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Abstract. This paper defines and explores a somewhat different type
of genetic algorithm (GA) - a messy genetic algorithm (mGA). Messy
GAs process variable-length strings that may be either under- or over­
specified with respect to the problem being solved . As nature has
formed its genotypes by progressing from simple to more complex
life forms, messy GAs solve problems by combining relatively short,
well-tested building blocks to form longer, more complex strings that
increasingly cover all features of a problem. This approach stands
in contrast to the usual fixed-length, fixed-coding genetic algorithm,
where the existence of the requisite tight linkage is taken for granted
or ignored altogether. To compare the two approaches, a 3D-bit, order­
three-deceptive problem is searched using a simple GA and a messy
GA. Using a random but fixed ordering of the bits, the simple GA
makes errors at roughly three-quarters of its positions; under a worst­
case ordering, the simple GA errs at all positions. In contrast to the
simple GA results, the messy GA repeatedly solves the same problem
to optimality. Prior to this time, no GA had ever solved a provably
difficult problem to optimality without prior knowledge of good string
arrangements. The mGA presented herein repeatedly achieves glob­
ally optimal results without such knowledge, and it does so at the
very first generation in which strings are long enough to cover the
problem. The solution of a difficult nonlinear problem to optimality
suggests that messy GAs can solve more difficult problems than has
been possible to date with other genetic algorithms. The ramifica­
tions of these techniques in search and machine learning are explored,
including the possibility of messy floating-point codes, messy permu­
tations, and messy classifiers.
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1. Introduction

Barring a few notable exceptions, most current genetic algorithms (GAs) use
decidedly nea.t codings and operators . Whether the domain is search, opti­
mization, or machine learn ing, fixed-length, fixed-locus strings processed by
one- or two-cut recombination operators are the rule in current work. Even
those examples that violate the usual tidiness of conventional GAs do so in
a rigid way, rest ricting the operators to process strings with only limit ed
abandon. By contrast, nature 's climb out of the primordium has occurred
with genotypes that exhibit redundancy, overspecification, underspecifica­
tion, changing length, and changing structure. Juxtaposition of the tidiness
of current GA practice with the less-than-orderl iness of nature begs us to
question whether current GAs are losing important processing power by re­
fusing to go along with nature's somewhat messy scheme of things.

In this paper, we claim that neatness is a limiting factor to the advance
of GA art . Specifically, and more positively, we assert that allowing more
messy strings and operators permits genetic algorithms to form an d exp loit
t ighter, higher-performance bu ilding block than is possible with random,
fixed codings and relatively slow reordering opera tors such as inversion.

T he remainder of this paper presents this argument in greater det ail.
Specifically, the reasons behind the current rigid st ate of affairs are examined
and the essential limi tat ion in such tidy GAs is uncovered. This immediately
suggests the poss ibility of more flexible, messy codings and operators, and
a simple version of a messy GA is defined in detail; some schema analy­
sis reinforces the potential of such methods, and results from some initial
proof-of-principle experiments demonstrate the ability of messy codings and
operators to search for optima in problems too hard to be solved by sim­
ple GAs . In particular, a messy GA solves an order- thr ee-deceptive, 30-bit
problem to opt imality; in the same problem, a simple GA using a random
ordering of its genes makes errors at 75% of the bi t positions . This is the first
time that any GA has been reported to solve a provably difficult problem to
optimality without prior knowledge of good string orderings. Some remain­
ing challenges are discussed, an d a number of extensions to these methods
are also suggested, including messy floating-point codes, messy permutations,
and messy classifiers.

2. B ack grou n d: The neats and scruffies of genet ic search

Why do genet ic algorithmists do what they currently do? Although it is dif­
ficul t to trace t he precise steps leading to the formation of standard practice
in any field, two publications - and their subsequent interpretation by ot her
GA researchers - are largely responsible for the neatness of the current state
of affairs. There are also a number of early GA studies that foreshadow a
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possibly messier GA future. In this section, we examine these "neats" and
"scruffies"! of recent genetic algorithm history.

2.1 Why are GAs so neat?

Two signposts of recent GA history mark the headwaters of neat GA im­
plementations: the publication of De Jong's (1975) Ph.D. dissertation and
Holland's (1975) book.

The current standard GA practice of using fixed-length strings and neat
genetic operators traces its roots to De Jong's (1975) pivotal dissertation.
What is elsewhere [13] termed a simple genetic algorithm was first abstracted
and tested in De Jong's pioneering work . Although Hollstien's (1971) disser­
tation was an important precursor, De Jong was the first to consider simple,
fixed-length bit strings and stripped-down recombination and mutation op­
erators in a carefully controlled suite of computational experiments guided
by knowledge of the schema theorem [19]. Although we are about to exam­
ine an argument against adhering to a number of the implementation details
of this work, it is important to recognize its importance. The contribution
of this work was in its ruthless abstraction and simplification; De Jong got
somewhere not in spite of his simplification but because of it (and because of
his careful experimental design and execution), and the work's clarity has led
many others to follow his good example. We should point out that De Jong
did not intend then for his work to be slavishly imitated; his dissertation ex­
pressed an interest in more complex problems, codings, and operators, and
his subsequent writing and research have demonstrated strong interest in
problems that require less structured representations.

The other event that solidified the current tradition of neatness was the
1975 publication of Holland's Adaptation in Natural and Artificial Systems
(ANAS) . Holland's book laid the th eoretical foundation for De Jong's and
all subsequent GA work by mathematically identifying the combined role
in genetic search of similarity subsets (schemata), minimal operator disrup­
tion, and reproductive selection. The intent of the book was quite broad,
and although the proofs were presented in terms of neat codings and sim­
ple operators, these were not intended to limit GA practice. For example,
Holland's discussion of not-so-neat operators such as intrachromosomal du­
plication, deletion, and segregation clearly demonstrates his support for less
tidy operators, even when their inclusion might prevent as complete a the­
oretical analysis. Nonetheless, subsequent researchers have tended to take
the theoretical suggestions in ANAS quite literally, thereby reinforcing the
implementation success of De Jong's neat codings and operators.

1It is said that there are two types of AI enthusiast : neats and scruffies. Neats work on
theorem provers, predicate logic, and other tidy objects about which things can sometimes
be proved. Scruffies fool around with search, heuristics, and anything else that occasion­
ally works. Although genetic algorithmists are generally considered to be card-carrying
scruffies, it is ironic that the community is herein accused of having its shoe laces too
neatly knotted and cravats too tightly pulled.
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guide to whether a schema is or is not a building block . When 1 ~ 1,
future generations will contain an increased number of st rings containing
this template, and new strings will be created through the recombination of
it and other bui lding blocks .

T his is the standard explanation of the workings of genetic algorithms,
bu t there is an article of faith whose violation prevents simp le GAs from
converging to the most desirable points in certain problems. Suppose short,
low-order schemata at certain locations are above average, but the combina­
tion of two such schemat a (their intersect ion) is below average. For example,
suppose the schema 00**** is highly fit and the schema ****00 is high ly fit ,
but t he schema 00***00 is much less fit than its comp lement, 11***11, which
itself is a building block of the optimal point , 1111111. In the particular case,
the GA will tend to converge to points representative of the less fit schema
(perhaps points like 0011100) , because with high probability, crossover will
tend to disrupt the needed combination (11***11). This is the essence of
what has elsewhere [11,12,14] been called deception. Coding-function com­
binat ions that have such misleading low-order building blocks can mislead a
GA , causing it to converge to less-than-desirable points . To circumvent this
difficulty, two alternatives are often suggested: prior coding of tight building
blo cks or the int roduction of inversion.

T he first of these suggestions is reasonable enough, but it assumes prior
knowledge of the function being optimized . In the previous example, if we
had known about the deception beforehand, we might have coded the string
differently, so the four bits required to optimize the function were adjacent
(e.g ., 1111***) . In that way, crossover would have been less likely to destroy
the linkage, the schema's growth factor, " would have been higher, and the
schema might then have constituted a bui lding block. Although there are
techn iques that can identify where linkage is needed [2,12,14J, in a genera l
purpose search technique it is undesirable to require such prior knowledge
(there is certainly no harm in using it if it is available, however ).

If a codi ng for a particular prob lem is randomly chosen, we might be
int erested in knowing the probability of randomly coding a group of bits of
order k with a defining lengt h 8 = d in a string of length l . Using straight­
forward combinatorial arguments, Frantz (1972) calculated the probability
density function as

(3.2)

(3.3)

and the cumulative distribution as

P{8:::; d} = [ k(l-d;~ )1+ d+ 1] (d t 1)/(~) .

