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Abstract. For a nonsymmetric threshold network equipped with an
asynchronous dynamics, we show that if the product of weights in
any cycle of units is nonnegative, then each trajectory converges to a
stable state with probability one. We also show that such networks
have a natural feed-forward layer structure and stability is achieved in
a hierarchical order due to this structure. It follows then that this new
class of networks can perform similar tasks as symmetric networks as
well as new tasks due to its relation to directed graphs.

1. Introduction

Discrete dynamical systems of threshold type received a lot of attention re-
cently. The main assumption which is usually made is that of symmetry
of the system, i.e. the interactions between units (“neurons” or “spins”) are
assumed symmetric. This assumption is natural for physical interpretations
of these models (spin glasses); however, it is totally unnatural as far as their
interpretations for physiological neural networks are concerned. There is no
evidence of any symmetry of interactions of real neurons. Also, the sym-
metry assumption implies indirected graph of interactions and makes such
networks a natural tool for studying combinatorial optimization problems (cf.
e.g. Hopfield and Tank [7] for the traveling salesman problem and Peterson
and Anderson [9] for the graph bisection problem). However, it seems that
combinatorial problems which lead to directed graphs are not natural in this
setting.

The main feature of the symmetric Hopfield model [6] which makes it
a useful tool for combinatorial optimization, as well as a model for content
addressable memory, is that the system converges to equilibrium after a finite
number of switches. Nonsymmetric asynchronous systems may oscillate, in
general, and general conditions for their stability seem not to be known so
far.

In this paper we study a class of nonsymmetric threshold networks which
have similar stability properties. More precisely, we consider systems with
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the property that any trajectory of the system converges to an equilibrium
with probability one. We show that this class includes systems characterized
by the condition that the product of weights of interactions of any directed
cycle of units (neurons) is nonnegative. We call such systems nonfrustrated,
or balanced. This class of systems has many nice properties and has a far
richer structure than the class of symmetric systems.

Stability analysis of symmetric synchronous networks is well summarized
in Bruck and Goodman [2] and leads to cycles of length at most two (cf. Goles
and Olivos [5], Poljak [10], Odlyzko and Randall [8]). The main tool used
there as well as for asynchronous symmetric systems (cf. Hopfield [6], Goles-
Chacc, Fogelman-Soulie, and Pellegrin [3]) is Lyapunov functions. The same
technique cannot be applied directly in our context as our systems converge
in stochastic sense only and they may not posess any Lyapunov function.
On the other hand, stability properties of balanced systems are more robust
with respect to perturbations of the weights (and thresholds) of the system,
comparing to stability of symmetric systems under arbitrary perturbations

In section 2 we state our main results. In section 3 we show that any bal-
anced system has a natural layer, feed-forward structure. More precisely, by
a change of coordinates the system can be brought to a cascade of subsystems
(with a directed acyclic graph of interconnections), each of them having non-
negative weights of interactions but with arbitrary interconnections between
subsystems in the cascade.

In section 4 we prove the main results showing that stability is achieved
hierarchically according to the layer feed-forward structure.

2. Statement of the results

Let G = (V, E) be a directed graph, where V = V4,...,V, is a collection
of vertices of the digraph, called units, and E C V x V is a collection of
directed edges. For simplicity, we will often denote the ith edge V; by 1.
The edges and the vertices of the graph will be assigned labels. Namely,
W = {Wi;}ajee will be a collection of real numbers called weights, and
T = {Ti,...,T,} will be another collection of real numbers called thresholds.
Any triple N = (G,W,T) will be called a threshold network or simply a
network.

For most of this paper, without loss of generality one may assume that G
is the full digraph. We will always consider the full matrix of weights W =
{Wi;}iZ07 20, where we define W;; = 0 if (4,5) ¢ E. The effective digraph of
the network N will be the digraph G.5 = (V, E.g), where (¢, ) € E.p if and
only if W;; # 0.

