do-t) _ D)
n—l ?
S0 = Fopea a2, F D,
D 4 )

’U(n 1) {F,ﬂ"“2 3[0 (n 3)’f1n—3) +f2n—3),f1(n—3)
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f("—3) +f(ﬂ—3)]
unz-10, f(" 3’,f1("'3) S M A R A
+f3n_ ]} .
and ’U = { a;—4» a.1—2} f2 ) = == c:1—2’Fk = Fk-l +Fk—4,
and F} = F[2,3,4,5].

178 N(S) = Xn -+ I(b‘n—l)Xn—l + I(anbn._lbn_g)X -2
+I(an)I((bn—1)Xn-—37

where X, = K(a,)K (by—1)Xn—1 + [I(bp—2bn—1)K(ay,)
+I(anan_1)1"(bn_2)]Xn_2
+I(anan—1bn—2bn—3)Xn—3,

with initial values X; = I(a1) + K(a1),

X2 = I((bl)Xl + I(bl) + I(alaz),

and X3 = I((bz)Xz + I(blbz)Xl + I(a2a3)[K(b1)X1 + I(bl)],

and I(z) =1iffc=1and K(z)=1iff z =1 or 2.

200,236 N(S) = Fy Fy, 4o [0 Fa,s
where Fj, = Fk[O,l] =Fp_ 1+ Fr_o

232 N(S)= an+2[0 b 3 1[0 Fan_l-—Z[O
az 2[0 Fb1 1[0 a1—2’F¢;1—2+Fal.1—3]
Fl:,-zaFal—z'f' a1—3]]’ u]]
an—l—Z[OvFan—l 2[0
02 2[0 Fb1 1[0 a1—2vF;1—2+Fa1—3]
Fb] 2[0 01—27F,1 2+ —3]]) 7]]]a
where Fj, = Fjy_y + Fj_3, and Fk = Fy[2,3,4].
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