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Abstract. For a given rule and arbitrary spatial sequence, the preim­
ages of the sequence are defined to be the set of t uples that are mapped
by the rule onto th e sequence. T he enumeration of preimages provides
infor mation on th e probability dist ribution associated with an automa­
ton rule, determining, for exam ple, the probability of occurrence of a
sequen ce afte r one ite ration of the rule operating on a random ini­
tial condition . It is shown here that formulae can be obtained for
the exact number of preimages under an arbitrary one-dimensional
nearest-neighbor automaton rule for any spatial sequence. The quali­
tative feat ures of these formulae are determined by the combinatorial
st ructure of the automata rule tables. The formulae are analytically
and computationally useful for a wide variety of problems, includ­
ing the iden tification of gardens-of-Eden (spatial sequences with no
preimages) , the evaluation of quantities that require knowledge of the
prob abilities of occurrence for all possible spatial sequences, and th e
char acterization of st at ist ical features such as the tendency to produce
long runs of 1's and D's.

1. Introduction

T his paper derives for mu lae for the number of preimages for arbit ra ry spati al
sequences generated by one iteration of a a on e-dimensional cellula r auto ma­
ton on an infinit e lattice. The formulae provide information on the statistical
and dynamical features of these systems.

The preimages of any spatial sequence S are defined to be the set of
sequences t ha t are mapped to S by the automaton. T he number of preimages
for S determines it s prob ab ility of occurrence when the automaton rule acts
upon an in iti al condit ion in wh ich all spatial sequences appear with equal
frequency.

Preimages have been the subject of many studies, including those focussed
on the relationship among preimages, surjectivity, and rever sibility [1- 3J t he
existence of gardens-of-Eden (sequences with no preimages) [4,5], and t he
nature of limi t sets for cellu lar automata [6J. The enumeration of preimages
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was also considered in [7], where it was shown that the number of preim­
ages for arbit rary sequences satisfies a system of recurrence relations with
non-constant coefficients depending on the automaton rule. The recurrence
relations were used in that paper to establish that the total number of preim­
ages for certain well-defined subsets of spatial sequences scales with sequence
length.

In this paper, it is shown that the full system of recurrence relations can be
reduced to two uncoupled systems of linear recurrence relations with constant
coefficients. Although uncoupled, the two systems are interdependent in that
the solution of one serves as the initial value for the other. The systems can
be solved to give formulae for the number of preimages for arbitrary spatial
sequences.

The preimage formulae differ from rule to ru le, and yet exhibit qualita­
tive features t hat permit classification into general types. For example, the
formulae for elementary (nearest-neighbor, binary site-valued) rules can be
loosely characterized as belonging to one of six general types, with the partic­
ular type being determined by the combinatorial structure of the automaton's
rule table.

Once the preimage formula for an automaton has been found, it is then
possible to characteriz e its one t ime-step probability distribution. For exam­
ple, the formulae provide analytically and computationally usefu l expressions
for the evaluat ion of qu antities (such as the one time-step spatial metric en­
tropy) that require knowledge of the probabilities of occurrence for spatial
sequences. The formulae are also useful for studying the features of the for­
mal languages generated by automata rules , such as the identification of rules
that generate only a finite number of excluded blocks (blocks of site values
with no preimages) .

The paper is organized as follows . Section 2 presents the system of recur­
rence rela t ions for the number of preimages for arbitrary spatial sequences,
and outlines the method of its solution. Section 3 discusses qualitative fea­
tures of the different types of preimage formulae, and investigates the con­
nection between the type of formula and the combinatorial structure of the
automaton 's rule table. In section 4, some examples are given of the recur­
rence relations for spec ific rules and their solution. Section 5 considers the
use of the formulae to characterize the probability distribution and formal
language features of the automaton. Concluding remarks are made in sec­
ti on 6, and the appendix lists t he preimage formulae for all 32 symmetric
elementar y rules.

2. General form of recurrence relations

The general form of a one-dimensional cellular automaton on an infinite
lattice is given by
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where xl denotes the value of site i at time t, ! repr esents the "rule" defining
the automaton , and r is a non-negat ive integer specifying the radius of the
rule. The site values are restricted to a fini te set of int egers Fk = {O, 1, ... ,k­
I}, and are computed syn chro nously (in parallel) at each time ste p.

Let S = S n .. . S 1 be an arb it ra ry sequ ence of length n and R be an arb i­
trary cellular automaton rul e of radiu s r . Denote the number of pre images
of S under the rule R by N (S). In [7], recurr ence relati ons were derived
for N (S) in terms of the number of preimages of its subsequences , with the
preimages categorized according to t heir leading symbols of length 2r. Given
such a count of preimages for a subsequence of length k, for example, it is
clearly possibl e to determine the number of preimages for the sequence of
length k + 1 with a new site value (either 0 or 1) appended.

First consider the recu rrence relations for N(S) moving from right to left
in the sequ ence. For any integer 0 ~ m ~ pr - 1, wit h m = L:l.;::(j1mik2r-1-i,

denote by M = mo .. . m 2r-1 the symbol corresponding to it s k-ary represen­
tation. The symbols M thus range over all possible blocks of length 2r . In
the case of element ary rules, for example, the set of symbols M is given
by {OO, 01, 10, 11}. The pr eimages for sequence S will then be grouped and
counte d according to their leading symbols, wit h the total number of pr eim­
ages being the sum over all M of the nu mber of pr eimages beginning with
M; t hat is,

k2r - 1

N (S) = L: L'M,
m =O

where, for any i ,

L~ = number of pr eimages beginning on the left

with symbol M for sequence Sj . . . S 1 '

For element ary rul es, for example, the number of pr eim ageso f a seq uence S
of length n

Now define an indicator funct ion

Ij(x) 1 if Sj = x,
oif Sj =f x ,

and for 0 ~ i ~ k - 1,

X i ! (mo," ' ,m2r- b i ) ,
M, m1 ... m 2r - 1z,
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that is, M; is the symbol M shifted one component to the left, and with the
element i appended on the right. For M = 01, for example, Mo = 10 and
M1 = 11. Then it follows that

(2.1)

and the above system of recurrence relations can be used to express N (S) in
terms of start ing values L 1 that are easily computed from the definition of
the automaton ru le.

For example, consider Rul e 126 defined by

{000, 111} -> 0, {001,010 ,011 , 100, 101, 110} -> 1.

Then from (2.1), the recurrence relations for the number of preimages for
any sequence S can be written as

L/;;I Ij(O) + Lil1Ij(1) ,

(Lj- 1+ Lj-1)I(1)
10 11]'

(Ll;;I +Lil1)Ij(1),
L{11Ij(0) + L{olIj(l ).

The rec urrence relations can equi valently be written for N(S) moving left
to right in the sequence S.

The problem now is to solve the system (2.1) for an arbitrary rule and
string S . T he solut ion is obtained by decomposing the full system into two
linear subsystems coupled in the sense that the solution to one subsystem
serves as the init ial value for the other, and vice versa. The general t echn ique
is to define one subsystem (I) for the spe cial case of a string of all O's, and the
other (II) for the case of a string of all 1'so Consider an arbit rary string S,
then, as consist ing of a series of alternating blocks of D's and 1'so Subsystem
(I) is then a linear system of recurrence relations that can be solved for the
number of preimages of the first block of O's. The solut ion then provides the
init ial values for subsystem (II) (again a linear system of recurrence relat ions)
to be solved for the first block of 1's, and so on.

3 . Solution of recurrence relations

Systematic solut ion of the recurrence relations for the 88 distinct elementary
rules yields preimage formulae whose exact forms and parameters depend
on the particular rul es, but whose qualitative features permit classificat ion
into six types. The typ es, together with the labels and examples of the ru les
belonging to each type, are listed in this section. Note that the preimage
formulae for all 88 distinct elementary rul es have been derived [9], and are
available upon request.

The not ation used is the following. Let S be an arbitrary string .
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(i) From right to left , divide S into "blocks" of consecutive O's an d 1's, and
let

a; number of consecutive D's in the ith block,

b, number of consecuti ve 1's in the ith block.

For example, with S = 00101001100100, set al = a2 = a3 = 2, a 4 = 1,
as = 2 and b1 = 1, b2 = 2, b3 = b4 = 1. The convention is used that all
sequences begin on the right with al O's , with al ~ O.

(ii) From right to left , divide S into blocks of consecutive isolat ed 1's, and
let

d; = number of consecu tive isolated 1's in the ith block.

