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Abstract. With the emergence of neural network architectures, com­
binatorial optimization problems and NP-complete problems may be
tackled with a new attention combining biology, physics and data
processing. This paper deals with one of these problems: the graph
K-partitioning. After a brief critical review of the conventional meth­
ods, we show how a particular vectorial encoding associated with this
problem produces original neural network methods. Through different
graph families, a comparative analysis of our approaches with one of
the best conventional algorithms is developed.

1. Introduction

The graph partitioning, when it is subject to some particular constraints,
is a NP -complete problem [5] having a lot of potential applications. One
of them concerns the optimal assignment of distributed modules to several
processors in order to minimize the cost of running a program. This cost
may be money, time or some other measures of resource usage. Another
application is the layout of micro-electronic systems: one wants to assign
small circuits to packages (chips) of specified sizes in order to minimize one
measure of interconnection between them.

1.1 Graph partitioning and computer vision as an example

This problem appears in the field of computer vision where we expect a lot
of applications. The first of them concerns the perceptive grouping. In fact,
salient features in an image may be described as image entities represented
by the vertices of a graph. Topological relationships exist between them, the
latter being represented by weighted edges.

The second application, here considered for information only and using
nonhomogeneous graphs, concerns the stereo-correspondence. One wants to
match two images of the same scene from different viewing positions in order
to extract 3D-informations of the scene. The best methods need graphs to
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Figure 1: Example of segment images extracted from two views of the
same scene. The left image has 323 segments and the right one has
314 segments.

reduce the combinatory an d produce valu abl e results as well [1,9J. Here we
use the method developed by Horaud an d Skordas [9]. Segments are first
ext racted from both left and right images (see figur e 1). Each segment is
characterized by its position , orientation an d some topological relationships
wit h its nearby segments. So, monocular descriptions of each im age are rep­
resent ed as graphs (see figure 2). Each vertex represents a segment and a
weighted edge between two vertices is asso ciated to a topological relationship
between two segments in the image (left of, righ t of, colinear wit h, same junc­
tion as). Those two graphs are generally nonhomogeneous and have to be
matched. But they are so comp lex that it is necessary to parti tion them into
subgraphs in order to make a parallel t reatment. T he cost of the partition
is measured by the total sum of all edge weights between vertices of distinct
subsets in the part ition. So far, the authors have used an arbitrary way of
parti t ioning: they cut images in slightly overlapping windows (see figur e 3).
In thei r case , the subset number is a power of 4. One noti ces that the par ­
titioning does not take into account the nonhomogeneity of the total graph.
Consequently, su bsets may be largely unbalanced an d the interconnection
cost may be very high . In fact, salient st ructures in the image corre sponding
to high local topo logical relati onships may be broken (see figur e 4). Therefore
it is necessary to impose some ~onstraints on the par tition. Every subgraph
of an image is mat ched with the entire graph of the other image. So, a first
constraint must be imposed : the interconnection cost be tween the subgraphs
must be as small as possi ble. On the other hand , in order to optimi ze the
running of the parallel matching, we have to impose. the following second
constraint: the subsets must have specified sizes in order to have a good load
balancing between processors .
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Figure 2: Monocular descriptions asso ciated with th e figu re 1 images.
T hey correspond to nonhomogeneous graphs in which every vertex
represents a segment and an edge between two verti ces represents
a topological relationship. The left monocular description has 323
ver tices and 910 edges . The right one has 314 vertices an d 874 edges.

Figure 3: Example of an arbitrary partition by slightly overlapping
windows.

1. 2 Theoretical formulation of the graph K-partitioning problem

Given an undirected graph G = (V, E) of N vertices and M positively
weight ed edges, one wants to partition this graph into J( dist inct sets of
specified sizes N I , . .. , NJ{ in order to minimize the total weight of edges con­
necti ng vertices in distinct subsets. Let A = (aij ) be its weighted adjacency
matrix. One defines the density d of a graph as the ratio between M and
the numb er of edges in a complete graph of N vert ices. So, the average
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subset 0 subset 1

interconnection edges

Figure 4: Example of an arbitrary partition of the left monocular
description. Th e dist ribution of ver tices is the following: 74 vertices
in subset 0, 75 vert ices in subse t 1, 78 vert ices in subset 2 and 96
verti ces in subset 3. One notices th at the subsets are quite unbalanced
and t hat the int erconnection cost is high.
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degree of a vertex, i.e. the average number of vert ices connec te d to a vertex
is N.d. The standard deviatio n of the degrees appraises the graph homo­
geneity. Thus we consider two graph famili es: the family of small standard
deviation graphs, named homogeneous graphs, and the family of nonhomo­
geneous graphs . The more nonhomogeneous the graph, the more necessary
and nonobvious the partitioning. Henceforward, we will use these different
graphs to test the methods here proposed. In all cases, one can prove that
the interconnection cost of a perfectly bal an ced partition (Nl = . . . = NK)
is a function of I( and d which is bounded by Gmi n and Gmax given by (see
appendix A):

G min (I( ) 0 if I( ~ (N _ ~.d + 1 (1.1)

N;.d. [1-;c (d;d1.I( +~)] otherwis e

N
2.

d ( 1 )Gsup(I() = -2- ' 1 - I( ,'VI( < N. (1.2)

The function Gmin is obtained by supposing that every subgraph of the par­
tition is complete (density = 1) . T he fun cti on Gsup is ob tained by supposing
that the internal density of every subgraph is equal to the graph density. An
example is shown in figure 5. In reality, if the graph is homogeneous and
N much greater than I( , we can estimate that the internal density of each
subgraph is about Kd (see appendi x A) .