The former may be calculated by fixing two of the k bits at the outermost
positions of a d + Lbit template, calculating the number of possible combi­
nations of the remaining k - 2 bits, then sliding the template down the i-bit



Messy Geneti c Algorithm s 499

string one posi tion at a t ime. The latter may be obtained by summing the
probability density function by parts .

We have calculated the expecte d building block length (8) by taking the
first moment of the probability density fun ction and summing from k - 1 to 1.
Some algebraic rearrangement and summation by parts yields the following
equation:

~
1+ 1

k -l

k+l
(3.4)

Thinking of the left-hand side as a normalized expected defining-length, it
is remarkable how quickly it becomes quite long with increased k. Even
for ord er-three building blocks th e normalized expected defining length is
alr eady 2/4 = 0.5, and matters get much worse fairly quickly. Thus, even
for low-order bit combinations, the chances of being coded t ightly are slim.
For this reason and because prior knowledge of the functi on is not always
available, inversion and other reordering operators have been suggested to
recode strings on the fly.

Inversion strikes at the heart of the building block issue by suggesting that
tight linkage can be found at the same time good bits are sought. To see how
inversion might help, we first need to see how the usual st ring representation
mus t be extended to permit bit s to change their position (their locus) without
changing the bit 's meaning. Adding inversion to a simple GA requires that
bits be identified with th eir names. For example, the string 1100011 might
be ident ified by the string of ordered pairs

((1 1) (2 1) (30) (40) (50) (6 1) (7 1)).

Noti ce that even if the bits are randomly shuffled , because each bit is tagged
by its name, we can retrieve the string's interpretation without difficulty.

With the representation so ext ended, simpl e inversion pro ceeds by picking
two points along the string and flipping the included substring end over end.
In the string above, for example, choosing inversion points between bits 2
and 3 and aft er bit 7 arid performing inversion yields th e string

((11) (2 1) (7 1) (61) (5 0) (4 0) (30))

Not e that this fortui tous inversion brings t he I s together to form the t ight
bu ilding block 1111***. This example has been worked ou t to demonst rate
t he possibility of forming tight linkage, and clearly, reord ering via inversion
can bring together good bui lding blocks, but whether inversion is a practical
remedy to the formation of tight building blocks has been questioned. An
earlier study [16] argued that inversion - a unary operator - was incapable
of searching efficient ly for tight building blocks because it lacked the power
of juxtaposition inherent in binary operators. P ut another way, inversion is
to orderings what mutation is to alleles: both fight the good fight against
search-stopping lack of diversity, but neither is sufficiently power ful to sear ch
for good structures, allelic or permutational, on its own when good st ructures



500 David E. Goldberg, Bradley Kotb, and Kalyanmoy Deb

require epistatic interaction of the individual parts. That same study argued
that binary, crossover-like operators were necessary to obtain the binary jux­
tapositional processing of ordering schemata - o-schemata - as crossover
obtains from allelic schemata - a-schemata.

Other arguments have been given against the ultimate usefulness of in­
version. In a simple, order-two epistatic problem an idealized reordering
operator modeled after inversion was shown to aid convergence [15], but it
was found that the probability of reordering must be set to a relatively small
value if the reordering was to permit ultimate convergence to the best. If the
frequency of reordering must be kept low to guarantee convergence to good
points, it is unlikely to be useful in a simultaneous search for good alleles
and tight building blocks, because waiting times will be too large. Thus,
our backs seem to be up against the wall. If we can't get reasonable conver­
gence guarantees with fixed, random orderings, and if inversion is unlikely to
generate the needed ordering soon enough to be of much use, how are tight
building blocks and good allele combinations going to be found at the same
time?

As has been hinted, our answer is to turn to nature and borrow variable­
length strings and messy operators to first select and then juxtapose useful
building blocks.

3.3 Two arguments from nature

Thus far, our arguments have been made on analytically theoretical grounds
alone. Since GAs are loosely based on natural precedent, we might ask
where nature stands on the issue of neat versus scruffy genetics. Actually,
it is interesting to observe that evidence in nature can support either view,
depending upon the time frame adopted.

In the short run, natural evidence supports the neats' argument. Ifviewed
over 1,000 years or so (a blink of an eye by evolutionary standards), members
of a species tend to mate with members of their own species, and recombi­
nation operators tend to be carefully tailored to maintain the full genetic
complement of that particular species. Thus, viewed in the short term, in­
traspecies genetic interaction is crudely, but not wholly inaccurately, modeled
by the usual simple GA .

Over the long haul, however, an entirely different - and messier - pic­
ture emerges. After all, nature did not start with strings of length 5.9(109

)

(an estimate of the number of pairs of DNA nucleotides in the human genome)
or even of length two million (an estimate of the number of genes in Homo
sapiens) and try to make man. Instead, simple life forms gave way to more
complex life forms, with the building blocks learned at earlier times used
and reused to good effect along the way. If we require similar building block
processing, perhaps we should take a page out of nature's play book, testing
simple building blocks early in a run and using these to assemble more com­
plex structures as a simulation progresses. A number of technical problems
need to be addressed in such an approach, but natural evidence supports the
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effort . In the next sect ion, we investi gate the details and ana lysis of one such
messy genet ic algorithm.

4. A messy GA defined

In this sect ion , we define a straightforward mGA by describing its coding
rules, decoding rules , and operators. We also perform a simple schema anal­
ysis to obtain some prior idea of expected system behavior.

4.1 Messy coding

Assume that the underlying problem has been reduced to a fitn ess function
over the i-bit strings in the usual manner.f and further assume that each bit is
tagged with its name (number) . This is the same approach adopted in other
moving-locus schemes, with two major exceptions. In the present study, we
take no steps to insure that strings contain full gene complements, nor do we
prevent redundant or even contradictory genes within a string. For example,
the strings ((1 0) (3 1)) and ((1 0) (3 1) (2 0) (3 0)) are acceptable strings
for a 3-bit problem in the messy scheme despite the underspecificat ion in the
first (no bit 2) and the overspecification in the second (two, 3-bits). As we
shall soon see, this relaxation in codi ng permit s the use of extremely sim ple
genetic operators , but something of a price is paid in the adde d comp lexity
of decoding the string. After all, if t he problem has i-bits, and we have too
many or too few, some additional process ing is necessary to interpret the
string if the obj ective fun ction is to be samp led properly.

4.2 Handling overspecification

Of the twin problems introduced by the messy coding - overspecification
and undersp ecification - overspecification is the easier to handle. Overspec­
ification requi res that we choose between conflict ing genes contained within
the same string. There are a number of possibilit ies: we could choose by
using a pro babilistic or deterministic voting procedure, by using posit ional
precedence, or by using adapt ive precedence.

In difficult nonlinear problems, bitwise voting rules, alt hough ega litarian,
seem unwis e, because in deceptive problems wrong bits will have relatively
high fitn ess and large numbers early in a run; their proliferation will prevent
sampling of the correct building blocks.

Positional precedence is an appealing alternat ive, becaus e it is simple and
because it may permit the formation of a kind of intrachromosom al domi­
nance operator. Because of these characteristics, simple positiona l prece­
dence has been adopted in this study using a left-to-right scan and a first­
come-first-served precedence rule.

2T his assumption may be relaxed , and lat er we will examine th e possibility of messy
permutations, messy floating point codes, and messy classifiers (rul es). Here, we construct
a solution mechanism that solves th e same problem as convent ional GAs.
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Adaptive precedence codings may also be imagined in analogy to the
various adaptive diploidy and dominance schemes [18-20,24 ]. Simply stated,
characters are added to the allelic alphabet and assigned relative priority
values. The left-to-right scan would proceed as before, except that precedence
would be decided first on the basis of priority, and the first-come-first-served
rule would be used only to break ties between genes with equal priority values.
Adaptive precedence has not proved necessary in this study; it is discussed
in a later section as a possible remedy to a potential difficulty in problems
with nonuniform building block order.

4.3 Handling underspecification

The first mGA experiments sidestep the problem of underspecification by
making a simplifying assumption regarding the structure and accessibility of
the fitness function . We assume that the function may be written as the sum
of subfunctions fj, where the fj are themselves functions of nonoverlapping
subsets of the Boolean variables Xi:

m

f(Xi) = 'L.1i(Xk,k E J(j), i = 1, .. . ,1,
j=l

(4.1)

where the sets K, form a partition of the full index set {I, .. . , I}. When
the function has this form, and when the search procedure has access to
the individual subfunctions Ii, partial strings may be evaluated as follows:
if a string samples one or more subfunctions fully, return the sum of the
subfunction fitness values as the fitness of the string; otherwise, return a
value of zero .

