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Abstract. Coupled activation and learning dynamical equations which
spontaneously change locations of their attractors due to parametrical
periodic excitations are introduced. The phenomenon is based upon
two pathological characteristics of the system: failure of the Lipschitz
condition at equilibrium points and zero Jacobian of the system.

1. Introduction

One of the fundamental limitations of artificial computational systems is
that they behave too rigidly when compared with even the simplest biologi-
cal systems. With regard to neurodynamical systems, this point has a simple
phenomenological explanation: all such systems satisfy the Lipschitz condi-
tion that guarantees the uniqueness of the solutions subject to prescribed
sets of initial conditions. Indeed, a dynamical system

&= filziy ®a;ven); 1=1,2...1 {1.1)
subject to the initial conditions

z;=8; att=1o (1.2)
has a unique solution:

z; = fit, zo, o) (1.3)

if all the derivatives 0f;/0z; exist and are bounded
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The uniqueness of the solution (1.3) can be considered as a mathematical
interpretation of rigid or predictable behavior of the corresponding dynamical
system.

The concept of unpredictability in deterministic classical dynamics was
first introduced in connection with the discovery of chaotic motions in non-
linear systems [1]. Such motions are caused by Lyapunov instability, which
is characterized by a violation of a continuous dependence of solutions on
the initial conditions during an unbounded time interval (¢ — oo0). That is
why the unpredictability in these systems develops gradually. Indeed, if two
initially close trajectories diverge exponentially:

€=¢cpexpM,0 < A < oo (1.5)

then for an infinitesimal initial distance ¢ — 0, the current distance ¢ becomes
finite only at ¢ — oo. For this reason, the Lyapunov exponents (the mean
exponential rate of divergence) are defined in an unbounded time interval:

o= lim(%)fni (1.6)
€o

t — oo

However, it can be shown that the discovery of chaos has not shaken the
rigid behavior of dynamical systems since all the chaotic motions are struc-
turally stable. This means that although a particular trajectory of a chaotic
dynamical system cannot be predicted, a certain set of average characteris-
tics of the motion as well as the global structure of the limit sets are fully:
predictable.

In distributed dynamical systems, described by partial differential equa-
tions, there exists a stronger instability discovered by Hadamard. In the
course of this instability, a continuous dependence of a solution on the ini-
tial conditions is violated during an arbitrary small time period. Such a
blow-up instability is caused by a failure of hyperbolicity and transition to
ellipticity [2,3]. In this work, we will show that a similar type of a blow-up
instability leading to “discrete pulses” of unpredictability can occur in dy-
namical systems described by ordinary differential equations, if at some limit
sets (for instance, equilibrium points) the Lipschitz condition is removed.
We will also introduce a dynamical system which is characterized not only
by unpredictable trajectories, but also by unpredictable structure, i.e., by
unpredictably variable location of its attractors.

2. One-neuron dynamical system

We will start with the simplest differential equation in which the Lipschitz
condition (1.4) is violated:

i+ aut =0k <1 (2.1)
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Indeed, here

. Ou —o0 ifa>0
= -(1-k) _
lx_r{(l) du ok { oo fa<0 {22}

i.e., the Lipschitz condition fails at the equilibrium point u = 0.

Equation (2.1) can be considered as a one-neuron dynamical system where
u is an activation potential.

In case a > 0, this point is a terminal attractor [4] which is characterized
by an infinite local stability. It is approached by a'transient solution u(t)
with the initial condition ug = u(0) during a finite time to:

u—=0 dy u(l)"’c
to = —=—k<1 25
0 Lo auk ol —k)’ < (2:3)

i.e., the transient solution u(t) intersects the constant solution u = 0; that
leads to the loss of the uniqueness of the solution at w = 0. It is easily
verifiable that for k£ > 1 the Lipschitz condition holds:

au

lim — 24
lmau—>0 (24)

u—0

and the integral in (2.3) diverges. This means that the solution u(t) asymp-
totically tends to u = 0, but never approaches it, i.e., the uniqueness of the
solution is preserved.