Among the homogeneous graphs, we name regular with torus pattern
the most homogeneous ones. The most famous examples of such graphs
are the rectangular grid (see figure 6) and the hexagonal grid. Among the
nonhomogeneous graphs, one finds the figure 2 monocular descriptions .

Two novelties are presented in this paper. The first is the formulation
of an extension of neural me thods (simulated annealing , Hopfield neural
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Figure 5: Curves bounding the int erconnection cost , divided by M ,
of the left graph partition shown in figure 2.
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N - 100, M _ 200

Figure 6: Example of an homogeneous graph: rectangul ar grid with
toru s pat tern .

netwo rk, mean field theory, mean field annealing) to the manipulation of
vectorial entities used as optimization variables. T he second concerns the
application to the graph K-partitioning problem. This paper is organized
as follows . In section 2, we show that an exhaustive production of all the
solut ions is impossible. In section 3, we briefly review previous conventional
approaches of the problem . In section 4, we develop neural methods using a
new vectorial encoding.

2. Exhaustive production of solutions

Let us suppose that one wants to explore exhaust ively the space of the poss i­
ble distributions of N .K obj ects into K subsets of size N . The total number
of feasi ble partitions is

~ . ( N /{ ) . ( N. K - N ) . . . ( 2.N ) . ( N ) = (NK)! (21 )
J(! N N N N /{ ! . (N!) K .

Typically, with NJ( = 250 and K = 10, the number of configurations to
study is greater than 10234

• Such an exploration would need thousands of
years of CPU time of the most powerful computers. So there is no question of
develop ing exhaust ive metho ds to solve such a pr oblem: we have to develop
some heuristi cs.

3 . Previous conventional approaches

Three classical method famili es emerge from the sixties .

3.1 Linear programing

In the past , our problem has been considered as a linea r programing problem.
The first who has describ ed the problem in such terms is Lawler [13]. In this
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framework, a lot of methods have been developed. Among them, Donath [4]
pro posed to use the eigenvectors of a modifie d adjacency matrix; IBM re­
searchers [16] used a Cholesky factorizat ion of a modified adjacency matrix
to iteratively improve a partition which is the solut ion of a linear system
of N .I( variab les. Lukes [14,15] used a dynamic pro graming procedu re to
generate a good partition. All these methods are not adapted to pro blems
involving large size graphs: they are inextri cable. Moreover, their parallel
imp lementation seems to be very difficult.

3 .2 Use of t he Ford-Fulkerso n maxflow- mincut t h eorem

Another approach to solve only the bipartitio ning pro blem is to consider the
graph as a network of pipes conveyin g some commodity from a source vertex
to a sink vertex. The edge weights represent the capacities of th e pipes.
Stone [20] and Bokhari [2] used th e maxflow-mincut th eorem to solve th e
pro blem of the optimal assignment of modules on two processors. But thi s
approach does not allow one to impose the sizes of the two subsets. Therefore,
the pro blem is not NP-comp lete . Roo [18] studied this problem when the
memory size of each processor is limited. More generally, it seems very
difficult to extend successfully those methods to the K-par t itioning problem.

3 .3 Iterative im p rovements

Burn ste in [3] has made a review of iterative imp rovement heuristics and con­
sidered two heur isti c families to solve th e biparti t ioning problem: method s
of const ruct ing a good init ial partition and methods of improving an init ial
partition. Very few of them pro duce good results because most te nd to con­
verge on the first found local minimum. Nevertheless one of them, proposed
by Kernighan [10,11], rapidly produces a very good bipart ition. The idea is
the following: given an initial graph bipartition which is perfect ly ba lanced,
the optimal bipartition may be obtained by interchanging a vertex group of
one subset of the bipartition with a vertex group of the other subset. In
order to approximate those vertex groups, one executes a sequence of vertex
permutat ions from one sub set to the ot her so that globally the intercon­
nect ion cost decreases. Thus the algorithm allows a tempora ry increase of
the interconnect ion cost . By reason of that, this method keeps from being
t rapped at the first local minimum: one is ab le to leave shallow valleys of the
solut ion landscape. The more homogeneous the graph , the better the final
partitio n because the depth valley disparity is small. The ma jor drawback
of th is approach is its sensibility to the initial partition quali ty.

