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Spont aneously Activated Systems III Neurodynamics

Mi chail Zak
Jet Propu lsion La boratory, California Instit ute of Technology,

Pasadena, CA 91109, USA

Abstract. Coupled activation and learning dynamical equations which
spontaneously change locations of th eir attractors due to parametri cal
periodi c excitations are introduc ed. The phenomenon is based upon
two pathological char act eristics of the system: failur e of the Lipschit z
condition at equilibrium point s and zero Jacobian of th e system.

1. Introduction

One of the fundamental limitations of artificia l computational systems is
that they behave too rigid ly when compared with even the simplest bio logi­
ca l systems. With regard to neurodynamical systems, this point has a simple
phenomenological explanat ion : all such systems sati sfy the Lipschitz condi­
tion that guarantees the uniqueness of the solut ions subject to prescribed
sets of initial condit ions. Indeed, a dyn amical sys tem

subject to the initial conditions

o
Xi = Xi at t = to

has a unique solution:

Xi = f i(t , Xo, to)

if all the derivatives 8fd8xj exist and are bounded
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Figure 1: Escape from terminal repeller.

divergence of the solutions (2.7) is characterized by an unbounded Lyapunov
exponent:

(
1 2t

3
/

2
)

CT = lim - In -- = 00
t -to t 21uo l

luol ---.. 0

(2.8)

in which to is an arbitrarily small (but finite) positive quantity. In contrast to
equa t ion (1.6), here the Lyapunov exponent can be defined in an arbitrarily
small time interval, since during this interval the initial infinitesimal distance
between the solutions becomes finit e. Thus, a terminal repeller represents a
vanishingly short but infinitely powerful "pulse of unpredictabi lity" which is
"pumped" into the dynamical system.

In order to illustrate the unpredictability in such a non -Lips chitzian dy­
namics, we will turn from equat ion (2.1) to the following equation:

u- VU
1/3 = 0, while (2.9)
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v = cos wt

Assuming that u -+ 0 at t -+ 0, one obtains regular solutions
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(2.10)

(
2 )3/2

U = ± 3w sin wt , u=jiO (2.11)

and a singular solution (an equi librium point )

u =O

During the first time period

1r
0<t<2w

(2.12)

(2.13)

the equil ibri um point (2.12) is a terminal repeller (since v > 0). Therefore,
within this period the solutions (2.11) have the same property as th e solut ions
(2.7): their divergence is characterized by an unbounded Lyapunov exponent.

During the next time period

1r 31r
- <t <­
2w 2w

(2.14)

the equi libr ium point (2.12) becomes a terminal at t rac tor (since v < 0), and
the system which approaches this attractor at t = 1rW remains motionless
unt il t > 31r /2w. After that, the terminal attractor converts into the te rminal
repeller, and the system escapes again, and so on.

It is important to notice that each time when the system escapes the
te rminal repeller, the solution splits into two symmetric branches, so that
t he to tal t rajectory can be combined from 2n pieces, where n is the number
of cycles, i.e., it is the integer part of the quantity (t / 21rw), figure 2. As one
can see, here the nature of the unpredict ability is significantly different from
t he unpredictability in chaotic systems. This difference will be emphasized
even more by the next example; let us replace equations (2.9) and (2.10) by
the following:

iJ. - v(sin U)1/3 = 0, V = - 1 +2e- tcos wt, (2.15)

assu ming again that u -+ 0 at t -+ O. Since v > 0 at t = 0, the equilibrium
point u = 0 initially is a terminal repeller. Hence, the regular solution
will consist of two possible (positive and negative) escaping branches which
will approach the neighboring terminal attractors at u = 1r or u = - 1r ,
respectively. The system will be at rest in one of these two attractors until
v becomes negative, i.e., until these terminal attractors become te rmina l
repellers . After that, the solution will spli t again into two possible escaping
bra nches, while the system can conti nue to escape the equilibr ium point u = 0
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Figure 2: Unpredictability caused by alternating terminal at tractors
and repellers at an equilibrium point.

or return to it. However, because v -> -1 at t -> 00, all the equi librium
points

u = ± 21l"k, k = 0,1,2 ... , (2.16)

will eventually become permanent terminal attractors, and the system will
relax at one of them. Because of branching of the solution, however, it
is impossible to predict which one of the competing at tractors (2.16) will
be finally approached by the system. Hence, here the unpredictability is
represented not by a chaotic attractor, but rather by a set of competing
static attractors, figure 3.