Let us turn to the case a« < 0. Now, the point u = 0 represents an
infinitely unstable (terminal) repeller. Indeed, linearizing equation (2.1) with
respect to the point u = 0 one obtains:

U+ Au =0, 1im0(—aku;<1-'°>) = oo (2.5)

If the initial condition ug is infinitely close to the repeller, then the transient
solution will escape it during a finite period to:

i d ~1—k
to =/ e (2.6)

o—»OW (1 —k)a

Indeed, t, is finite if @ is bounded despite the fact that uy — 0 (obviously,

Let us analyze the transient escape from the terminal repeller at k =
1/3, assuming that |ug| — 0. The solution to equation (2.1) reduces to the
following:

u=+t2, u#0 (2.7)

Hence, two different solutions are possible for “almost the same” initial con-
ditions (figure 1). The most essential property of this result is that the
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Figure 1: Escape from terminal repeller.

divergence of the solutions (2.7) is characterized by an unbounded Lyapunov
exponent:

. {1, 242
g = tll»[g ('{ In m) = o0 (28)
IUQl — 0

in which ¢ is an arbitrarily small (but finite) positive quantity. In contrast to
equation (1.6), here the Lyapunov exponent can be defined in an arbitrarily
small time interval, since during this interval the initial infinitesimal distance
between the solutions becomes finite. Thus, a terminal repeller represents a
vanishingly short but infinitely powerful “pulse of unpredictability” which is
“pumped” into the dynamical system.

In order to illustrate the unpredictability in such a non-Lipschitzian dy-
namics, we will turn from equation (2.1) to the following equation:

% —vul/® = 0, while (2.9)
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v = cos wi (2.10)

Assuming that v — 0 at ¢ — 0, one obtains regular solutions

3/2

2 .
u—-:I:(Esmwt) , u#0 (2.11)

and a singular solution (an equilibrium point)
u=10 (2.12)
During the first time period

™
0<t< o (2.13)

the equilibrium point (2.12) is a terminal repeller (since v > 0). Therefore,

within this period the solutions (2.11) have the same property as the solutions

(2.7): their divergence is characterized by an unbounded Lyapunov exponent.
During the next time period

T 3r
A .
% <4< e (2.14)

the equilibrium point (2.12) becomes a terminal attractor (since v < 0), and
the system which approaches this attractor at ¢ = 7w remains motionless
until £ > 37/2w. After that, the terminal attractor converts into the terminal
repeller, and the system escapes again, and so on.

It is important to notice that each time when the system escapes the
terminal repeller, the solution splits into two symmetric branches, so that
the total trajectory can be combined from 2" pieces, where n is the number
of cycles, i.e., it is the integer part of the quantity (¢/27w), figure 2. As one
can see, here the nature of the unpredictability is significantly different from
the unpredictability in chaotic systems. This difference will be emphasized
even more by the next example; let us replace equations (2.9) and (2.10) by
the following:

@ —v(sinu)/® = 0,v = —1 + 2e*cos wt, (2.15)

assuming again that v — 0 at ¢ — 0. Since v > 0 at ¢ = 0, the equilibrium
point u = 0 initially is a terminal repeller. Hence, the regular solution
will consist of two possible (positive and negative) escaping branches which
will approach the neighboring terminal attractors at v = 7 or u = —m,
respectively. The system will be at rest in one of these two attractors until
v becomes negative, i.e., until these terminal attractors become terminal
repellers. After that, the solution will split again into two possible escaping
branches, while the system can continue to escape the equilibrium point u = 0
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Figure 2: Unpredictability caused by alternating terminal attractors
and repellers at an equilibrium point.

or return to it. However, because v — —1 at ¢t — oo, all the equilibrium
points

u==2zk, k=0,1,2... (2.16)

will eventually become permanent terminal attractors, and the system will
relax at one of them. Because of branching of the solution, however, it
is impossible to predict which one of the competing attractors (2.16) will
be finally approached by the system. Hence, here the unpredictability is
represented not by a chaotic attractor, but rather by a set of competing
static attractors, figure 3.

Thus, in this item we have introduced a new type of unpredictability in
dynamical systems caused by failure of the Lipschitz condition at equilib-
rium points. It has been demonstrated that, unlike the chaotic systems, the
non-Lipschitzian dynamics may exhibit an unpredictability characterized by
unbounded Lyapunov exponents. The sources of these unbounded exponents
are terminal repellers which “pump the unpredictability” in the form of van-
ishingly short, but infinitely powerful “pulses.” That is why a set of possible
trajectories in phase space is not a Cantor set (as in chaotic system), but
rather a countable set of a combinatorial nature. (Because of that, the global
unpredictability in the non-Lipschitzian dynamics is associated with an ex-
ponential complexity.) Hence, in this respect the non-Lipschitzian dynamics
has some connections with the “digital world.”
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Figure 3: Unpredictability caused by competing terminal attractors.