We have extended th is approach to the K-partit ioning problem with N1 =
... = NJ( = N / J( by a dichotomic recursive procedure illustrated in figure 7
(case of the 7-partitioning).
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Figure 7: Dichotomic recursive procedure for the 7-partitioning using
the generalized Kernighan method.

Experimental results are pr esented for the 5-partitioning of the following
graphs:

homogeneous graph: regular hex agonal network of 324 vertices (see
figur e 8) ,

nonhomogeneous graph: left monocular description of figure 2 (see fig­
ure 9).

Experimentally, this heuristic gives insufficient results when the desired
subset number is greater than 4. In fact there is a contradiction in the di­
chotomic way of partitioning: first , a bip arti tioning procedure tries to max­
imize the internal connection cost in a subset (i.e. minimize an interconnec­
t ion cost), and then a new bip artitioning procedure imposes to minimize a
connect ion cost in this subset. So, the greater J(, the wor se the result.

4. Neural approaches

The following approaches are the result of a conjunction between biology,
physics and data processing. Solving an optimization problem subject to
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Figure 8: Balanced 5-partitioning of a regular hexagonal network of
324 vertices and 901 edges provided by the generalized Kernighan
method. The interconnection cost is 107 (edges are not shown).
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constraints such as the graph K-partitioning one is equivalent to minimiz­
ing a global quadratic energy which describes the partition state. Here we
present some original neural methods to minimize such an energy. Those
methods differ from previous approaches (see section 3) by the following
characteristics:

their ability to relax constraints (this is desirable for the partitioning
of nonhomogeneous graphs),

they can easily be implemented on massively parallel architectures such
as neural networks; the initial vertex state does not noticeably influence
the final partition quality,

they give good results whatever the number of desired subset,

they can be easily extended to solve a lot of other combinatorial opti­
mization problems.

A network of formal neurons is a set of highly interconnected processing
elements which imitate biological neurons. A formal neuron is defined by

an internal state (identical to the output),

connections with some other neurons or with the environment,

a nonlinear transition function which allows to calculate the internal
state as a function of the signals received on its synaptic connections.
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Figure 9: 5-partitioning of the left nonhomogeneous graph of the fig­
ure 2 provided by the generalized Kernighan method. The subsets are
perfectly balanced. The interconnect ion cost is high: 125.
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A synapse between two neurons is represented by a weighted connec­
tion between th e output of a neuron and one input of the ot her. Despite
the ext reme simplicity of thi s model, collect ive comput ation s with formals
neurons are particularly well suited to solve combinatorial optimizat ion prob­
lems [21,22].

We distinguish two neural network families: networks with binary neu­
rons and networks with analog neurons. The following algorithms take int o
account this characterist ic featu re of th e neurons.

4.1 Transcription of t h e optimization problem in terms of energy

We associate to every vertex a vector which defines it s localization in the
partition:

where v- = 1 if the vertex is the subset k and v- = - 1 otherwise.
Let us calculate the partition interconnection cost. First, we notice

(4.1)

a ij if one and only one of the vertices i

and j is in th e sub set k,

ootherwise.

(4.2)

Therefore, the int erconnect ion cost between the subset k and the other sub­
sets is

(4.3)

The total int erconnection cost between all the subsets , which we name the
interconnection energy, can be written

1K{1 N N (Vk_Vk)2}
Eint eTconnecti on = 2" .L: 2" .?= L: aij · • 2 ) .

k= l .=1 )=1

After some algebra, we get

1 K N N J(NN

EinteTconnection = - 8" .L: L: L: aij .V/ .~k + "8. L: L: a ij ,
k=l i=lj=l i=lj=l

i. e ,

(4.4)

(4.5)

(4.6)
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Now let us define an energy function which expresses the imbalance of
the partit ion . First we notice that if the partition is perfectly balanced, then
in a subset k , Nv Vik equal +1 and N - Nk equal -1. Therefore:

N

Vk E (1, J( ),L Vik = 2.Nk - N.
i=l

An imbalan ce measure in the subset k is defined by

(4.7)

(4.8)

The total partition imbalance, which we name imbalance energy, is measured
by

K

Eirnbalance = L o;
k=l

We notice

K

Vi E (1, N ),L Vik = 2 - K.
k=l

(4.9)

(4.10)

T hus, after some algebra, one finds that the linear term of Dk is a constant
for all k and it leads:

K N N K N

E imbalance = L LL Vik .V/ - 4. L LNk.Vik
- K.N 2

k=li=lj=l k=li=l

K

+ 4. LNf.
k=l

(4.11)

To find a good solution to this optimization problem, we associate to it
an energy function E. T he min imization of E must ensure a respect of the
constraints and the minimization of the total interconnection cost. We define
E as

E = Einterconnection + >./8. E irnbalan ce (4.12)

where>. is a parameter which allows to balance the constraints. After sim­
pl ifications, we get

E =

(4.13)
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It is clear that it is not necessar y to keep the cons t ants and the multiplicative
factors in this energy. Then , we minimize the following quadratic energy:

K N N K N
E ~ I: I: I:(.\ - ai;).v/-V/ - 4..\. I: I: Nk .vt

k=li=lj=l k=li=l
(4.14)

In order to stati st ically give the same importance to the balance con­
straint and to the interconnection cost minimization const raint , one can es­
ti mate the value of the parameter .\ (using a similar kind of approach as
Kirkpatrick [12]):

(4.15)

where Q is an adjustable parameter always around 1.
We empirically notice that the partitioning of homogeneous graphs with

a parame ter Q close to 1 provides a partition with an excellent balance. T his
can be explained by the fact that the energy landscape is quite smooth: the
valley depth disparity is small. Therefore, th e optimization algorithm easily
moves from one energetic valley to another one until the obtention of a well­
balanced partition. One the contrary, the partit ioning of nonhomogeneous
graphs needs a balance parameter great er than 1 because the valley depth
disparity grows with the non homogeneity of the graph. Typi cally, goo d re­
sults are obtained with Q close to 2.

In t he following, experimental results will be given by supposing that the
subsets have the same size (N1 = . .. = NK ) .

4.2 Partition energy minimization by a network with binary neu­
rons

In t his neural network family, the intern al state (i.e. the output ) of each
neuron is binary: the nonlinear transition fun ction associated to a neuron is
a Heavyside type function .

4. 2. 1 H opfield network with binary neurons

T he interconnect ion network of the Hopfield model is complete (see figur e 10) .
T he synaptic connect ion between the neuron i and the neuron j is weighted
by Ti j which is pos iti ve (excitatory synapse) or negative (inhibitory synaps e) .
The neuron output is a function of it s inputs:

The transition function f is defined by the following:

if x < 0 then f (x ) = - 1,
otherwise f (x) = 1.

(4.16)

(4.17)
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Figure 10: Hopfield neural network. The interconnection gra.ph is
complete .
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Figure 11: Matrix structure of an Hopfield network adapted to the
graph K-partitioning problem.

Hopfield has shown [8] that in the case of an asynchronous dynamics, a
symmetrical matrix T with 0 diagonal elements drives the system to stable
states in which the outputs of all neurons are either + 1 or - 1. These stable
states of the network correspond to the local minima of the quantity, which
we call the energy of the system:

(4.18)

where V; is the output of the ith neuron and 1; IS the externally supplied
input to the ith neuron.



Neural Networks and Graph K-Partitioning

v,1 _ ..:.....;._ - +t
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Figure 12: Details of a formal neuron of the figure 13.
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Let us associate to our optimization problem an Hopfield network having
a matrix organization of N.I{ neurons in which the output of the (i, k)th
neuron expresses the V/ value and is either + 1 or - 1 (see figur e 11).

This network is a neural transcription of the vectorial representation pr e­
viously defined. To each neuron is associated a processing element with
sever al inputs and one output connected to the other neurons (see figur e 12).
A coefficient of T represents the synaptic weight between two neurons. The
output (internal state) of the (i ,k)th neuron is

(4 .19)

We must add to the energy function associated to our optimiza tio n prob­
lem (equation 4.14) an energy te rm which takes into account the structural
organization of the network (see figure 11) . Therefore, we have to minimize
the energy:

K N N K N
E = L L L(.). - aij)."ltt.v:-4.'\. L L Nd'ik

k=li=lj=l k= l i= l

(4.20)

where B is a positive adjustable parameter.
The term relative to B is an energy term which is minimum when only

one component V/ of each neuron vector V; characterizing a graph vertex is
equal to +1. We get

K K N N K N
E = L L L L('\ - aij).okl.V/-Vjk - 4.'\. L L Nk.V;k

k=ll=l i=lj=l k=li=l

(4.21)
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After some algebra, we find
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E =
1 K K N N

- 2" ' L L L L[-2.(,\ - a;j).okl - 2.B .o;j].V/'V/
k=1 1=1 ;=1 j =1

K N
- L L [2.B.(2 - K) + 4.'\.Nk].V/ + B. N. (2 _ K)2.

k= 1 ;=1

(4.22)

Once again, it is not necessary to keep the constant term. Our energy can
be writ ten as an Hopfield energy:

-1 K K N N K N

E = 2 .LLLLT;k,jl.V;k.VjI - LLI;k.V;k
k=11=1 ;=1 j =1 k=1 ;=1

where

V(i,j) E (l ,N} \V(k,l) E (1, K} 2,

!;k = 2.B .(2 - K) +4.'\ .N k .

(4.23)

(4.24)

(4.25)

T he excitatory par t of the synapt ic weight (positive term) tends to put
the highly interconnected vert ices in the same subset but the inhibitory part
(negative terms) imposes the balance and the disjunction constraints on the
subsets . One notices that the matrix T of synaptic weights is symmetrical:

(4.26)

Only the two parameters ,\ and B are necessary to calculate the matrix T .
A value of B near to ,\ seems to be a good one becaus e the paramet ers then
globally balance the constraints of th e problem. Then Xis the only parameter
to be determined and is eas ily ap proximat ed (equ ation 4.15). Empirically,
such a network converges to the nearest local min imum of the configurat ion
hypercube.