For example, with S = 00101001100100, set d1 = 1, d2 = 2.

(iii) 1(x) is defined to be the indi cator fun ction such that 1(1)
1(x) = 0 otherwise.

1 and

Then preimage formulae for all elementary automata rules have been shown
to belong to one of the following six types:

(A) constant;

(B) products of integers representing lengths 1; of blo cks of;

(C) products of integers represent ing the Ijh terms in ;

(D) terms in sequences sati sfying telescoping recur rence;

(E) terms in sequences whose values vary periodically;

(F ) solutions to other linear recurrence relations (with non-const ant coeffi­
cients) that do not obviously simplify.

For each of t he above ty pes, examples, together with a list of the rule
numbers of automata belon ging to that type, are given below. T he rules
listed are the 88 ru les distinct under reflection and symmetry ope rat ions .

(A) constant;

Rules 0, 15, 30, 45, 51, 60, 90, 105, 150, 170, 204

Example: For linear (i.e., automata with int eraction rules f that are
linear in the site valu es) and ot her automata for which the uniform
meas ure is invariant ,

N(S) = 4.
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(B) products of integers representing lengths l, of blocks of consecutive
"units ," where un its are either 1's and O's, or combinations of 1's an d
O's;

Ru les 11, 46, 138, 12, 24, 34, 44, 14, 38, 42, 35, 140
Example: For Rule 12, the number of preimages for a sequence S is
given by

N(S) 2(al +2), if n = 1,
n-I

2(al + 1)(an + 1) II a.; if n > 1 and all b, = 1,
i=2

0, otherwise.

where the a;'s are defined above and n is the number of dist inct blocks
of consecutive O's.

Example: For Ru le 35, the number of pr eimages N (S) is given by

n- I
N(S) = [2I (bn_I) +2 - I(a n)][3 - I(aI )]II [1 + I( bj_I)

j=2

n-I
[1+ I( bn_d ][3 - I(aI) ]II [1+ I( bj_I) - I(aj) ]

j=2

n

[1+ I(bn)][2 - 2I(a2) + I(bI)]II [1 + I (bj_I) - I (aj) ]
j=3

if al = an = 0
[2I (bn_I] +2 - I (an))[2 - 2I(a2 )

n-I
+ I(bd JII [1+ I(b j- I ) - I (aj) ],

j=3
if al = 0, an of 0,

where the a;'s, b;'s, and the indicator funct ion I(x) are defined above.

(C) products of integers representing the l it h terms in Fibonacci-like se­
quences , where the l;'s again are lengths of blocks of consecutive un it s;

Ru les 1,2,3,17,18, 19,36,72,126,128, 136,200,4,32, 168,7,8,16,
28, 50, 56, 76, 57, 162, 184, 156
Example: For Rule 126, N(S) is given by

N(S) 2Fb, +3 , if n = 1,
n-I

2Hn +IH,+I II Fb ; -I otherwise,
i=2

where the b;'s are defined above, n is the number of distinct blocks of
1's, and Fk = Fk - I +Fk - 2 with Fa = 0, FI = 1.
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Example: For Rule 50, N(S) is given by

Q' 0'-1

N(S) = 2Fd,+2 X II Fd;[I,1] + I(bn)Fd,+2 Fda-l II Fd; [O, 1]
;=2 ;=1

427

where the d;'s are defined above, Q is the number of distinct blocks
of consecutive isolated l's (i.e., blocks in which b, = 1), and Fk

Fk[O, 1] = Fk- l + Fk- 2.

(D) terms in sequences satisfying telescoping recurrence relations;

Rules 5, 6, 9, 33, 37, 54, 122, 94, 132, 146, 160, 23, 232, 62, 110, 108,
40, 130, 73

Example: For Rule 62, N(S) is given by

N(S) = Fbn+4 [O, Fbn _,+dO,' . " Fb,+l [O, F;'+l' F;,_l ],- . '],
Fbn_,-dO, ' . " Fb,+dO, F;'+l' F;,_l ], . . ']],

where Fdio , iI, 12] satisfies the recurrence relation Fk = Fk- 2+ Fk- 3

with F; = i ; for i = 0,1 ,2 , and F£ = FdO,0, 1].
Example: For Rule 33, the number of pre images N(S) is given by

N(S) = Fan+3 [0,!(bn-l)Fan_, [0,!(bn-2)Fan_,[0,···,
I(b2)Fa,[0, I(bl)Fa,-l,!(bl)Fa,-l + Fa,-2]" ']],
I(bn-l)Fan_,[0, I(bn-2)Fan_2 [0" . "
I(b2)Fa2[0, I(bdFa ,-l' I(bl)Fa, _l + Fa,-2]" .]]
+Fan_,-dO, I(bn- 2)Fan_,[0 , .. "
I(b2)Fa,[0 , I(bl)Fa,-l' I(bl )Fa,-l + Fa,-2]" ']],

where the a;'s, b;'s, and the indicator function I( x) are defined above .

(E) terms in sequences whose values vary periodically depending on the
lengths l; of blocks of consecutive units;

Rules 22, 104, 164, 41, 152, 10, 25, 26, 27, 172, 134

Example: For Rule 152, N(S) is given by

an - 2

N(S) = 2(v(n) + v(n) ) + " vn
an an-1 L...J t'

i=O

where v(n) = v(n) if J' is even and v(n) = v(n) if J' is odd and
J 0 'J 1 ,

an_l -l

V(n) = [v(n) v(n) ] = [v(n- l ) I(b )" Vn- l ]
- 0 , 1 an_I' n-l L.-J t ,

;=0

and

v(o) = [1, I(bd(al + 1)],
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where I(x) = 1 iff x = l.

Example: For Rule 22, N(S) is given by

h (n) - (n) k - 0 d . - kwerevj - vk , - ,1,2an J =
is defined to be

(mod 3), and the vector v (n)

(n) [ (n- l) F [0 (n- l) (n-l) (n- l) ]
V = vb n _ 1 , an-l , Vbn _1 -1, Vbn _ 1-1 + Vb n _ 1 + 1 ,

F [0 (n-l) (n-l) (n-l) ]
an -2 , Vbn _ 1- 1, Vbn _ 1- 1 + V bn _

1
+ 1 ,

with v iOl = {F~, -2' F~,-3' 1h, and F£ == Fk [2,3 ,4] = Fk - l +Fk - 3 , and
the bi's as defined above.

(F) solutions to ot her linear recurrence relations (with non-const ant coeffi­
cients) that do not obviously simplify.

Rules 13,43, 58, 78, 142, 178, 29, 74, 77 (10)

Example: For Rule 178, N(S) is given by

N(S) = X n + I( bn-I)Xn_1+ I( anbn-Ibn-2)Xn -2

+I (an)K(bn -I)Xn-3,

where

x; K(an)K(bn- I)Xn_1+ [I(bn-2bn-I)K(an)

+I( anan-I)K(bn-2) ]Xn-2

+I (anan-l bn- 2bn-3)X n- 3,

with initi al values Xl = I(ad +K(al)' X 2 = K(bdXI+I(bl )+I(ala2)'
and X 3 = K (b2 )X2+I(blb2 )XI +I(a2a3)[K(bd X I+ I (bl )] , where I( x) =
1 iff x = 1 and K (x) = 1 iff x = 1 or 2.

The type of preimage formu la associated with a rule is determined by
combinato rial features of its rule t able. The easiest way to see the connect ion
is by looking at the De Bruij n graph associate d with a rule. This graph is
constructed by assigning a node to each of the 4 possible 2-tuples 00, 01, 10,
and 11, drawing a directed edge between each tuple x y an d y (i.e., between
each pair such that the second component of one tuple is the same as the
first component of the other), and then labelling the edge with the value
assigned by the ru le to the 3-tuple x y. Figure 1a shows the De Brui jn graph
associated with the generic rule

and the De Bruijn graph for Rule 12 is given in figure lb.
In discussing such graphs, the terminology used will be as follows. A

pat h is any sequence of connected edges in the graph. A circuit is a path
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o

01

o

o

Figure 1: De Bruijn graphs for (a) a general elementary automa­
ton rule; (b) Rule 12 defined by {000,001,100,101,110,l1l} -+ 0,
{010, 011} -+ 1.

that begins and ends at the same node. The length of a circuit is the number
of edges in the shortest path traversing the circuit. A constant-valued circuit
is a circuit with all edges carrying the same value. Two circuits ar e equal­
valued if they are constant-valued and carry the same value. Two circuits
are disjoint if they contain no node in common. A simple constant-valued
circuit is a circuit that is disjoint from all other circuits carrying the same
value.