It is important to emphasize that in chaotic systems the unpredictability
is caused by a supersensitivity to the initial conditions, while the uniqueness
of the solution for fixed initial conditions is guaranteed by the Lipschitz
condition. In contrast, in the non-Lipschitzian dynamics presented here, the
unpredictability is caused by the failure of the uniqueness of the solution at
some of the equilibrium points.

The non-Lipschitzian dynamics introduced above may have some practi-
cal applications. Indeed, it represents dynamical systems with a multiple-
choice response to an initial deterministic input. Such models can become
an underlying idealized framework for dynamical systems with “creativity,”
whose response is based upon a “hidden logic.” This logic might be incorpo-
rated into the system in the form of an appropriate dynamical microstructure
of terminal repellers or by additional external inputs. As will be shown below,
such an approach can be useful in dynamical modeling of neural networks.
Indeed, a neural network with n terminal repellers would be able to make 2"
totally different decisions under slightly different external inputs performing
thereby an “intrinsic” logic. The most significant property of such neural
networks would be their ability to be activated not by external inputs, but
rather by internal rhythms (see equation (2.9), or equation (2.15)). Indeed,
as soon as terminal attractor is converted into terminal repeller, it activates
the system. Such a behavior can be compared with higher-level cognitive
processes since it is based upon interactions between attractors (i.e., upon
the “knowledge” in the system) in contradistinction to perception and recog-
nition performances which are based upon external inputs.

3. One-neuron-one-synapsis dynamical system

In this section, based upon the non-Lipschitzian approach to dynamical sys-
tems, we will introduce a self-developing dynamical system which sponta-
neously changes the locations of its attractors. The simplest version of such
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a system consists of a one-neuron activation dynamics

i = —(u —Tu?)Psinwt, w = const (3.1)
and one-synapsis learning dynamics

T = (u — Tu?)??sin® wt (3.2)

while an external input is represented by periodic parametrical excitation.
The system (3.1), (3.2) possesses two pathological properties. First, it
has zero Jacobian:

8u/du  9u)OT

I=\67/6u oT/0T

=0 (3.3)

Because of that, the system has infinite number of equilibrium points which
occupy two curves in the configuration space u,T"

ug = 0 and yy = TL (3.4)
0

Second, at all the equilibrium points, the Lipschitz condition fails since

ou| |(2Tu —1)sinwt . 1

| = |G| = it ooy 7 (35)
aT| |2(2Tu —1)sin®wt , 1

'a—f‘—’ 3(u Tl —>001fu—r00ru—>T (3.6)

As a result of equations (3.5) and (3.6), the characteristic roots A; and A, of
the Jacobian (3.3) at the equilibrium points (3.4) must be

A1=0, [A]—o00 (3.7

Indeed, linearizing equations (3.1) and (3.2) with respect to the points (3.4)
one finds

(2Toup — 1) sinwt 2ug sin? wt
A = A = - 3.8
1=0, A 3(Toud —uo)?®  3(Tou2 — uo)'/? (38)
It is easy to verify that
ol ® He=f o s (3.9)
2 oo Hug=@ sin .
—oo if ug= A~ :
Ag — . To  for sinwt <0 (3.10)
oo ifuy=0

Hence, when the equilibrium points uo = 0 are stable (they become terminal
attractors [4]), the equilibrium points ug = 1/T, are unstable (they become
terminal repellers) and vice versa.



Spontaneously Activated Systems in Neurodynamics 479

One should note that, strictly speaking, the formula for A, in equation
(3.8) can be applied only if the explicit time ¢ in equations (3.1,3.2) is con-
sidered as a slow changing parameter, i.e., if

w < Ay (3.11)

However, since |Az| — oo (see equation (3.7)) the inequality (3.11) holds for
all bounded w.

The Lipschitz condition fails not only in actual space, but in configuration
space u,T. Indeed, as follows from equations (3.1) and (3.2), the differential
equation for trajectories is

dr

i —(u — Tu?)sin wt (3.12)
and
4L u? sin wt oo ifu=2
_ (T [ i S T
= MW_SW—TMW3Q{O if u=0 (18)

Thus, the Lipschitz condition fails only at the curve uy = 71; of the con-
figuration space u,T". All the equilibrium points of this curve are terminal
attractors for sinwt < 0 and terminal repellers for sinwt > 0.

As follows from equation (3.13), the Lipschitz condition holds at the curve
ug = 0, while the equilibrium points of this curve possess a neutral stability.