We shall introduce the following asynchronous dynamics in our threshold
network N, which can be considered as a generalization of the dynamics used
by Hopfield [6]. We assume that time is discrete, t = 0,1,2,.... Each unit
Vi, i =1,...,n, is supposed to be in one of the finite number of possible
states which are real numbers: S} < --- < ST and the number of possible
states r = r; > 2 may depend on the unit. The state of the jth unit at time ¢
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is denoted by z;(¢). If r; = 2 for all ¢ then we call the network the two-state
network.

The network is supposed to evolve in time in one of the following two
possible modes. In the serial mode, at each particular instant ¢ one of the
units V3,..., V, is chosen at random, with probability p; > 0,...,p, > 0, for
updating his state (we assume that p; +-- -+ p, < 1). In the parallel mode,
in each step every unit updates independently of the others with probability
0<p <1,...,0 <p, <1. In each mode, the updating of the jth unit takes
place according to the following rule based on the sign of the input to this
unit, where the input to the jth unit is defined as

L= E; W,'jm,'(t) —T;. (2.1)
If this input is positive then the updating unit changes its state to its next
larger possible state, and if it is negative, the unit takes its next possible
smaller state. If such next larger (smaller) states do not exist or if the input
is zero, the updating unit remains in its present state. (We will think of the
thresholds as “external inputs” which are fixed during the evolution of the
network; that is why we include them in the above sum.)

A threshold network with the above dynamics will be called a dynamic
threshold network. We will often say that a unit V; “wants to switch” or “is
unhappy” if, once chosen for updating, it can change its state. Otherwise,
we will say that the unit is “happy.”

If there is no unit which wants to switch, then we say that the network is
in an equilibrium state. If at a particular instant ¢ a unit changes its state,
we will say that this unit switches or that the network switches. Note that
a given initial state of the network does not determine its further behavior
(trajectory) uniquely and the trajectory may depend on the order in which
the units are chosen for updates.

In order to analyze stability of dynamic threshold networks, we should
choose a proper definition of stability. The following example is helpful.

Consider a network where the effective graph is a directed cycle of k units
with zero thresholds and all weights equal to one. Assume that all units
may take only two possible values +1 and —1 as their states and consider
the serial mode. It is easy to see that if k& > 3, this network can oscillate
indefinitely. In fact, assume that at the initial state all units but one take
value +1. In the first step, the unit next to the one with value —1 can
switch to —1, while the one previously in the state —1 can switch to +1
in the following step. This process can repeat again and again so that the
“negative disturbance” propagates indefinitely around the cycle and we have
infinite oscillations. However, it can be easily seen that the probability that
the units will be chosen for updating in the required order (for infinite number
of steps) is zero. Therefore, oscillations are possible but one should expect
that they are of probability zero. Similar phenomena can occur in the parallel
mode for k£ > 2. We would like to ignore such inessential oscillations in our
considerations.
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We will call a dynamic threshold network almost surely stable if, with
probability one, each trajectory converges to an equilibrium state after a
finite number of switches. More precisely, this means that the oscillating
trajectories are of measure zero, if we consider the natural measure on the
set of trajectories which is constructed via the Kolmogorov’s theorem. (Note
that our dynamic threshold network defines a Markov chain.)

The problem of characterizing almost sure stability of the network in
terms of its weights and thresholds is difficult and will not be discussed
here. However, often it is more reasonable to ask whether the network is
stable independent of the values of the thresholds. For example, in the
context of neural networks our thresholds incorporate external inputs which
are assumed constant during the considered evolution of the network. Their
values may change after long intervals of time, or they may be unknown, but
we would like to have stability of the network independent of their values.
Therefore, the following definition is natural.

We will call a dynamic threshold network internally stable if it is almost
surely stable for any values of the thresholds.

We will say that a cycle of units V;,, Vi,,..., Vi, V4, £ > 1, is balanced
or nonfrustrated if the following condition holds:

W Wi -+ Wiy o Was, 2 0. (2.2)
If the above product is negative, we call the above cycle frustrated. We
will say that our threshold network is balanced if any cycle of units in this
network is balanced. Any network with nonnegative weights is balanced, and
so is any acyclic network (a network with acyclic effective graph).
For cycles of length k = 1 (self-loops) our condition reads W;; > 0, and
for cycles of length two it says that

VV,'J'VVJ','ZO, i,j:l,...,n. (23)

Our main result is the following.