The running on a conventional sequential architect ure would be very ex­
pensive in terms of CPU time. So we have not experimentally validated t his
method.

4 .2. 2 Simulated a nnealing

A good way to find low energy states of a complex physical system such as a
solid is to heat the syst em up to some high temperature, then cool it slowly.
This process, called annealing, forces th e system evolut ion int o regions of low
energy, while not getting t rapped in higher -lying local minima. Geman [6] has
shown that with an infinite initial temperature an d by using an exponent ial
law for the temperature decreasing, an abso lute energy min imum is reached
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in an exponential number of iterat ions. For example, at the kt h temperat ure
step, the temperature satisfies the bound:

T(k) c
~ 10g(1+k) (4.27)

where c is a constant indep end ent of k. The idea of the simulat ed an nealing
is to express those concepts in terms of an algorithm. So, we identify the
energy function of the system to be optimized with the energy of a phys ical
system.

Let us consider:

a list of feasib le elementary transformations which determine the energy
landscape of our problem (the topology) ,

an initial configuration of the system,

a law of the temperature decreasing.

The smaller the temperature, the more rigid the system (there is a small num­
ber of elementary transformations which are ope rated) and the mor e det er­
ministic the system evolution. Kirkpatrick [12] has developed this approach
in the case of the graph bipartitioning problem. We extend this method to
the K-partitioning problem by using the previously defined vectors.

Given the global energy to be minimized (equation 4.14), let us calculate
the energy variation associated to an elementary transformation. We define
an elementary transformation as the move of a vertex i from a subset k
to a subset i . The total number of possible element ary transformations is
N.(I< - 1). It leads:

t:.E;--+l = E(V/ = - 1, V/ = 1) - E(V/ = 1, V;l = -1) .

After some algebra, we obtain

N

t:.E;....+l = 4. :L (>. - aij ).(V} - V/) + 8.>..(Nk - Nl ) .

j =l ,joFi

(4.28)

(4.29)

(4.30)

New states of the system are generated by applying a set of elementary
t ransformations to the system. Each elementary transformation is accepte d
or rejected using the following crite rium:

if t:.E;--+l :::; 0, then accept the move,

otherwise accept the move with the probability

p(t:.E;--+l,T) = exp ( _ t:.~-+l) ,

where T is the temperature parameter.

Some curves representing P(x, T) are shown in figure 13. One verifies that
the acceptance probability decreases as the temperature.
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P (x, T)
1

T =:

10
O+---~--.......-:::.-_---.

-10

Figure 13: Simulated annealing: accept ance probabilities of an ele­
mentary transformation as a function of the associated energy varia­
tion and of the temperature T .

The principle of the simulated annealing algorithm is the following: the
system is put in a high temperature environment. At this temperature is
applied a sufficiently long sequence of random elementary t ransformations
(Markov chain) to reach the equilibrium at this temperature. T hen, the
ambient te mperature is slightly decreased and a new sequence of random
moves is applied. So, the syste m converges slowly to a minimal energy state.
This process is iterated until the system is frozen, in other words when there
are not enough global significant energy improvements. By analogy to spin
glass physics, one takes as a good ini tial temperature:

To = (N.d)2 (4 .31)

whe re d is the graph density. Here, we notice that the Markov chain length
of elementary transformations which is necessary to obtain the equilibrium
at a fixed temperature closely depends on the graph homogeneity. T he more
homogeneous t he graph, the smaller the necessary length of the Markov
chai ns bec ause the slopes of the relevant energetic valleys are then more
ab rupt. This will be visu alized in section 4.3.2. The simulated annea ling
algorit hm can be found in ap pendix B. Experimental results are given for
the 5-part it ioning of the following graphs:

homogeneous graph and a = 1: regular hexagonal network (see fig­
ur e 14) . Figure 15 shows the evolutions of the energies (interconnec­
tion energy, imbalance energy and total energy) as a function of the
number of temperature steps. In figur e 16 one shows the corresponding
evolution of the temperature and of the number of accepted elementary
tran sformations. One can see that in average those energies decrease
with the temperat ure . Those curves are highly nonlinear: the system
suddenly freezes in a certain range of temperatures.
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nonhomogeneous graph and a = 1: left monocular description of fig­
ur e 2 (see figur es 17, 18, and 19). On e no tices that a = 1 produces a
bad imbalance energy: a must be greater .

nonhomogeneous graph and a = 2: left monocular description of fig­
ur e 2 (see figures 20, 21, and 22). The 5-partition and the energies
produced with such a valu e of a are exce llent.

Those resu lts are to be compared with those provid ed pr eviously by the
generalized Kernighan method (see section 3.3) : the simulated annealing
algorithm experimentally improves by about 20% t he interconnect ion cost
and thus the global energy of the system .