The assumption of such partial string, partial evaluation (PSPE) is a
form of cheating, because it breaks the usual GA assumption of a black­
box fitness function [13] and restricts the class of functions that may be
handled by the method. We make the assumption for two reasons . First,
many fitness functions (both natural and artificial) can evaluate a partial
solution in a similar manner. In such cases, the assumption of partial string,
partial evaluation is appropriate, and an investigation of the performance of
an mGA under such conditions is useful. Second, where a full I-bit string
must be passed to a black-box fitness function, it may be necessary to use
averaging or other techniques to detect small differences in fitness. Since
the most obvious schemes involve sampling error, we first consider the mGA
under the assumption of PSPE to obtain a relatively noise-free trial of the
messy algorithm. As it turns out, there is a relatively low-cost and noise -free
way to beat the underspecification problem while still treating the function as
a black box. We postpone this matter until we reconsider underspecification
in a later section.
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Figure 1: Schematic of cut and splice coordination.

4.4 Messy operators

Allowing variable-length, overspecified, or underspecified strings means that
the usual simple crossover operator will no longer work. In this study, we
replace crossover with two simpler operators : splice and cut.

The splice operator is as simple as it sounds. With specified splice prob­
ability P., two strings are concatenated. For example, starting with the two
strings ((2 0) (51)) and ((31) (60) (5 1)), splice would yield the single string
((20) (5 1) (3 1) (60) (51)).

The cut operator is also straightforward. Using a specified bitwise cut
probability PI<, an overall cut probability is calculated as Pc = PI«). - 1),
where). is the current length of the string and Pc is subject to the limit
Pc :S 1. Thereafter, if a cut is called for, the string is cut at a position
chosen uniformly at random along its length. For example, with PI< = 0.1,
the string ((2 0) (5 1) (3 1) (6 0) (5 1)) would have a probability of 0.4
being cut; supposing that a cut at location 3 was indicated, the two strings
((20) (5 1) (3 1)) and ((6 0) (51)) would be obtained."

The cut and splice operators are coordinated to permit action similar to
the simple crossover operator when both cuts and both splices are selected.
Cut is performed first on two strings that have been mated by random choice.
To see how this is accomplished, consider the schematic of mated chromo­
somes shown in figure 1. Assuming that a cut is called for on both chromo­
somes, the substrings are numbered as shown. Thereafter, the possibility of
splicing is checked on successive pairs 1-2, 2-3, and 3-4. If pairing 1-2 is

3The cut operator can be performed cut site by cut site using independent Bernoulli
trials to determine whether or not a cut is made. Doing so complicates the coordination
of cut and splice unnecessarily, and only a single cut is permitted in this study.
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spliced, the res ult ing st ring is placed into the new population, and the pos­
sibility of splice at between 3 and 4 is considered . If a splice is not called for
between 1 and 2, 1 is inserted in the population , and a splice is considered
between 2 and 3 (note the inversion-like action of this second typ e of splice).
Similar ord erings of splice trials are used when only one of the strings is cut
or when neit her string is cut .

In addit ion to cut and splice, an allelic mutation op erator has been defined
in the messy GA. With specified mutation probability Pm' a 0 is changed
to a 1 and vice versa. For all runs pr esented in this paper, the mutation
probability has been set to zero in order th at the messy GA is given the most
stringent tes t ing possible. Wi thout the diversi ty repleni shing capability of
mutation , the best building blocks had better be ret ain ed; otherwis e, they
will beco me extinct and will not be created again. It would also be pos sible
to incl ude a gen ic mutation operator that would change one gene to an other
wit h specified probability. No such ope rator has been included, although
one might prove useful , if important genes were ever lost due to overzealous
select ion .

4 .5 Reproduction revisited

For reliabl e selection regardless of function scaling, a form of tournament
select ion is used in this study [3,26]. Tournament selection combines selec­
ti on and scaling into one ste p by holding tournaments between two or more
combatant st rings. A version without repl acement is used in this st udy as
follows:

1. Choo se a tourn ament size s 2: 2.

2. Create a random permutation of the n integers .

3. Compare the fitness values of the next s population members listed in
the permutation, selecting the individual with highest fitness value for
subsequent geneti c op eration and insertion in the next generation.

4. If the n-permutation becomes exhausted , generat e another.

5. Repeat start ing at ste p 3 until no more selections are required during
the current generation.

The algori thm is easily implemented and , as with other tournament selection
algorithms, has des irabl e expected performance.

To un derstand the combined scaling-selection act ion of tournament selec­
tion, consider the exp ect ed number of copies that will be given to the best, the
worst, and the median individuals within the population when the tourna­
ment size, s, is set to two . The best individual will participate in exactly two
tournaments (in stochastic versions, the expected number of tournaments is
two), and because the individual is best he will win both times , thus receiving
exact ly two cop ies. The worst individual will also participate in two tourn a­
ments, but will not win either. The median individual will participate in two
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to urnaments, and because half of the ind ividuals have high er fitness an d half
have lower fitness , the median should exp ect a single win . Thus, desirable
scaling t akes place without the unnecessary sorting of ranking schemes [1J or
the other machinations of the usual sca ling pro cedures [13J.

4.6 Overall mGA organizat ion

The usual simple GA proceeds by choosing an initial population at rando m,
thereafter generating non-ov erlapping populations of constant size through
repeated calls to reproduction, crossover, mutation, and other geneti c oper­
ators. In the messy GA we use partially enumerative initialization combined
with two phases of select ion: the primordial phase and the juxtapositional
phase.

In parti ally enumerative initialization , at least one copy of all possible
buil ding blocks of a specified size is provided, where the size is chosen to
encompass the highest order decepti ve non linearity suspected in the sub ject
problem [14J. For example, with an order-2 decep t ive problem we would ini­
tialize the populat ion with all two-position combinations: on an i-bit function

this would require a popu lat ion of size 22 (~) = 2i(1-1) individuals. Higher
order non linearities would require correspondingly larger initial population
sizes . In general, a population of size n = 2k (~) would be required for cap­
t uring deceptive nonlinearities of order k; however, these large populations
are not as disadvantageous as they first appear. First, the primary factor
in determining k is allied to the subtle concept of deception. A nonlinear ­
ity must be misleading if it is to cause difficulty for a GA, and oftentimes
non linearities are simple [14J. Furthermore, weak non linearities may often
be neglected, and many high -order nonlinearities in problems encounte red in
practice are weak." Last, even though population sizes may be large ini ti ally,
each string usually only requires a single function evaluation, and no further
function evaluations are necessary before the population is reduced in size
during the first phase of the mGA: primordial selection.

Afte r partially enumerative initialization, the primordial ph ase of the
m GA proceeds by selecting bui lding blocks without invoking other geneti c
operators . The ob jective of doing so is to create an enriched populat ion of
building blocks whose combinat ion will create optimal or very near opt imal
strings. Moreover, as selection proceeds during the primordial ph ase, the
popula t ion size is reduced. Once good bui lding blocks are chosen there is no
need to maintain the population size associated wit h partially enumerat ive
init ializat ion . Redu ct ion of the population size is accomplished by halving
the population size at regular intervals.

40ther knowledge abo ut the problem may also be used to reduce th e numb er of building
blocks that must be const ructed during initialization. T he algebrai c methods suggested
elsewhere [14] may be used to ident ify which bits are potentially epist ati c, and thi s infor­
mation may be used to restrict the initializat ion set. No such knowledge is assumed in this
paper , altho ugh using it in this man ner if it existed could eliminat e many, if not most , of
the function evaluations required by the mGA.
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(4.2)

Following the primordial phase, the GA invokes cut, splice, and the other
geneti c operators during the juxtapositional phase, so named because of the
juxt apositional nature of splice and cut. This phase resembles the usual
pro cessing in a simple GA except that the strings may vary in length. The
populati on size is held constant, and in the simplest mGA, operator proba­
bilit ies p" , P., and Pm are also held const ant.

4.7 A simple schema analysis of cut and splice

We consider the survival - and the continued expression - of a schema
under cut and splice. To do so, we must first define what we mean by a
schema. Then we must ca lculate the probabilities of physically surviving the
two primary op erators. Last, we consider a schema's probability of continued
expression aft er genet ic processing .