Theorem 1. Any balanced dynamic threshold network in serial or parallel
mode is internally stable.

The following corollaries follow immediately from theorem 1.

Corollary 1. If either all the weights of a dynamic threshold network are
nonnegative or they are all nonpositive and all the cycles in the effective
graph are of even length, then the network is internally stable.

Corollary 2. Consider a network given by a dynamic threshold network
with the graph G being a subgraph of the regular n-dimensional Euclidean
lattice. If all the nonzero weights of this network are of the same sign, the
network is internally stable.



Stochastic Stability of Nonsymmetric Threshold Networks 461

The class of balanced networks is insensitive with respect to some changes
of its parameters. Suppose that the parameters of the network, W;; and
T;, are subject to change but the effective digraph of the network remains
constant. In other words, we assume a constant digraph G = (V, E) of con-
nections with nonzero weights W;;, (¢,7) € E. In such a natural class of
networks, the condition (2.2) is stable under small time-independent per-
turbations of the weights and any time-independent perturbations of the
thresholds. Therefore, the almost sure stability of the network is preserved
under such perturbations. This property does not hold for symmetric dy-
namic threshold networks, as shown by the following example.

Consider a network which consists of three units with the weights Wi, =
Was = —War = a, Wy = Way = =Wz = b, and Wy = Wy, = Was = 0.
Assume that all the thresholds are zero. If a = b > 0, then this is a symmetric
dynamic threshold network and so it is stable. However, if a = b+¢ with ¢ > 0
small but nonzero, then the network will start to oscillate as the connections
in one direction of the 3-cycle will dominate over the connections in the other
direction (note that both cycles are frustrated).

The following example analyzes stability of a single directed cycle. We
will say that the threshold T; is blocking if there is a state of the ¢th unit in
which this unit is happy, independent of the states of the other units.

Suppose that the effective graph of our network is a single directed cycle.
This network is almost surely stable if and only if the cycle is balanced
or at least one of its thresholds is blocking. To see this, let us consider two
consecutive units 7 and j in our directed cycle and consider the corresponding
nonzero weight W;;. It is clear that the jth unit is not blocking if and only
if the number Tj lies strictly between the numbers W;;S™" and W;;Smax,
where S™® and S™** are the minimal and maximal values of the state of the
tth unit. If we update the units consecutively around the cycle until they
reach their happy states, during the second round it is necessary for a switch
of a particular unit that the previous unit switched in order that the input
to the given one changed. Evidently, if one of the thresholds is blocking,
then its unit can only switch in one direction (upward or downward) and
the switchings cannot propagate indefinitely through this unit. If there is no
blocking threshold, and switchings propagate around the whole cycle, then
the change AS; of the ith state depends on the change of the previous unit so
that sgn(AS;) = sgn(W;_1;AS;_1). Writing such equalities for each edge in
the cycle and substituting one into another, we find after the complete round
that the sign of the change of the ith unit after the round should be equal
to the sign of its change at the beginning of the round times the sign of the
product of the weights around the cycle. If this product is nonnegative, there
cannot be any change of the first unit after the second round. This means
that we have reached an equilibrium. It is not difficult to see (and it will
follow from our next results) the implication that oscillating trajectories are of
probability zero for such a balanced cycle. However, if our cycle is frustrated,
then the sign of the change of the first unit after the round is opposite to the
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sign at the beginning of the round and the change can propagate again and
again, leading to oscillations.