Thus, in this item we have introduced a new type of unpredictability in
dynamical systems caused by failure of the Lipschitz condition at equilib­
rium points . It has been demonstrated that, unlike the chaotic systems, the
non-Lipschitzian dynamics may exhibit an unpredictability characterized by
unbounded Lyapunov exponents . The sources of these unbounded exponents
are terminal repellers which "pump the unpredictability" in the form of van­
ishingly short, but infinitely powerful "pulses." That is why a set of possible
trajectories in phase space is not a Cantor set (as in chaotic system), but
rather a countable set of a combinatorial nature. (Because of that, the global
unpredictability in the non-Lipschitzian dynamics is associated with an ex­
ponential complexity.) Hence, in this respect the non-Lipschitzian dynamics
has some connections with the "digital world."
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Figure 3: Unpredictability caused by competing terminal attractors .

It is important to emphasize that in chaotic systems the un predictability
is caused by a supersensitivity to the initial condit ions, while the un iqueness
of the solution for fixed initial conditions is guaranteed by the Lipschitz
condit ion . In cont rast, in the non-Lips chitzian dynamics presented here, the
unpredictability is caused by the failure of the uniqueness of the solution at
some of the equilibrium points .

The non-Lipschitzian dyn amics introduced above may have some practi­
cal applications. Ind eed, it represents dynamical systems with a mult iple­
choice response to an initial det erministic input. Such models can become
an underlying idealized framework for dynamical systems with "creativity,"
whose response is based upon a "hidden logic." This logic might be incor po­
rated into the system in the form of an appropriate dynamical mic rost ructure
of terminal repellers or by additional external inputs. As will be shown below,
such an approach can be useful in dynami cal modeling of neural networks.
Indeed , a neural network with n terminal repellers would be able to make 2n

totally different decisions under slightly different external inputs performing
thereby an "int rinsic" logic. The most significant property of such neural
networks would be their ability to be activat ed not by exte rnal inputs, but
rather by internal rhythms (see equat ion (2.9), or equation (2.15)) . Indeed,
as soon as terminal attractor is converted into t erminal rep eller , it activates
the system. Such a behavior can be compared with higher-level cognit ive
pro cesses sinc e it is bas ed upon interactions between attractors (i.e., upon
the "knowledge" in the system) in contradistinction to perception an d recog­
nition performan ces which are bas ed upon extern al inputs.

3 . One-neuron-one-synapsis dynamical system

In this secti on, bas ed upon the non -Lips chitzian approach to dynamical sys­
tems , we will introduce a self-developing dynamical system which sponta­
neously changes the locations of its attractors. The simplest version of such
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a system consists of a one-neuron act ivation dynamics

u= - (u - TU2)1/3 sin wt , w = const

and one-synapsis learning dynamics

T = (u - Tu 2? /3 sin2 wt

Michail Zak

(3.1)

(3.2)

while an external input is represented by periodic parametrical excitation.
The system (3.1), (3.2 ) posses ses two pathological propert ies. First , it

has zero Jacobian:

J = I a~/au a~/aT 1= 0
aT /au aT/aT -

(3.3)

Because of that , the system has infinite number of equilibrium points which
occupy two curves in th e configur at ion space u, T:

1
Uo = 0 and Uo = To

Second, at all the equilibrium points, the Lipschitz condition fails since

(3.4)

I
au I I(2Tu - 1) sin wtI ' 1
au = 3(u _ TU2)2/3 -+ 00 If u -+ 0 or u -+ T

l
aT I= 12(2TU- 1) Sin2wt l -+ if -+ 0 -+~
aT 3(u _ TU2)1 /3 00 1 U or u T

(3.5)