T he main drawback of this method is that the running time necessary to
converge on a conventional sequential computer is very high (about 3 CPU
hours on a SUN 4-260 for the graphs of figures 14, 17, and 20). Nevertheless,
we no t ice that the t ime comp lexity linearly increases as the problem size; in
fact , it is imposed by the Markov chain leng th which is in o(N.K ). In order
to speed up the partitioning, we will use another ap proach, the so called
mean field annealing algor ithm (see section 4.3.3). Contrary to the stochastic
and sequential nature of the simulated annealing, the system evolut ion here

Figure 14: Balanced 5-partitioning with a = 1 of a regular hexago­
nal net work of 324 vertices and 901 edges provided by the simulated
anneali ng algorithm. The int erconnection cost is 85 (edges are not vi­
sualized). The imbalance energy is 99,20. The total energy is 85,2l.
The initial temperature is 40 and the final temperature is 0,378. The
number of temperature steps is 109. The distribution of vertices is the
following: 69 vertices in subset 0,65 vertices in subset 1,62 vertices
in subset 2,64 vertices in subset 3 and subset 4.



550 Laurent Herault and Jean-Jacques Niez

800

30 00600

400

200

o

E Interconnection
20 0

100

20 40 60 80 100 120
iterat ion

20 40 60 80 100 120

iteration

80 0

600

4 0 0

20 0

E

o+-~................~--.-~-.-~...-...-,
o 20 40 60 80 100 120

iteration

Figure 15: Evolution of the system energies as a function of the tem­
perature step number.
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Figure 16: Evolution of the temperature and of the number of ac­
cept ed t ransformations as a function ofthe temperature step number.
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Figure 17: Balanced 5-partitioning with a = 1 of the left nonhomoge­
neous graph of the figure 2 provided by the simulated annealing algo­
rithm. T he interconnection cost is 85, the imbalance energy 3572,8,
and the t otal energy 92,81. The initial tem perature is 40 and the
final temperature is 0,71 4. The number of temperature steps is 88.
The distribution of ver tices is the following: 53 verti ces in subset 0,69
vertices in subset 1, 67 vertices in subs et 2, 48 vertices in subset 3 and
86 vertices in subset 4.
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Figure 18: Evolution of the system energies as a funct ion of the tem­
perature step number.
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Figure 19: Evolution of the te mperat ure and of the number of ac­
cepted t ransformations as a functio n of th e temperature step number.
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subset 0

subset 2

subset 4

subset 1

subset 3

interconnection edges

Figur e 20: Balanced 5-partitioning with a = 2 of the left nonhomo­
geneous graph of t he figure 2 provided by the simulated annealing al­
gorithm. The interconnection cost is 74, the imbalance energy 116,8,
and the total ene rgy 74,51. Th e initial temperature is 40 and the
final temperature is 0,172. The number of temperature st eps is 127.
The distribution of vertices is the following : 63 vertices in subset 0
and 1,68 vertices in subset 2,67 vertices in subset 3 and 62 vertices
in subset 4.



554

800

600

Lauren t Herault and Jean-Jacques Niez

5000

4000

400

2 00

o

E Interconnection

50 100 150
ite ration

8 0 0

600

40 0 E

30 00

200 0

100 0

o

E Imbalance

50 100 150
ite ra tion

o 50 100 150
iteration

Figure 21: Evolution of the system energies as a function of the tem­
perature step number.

is deterministic and mass ively parallel. Results are nearly as good as those
provided by the simulated annealing algorithm and the CPU time is typically
divided by 10 or 20 for simu lations on a classical convent ional computer (SUN
4-260).

4.3 P artition energy minimization by a network with anal og
neu rons

In this neu ral network family, the int ernal state (i.e. the output) of each
neuron has an analog internal state.

4.3 .1 H opfield netwo rk with analog neurons

One associates a numerical noise to the Boolean transition function previ­
ously defined (see section 4.2.1) . One would like to mimic the effect of this
noise and additionally control the convergence process . So, one considers an
Hopfield network with analog neurons as defined in [7]. The new associated
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Figure 22: Evolution of the temperature and of the number of ac­
cepted transformations as a function of the temperature step number.
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Figure 23: Examples of possible transition functions associated to an
analog neuron.

transit ion function is a sigmoid and depends on a parameter T which mimics
the noise. One can take as a transit ion function (see figure 23):

[r = th (x /T). (4.32)

One forces T to tend to 0 during the convergence process . At this limit,
we obtain the previous model (see sect ion 4.2.1). As previou sly, one can show
that the Hopfield energy defined in the part 4.2.1 converges to a minimum [7].
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A thresholding is made at the end of the process, when one estimates that
the network has converged, by using the formula

Vi E (1, N ),Vk E (1, J(),

Vik(t+1) = [r .....o(Vik(t». (4.33)

In this case, one has to add to the energy associated to our optimization
prob lem the additional energy which tends to force the neuron out puts to be
+1 or -1 :

K N

C. L L(1 - Vik).(l +Vik)
k=li=l

(4.34)

where C is a positive adjustable parameter. This energy term is minimum
when the neuron outputs are either +1 or - 1". Then the global energy to
minimize becomes

(4.35)

E =
1 K K N N

- 2"' L L L L [-2.(). - aij).okl - z.s .s; +2.C .Oij.okd.Vik.VjI
k=l 1=1 i=l j=l

K N

L L [2.B.(2 - K ) +4.A.NkJ·Vik

k=li=l
+ B.N.(2 - J()2 + C.N./{.