To formulate a converse result, we need more definitions. Suppose a
sequence ?1,...,%; defines a directed cycle in the effective digraph of the
network (by definition, such a cycle consists of the sequence of different units
Vi,-.., Vi and the sequence of directed edges joining consecutive units and
the edge joining the last unit to the first one). An essentially frustrated cycle
will be any frustrated cycle ¢1,. .., with the following property:

VI<p<k ) |W

g#p-1

|AS,'q < |VV, |AS, (2.4)

atp p—1ip p—1?
where the indices p and ¢ in the sum are taken modulo % (i.e., k is identified
with 0) and AS; = §P* — §min Fquivalently, an essentially frustrated cycle
is a directed frustrated cycle of units such that for any unit in the cycle,
the possible values of the input to the unit have the following separation
property. For any fixed state of the units outside the cycle, the values of
the input to this unit given by all the possible extreme states of units in the
frustrated cycle can be strictly separated by a real number into two groups
so that in each of these groups the unit preceding the given unit in the cycle
takes only one of its extreme values (in other words, the extreme state of the
preceding unit decides to which of the two separated groups the value of the
input belongs).

Theorem 2. If a dynamic threshold network is internally stable, then it
does not contain any essentially frustrated cycle.

The following is an example of a minimal frustrated cycle which is not
essentially frustrated (we will assume that units have only two possible states
+1 and —1). The network N; consists of three units 1, 2, 3, and the only
nonzero weights are Wiy = 1/2, Woz = Wiy = —W3; = 1. It is easy to see
that this network is internally stable and, unless there is a blocking threshold,
the couple (both ways interacting units 2 and 3) will be in the same state in
equilibrium.

It is also possible that a network may oscillate even if it does not contain
any essentially frustrated cycle. Consider the network which is constructed
from three distinct copies of N; (described above) connected together into a
cycle so that the second unit of the first copy of N is identified with the first
unit of the second copy of Ny, the second unit of the second N, is identified
with the first unit of the third Ny, and the second unit of the third N; is
identical with the first unit of the first Ny. It is easy to see that this network
(with zero thresholds) has two stable equilibria: all units in the state +1,
and all units in the state —1. On the other hand, if in the initial state one of
the three couples (two units joined by edges both ways) is in one state (say,
+1) and the other two couples are in the other state (—1, respectively), then
the network will oscillate indefinitely.
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The above example can be generalized to k copies of the network N;
connected into a cycle, analogously as above. Then, a straightforward anal-
ysis of such a network shows that there are two or four stable equilibria: all
units in the same state (two possible), all couples in consecutively changing
states +1, —1, +1, —1, and so on (the number of copies of N; must be even
and then there are two such equilibria). However, if we start from a state
in which two consequtive couples are in the same state, then the network
will oscillate indefinitely. Additionally, such a network has an interesting
memory-like property. Namely, even if it oscillates indefinitely, it preserves
the number of groups of +1’s and —1’s in consecutive couples.

In the following two sections we show how balanced networks achieve
equilibrium.

3. Feed-forward layer structure

Any threshold network has an inherent hierarchical layer structure which de-
pends on its matrix of weights W = {W;;}, more precisely on the distribution
of zeros in this matrix (i.e., on the effective digraph G.5 of the network.) In
networks in which the matrix of weights changes in time and therefore the
effective digraph changes, one can define an analogous hierarchical structure
for the digraph of the network G.

Consider a threshold network N and its effective digraph G.5. Define
the following quasi-order in the set of vertices. We will say that a unit ¢
influences a unit j (or i precedes j) if there is a path from 7 to j in the
effective digraph. If the unit ¢ influences j, and vice versa, then we shall say
that both are in the same influence class. The relation of belonging to the
same influence class is an equivalence relation, so the set of units splits into
disjoint influence classes. The influence classes of a threshold network N will
sometimes be called causal layers and will be denoted by Ly,..., L.

There is a natural partial order (induced by the quasi-order of “influence”)
in this set of influence classes Ly, ..., L,. Namely, we say that L, influences
L, if there a unit in L, which influences a unit in L,. Note that we obtain
in this way a new acyclic digraph G, = (V,, E.), where the set of vertices V,
consists of influence classes of N and an edge (L, L,) is in E, if and only if
L, influences L,.

We call a threshold network (or its matrix of weights W) strongly con-
nected, if each unit in it influences any other unit. Influence classes are
strongly connected.