(3.6)

As a resu lt of equations (3.5) and (3.6), the characterist ic roots Al and A2 of
the Jacobian (3.3) at the equilibrium points (3.4) must be

(3.7)

Indeed , linearizing equations (3.1) and (3.2) with respect to the points (3.4)
one finds

A2 = (2Touo - 1) sin wt _ 2uo sin2wt
3(Tou5 - UO)2/3 3(Tou5 - UO)I /3

It is easy to verify that

A2 -+ {
00 if 11 Uo = To for sinwt > 0
- 00 if Uo = 0

A2 -+ {
- 00 if 11 Uo = To for sinwt < 0
00 if Uo = 0

(3.8)

(3.9)

(3.10)

Hence , when the equi librium points Uo = 0 are stable (they become te rminal
attractors [4]), the equilibrium points Uo = l /To are unstable (they become
terminal repe llers) and vice versa.
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One should note that, strictly speaking, the formula for .A2 in equation
(3.8) can be applied only if the explicit time t in equations (3.1,3.2) is con­
sidered as a slow changing parameter, i.e., if

(3.11)

However, since 1.A21-t 00 (see equa tion (3.7)) the inequality (3.11) holds for
all bounded w.

The Lipschitz condition fails not only in actu al space , but in configurat ion
space u , T. Indeed , as follows from equat ions (3.1) and (3.2), the differential
equation for trajectories is

and

_ la~~ I _ 1 u
2s

inwt i : { 00
.A3 - aT - 3(u - Tu 2)2/3 ° if u = ~

if u =°

(3.12)

(3.13)

Thus, the Lipschitz condition fails only at the curve Uo "* of the con­
figurat ion space u, T. All the equilibrium points of this curve are terminal
attractors for sin wt < °and terminal repellers for sin wt > 0.

As follows from equation (3.13) , the Lipschitz condit ion holds at the curve
Uo = 0, while the equilibrium points of this curve possess a neutral stability.

Before analyzing the global behavior of the solutions to equat ions (3.1,3.2) ,
we will first investigate the local properties of the escape from terminal re­
pellers .

The solutions in an infinitesimal neighborhood of a terminal repeller have
the following structure:

(3.14)

in which ~ and Tare init ial disturbances.
As follows from equation (3.14) , the transient solution may escape the

repeller and approach some values u and t during a finit e time period to
even if th e initial disturbances are infinitesimal:

1 u 1 t . .
to = \ In*" = \ In .,.A2 -t 00, u, Tr-» 0,

1\2 U 1\2 T
(3.15)

while uand t are sufficiently small, but finit e.
One should reca ll (see equation (1.5)) that for bounded .A the Lyapunov

inst ability develops gradually: two initially-close trajectories diverge such:

e = co exp .At, I.AI < 00
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that for an infinitesimal initial distance co --4 0, the current distance becomes
finite only at t --4 oo . For this reason, the Lyapunov exponents are defined
in an unbounded t ime interval (see equation (1.6)).

In thi s contradistinction, the escape from the terminal repeller (3.14 ) is
similar to Hadamard instability in continuous systems [2] where the instabil­
ity can be defined within a finite time interval. That is why the Lyapunov
exp onents for the instability (3.14) can be also defined in a finite time interval
(com pare to equation (2.8) )

a = lim (~ln~) --4 oo if U--4 0 ...
t ..... to t u

(3.16)

Thus, the divergence of the solutions (3.14) describing the escape from the
terminal repeller are characterized by the unbounded Lyapunov exponent
(3.16). This means that here as in the previous section, a terminal repeller
repr esent s a vanishingly short, but infinitely powerful "pulse of unpredictabil­
ity" which is "pumped" into the dynamical system.