It follows that the total number of preimages for a sequence S = 80S1 .. . is
given by the total number of distinct paths such that the values of the edges
traversed by the path are given by so, 81, and so on . In particular, suppose
(as an exercise) that the problem is to determine the number of preimages for
a sequence of n D's, and that the set of edges labelled with 0 are connected as
shown in the various diagrams of figure 2. Suppose further that the preimages
to be counted are only those starting with the components represented by
x and ending with those represented by y. Then the desired number of
preimages is equivalent to the number of distinct paths of length n that can
be constructed starting from the node x and ending with y. Specifically, the
number of preimages is given in each case by

(a) N(S) = 1.
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(a)

(e) (d)

00
(b)

(0)

Figure 2: De Bruijn graphs for which the number of pat hs of length
n beginning at node x and ending at node y are compute d.

(b) N(S) = n . An ad miss ible path is constructed by travers ing the loop
x - x for some n l ?: 0 steps , then following the edge x - y , and fina lly
traversing the loop y - y for exactly n - (nl + 1) steps. There are n
possible posit ions for the edge x - y to occur in the path, and therefore
n possible paths .

(c) N (S) = Fn, where Fn = Fn- 1 + Fn- 2 with Fo = F1 = 1. In this case,
the number of paths of lengt h n that begin at x and end at y is the
sum of the nu mb er of paths of length n - 1 that end at y and can be
lengthened by one t raversal of the loop y - y, and the number of paths
of length n - 2 that end at y and can be lengthened by one traversal of
the circuit y - z - y. Thus the number of paths satisfies a recurrence
relation of degree 2 with Fo = F1 = 1 (in fact , t he Fibonacci relation).

(d) N(S) = Fn-l, where Fk = Fk - 1 + Fn- 3 wit h Fo = F1 = F2 = 1. The
reasoning is similar to that above.

(e) N(S) = 1 if n odd,

= 0 if n even.
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(b)

(a)

(e)

(e)

(d)

Figure 3: De Bruijn graphs for which t he number of paths of length
n, beginning at nod e x and ending at node y, and consist ing of edges
with the value 0 together with edges with value 1, are computed.
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Now consider in addition edges lab elled with 1's, as in the diagrams of fig­
ure 3. Suppose that the problem is to find the number of preimag es of a
sequence consist ing of a2 O's followed by bl 1's followed by al O's , and again
that the on ly prei mages to be counted are those starting with the components
x and ending with the comp onents y. By extending the reasoning above , the
number of preimages is found to be

(a) N(S) = 1.

(b) N (S) = a2al if b, = 1,

= 0 otherwise.

(c) N(S) = Fa, -lFa J- b where Fk = Fk - I + Fk - 2, and Fo = F 1 = 1.
The number of paths that start at x, traverse th e edges lab elled 0
for a l steps, and th en t raverse the loop z - z for bl steps is Fa l - l with
Fo = F1 = 1. The number of paths that start at z ; traverse the edges
labelled 0 for a2 st eps, and end at y is F~, _I where Ff. = Ff. _1 + Fk-2
with F~ = F{ = F al- l , or therefore Fa, - IFa l - l .

(d) N(S) = Fa,-2Fal-1 if bl > 1,

= Fa,[O,Fa.,Fal +Fa l - l ] if bl = 1, where Fk = Fk - l +Fk - 3 . The
reasoning in both cases is the same as in (c) . The difference when
bl = 1 is that the the initial values of Fk cannot be factored out so as
to express the solution as the simple product (without sums) of te rms.

(e) N (S ) = 1 if al,a2 both odd,

= b, - 1 if aI, a2 bot h even,

= 0 otherwise.

Note that the above five cases exhibit the qualitat ive features of types (A)-(E)
listed above.

In general, as the preceding examples suggest, conditions can be der ived
relating a rule's type of preimage formula to the structure of its De Bruij n
graph. Combinatorial arguments establish that the preimage formula for an
elementary rule

(I) is constant if every node has the feature that either all incoming or all
ou tgoing edges carry distinct values (i.e., either the graph or the graph
with the direction of each edge reversed is det erministic).

(II) consists of "pure" terms (i.e. , terms that do not involve solutions to
recurrence relations ) only if all constant-valued circui ts are disjoint.

(III) contains Fibonacci-like terms if there exist at least 2 distinct non­
disjoint constant-valued circuits GI , G2 , ' " c; of lengths [I , [2, " . t; (i.e .,
the circuits contain a node common to all). Then the terms satisfy the
recurren ce relation Fk = Fk - I I + Fk - h +...Fk - 1n •
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o 0

(a)

10

o

o

(b)

Figure 4: (a) Rule 50, for which blocks of consecutive isolated l's are
the basic counting units ; (b) Rule 178, for which no constant-valued
circuit oflength greater than 1 exists .

Condit ion (III ) can be general ized to treat cases such as Rule 50 (see the
examples following the descr ipt ion of Type C) in which the fundamental unit
is a block containing an isolated 1, rather than a block of arbitrary length
of consecutive l's . The De Bruijn graph of Rule 50 (shown in figur e 4a)
indicates that with a red efinition of the relevant circuits C1 , C2 , ' " to permit
the occurrence of an isolat ed 1, the rule satisfies the condition for a pr eimage
formula with recurrence relation terms.

A further distinction can be made among rules whose formulae rep resent
products of simp le terms (as in Types B and C), tel escoping recurrence terms
(as in Type D) , and terms in periodic series (Typ e E). A pr eimage formula

(IV) consists of products of Fibonacci-like terms if the conditions of (c)
hold and in addition , denoting by z" a node common to the constant ­
valued circuits C1 , C2 , ' " Cn , the nu mb er of edges separ ating x · from
any edge labelled with the same value is at least lmax - 1, where [max is
the maximum circuit length. Otherwise the formula belongs to Typ e D.

(V) belongs to Type E (contains periodic terms ) iff there exist s a sim ple
constant-valued circuit of length greater than 1. The length of the
circuit is then the period of the sequence.
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Note that the rules classified here as belonging to Type F are characterized
by the absence in their De Bruijn graphs of any constant-valued circuits
of lengt h greater than 1. Such is the case, for example, in the graph for
Ru le 178, shown in figure 4b. A re-definition of variables (as in the case of
Ru le 50 discussed above) may, however, permit the solution in closed-form
of the recurrence relations for rules of this type.

4. Examples of solv in g for preimage formulae

In this section, cellular automata exemplifying each of the major types will
be treated in detail. Aspects to be discussed include the method of solution
for each example and the relationship between the combinatorial features
of each rule table and its type of preimage formula. As the discussion in
the previous section made clear, the number of preimages for a sequence is
equal to the number of appropriately defined paths in the reduced De Bruijn
graph associated with the rule. For counting purposes, the De Bruijn graph
given in conjunction with each example will be the reduced graph obtained
by combining nodes equivalent in the sense that all paths through the nodes
carry the same symbol sequences. (See [10] for discussion of equivalent rep ­
resentations of De Bruijn graphs for automata rules.)

Case a. As a trivial but nonetheless interesting example, first consider
Ru le 30 defined by

{OOO, 101, 110, 111} -+ 0, {001, 010, 011,100} -+ 1. (4.1)

The recurrence relations for this ru le are given by

u; L1;;lIj(O) + Lbl 1Ij(1),

Lb1 (L{Ol +L{ll)Ij(l ),

L{o LbO1 Ij(l ) + Lbl1Ij(0),

L{l (L{ll +L{Ol)Ij(O).

Solving the above for the special case of a string of all O's, and then for the
case of a string of all 1's, the system can be rewritten as the two systems

in:'00,

0,

oi:'00'

oi: +u::
v,j-1

01 ,
uj-1 uj-1
vlO + vn ,
v,j-1

01 ,

O.