Before analyzing the global behavior of the solutions to equations (3.1,3.2),
we will first investigate the local properties of the escape from terminal re-
pellers.

The solutions in an infinitesimal neighborhood of a terminal repeller have
the following structure:

u=ue¥, T =T et Ay — o0 (3.14)

in which % and T are initial disturbances.

As follows from equation (3.14), the transient solution may escape the
repeller and approach some values @ and 7 during a finite time period
even if the initial disturbances are infinitesimal:

U T * ¥
t0=.1—lng=iln—*—,/\2——)00,u,T'—‘)0, (315)
e B Ve

while @ and T are sufficiently small, but finite.
One should recall (see equation (1.5)) that for bounded A the Lyapunov

instability develops gradually: two initially-close trajectories diverge such:

€ =¢€p exp At, [A| < o0



480 Michail Zak

that for an infinitesimal initial distance g — 0, the current distance becomes
finite only at ¢ — oo. For this reason, the Lyapunov exponents are defined
in an unbounded time interval (see equation (1.6)).

In this contradistinction, the escape from the terminal repeller (3.14) is
similar to Hadamard instability in continuous systems [2] where the instabil-
ity can be defined within a finite time interval. That is why the Lyapunov
exponents for the instability (3.14) can be also defined in a finite time interval
(compare to equation (2.8))

o = lim (llng)——)ooif a—0... (3.16)

—to t U

Thus, the divergence of the solutions (3.14) describing the escape from the
terminal repeller are characterized by the unbounded Lyapunov exponent
(3.16). This means that here as in the previous section, a terminal repeller
represents a vanishingly short, but infinitely powerful “pulse of unpredictabil-
ity” which is “pumped” into the dynamical system.

The solutions in an infinitesimal neighborhood of a terminal attractor
have the following structure:

w=ue N T :fl*1 e 2t Xy — oo, (3.17)
As follows from (3.17), a solution with finite initial condition u =% at ¢ = 0
may approach the terminal attractor in a finite time interval ¢o:
u
to=—In— < 0o,y — co,u — 0, (3.18)

_A2 u

while for a regular attractor this time is infinite.

The structure of the solutions around terminal repellers and attractors
in the configuration space u, T is similar to equations (3.14) and (3.17) with
the only difference being the role of the argument is played by v instead of ¢:

T =T * (3.19)

where

(3.20)

Ny s oo if sinwt >0
¢ —oo if sinwt <0

Let us turn now to the global behavior of the solutions to equations
(3.1,3.2) and start with the following initial conditions:
u=05 T=2att=0 (3.21)

According to equation (3.8) for 0 < ¢ < 7/w, the point (3.21) is a terminal
repeller. In the case of precisely zero disturbances, the system would rest
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Figure 4: Spontaneous changes of point attractors.

. . . . . . * *
forever at this point. In the presence of infinitesimal disturbances u and T'
the system can “choose” an escape scenario from the four combinations:

u=tued T'=+ T Mt u, T— 0, Ay — oo, (3.22)

Although initially the differences between the positive and the negative so-
lutions are infinitesimal, their transient divergence is characterized by un-
bounded Lyapunov exponents (3.16) in both actual and configuration spaces.
The escaping solutions 1 and 2 (see figure 4) will approach the correspond-
ing terminal attractors located on the line v = 0; they will remain there
until sinwt > 0, i.e., until all these attractors become repellers. Then, two
from the four new branches of each of the solutions will return to the curve
u = 1/T giving the rise to another branches of the solutions, and so on.

It is important to notice that each time the system escapes the terminal
repeller, the solution splits into four possible branches, so that the total
trajectory can be combined from 4™ pieces, where n is the integer part of the
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quantity ¢/2mw. The number of different structures (i.e., different attractors)
which the system can attain is less than the number of different trajectories
for two reasons. First, some of the solutions (see solution 4 in figure 4) can
return to the old attractors. Second, the solutions 1 and 2 do not branch on
the curve u = 0, because in the configuration space the points of this curve
are not terminal—they have neural stability (see equation (3.13)). That is
why '/che number of structural changes in the system (3.1,3.2) has the order
of 22,

The system (3.1,3.2) can be represented in the following autonomous
form:

= (u—Tu?)Po,, T=—4? (3.23)
if the new variable v, satisfies the following differential equations:

by = wug +v1(1 —vF —0d), D= —wvy + vl — v? —vl) (3.24)
Indeed, equations (3.24) have a stable limit cycle:

vy = cos wi, vy = —sin wt, w = const (3.25)

and therefore equations (3.23,3.24) are equivalent to equations (3.1,3.2).