T he solut ions in an infinitesimal neighborhood of a terminal attractor
have the following structure:

(3.17)

As follows from (3.17), a solution with finite initial condition u =uat t = 0
may approach the terminal attractor in a finite time interval to:

1 U
to = , In - < oo, A2 --4 oo, U --4 0,

A 2 U
(3.18)

whi le for a regular attractor this time is infinite.
T he structure of the solutions around terminal repellers and at tractors

in the configuration space u, T is similar to equations (3.14) and (3.17) with
the only difference being the role of the argument is played by u ins tead of t :

where

(3.19)

oo if sinwt > 0
- (Xl if sinwt < 0

(3.20)

Let us turn now to the global behavior of the solutions to equations
(3.1,3.2) and start with the following initial conditions:

u = 0.5, T = 2 at t = 0 (3.21)

Accord ing to equation (3.8) for 0 < t < 1f /w, the point (3.21) is a terminal
repeller . In the case of precisely zero disturbances, the system would rest
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Figure 4: Spontaneous changes of point attractors .
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forever at this point . In the pr esence of infin itesimal disturbances ~ and T
the system can "choose" an escape scenario from the four combinations:

* A t * At * *u = ± u e 2 , T = ± T e 2 , u , T -+ 0, ). 2 -+ 00, (3.22)

Although init ially the differences between the positive and the negative so­
lut ions are infinitesimal, their transient divergence is characterized by un­
bounded Lyapunov exponents (3.16) in both actual and configurat ion spaces.
The escaping solu tio ns 1 and 2 (see figure 4) will approach the correspond­
ing te rminal attractors located on the line u = 0; they will remain there
until sin wt > 0, i.e. , until all these attractors become repellers . T hen, two
from the four new branches of each of the solutions will return to the curve
u = l iT giving the rise to another branches of the solutions , and so on .

It is important to notice that each t ime the system escapes the terminal
repeller , the solution splits into four possib le branches , so that the total
trajectory can be combined from 4n pieces , where n is the integer part of the
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quan ti ty t /2 1rw. The number of different structures (i.e. , different attractors)
which the system can attain is less than the number of different t rajectories
for two reasons . First, some of the solutions (see solution 4 in figure 4) can
ret urn to the old attractors . Second, the solutions 1 and 2 do not branch on
the curve U = 0, because in the configuration space t he points of this curve
are not terminal-s-they have neural stability (see equat ion (3.13)) . That is
why the number of structural changes in the system (3.1,3.2) has the order
of 2n / 2 •

T he system (3.1,3.2) can be represented in the following autonomous
form:

u= (u - TU2)1/3V2, T = _u2

if the new variable V2 satisfies the following differential equations:

iiI = WV2 +vI(1 - vi - v~) , V2 = - WVI + v2(1 - vi - v~)

Indeed, equations (3.24) have a stable limit cycle:

VI = cos wt, V2 = - sin wt, w = const

(3 .23)

(3.24)

(3.25)

and therefore equations (3.23 ,3.24) are equivalent to equations (3.1,3.2).

4. General case

Equations (3.1) and (3.2) can be generalized to the case of n neurons U i and
n2 synaptic interconnect ions Ti j

(4. 1)

Vi = - WWi + vi(1 - v; - wl), Wi = WVi +wi(1 - v; - wl) (4.2)

in which v(Uj) is a sigmoid function .
It is easily verifiable that equations (4.1,4.2 ) possess the same self-develop­

ing properties as the original dynamical system . Indeed, in the configuration
subspaces,

dTi j .- - = -Uj
du,

(4.3)

which is equivalent to equation (3.12) .
In addition, they can perform some qualitatively new effect s: they can

spontaneously relo cate periodic or chaotic attractors as well as static attrac­
to rs . To illustrate, we start with the following three-neuron network:

(4.4)

(4.5)
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Figure 5: Spontaneous changes of limit cycles.