Schemata are similarity subsets . In simple GAs , schemata may be repre­
sent ed by the usual similar ity te mplate notation, where a wildcard character
(usually a *) is used to indicate positional indifference. In mGAs, genes are
allowed to change position, and in the messy coding described earlier, the
ordering of a gene does not dir ectly affect its allele's fitness (position rela­
t ive to other compe ting alleles will affect a gene's expression, but more on
this in a moment ). Thus, we define a schema in this study as a cluster of a
part icular set of genes containing a particular set of alleles with a defining
length less than some specified value. Note that this definition is indifferent
to both relative and absolute position of the genes within the cluster and
within the string. Using this definition, it is a straightforward matter to
calculate bounds on survival and expression probabilit ies.

The probability of a schema h surviving a cut, P", is bounded by the
following:

<5(h)
P" ;:::: 1 - Pc,\ _ 1 '

where <5 is the schema defining length, ,\ is the length of the string con­
t aining the schema, and Pc is the composite cut probability defined earlier.
Substituting the cutwise probability value into the expression, we obtain the
bound

(4.3)

T he probability of a schema h surviving a splice, P", is unity because splice
is a conservat ive operator (actually spli ce is better than conservative in that
it create s new combinations that did not exist prior to the operation; here,
we conservat ively ignore this source of new combinat ions).

If multiplied together, cut and splice appear to have som ething like the
effect ive disruption of the simple crossover operator in a simple GA, but there
is an important difference between messy GAs and simple GAs that has not
been discussed. In a messy GA , the physical survival of a schema is insuf­
ficient to guarantee the optimization of difficult problems . In order to solve



Messy Genetic Algorithms 507

tough problems, the building blocks that make up the optimal solution must
continue to be expressed. Although a schema may be physically present in
a string, it mayor may not be sampled, depending on its location and the
presence or absence of one or more contradictory alleles . Expression is a con­
cept usually discussed in connection with dominance and polyploidy, but the
use of a redundant code and first-come-first-served precedence rules creates
a type of intrachromosomal dominance operator which must be considered
in this treatment.

Here, we consider the probability of continued expression of a currently
expressed schema, p{. So doing conservatively ignores the possible expression
of a previously hidden schema. To undertake the calculation, define N as
the event where a previously expressed schema is not expressed following cut
and splice. Then the probability of continued expression following genetic
operation may be given as

p{ = 1 - PsP(N) (4.4)

The event of not being expressed may be conditioned on two events: the
event F that the subject string segment is placed at the front of a two-string
pair, and the event B that the subject string is placed at the back of a spliced
pair. This results in the computation

P(N) = P(NJF)P(F) +P(NIB)P(B) , (4.5)

If a string is currently expressed, and if it is placed at the front of a spliced
pair, then there is no chance it won't be expressed following the splice:
P(NIF) = O. On the other hand, if a currently expressed schema is placed at
the rear of a new string, the probability of expression, P(N IB), depends upon
the number and type of genes placed ahead of it. In general, the estimation
of this probability is very difficult; however, we may calculate a bound on this
probability using some fairly reasonable assumptions. First, we assume that
the genes in the population are distributed uniformly at random. Second, we
make the conservative assumption that the allele values within the uniformly
distributed genes are biased against the schema at hand - the placement of
even a single such gene in the front will prevent the expression of the schema
in back. Under these assumptions, the probability of not being expressed
given placement in the back may be calculated as

(4.6)

where ).* is the maximum string length in the population. Applying the
binomial theorem and dropping high-order terms yields the estimate

P(NIB) < k~*. (4.7)
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Recognizing that the splice operator places substrings at the front or back of
the new string with equal probability, the probability of continued expression
may be calculated as follows:

k>:
P. > 1 -p-.

v - s 21 (4.8)

Notice that the expression probability is quite large at short lengths; however,
as the length of the forward segment grows, the probability of expression can
become quite small.

Calculating the overall survival and expression probability of a schema,
P., as the product of the individual probabilities, we obtain the following
expression:

( k)..*)P, ~ (1 - pI<8(h)) 1 - PS2f .

This equation may be reduced to the simpler form

k)..*
P > 1 - P 8(h) - P -s - I< S 21

(4.9)

(4.10)

after dropping higher order terms. The news contained in the combined
equation is mixed. As long as overall string lengths remain low, the action of
cut and splice is likely to be as nondisruptive as simple crossover; as the string
length grows, however, disruption of expression becomes increasingly likely.
This difficulty can be overcome if steps are taken to red uce the probability
of the forward bits being in error; this reasoning was the primary motivation
for the introduction of the primordial selection phase described earlier. By
allowing the most highly fit schemata to get a significant foothold prior to
juxtaposition, the probability of having large numbers of error bits at the
front is greatly reduced and the probability of forming optimal or very-near­
optimal strings is greatly enhanced.

4.8 Tying it all together

Thus, mGAs differ from their simpler counterparts in a number of important
ways:

Use of variable-length strings that may be under- or overspecified.

Use of intrastring precedence rules (first -come-first-served or other).

Use of cut and splice instead of crossover.

Division of evolutionary processing into two phases: primordial and
juxtapositional.
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Use of a variable-size population with population size appropriate to
the type of evolut ionary phase.

Use of partially enumerative initialization of partial strings to encom­
pass the longest misleading nonlin eari ty.

The proposal of th ese changes is not a case of being different for it s own sake.
Simple GAs are limi ted by their fixed codings, and the Band-Aid of inversion
has not proved sufficiently powerful to enable them to find both good allele
combinations and good orderings of those combinations at the same time. By
contrast , mG As have been designed from the beginning to find and exploit
t ight building blocks. In so designing, we have been careful to respect th e
schema theorem and other facts of GA life. In the next section, we test this
new combination of operations, codings, and ru les to see how it performs on
a difficult , nonlinear function.

5. First results

In this section, a difficult test function is defined. Thereaft er, a simple GA is
used to search the function with tight , loose, and random orderings. Finally,
the messy GA defined in the previous section is used to search the function,
and the reasons for its success are examined.

5 .1 A worthy opponent

Defining suitable test functions for artificial genetic search is not an easy
task. In previous studies, researchers have chosen either some of th e standard
fun ct ions of th e optimization literature or functions representating the class
of practical problems in which the researchers were interested. These are
reasonable starting points, but if one is interest ed in putting a GA (or other
similarity- based search technique) to a st iff test, the notion of deception must
be t aken into accou nt . Simpl y st ated, a deceptive funct ion is one in which
low-order schema fitness averages favor a particular local optimum, but the
global optimum is located at that optimum 's complement.

As an example, the three-bit deceptive function of a previous study [12,14J
is displayed in squashed Hamming cube format (figure 2) and as a function of
the integers (figure 3). Simple calculations of schema average fitn ess values
show tha t , on this function, a simple GA is likely to be led toward the
second-best point , 000, instead of toward the global optimum, 111; such
decept ion becomes more likely as the defining length of the bit combination
increases (assuming that the three bits are embedded in a longer string).
More int uitive ly, in the Hamming graph we see how th e 000 optimum is
surrounded by fair ly fit individuals and how the 111 optimum is isolated:
if the 111 optimum is to be found, it must be selected in one fell swoop ;
ot herwise, 000 will be assembled from its more highly fit components .

Three bits does not a difficult prob lem make, however. To create a diffi­
cult t est func tion, a 3D-bit func tion is created as the sum of 10 copies of the
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Figure 2: A fully deceptive, order-3 problem in Hamming space [12,
14].
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Figure 3: A fully deceptive, ord er-3 problem displ ayed as a function
of th e integers [12,14].
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3-bit function , where each copy is associated with the next three bits. Thus,
copy 1 is associated with bits 1 through 3, copy 2 is associated with bits 4
through 6, and so on. This seemingly innocuous function is difficult by most
function optimization standards. The discrete space being searched is large:
it contains 230 = 1.074(109

) or roughly a billion points. Looking at figure 2,
note that each of the subfunctions has 2 optima. Thus, there must be 210

local optima in the sense that no single-bit change can improve the function
value . If the function were viewed as a discretized approximation to a contin­
uous function of ten real variables (one for each copy of the function), figure
3 shows that such a representation would have 3 optima for each subfunction,
meaning that there would be 310 = 59,049 optima in a ten-dimensional real
space. Clearly, this is no job for gradient search or other local optimization
algorithms.

In the next section, we examine how well a simple GA performs on this
test function.