(4.2)

(4.3)

With UJo = Ufo = 1, Uf1 = 2, UJ1 = 0 as initial values, system (2) can be
solved to yield U(;J = 1, U~l = 0, Ufd = I(a1), Ufl = 3 - I(a1)' implying that
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for any sequence of al O's, N(5) = 4. Moreover, for any n > 1, it is easy to
show that

nan V;bn- 1 T ran °Uan I( ) V;bn- 1
Uoo = 00 , UOl = , 10 = an 01 ,

which together with the fact that V1
bt -1 = 0, implies that the total number

of preimages for a sequence ending with l's on the left is not changed by
adding O's. Similarly, it can be shown that N(5) is unaffected by adding l's
to the left of a sequence of O's, and thus for all sequences 5, it follows that
N (5 ) = 4. The constancy of the number of preimages is of course clear from
figure 5a since exactly one edge with the value 1 and one edge with the value°emanate from every node in the graph.

As a fur ther detail, the decomposition of the pre images by leading com­
ponent s exhibits a structure described by

V;bn _ (n-l) V;bn _ (n- l ) ubn _ (n-l) ubn - °
00 - Vbn_1- t ' 01 - vbn _ 1 ' VlO - V bn _ I - 2' Vn - ,

where vyn) = v l
n), k = 0,1,2 and j = k (mod 3), with the vector v(n) being

one ofthe four vectors [0,3,1], [0,1,3]' [0,4,0], or [0,0,4]. Initially v(O) = [0, 3, 1],
and the vector evolves, as the sequence grows right to left, according to the
rules:

[0,3,1]
'\, bi =1

bi =2 i1 b; =2 [0, 4, 0]

/b i = 1

b, =2

bi =1,2
[0, 0,4]

[0,1,3]

The above should be interpreted to mean that the vector changes in the
fashion indicated by the arrow depending on each new value of bi (mod 3),
where b, is the number of l's in the next-to-the last block of 1'so (If b, assumes
a value not associated with an arrow, the vector remains unchanged.) For
a sequence with a to tal of b« blocks of 1's, in other words, the vector v(n)

is determined by the values of b1 , b2 , ' " bn- 1 , and the number of preimages
according to leading left components is then given by the bnth component
of th e vector. For instance, in a sequence with b, =0,2 (mod 3) for all i,
t he vector v(n-l) is given by [0,3,1] if the number of b, =2 (mod 3) is even,
and by [0,1,3] if the number of b; = 2 (mod 3) is odd, and the number of
preimages of the sequence that begin with 01 is given by the kth component
of v (n-l ) where b.; = k (mod 3).

C ase b. Next consider Rule 12 defined by

{OOO, 001,100, 101, 110, 111} ----. 0, {010, OIl } ----. 1. (4.4)
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Figur e 5: Reduced De Bruijn graphs for Rules (a) 30, (b) 12, (c) 126,
(d) 18, (e) 232, (f) 22.

T he rec urrence relations for this rule are given by

Lio (Lfx;l + Li~l)Ij(O) ,

u; (L{OI + Li~l)Ij(l),

L{o (Lfx;l + Lb~l)Ij(O),

L{l (L{~l + L{Ol)Ij(O).

Solving the above for the sp ecial case of a string of all O's, and then for the
case of a st ring of all 1's , the syste m can be rewritt en as the two sys te ms

ugo = UJol+ Ug;-l,
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0,
rri-1 + rri-1v oo VOl,

Ui - 1 + Ui - 1
11 10 ,

0,
V!O-l + VA-1,

0,

o.

(4.5)

(4.6)

The definition of the rule implies

With these as initial values, system (4.5) yields for a string of a1 D's,

For a string that consists of b1 1's appended on the left to the first block of
D's, system (4.6) yields (using the above as starting values)

V;d = Vtl = v;.bd = 0, V;l = 2I(b1)(a1+ 1),

where l(x) = 1 iff x = 1. The values above are then used as starting values
for system (4.5) with a2 D's, and continuing the process yields the general
solution

n -1 n-1

ugr; = Ufo = 2(a1 +1) II ai, ug1 = 0, Ufl = 2(a1 + 1)(a n - 1) II ai,
i=2 i=2

for the case that b, = 1 for all i. Since the total number of preimages is
equal to the sum of the individual terms above, it follows that the numb er
of preimages is given by

N(S) 2(a1+2), ifn =l ,
n-1

2(a1 + 1)(a n + 1) II a., if n > 1 and all b, = 1, (4.7)
i=2

0, otherwise.

It is straightforward to show that the same formula holds true in the case
when either a1 or an is equal to O.

The De Bruijn graph for Rule 12 (shown in figure 5b) indicates that
all constant-valued circuits are disjoint, and therefore the rule satisfies the
condition for a Type A preimage formula.

Case c. Consider Rule 126, defined by

{ODD, Ill} -+ 0, {DOl, 010, 011,100,101 , lID} -+ 1. (4.8)
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The recurrence relations for the numb er of pre image s N (S) were given in th e
previous section. System (2.2) for this rule can be decomposed into the two
systems

oi:'00 ,

0,

0,
Ui - 1

11 . (4.9)

(4.10)

The definit ion of the ru le impli es

U~o = 1, U~l = Ufo = 0, v; = 1.

With these as initial values, system (4.9) yields for a stri ng of al O's ,

ugd = Uff = 1, Ugf = Ufd = 0,

For a string that consists of b1 1's appended on the left to the first block of
O's, system (10) yields (using the above as starting values )

V~ = Vi
b/ = Fbl - I [0, 1], V;/ = V;bd = FbI [0,1],

where F k = F k - I + F k - 2 (e.g., the kth Fibonacci number) with start ing
values Fo = X , FI = y. The values above are then used as starting values
for system (4.9) with a2 D's, and cont inuing the process yields the general
solut ion

n-I
V~n = VIbt = V;t-t, V;t = V;bo= FbnFbl -I IT Fbi -I,

;=2

where the te rms Fk [O ,I] have now been abbreviated as Fi , Since the total
number of preimages is equal to the sum of the individual terms above, it
follows that

n-I
N(S) = 2Fbn+IFbl+I X IT Fb;-I ,

;=2
(4.11)

independent of th e values of the a ; 'so
The De Brui jn graph for Rule 126 is shown in figure 5c. Given any se­

quence of consecutive b, l's (bordered in general by D's on the left and right) ,
with 1 < i < n, a preimage for the sequence is constructed by concatenating
the nod es of a path that starts at node x, then uses some combinat ion of
traversals of loops x-y-x and loop y-y, and finally ends at node x. The num­
ber of preimages is the number of possible such paths. Let Fk deno te the
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number of paths of length k that star t and end at x. Statement (III) from
section 3 st ates t hat Fk satisfies the recurrence relation Fk = Fk - 1 +Fk - 2 .

Moreover, the "distance" between the node x (labelled 0) and node y is 1,
and therefore th e distance is ~ k - 1, where k is the degree of the recu r­
rence relation. Thus, statement (IV) from section 3 implies that the tot al
number of paths that can be const ruct ed for an arbit rary sequence satisfies a
formu la expr essible as th e product of Fibo nacci terms , and th e to tal number
of preimages for the enti re string is given by t he above expression for N(S).

C ase d. Next consider Rule 18, defined by

{ODD, OIl} -+ 0, {DOl , 010, 100, 101, 110, Ill } -+ 1. (4.12)

The two systems corresponding to the cases of all D's and all l's are given by

ui: '00 ,

Ui - 1
11'

0, )

O.

v,i- 1
01 ,

v,i- 1
10 ,

vdo-1 +vdr-1
,

u i -l +ui- l
vI0 vll ·

(4.13)

(4.14)

It is easy to see that all b, must be either 1 or 2 in order for the number of
preimages to be nonzero. Since

system (3.3) yields for a st ring of al D's,

For a st ring th at consists of b1 1's appended on the left to the first block of
D's, system (3.4) yields (using the above as starting values)

V;ri = I(b1 )Fa l _r[2,3]' V;l = Yrbl = 0, Yrbri = I(b1 ) + I (b1 - 1)Fa l _r[2,3],

where Fk again denotes the kth Fibonacci number, and I( x) is an indicator
funct ion such that 1(1) = 1 and I (x) = 0 otherwise. The values above are
th en used as starting values for system (4.13) with a2 D's, and continuing the
process yields the general solution

us» I(b )u,an- I u» u,an- l00 = n - l 01 , 10 = 0 1 ,

(4.15)
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where Fk denotes Fk [O, I J. A closed-form express ion can be given for the
above system by defining kL , kR to be the leftmost and right most values of
i such that b, = 2. Then

U~l = Fa;. Fa; II e;
i EA u B

where

Fa; F~, -IFa3 . .. FakR, kR even,

Fa2Fa•·· . FakR, kn odd,

Fa;. FanFan_2 . . . FakL+3 , n - ki. odd ,

0, n - kt. even,

and

A == {i I bi - I = 2},

If there exists kl , k2 satisfying the conditions above but with k2 - kl even, then
B is defined to be the set {O}. The ot her values Ui», UlO , Un are determined
from equa tion (4.15) . The tot al number of preimages is thus given by

n -kL -3

N(S) = (2Fan + Fan -I) II Fan_;Fa; II Fail n - kL odd ,
j =2,j even iEAuB

n -kL -3

II Fan_;Fa; II Fail n - kL even,
j =l ,j odd A,B

for strings with all b, equa l to 1 or 2, and N(S) = 0 otherwise.
The De Bruijn graph of Rule 18 is shown in figure 5e, and clearl y indicates

a Fibonacci-structure for the preimage formula. T he presence of the O-valued
loop x-x complicates the count ing procedure for this gra ph, and in particular
induces a dependence on the odd versus even nat ure of the number of blocks
of O's.