(4.6)

(4.7)

Clearly, equations (4.6,4.7) represent the conventional part of the neural net­
work, while equations (4.4,4.5) describe its self-developing part. For sim­
plicity, we assumed that equations (4.4,4.5) are decoupled from equations
(4.6,4.7) (since TI 2 = TI 3 = 0), but equations (4.6,4.7) are still affected by
equations (4.4,4.5). Let us set up the synaptic interconnections Tn, T23 , T32 ,

and T33 in equations (4.4,4.5) such that the solution has periodic at tractors
in the configuration planes UI = const (figure 5). The spontaneous relocation
of the static at tractors for equations (4.4) will cause the corresponding relo­
cations of limit cycles in the configuration planes UI = const for the system
(4.6,4.7) through the changes of their last terms T2I V( UI) and T3 I V( UI), since
the locations and the configurations of periodic attractors are parametrically
dependent on UI.

Spontaneous relocations of multiperiodic or chaotic at tractors can be or­
ganized in the same way. For that purpose, the conventional part of the
neural network must consist of at least three neurons, while the coefficients
Ti j ( i , j = 2,3,4) should be set up such that the solution has multiperiodic (or
chaotic) at tractors in the three-dimensional configuration spaces Ul = const
(figure 6). The self-developing part of the neural network can be represented
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Figure 6: Spontaneous changes of multi-periodi c attractors .

by the same system (4.4,4.5). As in the pr evious case, the spontaneous relo­
cat ions of the stat ic att ractors for equation (4.4) will cause the corresponding
relocations of multiperiodic chaotic attractors in the configur at ion subspaces
U l = cons t.

Thus , we have introduced self-developing, dynamical systems which are
able to spontaneously change their structure, i.e ., locations and parameters
of their attracting sets . Despite the fact that these systems are fully deter­
ministic, their behavior as well as their structure is totally unpredictable.
Although one can argue that maybe the sequence of chaotic attractors spon­
taneously created by the self-developing systems possesses some hidden order
and can be considered as a more complex type of attract ion, so far we have
no reasons to support such an assumption. It should be recalled that these
new effect s which ar e essent ially different from the chaotic behavior are due
to failure of the Lipschitz condition (1.4) which is not violated in classical
dynamics, and therefore, in chaotic systems.

What is the usefulness of the self-developing systems if they are totally
unpredi ct able? Let us recall that we introduced such systems as an alterna­
tive to the systems with "rigid" behavior in order to develop a mathematical
framework for modeling the biologi cal systems. So far these systems have
not yet been equipped by an internal logic . That is why they do not "know"
how to use the freedom they have. In the next item, we will incorporate an
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internal logic in the form of an obj ective which should be reached by the
system.

5. Systems with objective

Let us ret urn to the one-neuron-one-synapsis dynamical system written in
the form (3.23), (3.24) and int rod uce a global objective by requiring that
the syst em settle at a point attractor u = ii. It is implied tha t the system
will find it self th e corresponding synapsis T in the cours e of its spontaneous
activity. First, we will modify equatio n (3.24) as follows:

Now, instead of (3.25) , t he st able limit cycle is

VI = cos w(t ), V2 = sin w(t),

and

w = -(u-ii)

(5.1)

(5.2)

(5.3)

(5.4)

Obviously, the spontaneous act ivity of equation (3.23) ends when V2 =
const > 0, because all th e points of the curve Tu = 1 become te rminal
at t racto rs. However , V2 = const only if w = 0, i.e., when U = ii. Conse­
quently, the system event ua lly will approach the desirable structure with the
pres crib ed point at tractor (figure 7).

It is import ant to emphasize t hat neither th e value of T nor the strategy
for defining this value was prescribed in advance .

This approach can be generali zed to the case of n neurons an d n 2 synap­
tic int erconnections (see equations (4.1) and (4.2)) if w in equation (4.2) is
considered as a prescribed functio n of U I, U2, .. . Un, i.e.,

Clearly, the system will stop at such a point attractor whose coordinates iii
satisfy the following equations

(5.5)

Hence, dep endi ng on select ions of Wi, th e system can approach a single point
attractor, a countable set of possible point attractors, and continuous hyper­
surfaces of possible point attractors. If equations (5.5) do not have a solut ion,
then the system will never stop.
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Figure 7: System with objective.