It is an elementary fact in graph theory that in any acyclic digraph one
can reorder the vertices so that if an edge (p, ¢) belongs to the graph, then
p < q. In our case, this means that, after reordering the influence classes
Li,..., Ly, we obtain that if L, influences L, then p < ¢. It is easy to
define this reordering. Namely, take as the first class any class L, which is
not influenced by any other class. Then, remove this class from the set of
influence classes. Take as the second class any of the remaining influence
classes which is not influenced by any one of them. Then, remove this class
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from the considered set of classes. Continue this procedure until all the
classes are removed. This argument leads to the following elementary fact
which is stated for further reference.

Proposition 1. For any matrix W there exists a reordering of the vari-
ables (units) such that this matrix takes a block lower triangular form, with
strongly connected blocks on the diagonal.

The above hierarchy of a network is clearly essential in studing stability
of the network. Basically, the problem reduces to studying stability of the
causal layers as the hierarchical connection between them does not produce
instability (there are no cycles in between the causal layers).

More can be said about the structure of balanced threshold networks,
more precisely, about matrices W which satisfy the condition (2.2).

Theorem 3. A matrix W is balanced (i.e., satisfies the condition 2.2) if and
only if there is a reordering of variables (units) and a change of their signs
x; — €x;, ¢ = 1,4 =1,...,n which brings this matrix to a block lower
triangular form, with the blocks on the diagonal strongly connected and with
nonnegative coeflicients.

Proof. It is clear that condition (2.2) is satisfied for a block lower tri-
angular matrix with nonnegative coefficients in the blocks on the diagonal.
Namely, each product (2.2) which contains only coefficients in a block on the
diagonal satisfies (2.2). If the product (2.2) has a coefficient which is not in
any block on the diagonal, it must also have a coefficient above the diagonal
blocks and so is equal to zero.

To show the converse fact, we assume that condition (2.2) is satisfied and
we use proposition 1 to get W in a block lower triangular form. It is enough
to show additionally that if the matrix W is balanced then after a possible
change of signs of the variables we obtain nonnegative coefficients in diagonal
blocks. This follows from lemma 1.

Lemma 1. If the matrix W is balanced and strongly connected, then there
is a “change of coordinates”

T, >, 1=1,...,n, ¢€=d=1, (3.1)
which makes all the weights nonnegative: Wi;e;e; > 0.

Proof. Let us take the effective graph of the network G5 = (V, E.5)
and define the following numbers

Si; =sgnWi; , (1,]) € Eeg- (3.2)

As each cycle of units in G,g is balanced, it follows that the following cocycle
condition is satisfied for any cycle of units

SiiisFizis * Stpgin Sty = 1. (3.3)
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From an elementary cohomology argument it follows that there are numbers
€ = *£1,...,€, = %1 such that

€ ;3
S," = -6— = €€y, (Z,]) € Eeﬁ. (34)
i
Explicitly, the construction goes as follows. We pick up a unit, say 1, and
define €; = 1. For any unit ¢ there is a path 1 =¢;,...,% =7 from 1 to ¢ in
the effective digraph (as the network is strongly connected). We define ¢; as
equal to the sign of the product of weights corresponding to this path

& =sgn(Wii, ... Wi _i,)- (3.5)

Since our network is balanced and strongly connected, it follows that this
definition is independent of the path joining 1 to i. (If these signs were
different for two such paths, we would pick a path from 7 to 1 which together
with the previous two paths would give two cycles with different signs of the
corresponding products of weights. This would contradict the fact that the
network is balanced.)

It is evident from the definition of S;; that the change of coordinates ob-
tained with defined numbers ¢4, ..., €, transforms the weights of the network
into nonnegative numbers. B

4. Stability of balanced networks

We will show how a balanced dynamic threshold network converges to equi-
librium by stating several facts and their justifications in the form of lemmas
and their proofs.

Lemma 2. If the network has nonnegative weights, then there is at least
one stable equilibrium and there is a passage of nonzero probability from
any initial state to an equilibrium. In the case of two-state network and
serial mode, this passage can be achieved in n steps with probability not less
then the product o = py - - - py.