To illust rate the use of the preimage formula, let

S = 1100010 10110000011010.

T hen n = 7 (since by assumption all strings begin and end wit h 0), and
kL = 6, kn = 2. Hence
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Also, the set A is defined to be A == {a3, a4}' and B to be the set B == {a6}'
and N (S) is given by

n-kL-3

N(S) (2Fan + Fan-I) II r.:,»; II Fa"
j;:::;2,j ev en iEAuB

Case e. Next consider Rule 232, defined by

{DOD, 001, 010, 100} -+ 0, {Oll, 101, 110, lll} -+ 1. (4.16)

Then from (2.1), the special cases of a string of all D's and a string of all L's
can be written, as in the preceding examples, as

O.

(4.17)

(4.18)

For a string S beginning on the right with al D's, the system (4.17) yields

0, vu: = Fal- 2 [2, 3, 4],

Fal- 3 [2, 3,4],Urr I = Fa1- tl2, 3,4],

with Fk[xa, Xl, X2 ]defined as the value satisfying the recurrence relation Fk =
Fk - I + Fk - 3 with initial values Fa = Xa ,FI = Xl, F2 = X2 ' Then for a string
of bI l's, system (4.18) yields (using the above as starting values)

lfabd Fbl [0,Fal -2 [2,3,4],Fal-2[2,3,4]+ Fal_3 [2,3,4 ]],
V~i Fb,-2[0, Fal- 2[2, 3,4 ], Fal- 2[2, 3,4] + Fal_3 [2,3,4 ]],

Vtd Fb, -I [O, Fal- 2[2, 3, 4], Fal-2[2, 3, 4] + Fal-3 [2, 3, 4]],

vti o.
Continuing the process yields the general solution

ugo 0,

Ugi Ulai-I,
Ufo vir:
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Fan [0 , Fbn_.-d O, Fan_.- 2[0, "', Fa2- 2[0, Fb. -l[O, F~._ 2 ' F~. _2

+F~.-3J ,

Fb. -2 [0 ,F~. _2 ,F~. _2 + F~. _3]]'· · · ,JJ,
Fbn_. - 2[0, Fan_. - 2[0, .. " Fa2- 2[0, H.-dO,F~. _2' F~._2

+F~._3J ,

Fb. _2[0, F~._2 ' F~. _2 + F~. _3 ]] ' .. . , ]]] ,

where the terms Fk [2,3, 4J have now been abbreviated as FL an d all other
terms represent solutions to the recurrence relation with specified initial val­
ues. It follows that

N(S) = Fan+2[0, Fbn _.-dO, Fan_.-2[0,···, Fa2- 2[0, Fb. -l [O, F~ . _2'

F~._2 + F~._3J,

Fb,-2[0 ,F~. _2' F~. _2 +F~. _3]]' . . ', ]],
Hn_.- 2[0, Fan_.- 2[0, . .. , Fa2-2[0 , Fb, - l [O, F~. _2 '

F~._ 2 + F~. _3J,

Fb, -2[0, F~, _2' F~._2 +F~,_3]]' . . . , ]]], (4.19)

and thus the total number of preimages for any string is obtained as the
solution to a te lescoping recurring relat ion.

Again , the De Bruij n graph for Rule 232 (shown in figur e 5e) serves as
the bas is of a combinatoria l proof of the formula for N(S) . The graph can
be decomposed into two connected subgraphs, one generating st rings of all
O's and the other generating string s of all 1'so Each subgraph consists of
two loops, one of order 1 (v-v and z-z) and one of ord er 3 (edges x-z-y-x
and x-y-v-x). Thus, for each case, th e number of paths Gk th at can be
construc ted corresponding to a string of length k can be shown , using an
arg ument analogous to that used for Rule 126 above, to satisfy th e relation
Gk = Gk - l +Gk - 3 •

C ase f. Finally consider Rule 22 defined by

{DOn, 011, 101, 110, 111} -+ 0, {001, 010, 100} -+ 1.

The full system is given by

Lio L{;;l Ij(O) + Lil
l l j(l ),

Li1 (L{Ol + L{ll) Ij(l ),

L{o (L{;; l + Lil 1)Ij(1),

L{l L{ll Ij(O ) + L{olIj(l ).

With

L60 = L61 = L~o = 1,L~1 = 2.

(4.20)
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as initial values, the above syst em yields for a string of al O's ,
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where Fk[xo,Xl, X2 ]satisfies the relation Fk = Fk- 1+Fk-3, wit h Fo = XO, F1 =
XI, F2 = X2 ' For a string that consists of bl 1's appended on the left to the
first block of O's, (using the above as starting values)

lfabJ {F~I _2,F~I _3,lh"

V;t V;r2
,

~bJ V;r\
Vlbt 0,

where Fd2, 3, 4] has been abbreviated as Ft., and the expression on the right
hand side is defined as follows:

Continuing the process leads to

where V)n) = vi
n)

, k = 0,1,2 and j == k (mod 3), and the vector v(n) IS

defined to be

with v(O) = {F~I _2 , F~I _3 ' 1hl and Ft. == Fk[2,3,4] = Fk- l + Fk- 3.
The De Bruijn graph for Rule 22 is shown in figure 5f. Sta tement (V)

in section 3 asserts that the per iodic structure in the number of preimages
arises from the existence of the simple circuit of length 3 and all edges with
the value 1.

5 . A p p licat ions of preimage formu lae

The formu lae for preimages derived in section 3 provide information on the
statistical and dynamical features of cellular automata. Examples of uses
of preimage formulae include the analysis of the complexity of automata
rules, the calculation of specific statistical quant it ies that require knowledge
of probabilit ies of sequences, and the characterizat ion of the pro bability dis­
tribut ion of spatial sequences generated by one iteration of the rule. In this
section, some applications of the preimage formulae are discussed.
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5.1 Gardens-of-Eden

A finite-complement regular language is defined to be a regu lar language with
a finite number of excluded blocks. Since blocks excluded after one ite rat ion
of a cellular automaton rule are termed "gardens-of-Eden" [1 ,4,5]' a rule
that generates a finite-complement regular language at t ime t = 1 has the
property that there exists an L < 00 such that any garden-o f-Eden sequence
of length greater than L contains a garden-of-Eden sequence of length :<::: L.
In [10], Wolfram describes a test for determining whether a rule generates a
finite-complement regular language. The test involves determining the size
:=: of the minimal DFA graph associated with the langu age, and checking
for excluded blocks of length :<::: 2:=:. If the only excluded blocks are those
of length < :=:, the language is a finite-complement language. If there exist
excluded blocks of length greater than E and less than 2:=:, as well as of length
< :=:, then the language cannot be a finite-complement language. Since the
size of the minimal DFA can be as great as 15 [see table 1 in [1]), the test
requires in some cases that all st rings of size up length 30 be checked.

The formulae derived in section 3 provide an analytical check of whether
an automaton rule generates a fini te -complement regular language after one
iteration. In many cases, the an swer is obvious. For inst an ce, equation (4.11)
clearly indicates that a sequence is a garden-of-Eden for Rule 126 iff b, = 1
for some 1 < i < n. Therefore, in this case, every garden-of-Eden contains
the subsequence 010, and the sequences generated by one iteration of the
ru le constitute a finite-complement language.

In this sect ion , the preimage formulae deri ved in sect ion 3 will be used
to provide proofs that a rule does or does not generate a finite -complement
langu age for less obviou s cases. The first case to be cons idered is Rule 22,
defined in (4.16 ).