If th ere exists such a fun cti on E that

BE
!:lu . = Wi,
u •

(5.6)

then the point at t ract or approached by the system corresponds to a minimum
of this function and therefore, the dynamical system (4.1 ,4.2 ,5.5) performs
optimiz at ion of this function.

It should be emphasized that the incorporation of the objective into a
self-deve loping system does not impose any limitations upon the strategy
for reaching this obj ective: the strategy is developed by the system itself.
Becaus e of this, however, one does not have any control over the time of
convergence of the system to the desirable state. That is why in the next
sect ion we will introduce self-developing systems with a microstructure which
allows a flexible guidance of their behavior .

6. Guided self-developing systems

Let us return to the one-neuron-one -synapsis dynamical system (see equa­
ti ons (3.23,3.24)). We will slightly modify equations (3.23) by intro du cing
an infinitesimal bias as follows:
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u= - (u - Tu 2 + cO)I/3v2, T = _u2

in which
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(6.1)

(6.2)

(6.3)

(6.4)

where A 2 is given by equation (3.8) and V2 is defined by equations (3.6).
This bias can be ignored when the system is stable, but it becomes sig­

nificant during the periods of inst ability. Ind eed, in the last case the solution
to equation (3.12) with th e bias co:

dT- = - (u - Tu 2 + c)I /3V2
du

in t he neighborhood of a terminal repeller has th e following structure (com­
pare to equation (3.19)) :

T = coe),2 U A --f CX)
A 2 ,2

Now the escape from the terminal repeller is cont rolled by the bias co, and
the changes in the structure of the system become predictable.

A compromise between these two extremes can be reached if one set s up

c = co sin It (6.5)

Then, the unpredict able structural changes will appear only when sin It and
sin wt vanish simultaneously (which depends on the ratio I/w) . In other
words, here one can control the degree of unpredictability.

More complex situa tions can occur in a two-neuro n dynamical system:

UI = - lUI - TIV (U I) +co sign I I (U2)]I/3vI ,

U2 = - [U2 - T2V(U2) +co sign I2(uI )P/3v 2 ,

(6.6)

(6.7)

in which VI and V2 are defined by equations (4.2) at i = 1,2, while II and h
are prescribed functions.

Equations (6.6) and (6.7) possess a very interest ing property: they are
coupled only at the moments of escape from terminal repeller . Indeed, only
at that moment the vanishing terms with co-factor cannot be ignored: when
the system (6.6) approaches th e terminal repeller , the choice of t he escap e
scenario depend s upon the sign of its last term, i.e., upon the state of the
system (6.7), and vice versa. Such an "imp ulsive" coup ling represents a
typical cau se-and-effect relat ionship between two dynamical systems: each
of these systems is independent up to a certain "turning point" when it
has to choose from several availab le scenarios. In cont radistinction from th e
situation descr ibed in section 2, this choice is fully determined by the state
of the ot her system. Therefore , the dynamical systems (6.6) and (6.7) can
be considered as a possible model for a "nonr igid" behavior which is typical
for biological systems.
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Let us assume now that
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(6.8)

Then, the system (6.6) becomes totally independ ent and unpredictable, while
the system (6.7) is sti ll dependent on it , i.e., one arrives at a master-slave
relationship. This situation can be generalized to the following chain of the
master-slave subordination:

U2 = -[U2 - T2V (U2) + COh(U1 W /3V2'

U3 = - [U3 - T3V(U3) +C0!3(U2 )]1/3V3,

(6.9)

(6.10)

(6.11)

(6.12)

in which vi(i = 1,2 . . . n) are defined by equat ions (4.2).
T he elements of this chain are not necessarily the one-neuron-one-synapsis

dynamical systems. They can be present ed in a more general form:

(6.13)

Ui2 - [Ui2+ f Ti2i2V(Ui2 ) + COli2(U1, .. .un, )] 1/3 Vi2' 1;2i2 (6.14)
32= 1

- Ui2Ui2 etc. (6.15)

It should be noticed again that the guided self-developing systems intro­
duced above fa ll between the classical (rigid) dynamical systems and tot ally
unpredictable dynamical systems discussed in sections 2 an d 3. It seems
reasonable to assume that such systems may provide a proper mathematical
framework for mo deling the biological systems.