Proof. We use a procedure analogous to that used by Noga Alon [1] to
let the system go to a stable equilibrium. Suppose we start from an initial
state. In the first stage of the algorithm, we let the units which are unhappy
and can increase their states switch in some order. We close this stage when
no unit can increase its state. Reaching such a state is of nonzero probability,
as Py > 0000995 >0,

In the second stage, we do a converse transition. Namely, we let the units
which are unhappy and can decrease their states switch in some order, until
no other decreasing switch is possible.

The state reached in this way is an equilibrium. In fact, by the description
of the second stage, no more units want to decrease its state. The same is
true for increasing switches. In fact, at the end of the first phase there were
no units that wanted to increase their state and, during the second phase,
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this situation was maintained as possibly more units decreased their state so
the sum I; = Y W;jz; — T; decreased or, at least, did not increase (here we
need that W;; are nonnegative).

Of course, the transition to an equilibrium described above is of nonzero
probability. In the case of two-state network it follows from a result of Alon
[1] that the above procedure can be refined so that the equilibrium is achieved
with at most n switches, each unit switching at most once. Therefore, the
probability of achieving an equilibrium in n steps is not less then o = p; -+ - p,
and so the lemma is proved. B

The result of the above lemma can be extended to balanced networks. It
is in the following lemma where the hierarchical feed-forward layer structure
intervenes and a hierarchical order of achieving stability is revealed.

Lemma 3. If we replace the assumption on nonnegative weights in lemma 2
with the assumption that the network is balanced, then the same assertions
hold.

Proof. It is enough to use theorem 3, which says that we can reorder the
units and change the signs of the coordinates so that any causal layer does
not influence the causal layers with lower indices, and the weights within
each layer are nonnegative. The lemma then follows from the fact that the
assertion of lemma 2 applies to any of our causal layers.

Applying this assertion to consecutive causal layers, we see that the net-
work reaches an equilibrium in stages corresponding to reaching an equilib-
rium by each consecutive layer. Namely, given a layer, if all the previous
layers reached an equilibrium then their influence on this layer reduces to
changing the thresholds only. Then, the given layer comes to an equilibrium
with nonzero probability. In the next stage, the next layer reaches an equi-
librium and so on, until all the network stabilizes. In the case of two-state
networks, the probability that a given layer reaches an equilibrium (in the
serial mode) is not less than the product of the probabilities p; corresponding
to this given layer in as many steps as the number of units in it. Therefore,
the assertion of lemma 2 follows for the whole network.

To conclude proving internal stability of balanced networks (theorem 1)
it is enough to use the following elementary fact for Markov chains.

Lemma 4. If from any state of a network there is a passage (of nonzero
probability) to a stable equilibrium, then all the trajectories end in stable
equilibria, with probability one.

Proof. For any state £ € X denote by p, > o the probability of passing
to an equilibrium in k, steps. Let p > 0 be the minimum of p,, € X, and
let k be the maximum of k,. Then, the probability that the network, starting
from a given initial state, does not fall into an equilibrium after £ steps is not
greater that ¢ = 1 —p < 1. The same probability after 2k steps is not greater
then ¢* and, after mk steps, it is not greater then ¢™. As the number of
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steps approaches infinity, this probability approaches zero. This means that
each trajectory falls eventually to an equilibrium, with probability one. B

One easily concludes from the above proof and lemmas 2 and 3 that the
two-state network in serial mode comes to an equilibrium in nm steps with
the probability at least 1 — (1 — a)™.

In this way, the proof of theorem 1 is completed as its assertion follows
immediately from lemmas 3 and 4.

Proof of Theorem 2. Assuming that the network contains an essentially
frustrated cycle, we will prove that the network is not internally stable. Let
us mentally split the network into the essentially frustrated cycle of units
and the remaining units. Given an initial state of the network, there are
two possible ways it can evolve. Either the remaining units do not reach an
equilibrium after a finite number of switches, or they reach an equilibrium
(they reach this equilibrium with nonzero probability). In the first case, we
have indefinite oscillations in the network.

In the second case, we can change the thresholds of the units in the frus-
trated cycle in such a way that, together with the influence of the remaining
units (which stabilized their states, already), the effective thresholds of the
units in the frustrated cycle are zero. This means that the units of the frus-
trated cycle behave like they had zero thresholds and did not see the rest of
the network. The result follows then from the following lemma.