Proposition 1. The sequences generated by one iterati on of R ule 22 do not
constitu te a finite -complement language .

Proof. Consider the infinite set of sequences Sk == 1050101, where 5 denotes
a sequence of k = 3q 1's, for any value of q. Clearly, Sk does not cont ain
any sequence Sj for j < k. Show that N (Sk) = °for all k = 3q, where N (S)
is the exp ression (19). For any Sk, the associated parameters are given by
al = 0, a2 = a3 = a4 = bi = b2 = b4 = 1, b3 = k. Then

v(I ) [1, F_2 [2, 3, 4], F_3 [2 ,3,4]] = [1, 1,1J,
V( 2) [1, Fo [O, 1, 2J,F_1[0, 1,2 ]] = [1 ,0 , 1],
V (3) [0, Fo[0, 1,2J, F_I[0, 1, 2]] = [0, 0, 1],
V (4 ) [0, Fo [O, 1, IJ,F_tlO, 1,1]] = [0,0,0],

an d thus N (Sk) = °for all k, an d the rule is not a finite-complement lan­
guage. •

The next case to be considered is rule 54, defined by

{ODD, 011,110,Ill} ---t 0, {DOl ,010,100,101} ---t 1.
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In [10], on the basis of computational searches as described earlier in the
section, Rule 54 is included in the set of rules that do not generate finit e­
complement languages aft er one iterat ion; it will be shown here th at the
reverse is true.

Proposition 2. Tbe sequences generat ed by one iteration of R ule 54 con­
stitute a finite- complem ent language.

Proof. The number of preimages for a sequence S und er Rule 54 is given by

N(S) = Fbn+3[0 , Fbn_ I - 2[0, J(an-l)Fbn_2 "' , J (a2)Fbl [0, 2 + J( al), 1

+ J(al)]" " , ]
+ J(an)Hn_1 [0, J(an-l)Hn_2 • • " J (a2)Fbl [0, 2 + J (al ),1

+ J (adl , " " ]'
J (an)Fbn_1 [0, J(a n-l)Fbn_2 " ' , J(a2)Fbl [0, 2 + J(al), 1

+ J(al) ]"" .il.

wher e Fk = Fk- 3 + Fk - 2 and J(x) = 1 if x> 1 and J( x ) =°otherwise.
It is easy to show using the above expression th at the four sequences

10110, 10101, 01101, and 10111101 are gardens-of-Eden. Let Sn be any
ot her sequence such that N(S) = °and an t- 0. Show th at Sn must cont ain
one of the four sequences.

Assume th e contrary. First consider th e case that J( ai) = °for i =
n, n - 1. For any m , define Sm to be the sequence that matches Sn in all
entries starting from the right up to the mth block of consecutive 1's o From
the preimage formula,

where Z = Fbn_2 - 2 [0, H n _ 3 - 2[0, ' . ·,0]' 0]. Since Sn is assumed to cont ain no
smaller garden-of-Eden, it follows that Z t- °since otherwise Fbn_1 +3 [0, Z , 0] =
0, and therefore N (Sn- d = 0. But then bn+ 3 must assume one of the values
- 1, 0, or 2 in order for N (Sn) to be equal to 0, and this contradicts the defini­
tion of the parameters bi's. It follows therefore that Fbn_I - 2 [0, Z , 0] = 0, and
bn - 1- 2 must assume one of the values -1,0, or 2; in other words, bn - 1 = 1,
2, or 4. If bn - 1 = 1, then the sequence begins on th e left with the values
10101; if bn - 1 = 2, then it begins with 101101; if bn - 1 = 4, th en it begins
with 10111101.

Next suppose that J(a;) = 1 for either i = n or i = n - 1. It is easy to
show using reasoning similar to that above that Sn must contain either the
sequence 01101 or 10111101.

Finally, consider the case J(an) = J(an_l) = 1. Then
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where

X Fbn_ 1 - 2[0,Zl + Z2,Z2],

Y n.: [0, z, + Z2, Z2],
z, Fbn_ 2 - 2 [0, Fbn_ 3 - 2[0 , · . ·,0],0],
Z2 Fbn_ 2 [0, H n _ 3 - 2[0, . .. , 0], 0],

Erica Jen

In order for N (S) to be equal to zero, it must be true that X = Y = O.
It follows then that bn - 1 = 2 and Z2 = o. The fact that Z2 = 0 implies
that bn - 2 = 2 and either J(an _2) = 0 or Fbn_ 3 - 2[0, ···, 0] = O. If the former
is t rue, then the case reduces to one of the cases discussed above. If the
latter is true, then the argument can be cont inued either until J (ai) = 1 for
some i, or until the end of the sequence Sn is reached. If J(ai) = 1 for all i,
then in order for Sn to be a garden-of-Eden not containing any of the four
smaller gardens-of-Eden, it must be true that FbI [0, 3, 2] = 0 or b1 = 0, which
is a contradiction. Therefore Sn cannot be a garden-of-Eden distinct from
the four given sequences, and therefore the language is a finite-comp lement
regular language.

Finally, note that the pre image formulae ident ify, in ad dition to the
gardens-of-Eden, the sequences that are not excluded after one iterat ion of
the rule, and therefore presumably are useful in the characterization of the
regular languages that can be generated as the one time-step image of an
automaton [11].•

5. 2 Compu t a t io ns of sp a t ia l m easure entropy

The closed-form formulae of sect ion 3 are useful for the calculation of quanti­
ties such as spatial metric entropy that require knowledge of the probabilit ies
of occurrence for the entire set of spatial sequences of length n . In general,
such calculations are limited by bounds on memory and are restricted to
block length n ::; 20 [see, for example, table 6 of [1D. With t he closed­
form formulae, the only fundamental limits on such calculations are those of
computation time.

The spatial measure entropy h~x) provides a measure of the "information
content" of cellular automata spatial configurations, and is defined as the
limit as L --+ 00 of the quantity

1
- L 'E Pi log Pi, (5.1)

where the sum is taken over all sequences of length L , each with probability
of occurrence Pi. In the case that th e init ial condition is chosen randomly,
the probability Pi of any sequence S is exactly determined by the number of
pre images N(S), and thus the one time-step spatial measure entropy can be
evaluated for any finite length L.
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As an example, consider Rule 12 defined by (4.4). The number of preim­
ages for any string is shown in section 3 to be

N(S) 2(a1 + 2),
2(a1 +1)(an +1)I1i':-21ai,
0,

if n = 1,
if n > 1 and all b, = 1,
otherwise.

Finite estimates of the spatial measure entropy can of course be obtained by
generating a1l2 L sequences of length L, and substituting the above expression
into (5.1). A computationally more efficient formula is obtained by using
techniques of generating functions and partitions of integers. In particular,
decompose the set of all sequences of length L into (i) the sequence of all D's,
(ii) sequences containing exactly one 1, and (iii) sequences with more than
one 1. Denote by s», E(ii), and E(iii), respectively, the associated terms
contributed by each set of sequences to the expression in (5.1). In other
words,

2(L + 2) log(L +2),
L -1

L 2(p + l)(q +1) log[2(p + l)(q + l)J
p=O

[m +t)'
L -3L-p-3 2 ,

L L 2(p +1)(q +1) L L "n. ,
p=O q=O n =l 'Yn(m-n+1) k1·k2 . · · · km - n + 1 .

xl k12k2 . .. (m - n + 1)km - n+1

X log [2(p + l)(q + 1)l k12k2 . . . (m - n + l)k m
-

n +t ],

where m = L -p-q-3 represents the maximum possible length of an "inner"
sequence bounded on the left and right by p and q D's, respectively, the term
[x]' is defined to be the largest odd integer::; x, and Id(C) is defined to be
the set of compositions (unordered partitions) of the integer c into d parts;
i.e., each member of Id(C) is an unordered set of non-negative multiplicities
{k 1 , k2 , " ' , kd } with 2::i=l k, = d, and 2::i=l ik, = c. The final term above
thus represents a sum over all possible blocks of p D's on the left and q
D's on the right, with the number of 1's in the middle varying from 1 to
approximately half the length ofthe sequence (since 1's must be isolated). For
each such sequence, the contribution to the entropy is given by the number
of its preimages weighted by the number of ways to distribute the D's. Then
further calculations yield

E£ = 2(L + 2)log(L + 2),
L-1

+ L 2(p + l)(q + 1) log[2(p + l)(q + l)J
p=O

£ -1 L -p-1

+ L L 2(p +1)(q +1 )2L
-

p
-

q
-

3 log[2(p +1)(q +1)J
p=O q=O
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L -3L-p-3

+:L :L 2(p +1)(q + 1){(L - p -q -2) log[L - p - q -2]
p=O q=O

L - p-q-5

+ :L 21- p- q-i -6( L - p - q - j + 3)j logj
i =l

+2(L - p - q - 4) log(L - p - q - 4)},

as an approximation, using exact probabilit ies for sequences of length L , for
the spatial entropy h~x) . T he above, its awkward appearance notwithstand­
ing, represents a considerable computational saving. It should be noted in
this context that the value h~x) = .51771 for Rul e 4 given in t able 6 of [1]
was obtained using the assumption that the ru le generates spatial sequ ences
with no correlations beyond 3 sites. Since higher-order correlations do in fact
exist, the true value of the entropy is considerably lower. (For L = 36, for
example, the above yields .5111 for the entropy.) T he values obtained for EL

can be used to bound the true entropy from above, since the expression (5.1)
monotonically decreases as a funct ion of sequence lengt h L .