4. General case

Equations (3.1) and (3.2) can be generalized to the case of n neurons u; and
n? synaptic interconnections 7};

N 1/3
u; = — I:’u,' + ZT,]V(‘LL]):I Vi T,J = —ﬁiﬁj (4.1)
7=1
B = —ww; +vi(1 — v —w?), ;= wv; +wi(l —v! —w?) (4.2)

in which v(u;) is a sigmoid function.

It is easily verifiable that equations (4.1,4.2) possess the same self-develop-
ing properties as the original dynamical system. Indeed, in the configuration
subspaces,

LG iy (4.3)

du,- ?

which is equivalent to equation (3.12).

In addition, they can perform some qualitatively new effects: they can
spontaneously relocate periodic or chaotic attractors as well as static attrac-
tors. To illustrate, we start with the following three-neuron network:

dy = [—uy + T V(w)YP, Tu= -] (4.4)

b= —ww+v(l —0v? —w?), W=wv+wl-v>-uw?) (4.5)
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Uy = —Ug + T22V(‘ll2) + T23V('LL3) + T21V(u1) (46)

e
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Figure 5: Spontaneous changes of limit cycles.

’L.L3 = —usg + T33V(u3) + T32V(u) + T31V('U.) (4:7)

Clearly, equations (4.6,4.7) represent the conventional part of the neural net-
work, while equations (4.4,4.5) describe its self-developing part. For sim-
plicity, we assumed that equations (4.4,4.5) are decoupled from equations
(4.6,4.7) (since Ty, = Ty3 = 0), but equations (4.6,4.7) are still affected by
equations (4.4,4.5). Let us set up the synaptic interconnections Tyy, Tos, Tho,
and T33 in equations (4.4,4.5) such that the solution has periodic attractors
in the configuration planes u; = const (figure 5). The spontaneous relocation
of the static attractors for equations (4.4) will cause the corresponding relo-
cations of limit cycles in the configuration planes u; = const for the system
(4.6,4.7) through the changes of their last terms T3V (u1) and T5; V (u1), since
the locations and the configurations of periodic attractors are parametrically
dependent on u;.

Spontaneous relocations of multiperiodic or chaotic attractors can be or-
ganized in the same way. For that purpose, the conventional part of the
neural network must consist of at least three neurons, while the coefficients
Ti;(i,5 = 2,3,4) should be set up such that the solution has multiperiodic (or
chaotic) attractors in the three-dimensional configuration spaces u; = const
(figure 6). The self-developing part of the neural network can be represented
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Figure 6: Spontaneous changes of multi-periodic attractors.

by the same system (4.4,4.5). As in the previous case, the spontaneous relo-
cations of the static attractors for equation (4.4) will cause the corresponding
relocations of multiperiodic chaotic attractors in the configuration subspaces
up = const.

Thus, we have introduced self-developing, dynamical systems which are
able to spontaneously change their structure, i.e., locations and parameters
of their attracting sets. Despite the fact that these systems are fully deter-
ministic, their behavior as well as their structure is totally unpredictable.
Although one can argue that maybe the sequence of chaotic attractors spon-
taneously created by the self-developing systems possesses some hidden order
and can be considered as a more complex type of attraction, so far we have
no reasons to support such an assumption. It should be recalled that these
new effects which are essentially different from the chaotic behavior are due
to failure of the Lipschitz condition (1.4) which is not violated in classical
dynamics, and therefore, in chaotic systems.

What is the usefulness of the self-developing systems if they are totally
unpredictable? Let us recall that we introduced such systems as an alterna-
tive to the systems with “rigid” behavior in order to develop a mathematical
framework for modeling the biological systems. So far these systems have
not yet been equipped by an internal logic. That is why they do not “know”
how to use the freedom they have. In the next item, we will incorporate an
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internal logic in the form of an objective which should be reached by the
system.