This energy can be written as an Hopfield energy by using the synaptic
weights :

V(i,j) E (1, N) 2,V(k , 1) E (1, J() 2,

I ik = 2.B.(2 - J() +4.A.Nk.

(4.36)

(4.37)

It is equivalent to add an excitatory synaptic term which tends to force
every neuron output to be + 1 or - 1. The matrix of the synaptic weight s is
symmetrical. Additionally, with the condition

C = B +A, (4.38)

all the diagonal coefficients of the matrix are O. Therefore, the syst em con­
verges to a minimum [7J. With this condition, two parameters have to be
fixed: Band A.

As in the case of an Hopfield network with binary neurons, we have not
validated thi s method on a conven tional comp uter because of the large CPU
t imes which are expected.

In the two types of Hopfield netwo rks (wit h analog or binary neurons),
every neuron is connected to N - 1 + J( other neurons. Therefore the total
number of synaptic connections in the network is N.( N +J( - 1) and thus is
proportional to N 2

• Consequently a subset number which is small comp ared
to the vertex number does not noticeably influence the running time.
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4.3.2 Mean field theory
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The main drawback of the simulated annealing is its large running time on
a conventional sequential computer (see section 4.2.2). A neural approach
coming from statistical mechanics and named mean field theory (MFT) has
been developed [17J to solve much more quickly some optimization prob­
lems. Here, the data used are scalar entities. We extend this approach to
solve optimization problems having a lot of degrees of freedom such as the
graph K-partitioning by using the previously defined vectorial entities (equa­
tion 4.1). Contrary to the simulated annealing, the convergen,ce process is
perfectly deterministic and is controlled by a dynamic system. At every
temperature, a solution of this system is directly related to the vertex mem­
bership probabilities (between - 1 and + 1) of a subset in the K-partition.
We show that this method gives very good results in a smaller CPU time
than the one which is necessary in the simulated annealing. Additionally, it
is intrinsically massively parallel by nature.

By analogy to physics [19], let us define, for all vertex i and for all subset k,

and

N

(h7) = -2 I).\ - aij).(V/),
j=l

(4.39)

(4.40)

(4.41)

(4.42)

h7 may be considered as the kth component of the field vector created on the
vertex i by the other kth spins associated to the graph vertices . h~xt may be
considered as the kth component of the external field in which the system
is plunged. Thus Hi

k is the kth component of the total field existing on the
vertex i. Then the mean energy of the system (equation 4.14) can be written

N

(E) = - 2:(11i ) . (V; ).
i=l

Let us consider a vertex which is isolated from the others which are sup­
posed to be fixed. Then the mean energy associated to the vertex i is

(4.43)

In the spin vector of the vertex i, only one component is +1 and the others
are -1. We can write the partition function associated to the mean behavior
of a vertex as

(4.44)
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In this expression, the configuration of minimum energy are predominant .
After some algebra, we obtain

(4.45)

T he mean vector of spins asso ciated to a graph vertex has the following kth
component:

After simplifications, it leads:

(4.46)

exp { ~ .(Hk )} - L~l ,l# exp {~ .(Hl) }

L~l exp H· (HI)}
2

--::-:-----,------- ,,- - 1
L~l exp H.( (HI) - (Hk))}

(4.47)

(4.48 )

The mean field approximation consists in supposing that the field seen by
a vertex is the mean field created on this vertex by the other vertices. Then,
for all vertex i, we get

(4.49)

The solutions of the equation (4.49) can be iterat ively obtained thanks to
t he following equations:

Vi E (I , N) ,Vk E (I , K) ,

vknew =, (4.50)
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The desired values are also solutions of the dynamic system:

559

Vi E (I , N ),Vk E (I ,K ), (4.51)

d(Vik (t) ) = _(T7k( ))
T . dt Vi t +

2
---::-:-----;--".-- - - - - - - =-- - ----- - - - -;-'<"" - 1.
L:{~ I exp H·[4.,\.(Nt - N k ) - 2. L:f=,1(,\ - ai})'((V/ (t )) - (V/ (t) ))]}

Two running modes are possible. A new step in a synchronous running,
every v- component of each vertex is simultaneously updated by using the
other V k values which have been calculated at the previous step. In the case
of an asynchronous running, one calcula tes the Vk associated only to one
node. The v- values of the other vert ices will be calculated in another st ep.
We can logically think that an asynchro nous running mode produces best
results becaus e the convergence process is less subject to the oscillations
which frequently exist in a synchronous running mode. The algorithm is
given in appendix C.