5.3 Character ization of probability distributions

The formulae can be used to characterize the form of the probability distribu­
tion for spatial sequences generated by one iteration of a cellul ar automaton .
As a prototypical example, consider Rul e 12 whose prei mage formula is given
by (4.7) and whose distribution analysis, while simp ler than most other rules,
provides a broad outline for the general case. For a fixed sequence length
L, define X to be a random var iable wit h X = N (S). The object ive is to
characterize the probability distribution of X as S vari es over all possi ble 2L

sequences.
First let n, the number of blocks of D's, be fixed, and let S* be any se­

quence of length L with n blocks of D's. Then the set of ai 'S can be considered
the "spacings" [12] between n ra ndom variab les uniformly dist rib uted over
the integers (0,L). It follows [13] that the random variab le

Y = 10g N (S*) = :L log(a;)

(5.2)

f(x)

is asymptotically normal, implying that N (S*) is asymptot ically log-normal.
The variable n ranges from 1 to ~, wit h a probability density fun ct ion

given by .

c[L - (x - l );x]
2L

= CL-x,x-l

2L '

where c[p, q] is defined to be the number of compositions of p wit h exactly q
parts (i.e. , the number of ways to express p as the sum of q positive integers
when order counts), and Cp,q is the usual binomial coefficient . It follows
therefore that the random variable X can be considered a "mixture" [14] of



En umeration of Preimages in Cellular Automata 449

asymptotically log-normal random variables, with the mixture parametrized
by the variable n with den sity function given by (5.2).

5.4 Identification of sequences with maximal probability

T he preimage formulae can be used to find the sequences with the maximum
probability under one iteration of the rule. Even cursory examination of
computer simulations shows that rules vary greatly in this respect, with some
rules favoring spat ial sequences consisting of long runs of constant value, and
others appearing to prefer sequences in which 1's and O's are more evenly
sprinkled. The propensity to generate sequences of a certain type is linked
to qu alit at ive fea tures of the rule's dynamical behavior, such as the tendency
of rules like Rule 126 to generate large "upside-down" triangles (whose bases
consist of long runs of one value).

First consider Ru le 12 whose preimage formula is given in (4.7). A
straight forward calculation shows that, for a fixed length L, the expression
N (S) is maximized for bi = 1 for all i and al = an = a-I, ai = a for
i =f. 1, n, where a satisfies the equation

Since the ai's are constrained to be integers, it follows that the maximal
prob abili ty is attained for sequences of isolated 1's separated by blocks of O's
of length a, with 2 :::; all an :::; 3 and 3 :::; a, :::; 4 for i =f. 1, n . (Note that the
sequence of length L with maximal number of preimages is uniquely defined
iff L == 1 (mod 4). The sequence in this case consists of a core of L~5 blocks
of three O's separated by single 1's, with a block of two O's at each end; the
number of preimages in this case is 2 x 3~. For other values of L, multiple
maximal sequences exist. )

The same reasoning implies that the sequence of alternating 1's and O's
has maxi mal preimages for Rule 76. On the other hand, for rules such as
Rule 126 discussed in sect ion 3 with preimage formula given by (4.7) , it is
easy to see from the expression for the number of preimages that the sequence
of all 1's has 2FL preimages, and this represents for fixed L, the maximal
number of preimages.

In gener al, for rules whose preimage formulae involve products, telescopes ,
or alternating series of "pure" terms, the number of preimages is maximized
for (short ) sequences with blocks of uniform length. For rules whose preimage
formulae invo lve products, telescopes, or alternating series of recurrence­
type terms, preimages are maximized for the sequence consisting of a single
block of either 1's or O's (for those ru les whose preimage formulae depend
only on either the ai's or the bi'S, defined in section 3), or a single block of
altern at ing 1's and O's (for those rules depending upon the d;'s, also defined
in sect ion 3). Thus the circuit structure of an automaton rule table can be
used to determine immediately the sequences of maximal probability under
one iteration of the rule .
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Finally note that the preimage formulae determine the scaling of the max­
imal probability with sequence length . In the case, for instance, of Ru les 12
and 76, the maximal probability scales as an , where n is the sequence length .
In the case of Rule 22, on the other hand, the maximal probability scales as
does the n -th Fibonacci number; i.e. , as CITl + C2T2'

5.5 E numeration of preimages with constraints

T he preimage formulae can be used with slight modification to enumerate for
an arbitrary sequence the number N* of it s preimages that satisfy specified
constraints. Examples of the types of constraints that can be incorporated
are the enumeration of preimages in which:

(1) no 100 occurs;

(2) no 1000 occurs .

In the first case, with the constraint given in terms of a string (100) of
length 3, the general system can be modified so as to preclude the occurrence
of 10 followed by 00. In the second case, with the constraint in terms of a
string (1000) of length 4, the first-order recurrence relations must be first
re-expressed as second-order relations, and then modified so as to preclude
the sequential appearance of 10, 00, and 00.

For example, consider the problem of finding N* for preimages satisfying
(1) or (2) for Rule 12. The full set of recurrence relations for this rule is given
in section 4b. The constraint in (1) is satisfied by preimages enumerated by
the system

(LfjJl + L~11 )Ij(O),

(Lj- l + Lj-l)I(I)
10 11 J ,

L~11 Ij(O) ,

(L{11+Li; I)Ij(O).

since the above relati ons omit from counting the pre images in which 10 occurs
followed by 00. The solution to the above system is easily computed to be

N*(S)

as

6, if S begins, ends with 0,

3, if S begins with 0, ends with 1,

4, if S begins with 1, ends with 0,

4, if S beg ins, ends wit h l.

In the case of (2), the system is first re-expressed in second-order terms

L~o (LfjJ l + L~11)Ij(0),

L~1 (L{;1 + L{11)Ij(I),
L{o (LfjJl + L~11)Ij(0) ,
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In order to satis fy the const raint , the third relation in the system is rewrit t en
as

which has the solution

n - l

N*(S ) = c Il[l + I( ai )] ,
i=2

where I(x) = 1 iff x = 1, and

c 10, if S begins, ends with 0 and an > 1,
15, if S begins, ends with 0 and an = 1,
5, if S begins with 0, ends with 1,
4, if S begins with 1, ends with 0 and an > 1,
6, if S begins with 1, ends with 0 and an = 1,
2, if S begins, ends with 1

6. Summary

This paper is conce rned with the enumera tion of preimages for one-dimensional
cellular automaton rules on infinite lattices. For a given rule and arbitrary
spatial sequence of valu es, the preimage of the sequence is defined to be the
set of tuples that are mapped by the rule on to the sequence. T he number of
pr eimages of a sequence can be int erpreted as det ermining the a priori pr ob­
ability of occurrence of the sequence aft er one iteration of the rule ap plied
to an initial condit ion with uniform measure.

Recurrence relations are pr esented here for finding the number of preim­
ages of general spat ial sequ ences. These relations group and count pr eimages
acco rding to t heir endtuples, and then, for any sequence, express the number
of its pr eimages beginning (either on the left or right ) with a part icular end­
tuple in terms of the number of preimages begi nning with other endtuples
for it s subsequences .