7. Guided systems wit h objective

In this sect ion, we will simp ly combine the results of the two previous sections
and discuss the guided syst ems wit h objective. Starting with the one-neuron­
one-synapsis dynamical syste m, let us write it in the form:

(7.1)

(7.2)

(7.3)



Spontaneously Activated System s in Neurodynamics 489

As follows from equations (7.2) and (7.3), the dyn amical system has a
global objective: to settle at the point attractor u = V. (comp are with equa­
t ions (5.1,5.2)) . Besides that, it is guided by th e bias in equations (7.1). Be­
cause of this guidance, th e system in its crit ical points selects such a bran ch
among th e available solut ions which decreases the distance lu - v. 1between
the current state u and the desirab le point attractor v. . Indeed , as follows
from equations (7.1), if u < u, th en co sign (u - V. ) is negative, and th erefore,
at the crit ical point u= co > 0, i.e., the selected branch corresponds to the
decrease of th e difference V. - u .

This resu lt can be easily generalized to a dyn amical system with n neu­
rons :

[ ]

1/ 3

u· - - u. +~T,.V(u .) +cosign(u-u) v t --uu1 - t ~ tJ :J 'n 1) - 1, J

j =l

(7.4)

Vi = -Wi (Ui - iii) + vi(l - vi - wi) ,

Wi = Vi(Ui - V.i) + wi(l - vi - wi) (7.5)

The system (7.4,5) has an obective: to settle at the poin t attractor V.i. At
the crit ical points where the solution is branching, the syst em is "pushed"
by the bias terms toward its attractor.

One should not ice that, strictly speaking, both the syst em (7.1,7.3) and
(7.4,5) are characterized by fully deterministic behavior and objective, al­
though they are extremely sensitive to infinitesimal excitations. In the next
example, we will introduce a guided system with an implicit obj ective which
is not fully determinist ic.

Supp ose that a two-neuron dynamical system has the following form :

U1 = -[U1+T1V (U1 ) +co sign (U1 - U2 )P/3VI, 1'1 = - ui (7.6)

U2 = - [U2 + T2V (U2) + co sign (U2 - U1)] 1/3V2, 1'2 = -u~ (7.7)

Vi = -Wi(U1 - U2) + vi(l - v; - wl) ,

io, = Vi(U1 - U2) +wi(l - v; - wl), i = 1,2, (7.8)

The obj ect ive of the system is to settle at the point attractor whose position
is not fully determined; it can be located at any point of th e straight line:

(7.9)

Ui

of the configurati on space. At the crit ical points the system will be "pushed"
by the bias t erms toward this line. The exact location of the attractor can
not be predict ed (figure 8).

All the prev ious examples can be generalized by the following mod el:

[ ]

1/ 3

- u, + t TijV(Uj) + co sign (Ui - Ii) Vi,
; = 1

(7.10)
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Figure 8: System with objective that is not fully determined.

Vi = -WiWi + vi(l - v; - W?), Wi = ViW +wi( l - v; - W?) (7.11)

in which Wi are prescribed functions

(7.12)

and

(7.13)

is the explicit expression for u, from the equation

(7.14)

As in the case of unguid ed systems, discussed in section 4, this system will
stop at the point whose coordinates Ui satisfy equations (7.14). However, in
addit ion, at each critical point the system will select those branches of the
solution which are directed toward the desirable at tractor Ui.