Lemma 5. A dynamic threshold network which consists of an essentially
frustrated cycle is not internally stable.

Proof. Without losing generality, we may assume that our cycle is
Vi,..., Va,Vi. We set the thresholds in our cycle so that zero is a sepa-
rating number for all possible values of the input, for each unit in the cycle
(this is possible as the cycle is essentially frustrated). We see that the sign
of the input to the sth unit is determined by the state of the unit preceding
in the cycle, provided this unit is in one of its extreme states. By a small
perturbation of the thresholds, we can maintain this property and achieve
additionally that for any possible state of the network (there is only a finite
number of them) the inputs to all units are nonzero. It follows then that in
any equilibrium state, each unit must be in one of its extreme states.

We will show that the network has no equilibrium state. In fact, in an
equilibrium state we would have that two consecutive units in the cycle are
in the same extreme state (both in maximal or both in minimal) if and only
if the corresponding weight is positive. Otherwise, they would be in opposite
extreme states. As we go around the cycle, we get an even number of jumps
between maximal and minimal states of the consecutive units in an equilib-
rium. This means that there must be a even number of negative weights in
the cycle, which contradicts our assumption that the cycle is frustrated. It
follows then that the essentially frustrated cycle with the thresholds defined
above has no equilibria, and so it is not almost surely stable. B
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5. Concluding remarks

We will conclude with several remarks on possible applications of our results
and comparing the class of balanced threshold networks with the class of
symmetric dynamic threshold networks.

First, it seems that the class of balanced threshold networks has a much
richer structure than the traditional class of symmetric networks. Therefore,
this class may have larger computational abilities. We will not discuss the
latter problem here but will only comment on the structure of balanced
networks.

As shown in theorem 3, each balanced network has a natural layer struc-
ture (as opposed to any symmetric network which splits into a finite number
of strongly connected networks not influencing each other). There is a natural
order of layers and there are no cycles inbetween layers (in general, the order
is not linear). However, layers are strongly connected and so there are cycles
within layers. The layers are like symmetric dynamic threshold networks;
in particular, they could be symmetric. It seems that they can perform the
same task of content addressable memories, or autoassociation or refinement
of input strings. However, we have additionally interconnections between
layers which can perform other types of computation. It follows from lemma
1 that, up to a change of “coordinates,” the weights within each layer can
be taken nonnegative. However, there are no restrictions on the signs of
connections inbetween the layers.

Our class of networks is more robust with respect to possible perturba-
tions of the parameters of the network. As we mentioned earlier, the class of
balanced networks is preserved under all changes of weights which preserve
their signs. In fact, our main result can be generalized to networks with
time-dependent weights.

Theorem 4. Each balanced dynamic threshold network with time depen-
dent weights W;; = W;;(t) such that sgn(W;;(t)) = const, time-dependent
probabilities p;(t) > p1,...,pa(t) > Pn, and constant thresholds is almost
surely stable.

The proof of this theorem is completely analogous to the proof of theo-
rem 1 and so is omitted.

In view of the above theorem and the fact that each perturbation of a
balanced network which preserves the signs of the weights gives a balanced
network, we can consider all learning rules which preserve the sign of the
weights. In particular, in each step ¢t — t + 1 the weights may change
according to the rule

ex;(t)x;(t), if |Wi|>e€

where 0 < € < 1 and we consider two-state networks with z;(t) = £1.
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Another quite different rule is
Wij(t +1) — Wi;(2) = eWi;(t)zi(d)z; (). (5-2)
More generally, we may take
Wii(t + 1) — Wi(t) = fF(Wis(t))zi(t);(1), (5.3)

where f is a real function such that f(0) = 0, and 0 < f/(W) < 1. Once we
start with a balanced network and we use one of the above learning rules,
our network remains balanced. In fact, it will preserve the feed-forward layer
structure in theorem 3, as this structure depends only on the effective graph
of the network and on the signs of the weights.
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