T he preimage formulae for nearest-neighbor rules are found to be essen­
tially one of the following typ es:

(A) constant;

(B) products of integers repr esenting leng ths l, of blocks of cons ecutive
"units," where units are eit her 1's an d O's, or comb inations of l 's and
O's;

(C ) product s of integers representing the lith terms in Fibonacci-like se­
quences, where the l;'s are defined as ab ove;
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(D) terms in telescoping Fibonacci-like sequences where, on any level, the
initial values are given by the lith terms in the sequences on "lower"
levels;

(E) terms of periodic sequences whose elements are determined either by
the lengths i, or by the lith terms in Fibonacci-like sequences;

(F) solut ions to more general recurrence relations.

Applicati ons of the preimage formu lae include th e identification of ex­
cluded blocks (blocks of site values with no preimages), identificat ion of rules
that generate only a finit e number of excluded blocks, comp utation of quanti­
t ies such as spat ial metric entropy that require knowledge of the probability
(or equivalently, the number of preimages) of all possible sequences, and
enumeration of preimages with specified constraints .

Finally, the preimage formulae are of interest because they directly re­
lat e the st ructure of a cellular automaton's ru le table to the one time-step
behavior generated by the automaton. As mentioned above, the combinato­
rial properties of t he De Bruijn directed graph associated with a rule table
det ermine the automaton's type of pre image form ula, which in turn deter­
mines a number of central features of the rule's one time-st ep probability
dist ribution. T he combinatorial structure of th e ru le t able can be shown, for
examp le, to determine th e propensity of the automaton after one ite ration
on a random initial condition to generate "runs" of consecut ive 1's or D's.

Appendix A.

List ed below are the preimage expressions for the 32 symmetric elementary
rules. The notation is as follows:

(i) For a string 5 , let a i be the number of D's in the ith block of consecutive
D's counting from the right , and let b; be the number of 1's in the ith
block of consecut ive 1's . It is assumed unless otherwise stated th at 5
begins and ends with D's, implying that either al or an is equal to 0 if
that is not the case.

(ii) From right to left, divid e 5 into blocks of consecutive isolated 1's, and
let d; be the number of consecut ive 1's in the ith block, and a be the
number of distinct blocks of consecut ive isolated 1's.

(iii) Fdxo, Xl, ' . . ,Xn-l] denotes th e kth term in an nth degree recurrence
relation with initial values given by Fo = Xo, FI = Xll .. . , Fn- l = Xn-l '

(iv) Let v = {uo,UI , "' , Un-d. Then Vk == {uo,UI ," ' , un-Ih is defined to
be th e term Uj where k == j (mod n).

(v) I(x) is an indicator function defined so that I(x) = 1 if X = 1 and
I( x) = 0 otherwise .
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To conserve space, the formul ae are given only for the cases where the
sequence begins and ends with a 0, and contains at least one 1; the other
cases differ on ly slightly.

T he numbers to the left of each preimage expression are the rule numbers
given according to the lab elling scheme of [lJ . The full table of formulae for
the 88 distinct ru les is available upon request [9].

4,32 N(S ) = Fa1+3 [Fan+2 + Fan Il~l Fa;
where Fk == FdO,1, 1, 1J = Fk- I +Fk- 2+ Fk- 4 •

18,72 N(S) = (2Fan + Fan-I) TIj',:-;,r;'~en Fan_Jar IliEAuB Fail
n - kL odd,

- Il n - kL -
3 F F Il F k- j= l ,i odd an _ j a; A,B ai' n - L even ,

=°if some b; > 2.
where Fk == Fk[O, 1J = Fk- I + Fk- 2, and kL , ar,A, B defined in
example (4d) of text .

36 N(S) = 2Fal+IFan +1 Ili':-2I Fa;-I
where Fk == Fk[O, 1J = Fk- I + Fk- 2

50 N(S) = 2Fd,+2Ilf';2I Fd; +1 + I(bn)Fd1+2Fd,,-1 Ilf,;l FdJO , 1J
where Fi; == Fk[O, 1J = Fk- I + Fk-2.

54 N(S) = Fbn+3 [0 , Fbn_1-2[0 , J (an-I)Fbn_2 •• • , J(a 2)Fb1[0, 2
+J(al),l + J(al)], · · ·, ]

+J(an)Fbn_1[0, J( an-I )Fbn_2 •• • , J( a2)Fb, [0,2
+J (ad , 1 + J (al)], . . . ,],

+J (an)Fbn_1[0, J(a n-I)Fbn_2 • • • , J (a2)Fb1[0,2
+J(al ),l + J(al)J, · · · , J],

where Fk = Fk- 3+Fk- 2, and J(x ) = 1 - I(x) .

76 N (S) = Fd,+2 [2Fd,,+2 + I(bn-I)Fd,,_,) Il~l Fdj
where Fk == Fk[l, 1J = Fk- I + Fk- 2.

90,150,204 N (S ) = 4.
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94,122 N(S) = Fbn+3[0, I(an )Fbn_I_2 [0, I(an-l )Fbn_2-2 [0 , 000,
FbI[O,I(al) + 1, I( al + 1),1]],00 0,]]

+Fbn_I- 3[0,I(an-l )Fbn_2 -2 [0 , 0 0 • ,FbI[O,I(al)
+ 1,I(al + 1),1]] " o. , ]]

where Fk = Fk-3+Fk- 4 .

108 N( S) = FbnH [(1 - I(bn- l ))Fbn_l+l [(1 - I(bn-2))Fbn_2 [. 00,
(1 - I(b2))Fbl+l [(1 - I (bl)) , 0,2 + I( ad ]], . .. , ]]

where Fk = Fk- 2+ Fk-3.

126,300 N(S) = 2Fbn+lFbl +l TIi:l Fbi- l
where Fk == Fk[O , 1] = Fk- l + Fk- 2.

128,254 N (S) = Fal+2Fan+2 TIi:2l Fa; -l
where Fk == Fk[O , 0,1 ] = Fk- l + Fk-2 + Fk-3.

132,222 N(S) = Fan+3[0 , I(bn- l)Fan_1 [0, I(bn-2)Fan_2[0, . 0',
I(b2)Fa2[0,I(bdFal - l,I(bl)Fal-l + Fal- 2]. 0 ' ] ] ,

I(bn- l)Fan_1 [0, I (bn-2)Fan_2 [0" . 0,
I(b2)Fa2[0, I(bdFal- l , I(bl)Fal_l + Fal-2]. . 0]]

+ Fan _I- d O, I(bn-2)Fan_2[0, .. "
I(b2)Fa2[0,I(bl)Fal-l,I(bl )Fal- l + Fal- 2]·· .J].

146,182 N(S) = Fan +3 [0, I(bn)Fan_1 -2 [0 ,I(bn-l)Fan_2-2[0 , 0 0 "

r; [O,I(bl ) +1, I(b l +1), 1]] " 0', ]]
+Fan_I- 3[0, I(bn-l)Fan_2-2 [0 , ' . " Fal [0, I(bl) +1,

I(b l + 1),1]]" o. , J]
where Fk = Fk- 2+Fk- 3o
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178 N(S ) = X n + I (bn- 1)X n-1+ I (anbn-lbn-2)X n-2
+I( an)K(bn-l)X n-3,

where X n = K(an)K(bn- I)Xn- 1+ [I (bn_2bn_I)K (an)
+I(anan-I)K (bn- 2)]X n- 2
+I( anan- lbn- 2bn- 3)X n-3,

wit h initi al values X l = I (at} + K(al),
X 2 = K(bt}XI + I (bl) + I (ala2),
and X3 = K (b2)X 2+ I (bl b2)X I + I( a2a3)[K(bl )XI + I (bl )] ,
and I( x) = 1 iff x = 1 and K( x) = 1 iff x = 1 or 2.

200,236 N(S) = r; Fan+2 11i~l Fail
whe re Fk = Fd O, 1] = Fk- l +Fk- 2

232 N (S ) = Fan+2[0, Fbn _I - tl0, Fan_I- 2[0," ',
Fa2- 2[0, Fb,_I[O, F~,_2' F~, _2 + F~ , _3]

Ft,_2,F~, _2 + F~' _3]]' . . . , ]]
Fbn_I -2 [0,Fan_I -2[0,'" ,

Fa2- 2[0, Fb,-I [O , F~,_2 ' F~, _2 + F~, -3],

Fb,-2[0,F~,-2 ' F~, _2 +F~,-3]]" . . , ]] ],
where Fk = Fk- l +Fk- 3, and F~ = Fk[2 , 3, 4].
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