5. Systems with objective

Let us return to the one-neuron-one-synapsis dynamical system written in
the form (3.23), (3.24) and introduce a global objective by requiring that
the system settle at a point attractor u = @. It is implied that the system
will find itself the corresponding synapsis 7" in the course of its spontaneous
activity. First, we will modify equation (3.24) as follows:

o1 = [vg(u — @) + vi(1 — 02 — v3)] (5.1)

by = [—vi(u — @) + vg(1 — v — v2)] (5.2)
Now, instead of (3.25), the stable limit cycle is

v, = cos w(t), vy = sin w(t), (5.3)
and

w=—(u—1u) (5.4)

Obviously, the spontaneous activity of equation (3.23) ends when v, =
const > 0, because all the points of the curve Tu = 1 become terminal
attractors. However, v, = const only if w = 0, i.e., when u = 4. Conse-
quently, the system eventually will approach the desirable structure with the
prescribed point attractor (figure 7).

It is important to emphasize that neither the value of 7" nor the strategy
for defining this value was prescribed in advance.

This approach can be generalized to the case of n neurons and n? synap-
tic interconnections (see equations (4.1) and (4.2)) if w in equation (4.2) is
considered as a prescribed function of uy,us, ... u,, ie.,

w; = w;(ug,uz...u,), t=12...n

Clearly, the system will stop at such a point attractor whose coordinates ;
satisfy the following equations

wi(ug,ug...u,) =0, 1=1,2,...n (5.5)

Hence, depending on selections of w;, the system can approach a single point
attractor, a countable set of possible point attractors, and continuous hyper-
surfaces of possible point attractors. If equations (5.5) do not have a solution,
then the system will never stop.
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Figure 7: System with objective.

If there exists such a function F that
OF

du;

wi, (5.6)

then the point attractor approached by the system corresponds to a minimum
of this function and therefore, the dynamical system (4.1,4.2,5.5) performs
optimization of this function.

It should be emphasized that the incorporation of the objective into a
self-developing system does not impose any limitations upon the strategy
for reaching this objective: the strategy is developed by the system itself.
Because of this, however, one does not have any control over the time of
convergence of the system to the desirable state. That is why in the next
section we will introduce self-developing systems with a microstructure which
allows a flexible guidance of their behavior.

6. Guided self-developing systems

Let us return to the one-neuron-one-synapsis dynamical system (see equa-
tions (3.23,3.24)). We will slightly modify equations (3.23) by introducing
an infinitesimal bias as follows:
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U= '—('LL = Tu2 + 50)1/3’02, T = —1:62 (61)
in which
lea] = 0, but |ggAs| — o0 (6.2)

where X, is given by equation (3.8) and v, is defined by equations (3.6).

This bias can be ignored when the system is stable, but it becomes sig-
nificant during the periods of instability. Indeed, in the last case the solution
to equation (3.12) with the bias &o:

dT
T —(u — Tu? + ¢)/3? (6.3)

in the neighborhood of a terminal repeller has the following structure (com-
pare to equation (3.19)):

€
T = 2 A, — 00 (6.4)
A2
Now the escape from the terminal repeller is controlled by the bias &g, and
the changes in the structure of the system become predictable.

A compromise between these two extremes can be reached if one sets up

€ =c¢€psin vt (6.5)

Then, the unpredictable structural changes will appear only when sin ¢ and
sin wt vanish simultaneously (which depends on the ratio y/w). In other
words, here one can control the degree of unpredictability.

More complex situations can occur in a two-neuron dynamical system:

'l'll S —[ul = TIV(ul) + €o sign fl('ll.z)]l/s'vl, Tl s —U? (66)
Uy = —[uy — T,V (uz) + €0 sign fz(ul)]llsv% TZ ™ _dg (6.7)

in which v; and v, are defined by equations (4.2) at z = 1,2, while f; and f;
are prescribed functions.

Equations (6.6) and (6.7) possess a very interesting property: they are
coupled only at the moments of escape from terminal repeller. Indeed, only
at that moment the vanishing terms with eo-factor cannot be ignored: when
the system (6.6) approaches the terminal repeller, the choice of the escape
scenario depends upon the sign of its last term, i.e., upon the state of the
system (6.7), and vice versa. Such an “impulsive” coupling represents a
typical cause-and-effect relationship between two dynamical systems: each
of these systems is independent up to a certain “turning point” when it
has to choose from several available scenarios. In contradistinction from the
situation described in section 2, this choice is fully determined by the state
of the other system. Therefore, the dynamical systems (6.6) and (6.7) can
be considered as a possible model for a “nonrigid” behavior which is typical
for biological systems.
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Let us assume now that
Ji=0 (6.8)

Then, the system (6.6) becomes totally independent and unpredictable, while
the system (6.7) is still dependent on it, i.e., one arrives at a master-slave
relationship. This situation can be generalized to the following chain of the
master-slave subordination:

= —fug — iV (u)]Yy, Ty = —i? (6.9)
tig = —[ug — ToV (us) + €ofa(u1)]YPvy, Tp = —id (6.10)
tg = —[us — T3V (ua) + €0 fs(ua)]Pvs, Ts = —i] (6.11)
i = [t = TV (tn) + 0 fa(tn-1)] P00, T, = —ik (6.12)

in which v;(¢ = 1,2...n) are defined by equations (4.2).
The elements of this chain are not necessarily the one-neuron-one-synapsis
dynamical systems. They can be presented in a more general form:

1/3
Uy = — |u; + Z 1151 u]l ] Uiy s Ti1j1 = _dilﬂjl (6'13)
=1
1/3
U = — l:ufz + Z i2j2 V(“J:) +eofi (1, - - Uny )] Vigs Ligiy (6.14)
Ja=1
= _ﬁizﬁjz etc. (6.15)

It should be noticed again that the guided self-developing systems intro-
duced above fall between the classical (rigid) dynamical systems and totally
unpredictable dynamical systems discussed in sections 2 and 3. It seems
reasonable to assume that such systems may provide a proper mathematical
framework for modeling the biological systems.

7. Guided systems with objective

In this section, we will simply combine the results of the two previous sections
and discuss the guided systems with objective. Starting with the one-neuron-
one-synapsis dynamical system, let us write it in the form:

%= —[u—Tu? +eo sign (u—@)]Y3v,, T =—u? (7.1)
by = [va(u — @) + v1(1 — v — v2)] (7.2)

by = [~v1(u — @) + vl — v —03)] (7.3)
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As follows from equations (7.2) and (7.3), the dynamical system has a
global objective: to settle at the point attractor u = @ (compare with equa-
tions (5.1,5.2)). Besides that, it is guided by the bias in equations (7.1). Be-
cause of this guidance, the system in its critical points selects such a branch
among the available solutions which decreases the distance |u — | between
the current state u and the desirable point attractor . Indeed, as follows
from equations (7.1), if u < @, then ¢q sign (u —1) is negative, and therefore,
at the critical point @ = g > 0, i.e., the selected branch corresponds to the
decrease of the difference @ — u.

This result can be easily generalized to a dynamical system with n neu-
rons:

. 1/3

4=~ |ui+ 3 TyV(w) teosign (u—a)| v, Tyj = ~iit;  (74)
7=1

0 = —wi(u; — &)+ vl — 'Uf = w?)7

w; = vi(u — %)+ wi(l—vf —wi) (7.5)

The system (7.4,5) has an obective: to settle at the point attractor @;. At
the critical points where the solution is branching, the system is “pushed”
by the bias terms toward its attractor.

One should notice that, strictly speaking, both the system (7.1,7.3) and
(7.4,5) are characterized by fully deterministic behavior and objective, al-
though they are extremely sensitive to infinitesimal excitations. In the next
example, we will introduce a guided system with an implicit objective which
is not fully deterministic.

Suppose that a two-neuron dynamical system has the following form:

U = —[us + ThV(u1) + €0 sign (ur — Uz)]llsvlv B = —u (7.6)
iy = —[ug + TV (ug) + €0 sign (ug — u1)]Y3vq, Ty = —u2 (7.7)
b = —wi(ug —ug) +vi(1 — v —wf),

’Lbi = ’U,’(ul —’UQ)-*-U)‘(I '—'U? —wf),z = 1,2, (7'8)

The objective of the system is to settle at the point attractor whose position
is not fully determined; it can be located at any point of the straight line:

Uy = Uy (7.9)

of the configuration space. At the critical points the system will be “pushed”
by the bias terms toward this line. The exact location of the attractor can
not be predicted (figure 8).
All the previous examples can be generalized by the following model:
N 1/3
— |ui + 3TV (u;) + o sign (ui — fi)| - wi,
j=1

Ty = —ta; (7.10)

U
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Figure 8: System with objective that is not fully determined.

v; = —w;w; + 'U,'(]. — ’U? — w?),
in which w; are prescribed functions
w; = wi(U1, Uz ... Up)
and

fi(ub cee Ui, ui+1,---un) = U

w; = viw + wi(l — v —w?)