5.2 Three orderings and a simple GA

How well a simple GA will optimize this (or any deceptive) function is pri ­
marily determined by the ordering of the genes on the string. For example,
if the genes are arranged in the order

1 23 . . . 282930

all bi ts associated with a particular subfunction are as close as possible and
the function is easy to optimize, because the defining length 8 is small (8 = 2
for all subfunctions): the schema theorem guarantees growth of the best
building blocks (the 111s). On the other hand, if a poor arrangement such
as

1 4 7 . .. 2 5 8 . . . 3 6 9 ... 24 27 30

is used, the defining length of each building block is long (8 = 20), the
disruption is high, and the GA should converge to the fully deceptive lo­
cal optimum (with 000 at the bit values of each of th e 10 subfunctions). If
a random ordering is used, equation (3.4) suggests that a defining length
(8) = (l + 1)(k - 1)/(k + 1) = 31(3 - 1)/ (3 + 1) = 15.5 should be expected.
Checking the cumu lative probability distribution, this point is roughly the
50th percentile defining length. Thus, in a randomly ord ered string, we
should expect approximately 50% of the strings to have defining length
greater than the expected value and 50% to have a 8 shorter than this.

As a benchmark, we try a simple GA using fixed orderings corresponding
to those suggested above. Specifically we use a tight ordering (1 2 3 . .. ), a
loose ordering (1 47 . . .), and a random ordering (table 1). The simple GA
code is similar to the Pascal code presented elsewhere [13] except for the use
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J Left Center Right
1 2 17 24
2 22 21 14
3 30 9 4
4 5 10 15
5 25 26 28
6 19 7 20
7 29 8 12
8 3 1 18
9 6 23 11

10 27 16 13

Table 1: String positions of the left, center, and right bits for the jth
subfunction in the random ordering.

of tournament selection. The parameters of the simple GA were fixed for all
runs at the following values :

pc = 1.0.

Pm = 0.0.

n = 2000.

For each case , three runs starting with different seed values for the pseudo­
random number generator were performed. To reduce cross-case variance,
the same three seed values were used for each corresponding run in different
cases, thereby starting the loose, tight, and random cases with the same
initial populations. The results were averaged and are presented in figures
4 and 5. The results coincide with our expectations. The tight orde rin g
runs converged to the optimal solution. The loose ordering runs converge d
to a solution with errors at all bits (the solution 000 . . . 000). The random
ordering runs were able to get roughly 25% of the subfunctions correct. This
last result is representative of what we should expect if we were to code the
problem with no prior knowledge of important bit combinations. It is not
encouraging to realize that a user of a simple GA may have to put up wit h
errors at 75% of a difficult problem's bits. This result highlights the primary
weakness of simple, fixed GAs . In the next subsection, we will see whether
the mGA can overcome this difficulty.

5.3 The messy GA's turn

The messy GA described in section 4 has been coded in Common Lisp for
execution on a TI Explorer. The messy GA has been run on the same problem
using the following parameters:

Ps = 1.0.
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Pm = 0.0.

n = 32,480 (primordial) down to 2030 (juxtapositional) .

These parameters correspond roughly to those used for the simple GA bench­
mark runs .

The initial population is created using partially enumerative initialization
as described earlier . Choosing k = 3 this procedure results in an initial pop­
ulat ion size of no = 23 GO) = 32,480. The population size is cut in half every
other generation thereafter until it reaches size n = 2030. Sub sequently it is
held constant through the end of the run , but the primordial phase is ter­
minated (and the juxtapositional phase is started) after gene ration 11. The
terminal population size (n = 2030) is roughly the same as the populations
used in the simple GA runs (2000). Note that the simple GA has a raw ma­
te rial advantage over the mGA at this point, an advantage that is whittled
away as the strings lengthen during the mGA's juxtapositional phase.

Results from three independent runs are shown in figures 6 and 7. In
all three runs, the population contained at least one instance of an optimal
solution at generation 15. This is noteworthy, because t = 15 is the first
gener at ion containing strings long enough to more than cover all 30 bits .
Assuming no cut and 100% splice, the longest possible string length at this
generation may be calculated as A\ongest = 24 • 3 = 48. Thereafter, the rest

350
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5 25 30

Figure 6: The messy GA converges in three independent runs to the
optimal solution on the basis of generation maximum and generation
average fitness (averaged over three runs). The first globally optimal
solutions appear during generation 15, the first generation the strings
are long enough (>. ~ 30) to contain a full solution.
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Figure 7: The average proportion of correct subfunction building
building blocks (111) increases with subsequent generations.

of the population becomes dominated by optimal strings, as can be seen
by examining how the average fitness approaches the maximum value (300)
asymptotically.

Comparing the mGA results to the simple GA results on the basis of the
number of function evaluations to optimality is enlightening. In the best
simple GA, the tight ordering, optimal strings were found at generation 19,
requiring a total of (19 + 1)2000 = 40,000 function evaluations. The mGA
requires 32,480 function evaluations during the primordial phase (recall that
the strings use their initial evaluation repeatedly during the primordial phase,
regardless of the number of generations contained therein). Thereafter, four
generations elapse before strings are found. Thus, the mGA requires a total of
32,480 +4(2030) = 40,600 function evaluations or roughly the same number
as the simple GA. Even though the mGA had no special knowledge of good
string orderings, it used roughly the same number of function evaluations as
a simple GA that had access to perfect knowledge of good string orderings.
The comparison is, of course, more dramatic if the mGA is compared to the
random or loose cases. There, the mGA was able to solve the problem and
the simple GA wasn't (and never would be). In the next subsection, we
consider why the mGA is able to perform this well.

5.4 Why does the messy GA work?

To understand why the mGA works, we consider the primordial phase and
the juxtapositional phase separately using crude mathematical models.
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In the primordial phase, we are interested in th e growth of th e best build­
ing blocks. Under tournament selection two copies of the best indi vidual are
given to th e best, except when they mate with one of their own, whence they
receive a single copy each (or two copies, half the t ime). Under these con­
ditions , th e differen ce equations describing the proportion of best bui lding
blocks P may be written immediately:

(5.1)

where th e subscripts are time indices. Subtracting Pt from both sides and
passing to the limit approximat ely, the following differential equation is ob­
tained:

dP 1

dt P(l - P)'
(5.2)

the logistic differential equation. Integrating between limits Po and P by
elementary means yields the solution:

(5.3)

where th e auxiliary variable U is defined in terms of the proportion P as
follows:

U=~.
1-P

(5.4)

(5.5)

The factor et may be adjusted to account (approximately) for the errors made
in passing to the limit in a single step by including a factor j3 = In 2 in the
exponent ial: e (3t = 2t • Using this adjusted equat ion, the final proportion may
be calculated as

Po2t

P = ..,.----=-'----_=_,..-,.
1 - Po+ Po2t

Using this equation to predict th e proportion at generation t = 11 we obtain
P = 0.39, which matches well with the simulation results at the same time:
from figure 7, we obtain the total number of 111 building blocks from the
average number as 0.05·10 = 0.5.

With this analysis of the primordial phase, we must examine how well the
mGA ju xtaposes building blocks to form optimal or near-optimal solutions .
We would hop e that the mGA is at least as likely to be successful as a simple
GA with a comparably high proportion of good building blocks. To evaluate
whether thi s is true, we first consider a crude estimate of the juxtapositional
power of a simple GA and compare it to a crude estimate of that of the mGA.

Assume in a simple GA with a good fixed ordering that after some num­
ber of generations, the probability of having good building blocks covering
every subfunction is no less than p. Further assume that at this point, se­
lection is indifferent to the good building blocks' compet itors and no further
improve ment is likely (no increase in p can be assumed). We may then cal­
culate aft er a sufficient number of crosses that the steady-state proportion



Messy Genetic Algorithms 517

of opt imal strings after repeated crossover is at least P* = pm, where m is
the nu mber of bui lding blocks required to optimize the fun ction. Using this
value, the wait ing time (in numbers of indiv iduals) for an optimal string may
be estimated as t ~ 1/ p'":

This contrasts to the situation in an mGA where we note that there is
no enforcement of pos itional diversity; nonetheless, we may argue for similar
juxtapositional power if we acco unt for the poss ibility of longer strings and
the impact of the first-come-first -served rule. Consider the proport ion of
building blocks available at the end of the juxt apositional phase primordial
phase, p'. After enough splices we expect to increase t his pr oporti on by
a factor of m as we permi t multiple building blocks per string . Ignoring
increases due to further selection, the pr oportion of correct building blocks
available for each subfunction is then p = m . p'. In order to create optimal
st rings, we need to st ring together at least m of these bui lding blocks without
interruption by even a single bad building block. Ignoring dup lications for
the moment , the probability of exactly i events may be estimated using the
geometric probabili ty distribution:

(5.6)

where q = I- p. Wit h m subfunctions, we are interested in the probability of
having m or more successes before the first fai lure. This may be calculated
in straightforward fashion as

P{x ?: m}
00

i=m

i=O

(5.7)

pm

T hus, the juxtapositi onal power of an m GA is rou ghly the same as that
of a simple GA, and the formula has been used to size the po pulation of
the mGA runs presented ea rlier. With ten subfunctions an d assumi ng a
proportion of bui lding blocks p = 0.5 for each sub function, a population size
of n = 1/ (0.5)10 = 1024 is necessary to have a reasonable chance of seeing
an opt imal string as soon as the strings are long enough (four generations
following the end of the primor dial phase).