If, in particular , the functions (7.12) have a potential E (see equations
(5.6)), then the attractor Ui will correspond to the minimum of this potential.
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8. Discussion and conclusions
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This paper has introduced a substantially new type of dynamical system
which spontaneously changes its structure, i.e., locations of its attracting sets.
The approach was motivated by an attempt to remove one of the most funda­
mental limitations of artificial computational systems-their rigid behavior
compared with even simplest biological systems. This approach exploits a
novel paradigm in nonlinear dynamics based upon the concept of terminal
attractors and repellers. Incorporation of these new types of attractors and
repellers into dynamical systems required a revision of some fundamental
concepts in theory of differential equations associated with the failure of Lip­
schitz condition, such as uniqueness of solutions, infinite time of approaching
of at tractors, bounded Lyapunov exponents, and so on. In the course of this
revision, it was demonstrated that non -Lipschitzian dynamics based upon
the failure of Lipschitz condition exhibits a new qualitative effect: a multi­
choice response to periodic external excitations. It appeared that dynamical
systems which possess such a property can serve as an underlying idealized
framework for neural nets with "creativity." Based upon this property, a sub­
stantially new class of self-developing dynamical systems was introduced and
discussed. These systems are represented in the form of coupled activation
and learning dynamical equations whose ability to be spontaneously acti­
vated are based upon two pathological characteristics. First, such systems
have zero Jacobian. As a result, they have an infinite number of equilibrium
points which occupy curves, surfaces, or hypersurfaces. Second, at all these
equilibrium points, the Lipschitz condition fails, so the equilibrium points
become terminal attractors or repellers depending on the sign of the periodic
excitation. Both of these pathological characteristics result in self-developing
properties of dynamical systems.

Four types of self-developing dynamical systems were introduced and dis­
cussed. The first type is represented by totally unpredictable systems which
are characterized by unpredictable behavior, unpredictable location of their
attracting sets, and unpredictable terminal state. It should be emphasized
that, in contradistinction to chaotic systems (which are structurally stable,
and therefore, whose averaged properties are predictable), these systems have
an unpredictable structure. One should also recall that in the chaotic sys­
tems, the unpredictability of a particular trajectory is caused by a super­
sensitivity to the initial conditions, while the uniqueness of the solution for
fixed initial conditions is guaranteed by the Lipschitz condition. In con­
trast, the unpredictability of self-developing dynamical systems is caused
by the failure of the uniqueness of the solution at some of the attracting
sets. It is still unclear whether the sequence of attracting sets created by a
self-developing system has a hidden order and can be considered as a more
complex attracting object.

From the practical viewpoint, self-developing systems of this type can be
regarded as a mathematical framework for modeling "nonrigid" dynamical
behavior.
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T he second type of self-developing systems is characte rized by a global
ob jective which makes the terminal state of the syst em fully pr edi ctable,
although the strategy for approaching thi s object ive is not pr escribed : the
system mu st "create" its own st rategy. Hence, these systems are self-pro­
grammed. However , the pri ce paid for that is an unpredi ct abl e time required
for approaching the desired terminal state.

T he third type of self-deve loping systems (the guided systems ) has a
microstruct ure: it contains infinitesimal bias terms which cont rol the system
behav ior at the crit ical points where the system must make a choice betw een
sever al different available scenari os of motion . In contrast to the pr evious
case , the behavior of such systems is fully determinist ic, although t heir final
state is not prescribed in adva nce. However , one has to realize that the
determini sm of the guided systems is as shaky as those in chaotic syst ems ,
becaus e they are supersensi tive to infinitesimal changes of the bias terms.
Obviou sly, the type of inst ab ility in guided self-de veloping systems is different
from the chaot ic ones: it is char act erized by an instantaneous jump from one
branch of the solution to anot her at the crit ical points, while in chaot ic
motions the shift from one trajectory to another develops gradually.

The last type of self-developing dynamical system has both global ob jec­
tive and a microstructure. Its behavior is deterministic, but nonrigid: several
subsystems can be uncoupled for most of the time, and they effect each ot her
only during a vanishingly sho rt interval. That is why these systems can model
cause-and-effect relationships .

Thus, it has been demonstrated that self-developing dynamical systems
whi ch spontaneously change their own st ru ct ure can be utilized for modeling
mor e complex relationships than those modeled by classi ca l dynami cs. From
the viewpoint of neural net works, these systems suggest the way of minimiz­
ing pre-p rogramming by ent rusting this procedure to the dynami cal system
itself.
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