(7.11)

(7.12)

(7.13)

is the explicit expression for u; from the equation

wi(ug,y...uy) =0

(7.14)

As in the case of unguided systems, discussed in section 4, this system will
stop at the point whose coordinates i; satisfy equations (7.14). However, in
addition, at each critical point the system will select those branches of the
solution which are directed toward the desirable attractor ;.

If, in particular, the functions (7.12) have a potential E (see equations
(5.6)), then the attractor @; will correspond to the minimum of this potential.
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8. Discussion and conclusions

This paper has introduced a substantially new type of dynamical system
which spontaneously changes its structure, i.e., locations of its attracting sets.
The approach was motivated by an attempt to remove one of the most funda-
mental limitations of artificial computational systems—their rigid behavior
compared with even simplest biological systems. This approach exploits a
novel paradigm in nonlinear dynamics based upon the concept of terminal
attractors and repellers. Incorporation of these new types of attractors and
repellers into dynamical systems required a revision of some fundamental
concepts in theory of differential equations associated with the failure of Lip-
schitz condition, such as uniqueness of solutions, infinite time of approaching
of attractors, bounded Lyapunov exponents, and so on. In the course of this
revision, it was demonstrated that non-Lipschitzian dynamics based upon
the failure of Lipschitz condition exhibits a new qualitative effect: a multi-
choice response to periodic external excitations. It appeared that dynamical
systems which possess such a property can serve as an underlying idealized
framework for neural nets with “creativity.” Based upon this property, a sub-
stantially new class of self-developing dynamical systems was introduced and
discussed. These systems are represented in the form of coupled activation
and learning dynamical equations whose ability to be spontaneously acti-
vated are based upon two pathological characteristics. First, such systems
have zero Jacobian. As a result, they have an infinite number of equilibrium
points which occupy curves, surfaces, or hypersurfaces. Second, at all these
equilibrium points, the Lipschitz condition fails, so the equilibrium points
become terminal attractors or repellers depending on the sign of the periodic
excitation. Both of these pathological characteristics result in self-developing
properties of dynamical systems.

Four types of self-developing dynamical systems were introduced and dis-
cussed. The first type is represented by totally unpredictable systems which
are characterized by unpredictable behavior, unpredictable location of their
attracting sets, and unpredictable terminal state. It should be emphasized
that, in contradistinction to chaotic systems (which are structurally stable,
and therefore, whose averaged properties are predictable), these systems have
an unpredictable structure. One should also recall that in the chaotic sys-
tems, the unpredictability of a particular trajectory is caused by a super-
sensitivity to the initial conditions, while the uniqueness of the solution for
fixed initial conditions is guaranteed by the Lipschitz condition. In con-
trast, the unpredictability of self-developing dynamical systems is caused
by the failure of the uniqueness of the solution at some of the attracting
sets. It is still unclear whether the sequence of attracting sets created by a
self-developing system has a hidden order and can be considered as a more
complex attracting object.

From the practical viewpoint, self-developing systems of this type can be
regarded as a mathematical framework for modeling “nonrigid” dynamical
behavior.
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The second type of self-developing systems is characterized by a global
objective which makes the terminal state of the system fully predictable,
although the strategy for approaching this objective is not prescribed: the
system must “create” its own strategy. Hence, these systems are self-pro-
grammed. However, the price paid for that is an unpredictable time required
for approaching the desired terminal state.

The third type of self-developing systems (the guided systems) has a
microstructure: it contains infinitesimal bias terms which control the system
behavior at the critical points where the system must make a choice between
several different available scenarios of motion. In contrast to the previous
case, the behavior of such systems is fully deterministic, although their final
state is not prescribed in advance. However, one has to realize that the
determinism of the guided systems is as shaky as those in chaotic systems,
because they are supersensitive to infinitesimal changes of the bias terms.
Obviously, the type of instability in guided self-developing systems is different
from the chaotic ones: it is characterized by an instantaneous jump from one
branch of the solution to another at the critical points, while in chaotic
motions the shift from one trajectory to another develops gradually.

The last type of self-developing dynamical system has both global objec-
tive and a microstructure. Its behavior is deterministic, but nonrigid: several
subsystems can be uncoupled for most of the time, and they effect each other
only during a vanishingly short interval. That is why these systems can model
cause-and-effect relationships.

Thus, it has been demonstrated that self-developing dynamical systems
which spontaneously change their own structure can be utilized for modeling
more complex relationships than those modeled by classical dynamics. From
the viewpoint of neural networks, these systems suggest the way of minimiz-
ing pre-programming by entrusting this procedure to the dynamical system
itself.
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