The forego ing analysis ignores the possibility of duplicates among the
m constituents. An argument can be made that selection creates a strong
pressure against duplication, leaving the simple analysis fairly usefu l without
modification.

To see this, consider two strings associated with the 30-bit problem of
a pr evious secti on , each with 111 building blocks only, one without du pli­
cation and one with duplication . Using a shorthand notation to identify
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the subfunctions mentioned in each string, we have the strings A = 123
and B = 122. Evaluating the two strings using the method of competi­
tive templates (assuming a 000 . .. 000 template), we obtain fitness values
fA = 3 · 30 + 7 · 28 = 286 and fB = 2 ·30 + 8 ·28 = 284. The dupli­
cation in string B causes it to be less fit than string A; thus, strings with
fewer duplicates will be preferred to those with many, and selection will tend
to drive duplicates from the system. This is true of all strings. For a given
string length, strings with no duplicates will be preferred to those with dupli­
cates, and this pressure tends to keep the number of duplicates low, thereby
validating the analysis above.

With this basic understanding of the combined selective and juxtaposi­
tional power of messy GAs, we turn toward eliminating the restriction of
partial string, partial evaluation.

6. Underspecification redux

In the first set of mGA experiments, we assumed that partial st rings could
receive a partial fitness value directly, without filling in unspecified bits . In
practice, making this assumption requires special knowledge of the structure
of the underlying objective function . Elsewhere, pure GAs don't require such
prior knowledge [13] - pure GAs are blind - and it would be useful to de­
vise a similarly blind formulation of an mGA. In this section, we examine a
number of ways to obviate the need for the partial string, partial evaluation
assumption. Specifically, we examine two approaches to underspecification
through averaging, and show why they are unacceptable. We then develop
the method of competitive templates and show that this approach is a useful
mechanism for obtaining relatively noise-free evaluation of building blocks:
using competitive templates, the mGA consistently op timizes the 3D-bit prob­
lem of the previous section.

6.1 Why independent averaging won't work

The very idea of a messy GA changes our perspective of fitness evaluation.
From square one, we would like to be able to evaluate the fitness of a part
without possessing a whole. In many problems, this can be accomplished
quite naturally, but in true black-box functions, partial string evaluation is
not an option. For example, in our previous 3D-bit problem, we might have
partial strings such as ((1 1) (2 1) (3 1)) in the initial population, and with
knowledge of the form of the particular function we know these and other
such partial strings are the building blocks of optimal points, but how can
they be evaluated then without resorting to the onerous assumption of partial
strings, partial evaluation?

A natural reflex might be to suggest a sampling and averaging scheme.
It would be easy to fill in the unspecified genes of a partial string using bits
generated at random. Such random fill-in could be performed a number of
times, and the average of the sample fitness values could then be used as
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the fitness of the partial string. This approach is attractive because of its
simplicity, but the fallacy in so doing becomes apparent after some reflection."

Suppose we have a building block that samples one of the 10 subfunctions
comprising our 30-bit function of the previous section: for example, the
partial string ((1 1) (2 1) (3 1)) . By itself, this building block is worth
30; knowing that the average fitness of a single subfunction is 15, we may
calculate the expected value of the building block when the other 27 positions
are filled in with random bits: 1111 = 30 + 9 . 15 = 165. It might be useful
to compare the fitness of the best building block to that of its second-best
competitor, ((1 0) (20) (30)). Calculating the expected fitness in the same
manner, we obtain 1000 = 28 + 9 . 15 = 163, All seems well and good ,
because in expectation, the better building block should win the competition
of selection; however, consideration of the variance - consideration of the
sampling error - puts this calculation in a different light . Assuming that the
eight points of a single order-three function are sampled uniformly at random,
we may calculate the variance of a single subfunction as (72 = L:P/8 - P =
155. Since the three bits of each of the partial strings fix one of the ten
functions, the other nine are being sampled randomly, and the variance of
the sampled fitness may be calculated as the sum of the nine variance values
or simply (7500 = (7in = 9 ·155 = 1395. Since in tournament selection, we are
essentially using the sign of the difference between two such sums to choose
winners, the variance of that difference is twice the value just calculated,
(7t>.j = 2 . 1395 = 2790. Taking the square root, we obtain a standard
deviation value of 52.8, which compares unfavorably to the difference we
must detect (1111 - 1000 = 2) . In other words, a single sample is unlikely to
correctly identify the correct building block. More samples can help, however .
Suppose that n strings are sampled for each of the 000 and 111 substrings.
Setting the signal difference we wish to detect (165-163 = 2) to the standard
deviation divided by the square root of the sample size and rearranging, we
obtain a rough calculation of the sample size: n ~ 2790/4 = 697.5 . Under
this sampling scheme, more than 700 samples would be required per string
to have even a reasonable chance at detecting the small difference between
the best and second best building blocks. Even in an order-3 problem, such
sampling is out of the question.

Avel'aging seems doomed by the concrete example of the previous para­
graph, and a more general calculation shows that the naive approach to
averaging is usually a problem. Generalizing the specific calculation of the
previous paragraph to a problem with m subfunctions and a maximum sub-

5The reasoning that follows also casts doubt on the effectiveness of small-population,
simple GAs in evaluating building blocks . The same variance argument applies to the usual
simple GA, and unless very large populations are used, the schema-difference-to-noise ratio
is likely to be too high, resulting in the high probability of selection error for many of th e
competing schemata in a population. This difficulty has gone largely unaddressed in the
current literature of genetic algorithms.
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function variance," a~x, we may bound the variance of the difference between
random samples of two different partial substrings, a~, as

(6.1)

The factor m is used here instead of m - l, because an arbitrary bui lding block
does not necessarily cover even a single subfu nction, leaving the possibility of
nonze ro variance at all subfunctions. When the difference in fitness we wish
to detect , .6.1, is smaller than the standard deviati on of the difference divided
by the square root of the sample size - when .6.1 ~ ad/..;n - averaging in
this manner is unlikely to be useful.

6.2 In-co m mon averaging d oesn't work ei t h er

A somewhat more sophisticated approach to averaging might not be as noisy,
and deserves our consideration. Instead of using independent random trials
to fill in the missing bits, we could generate one or more random strings
in common, and use these common strings to fill in the unspecified bits
of the partial strings . The advantage of this approach becomes clear if we
reexamine the example discussed ab ove. Using common fill-in in the example,
the part ial strings ((1 1) (2 1) (31)) and ((1 0) (2 0) (30)) would share the
same randomly selected bits at their remaining 27 genes. Assume that the
fitness contribution of those 27 bits is 127. For the top building block (I ll),
the total fitness would be 1m = 30 + 127, and for the second-best building
block (000) the total fitness would be 1000 = 28 + 127. Since tournament
selection chooses winners on the basis of the difference between fitness values,
the better building block, in this example, would always be chosen, because
1m - 1000 = 30 - 28 +127 - 127= 2. Moreover, the variance over the 27 in­
common positions is zero because the template is shared by both subs trings .
Notice that the proper building block is selected even when only a single,
commo n fill-in st ring is used.

The need for only a single sample contrasts nicely to the number required
using the naive averaging ap pro ach, and it would be useful if the result
generalized neatly to arb itrary building blocks, but unfortunately it does
not. To see this , consider two other building blocks over different string
posit ions: ((1 1) (2 1) (3 1)) and ((4 0) (5 0) (6 0)). If the positions are
filled in common, we may write the fitness of the better building block as
1m = 30+ 1(4,5,6) + 124, where 1(4,5,6) is the fitness sampled at the subfunction
specified over bits 4-6, and 124 is the fitness sampled at the 24 positions in
common with the other bui lding block. Likewise, the fitness of the other

6Note that th is maximum variance is not bounded by the variance ta ken over all points .
For example, fixing a 1 in the third position of the thr ee-bit subfun ctio n (evaluat ing
**1) yields greater variance (U; ' 1 = 198) th an that achieved by summing over all points
(u;•• = 155). More generally, u:;ax may be bound ed by following exp ression: u:; ax ::;
2k (fmax - fm in)2, where k is the number order (t he number of bits) in th e subfunction ,
and fmax and fmin are the highest and lowest fitness values, respectively. T his resu lt
follows because the highest variance occurs when points cluster at the ext remes, and the
maximum variance occurs when there is an even dist ribu t ion of points at each extreme.
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(6.2)

building block may be calculated as f ooo = 28 + f (1,2,3) + f 24 ' where f(1 ,2,3)

is the fitness sampled randomly at the subfunction spe cified over bits 1-3.
Taking the difference, we obtain the interesting resul t that f111 - fooo =
30 - 28 + f (4,5,6) - f (1,2,3) + h4 - h 4 = 2 + f(4,5,6) - f(1 ,2,3) ' T he fitn ess
contribut ion of the subfunctions in common disappears, but the unspecified
bit s in subfunct ions that are fully or partially specified by the comp etitor
must be sampled , and if these samples are made randomly, the variance
must be taken into account. In the particular case , the variance of the
signal difference may be calcu lated as O"~ = 20"2 = 310, where 0"2 is t he
variance of a single subfunction. Taking the indicated square root , we ob tain
a standard dev iation of 17.6, which does not compare favorably with the
difference we wish to detect (b.f = 2). Turning the argument around as
before, we estimate the order of mag nitude of the number of samples required
as 310/4 = 77.5. T his is be tter t ha n a 700 or so, bu t it is still impracti cal.
To make matters worse, the bits in a partial string may not fully sample
a part icular subfunct ion. When this occurs, the schema average of that
part icular subfunction must be sampled in ad dit ion to the corresponding
fill-in bit s in the competitor .

T his leads to t he calculation of a bound on the variance of the signal
difference. For two strings with average length )., the variance of the signal
difference may be bounded by the following relationship:

2 2 {4). if). < m /2
O"d < 4aO"max ' where a = 2 th .- m 0 erW1se

where O"~ax is the maximum variance that may be achieved by sampling all
or some of the bit s of any subfunction . T his follows, because in t he worst
case each of the bits of each of the strings samples a different subfunction,
which means that a subfunction and its competi to r must be sampled for each
bit contained in a string; taking the variance of the signal difference yields
the factor of four.

This result is not encouraging. Even for fairly modest building block
sizes, common fill-in is too noisy to detect small signal differences reliably."

6 .3 An alternat ive: Competitive templat es

The use of random templates, whether independent or in-common, is too
noisy to be of much use in practical mGAs. Nonetheless the bare notion of

7There is anot her fundamental flaw in th e use of avera ging schemes that ultimately
would prevent the ir use in mGAs. Even if a magic template could be devised to return
a schema's average fitness, this would not by itself be useful in promoting the best bit
combinations in many problems . In a messy GA , since all building blocks of a specified
size are tr ied, and since many prob lems have single bits that are both deceptive and
characterized by high average fitness values, the most highly fit bit combinat ions (as
measu red by schema average fitn ess) would take and string together a number of highly
fit sing letons from different subfunctions. Without other operators, these would soon
dominate the population, many bits of the prob lem might be left uncovered, and very few
multiple-bit buil ding blocks would survive . T he solution proposed shortly eliminates thi s
problem. Other scaling problems that may arise are discussed in section 7.
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using a template deserves further attention, especially if one can be devised
th at permits salient building blocks to stand out and be selected reliably.

T he key here is th e notion of salient building blocks . It mayor may
not be possible to preserve th e relative fitness ordering of all th e bui lding
blocks of t he function usin g a fixed templ ate; however, if th e relati ve rankings
of the best building blocks and other locally optimal building blocks are
preserved using a template, and as long as other building blocks have a
template fitness (the fitn ess returned by the function after filling in a partial
st ring's unspecified positions with th e templat e values) less than or equal to
that of the lowest locally optimal point , select ion should yield building blocks
at least as good as th e lowest locally optimal point.

T his reasoning immediately suggests one solution: use any locally optimal
point as a template. So doing will guarantee that no one-bit cha nge can
improve th e function , and th erefore any change that increases the fitness
must be a building block. Referring back to the 3D-bit problem, this would
imply start ing with points such as 000 .. . 000 (points with 111 building blocks
also are locally optimal, but if we are interested in worst-case performance,
it seems like cheating to start with partially correct solutions, so we will
t ake steps to prevent this). In the particular problem, innocuous bui lding
blocks such as 000 will have no effect on the template's base fitness value
of 10 ·28 = 280, partial sampling of a building block with a single 1 or two
I s (001 or 011), will depress the template fitness , and only th e corr ect bit
comb ina t ions will receive higher fitn ess th an the base template value .

Using locally optimal templates seems useful , because it permits only
salient building blocks to receive higher fitness than the bas e template value ,
but how can such a template be generated without prior knowledge of the
funct ion? In this study, we will adopt a greedy procedure, sweeping bit-by­
bit thro ugh all i bits. The steps of this preprocessing algorithm are quite
simp le:

1. Generate an i-bit string at random.

2. Gene rate an i-permutation at random.

3. In permutation order, alternately change each bit from its current value
to its complement, permanently recording those changes that improve
fitness.

4. Repeat starting at step 2 a total of n .w ee p• times .

5. Use the resulting i-bit string as the competitive template.

Although the suggested algorithm may require many sweeps to converge to a
local opt imum in the worst case, we will perfo rm only a single sweep in this
study. If a function is bitwi se linear or behaves like a linear function in all
neighborhoods, a single sweep guarantees convergence to a local optimum. A
discussion of the mathematical criteria for a nonlinear fun ction to be linear­
like locally optimizable (LLLO) is beyond the scope of this discussion; the
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argument uses analysis methods described elsewhere [12,14J. We note that
the three-bit funct ion used to construct the 3D-bit function is LLLO - all
starting points may be optimized one bit at a time, reaching one of the two
optima (000 or 111) in a single sweep .

Alternatives to this template generation method are certainly poss ible.
For example, a simple GA can be ru n with a small population size, simple
mutation, and shuffle crossover (where exchange of genes between chromo­
somes is determined by a successive coin tosses); after substantial convergence
a local optimum or near local optimum is likely.

In the next subsection, the method of competitive templates is applied
to the 3D-bit pr oblem.

6 .4 Com pet itive tem plates on t he 30- b it p roblem

The method of competitive templates is used to solve the 3D-bit problem
of sect ion 5. To give the algorithm its stiffest tes t we use the competit ive
template of lowest fitness, the st ring 000 · . ' 000, instead of gene rating tem­
plates at random and using the bit-scan technique described above. Since the
function is LLLO, we know that all the templates generated in a single pass
will be locally optimal, and we can do no worse than generate the 000 .. · 000
po int .

Figure 8 shows the maximum an d average fit ness versus gene rat ion, av­
eraged over three runs that used different random seeds . In all three runs,
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Figure 8: Generation maximum fitness and generation average fitness
(both averaged over three runs) using a messy GA with the method
of competitive templates .
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the algorithm found an optimal point at the first generation poss ible (gen­
eration 15), and in terms of best performance the graph is very similar to
that of figure 6. The dip in average performance may be explained by rec­
ognizing that when st rings are first combi ned, the combining of Is and Os
generates substandard bui lding blocks; however , selection wash es these out
fairly quickly, and the operation follows the reasoning of section 4.8; the high
proportion of the best bui lding blocks guaranteed by primordial selection
quickly leads to a high probability of having opti ma l or very near optimal
points as soon as the st rings are long enough.

6.5 Is the method of competitive templates biologically plausible?

At first glance, the method of competitive templates seems to be little mor e
than a convenient hack, and to some extent the cent ralized implement a­
tion discussed above is just that. Cer tainly, there is no reason to exp ect
that nature distributes nearly locally optimal solutions in anything similar
to the manner discussed, and the implementatio n decisions that were made
reflected the needs of computational convenience on a serial machine. On the
other hand, the basic idea of reducing bui lding sam pling err or by searching
from a nearly locally optimal structure seems fundamental, and perhaps a
biologically plausible formulation can be imagined .f In fact , a straightfor­
ward mech anism may be envisioned if we return to the notion of adapti ve
precedence mentioned briefly in sect ion 4.2.

Imagine that the primordial select ion and subs equent juxtaposition of
low-ord er bui lding blocks proceeds in a first phase of the evolutionary process,
and further suppose that these low-order bu ild ing blocks are tagged with
relatively low precedence values. At the end of the first evoluti onary phase,
the distributed equivalent of competitive temp late s will exist ; the st rings in
the population should be local op tima or near local optima. Thereafter , if
we can envision the random generation of bu ilding blocks of longer length
that also have higher precedence values than the low-order bu ilding blocks ,
these will be tested on top of the locally optimal solu tion in much the same
manner that has been built into the mGA explicitly. Of course, there is no
reason to stop imagining at this point. Even longer length improved building
blocks may piggyback on top of the longest solutions discovered to date as the
process continues, as long as their precedence valu es allow the building blocks
to be (at least occasionally) expressed in place of their previously discovered
competitors. In this way, new bui lding blocks are expressed in the context
of nearly locally optimal solut ions, thus insuring gains in the population by
only those individuals that are real improvements; as occurs with the expli cit
formulation of competitive templates used herein , the implicit method should
allow salient bui lding blocks to be select ed in relat ively small populations.

80ur need here is similar to th at of the neural network researcher when facing the
biological plaus ibility of backpr opagation, Boltzmann machines , or other weight -changing
algorithms. Although we may stray far afield of nature's implement ation mechan isms , we
should try to imagine how the algorithm being propos ed - or a reasonable approximat ion
thereof - might be implemented in nat ural "hardware ."
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7. Some remaining challenges for mGAs
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T his paper has taken some important steps toward GAs that can discover
good allele combinations at the same t ime good string orderings are sought.
There are a number of challenges that remain, however, before the method
is fully proven, including the problems of subfunction scaling and parasitic
bits. In this section, these problems are discussed and plausible solutions are
suggeste d.

7.1 Su bfunction sca ling

In designing the 3D-bit problem used to test the mGA , care was taken to
choose a problem tha t would mislead the algori thm if the required tight
building blocks were not formed . This was the pr imary requirement, but
in some oth er respects , the problem was not sufficiently representative of
the kinds of problems that might be encountered in practice. In particular,
the problem was homogeneous with respect to subfunction magnitude and
order. The first characteristic may in other problems lead to the problem of
subfunction scaling.

To see the difficulty, imagine two optimal bui lding blocks associated with
different non-overlapping positions : for example, A = ((1 1) (2 1) (31)) and
B = ((4 1) (5 1) (6 1)). Suppose also that the fitness of building block A is
larger than that of building block B, f(A) > f(B). This creates a potential
problem unless fur ther steps are taken. In the 3D-bit problem, all subfunc­
tions were scaled identically, so t here was little or no danger of permit ting
comparisons between building blocks that cover separate subfunctions, be­
cause the fitness value was a reflection of the building block's global rank.
On the other hand, if a problem is chosen so that different subfunctions are
scaled differently, then comparisons between building blocks A and Bare
not meaningful- tournament selection compares apples and oranges - and
should be restricted.

To circumvent this difficulty in future experiments, selection will be per­
mit ted only between individuals that contain some of the same genes. The
first candidate for tourn ament select ion will be picked normally. Thereafter,
th e remaining candida tes will be chosen as those next individuals in the per­
mutation list that have a specified number (the threshold value) of genes in
common with the first candidate. -Thus, performance of this genic, selective
crowding will help insure that tou rnament selection compares individuals
that cont ain some common genes. In this way, like will be compared to
like and some pressure will exist to preserve those optimal bui lding blocks
that are poorly scaled. This method is not unlike the various crowding and
sharing techniques [7,8,17,19], except that alleles (the Is and Os) will not be
checked.
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7.2 Parasitic bits

Problems that contain subfunctions that are nonhomogeneous in the number
of bits required to optimize the subfunct ions may encourage the selection
of parasitic bits during primord ial selection . Assuming that most of the
subfunctions in a particular problem are of length 4 and th e problem has been
initi alized by all length k = 4 bit combinations during partially enumerative
initialization, but assume that bits 1-3 are well optimized by the combination
((1 1) (2 1) (3 1)) . During primord ial selection, th e three-bit combination
will be filled in by bits that tend to agree with the competit ive temp late.
During primordial selection this does little harm , but during juxtapositional
selection th ese parasites will tend to prevent the expression of other more
useful bit combinations.

To prevent th is difficult y, the genic alphabet will be extended by k - 1
characters, where k is the initialization bui lding block length. These exte nded
genes will have a single value: N (null). In this way, th e extended genes may
fill in a short bu ilding block in place of spurious bits , thereby permitting the
sub sequent exp ression of other bit combinations. For example, the string
((1 1) (2 1) (3 1) (31 N) would express the 111 buil ding block as a length
four st ring without parasites in the 1= 30 problem.

To imp lement this idea, there is one further requ irement. The number of
null bits should be used in th e selection process to break ties between st ring s
of equal fitn ess. For example, the proper bui lding block ((11) (2 1) (3 1) (31 N)
and a string with parasitic bit ((11) (21) (3 1) (200)) would have the same
fitness value during primordial selection. If the number of null bits is used
to break ties , the proper building block would have preference when the
two went head to head during tournament selection. Biologically, this tie­
breaking procedure can be interpreted as a preference for most efficient rep­
resent at ions, which may itself be argued on minimal energy grounds. Other
things being equal, an organism with less hardware requires less energy and
therefore has a fitn ess advan tage, albeit a slight one, when phenotypi c ex­
pression is otherwise the same.

8. E xtensio ns

This work may be extended along a number of lines. Here , possible messy
float ing point codes, messy permutations , and messy classifiers are discuss ed.

8 .1 Messy floatin g p oint codes

The ARGOT system [23Jimplements an adaptive floating point coding scheme,
but it does so in a rigid manner with global pop ulat ion statistics used to guide
the select ion of a plethora of ad hoc operators. The variab le length strings of
mG As open t he door for more natural, adaptive floating point codes . In one
such messy floating point code, the string ((M 3 1) (M 3 0) (E 3 0) (F 3 0))
decodes to a value of 0.05 for the third parameter, because one-half of the
mant issa bits (M bits) have value 1, and because th e single exponent bit
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dictates a unary minus (1 = plus and 0 = minus) . The fina l F bit is used
as a parameter fixing punctuation mark. Its presence prevents subsequent
genes designating parameter 3 from changing the already calculated value
(assuming the usualleft-to-right scan) . In this way, messy GAs should be
ab le to put their precision where it is useful.

8.2 Messy permutation codes

The traveling salesman problem and other problems over permutations have
received some attention with GAs. As was mentioned earlier, these studies
have required specialized operators to preserve crossover operators to pre­
serve tours . With the introduction of the messy approach, this no longer
seems quite so urgent. Partial permutations may be tested during the pri­
mordial phase (using the genic selective crowding operator discussed earlier)
and recombined during the juxtapositional phase. The first-come-first-served
precedence scheme may work well enough, or perhaps adaptive precedence
will be necessary in this class of problems.

8.3 Messy classifiers

The production rules called classifiers that are often used in genetics-based
machine learning systems are a natural application of messy GAs. In the
usual classifier system, the classifier 00###:00011 would be matched by
any previously posted message that begins with an 00 and would, thus , be a
candidate for posting its own message to the message list at subsequent iter­
ations . In a messy classifier system, the rule ((M 1 0) (M 2 0) (841) (851))
would encode the same rule using match genes (M), send genes (8), and a
host of other pass through characters and punctuation marks. These sugges­
tions can take us closer toward Holland's (1975) broadcast language proposal
in a step-wise fashion.

9. Conclusions

This paper has defined, analyzed, and partially explored a new type of ge­
netic algorithm called a messy genetic algorithm. Messy GAs first find and
emphasize the good building blocks of optimal or near-optimal solutions in
what is called the primordial selection phase. Thereafter, during the juxtapo­
sitional selection phase, cut and splice operators recombine the good building
blocks to form optimal points with high probability. Bounding analyses have
been performed and these have helped shape the design presented herein .

A difficult test function has been designed, and in two sets of experiments
the mGA is able to find its global optimum. In the first set of experiments,
the assumption of partial string, partial evaluation, P8PE, was made to test
the method without sampling noise . In the second set of experiments , the
method of competitive templates was developed to permit noise-free partial
string evaluation without the limiting assumption of P8PE. In all runs on
both sets of experiments, the mGA converges to the test function global
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optimum . By contrast, a simple GA using a random ordering of the string
is ab le to get only 25% of the subfunctions correct.

This is the first time that any genetic algorithm has been reported to
converge to a global optimum in any provably difficul t problem; however ,
further evaluation of the mGA technique is required before firm conclusions
may be drawn, and a number of remaining challenges have been dis cuss ed
in this paper. Nonetheless, the potential of these me t hods in very difficult
optimization problems with many false optima has been demonstrated by
this proof-of-principle study. As the remaining challenges are solved , these
techniques may be extended to many difficult problem domains using messy
floating point codes, mes sy permutation codes, and messy clas sifiers as sug­
gested in this paper.
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