Let us make some remarks about this algorithm. One can see that the
choice of th e final part it ion is obvious . When one estimates that th e system
has converged, one chooses for every vertex i the great est Vik among all the
positive components Vik

. The corresponding component has a probability
greater than 50% to be + 1. All the other components are put to -1.

To det ermine th e initial configuration of the system when N I = Nz =
. .. = N K , let us notice that if Vk(t = 0) = 2/ K - 1 for all vertex components,
th en the comp onents Vik are solutions of the dynamic system . Pract ically,
one determines the initial configuration of the system by adding noise on this
trivial solut ion: for instance, the Vik are randomly chosen between the two
values (2/K - 1-1O-s, 2/ K -1 + lO-S

) .

We have tested t his algorithm in the asynchronous running mode. We
notice that the components Vik oscillate wit h a damping during the conver­
gence process. Thus it is our interest to scan the graph vert ices a lot of
times. The min imum scan number necessary to have a good solution de­
pends on th e graph homogeneity: the more nonhomogeneous the graph, the
smaller the necessary scan number because the energ et ic slopes are then more
abrupt . Practically, N / 2 scans are sufficient for nonhomogeneous graphs
such as monocular descript ions (see figure 2). As for homo geneous graphs,
the system converges in less than N scans . We verify this assertion with the
5-partitioning of the following graphs:

homogeneous graph an d a = 1: regular hexagonal network. We show
th e pa rt ition provided provided by the mean field algorithm at two
temperatures. In figure 24, the ambient temperature is 2. Figure 25
shows th e evolut ions in each subset (k fixed) of the components Vik as
a fun ction of th e scan number. The system needs less than N scans
to converge. In figure 26 and 27, the ambient temperature is 4. The
part it ion energies of the figure 24 and 26 part it ions are comparable but
the solutions correspond to different valleys in the energy landscape.
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Figure 24: Balanced 5-partitioning with a = 1 of a regular hexagonal
network of 324 vert ices and 901 edges provided by the mean field
approximation (edges are not visualized). The ambient temperature
is 2. The interconnection cost is 88, the imbalance energy 107,2 and
the total energy 88,23 . The distribution of vertices is the following:
66 vertices in subset 0,64 vertices in subset 1, 65 vertices in subset
2,68 vertices in subset 3,61 vertices in subset 4.

nonhomogeneous graph and a = 2: left monocular description of fig­
ure 2 (see figures 28 and 29). The system needs less than N / 2 scans to
converge.

Those resu lts are comparable to those given by the simula te d annealing
but are obtained in a CPU time 10 to 20 time s smaller. T he interconnection
cost given by the generalized Kernighan method are about 20% greate r .

The difficulty of this method depends on the choice of the two parameters
). and TV). is chosen without ambiguity (equation 4.15). T he choice of the
temperature T has not a major influence on the quality of the result when
it is chosen in a certain range (between 1 and 4 for graphs having hundreds
of vertices). Additionally, one notices that the range of possible temperatur e
inc reases as the vertex numbers grows.

4 .3.3 Mean field annealing

In the mean field approximation algorithm, the temperature is definitively
fixed. Another possibility consists in doing an annealing dur ing the conver­
gence process. Consequently the convergence time is reduced: the smaller
the temperature, the more rapid the convergence of the previous dynamic
system (equation 4.51). Additionally, once the system has converged, the
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Figure 25: At k fixed, curves giving Vik as a function of the scan
number.
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Figure 26: Balanced 5-partitioning with ex = 1 of a regular hexagonal
network of 324 vertices and 901 edges provided by the mean field
approximation (edges are not visualized) . The ambient temperature
is 4. The interconnection cost is 86, the imbalance energy 259,2 and
th e total energy 86, 56. The distributi on of vertices of vertices is the
following: 64 vertices in subset 0,6 9 vertices in subset 1,61 vertices
in subset 2,69 vertices in subset 3,61 vertices in subset 4.

membershi p probabilities of a subset are more discriminant than previously
(see sect ion 4.3.2): all t he 1~k are forced to tend to +1 or -1 when the tem­
perature decreases during the convergence process. The determination of the
final partition is made wit hout ambiguity concerning the vertex membership
of a subset . The previous algorithm (see section 4.3.2) is slight ly modified
and is given in appendix D.

Practically, the decreasing factor of the temperature (decT) between two
scans must be slightly smaller than 1. We give experimental results in fig­
ur es 30 and 32:

homogeneous graph, ex = 1, and decT = 0,995: reg ular hexagonal
network (see figur e 30). F igure 31 shows the evolutions in each sub­
set (k fixed ) of the V;k components as a function of the scan number .
The system converges mu ch more rapidly than pr eviously (compared
to figur e 25).

nonhomogeneo us graph, ex = 2, and decT = 0,995: left monocular
description of figure 2 (see figur es 32 and 33) .

T hose resul ts ar e compara ble to those obtained by using the mean field
approximat ion but the conve rgence is more rapid and the discretisation which
produces the final part iti on is less ambiguous.
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Figure 27: At k fixed , curves giving V;k as a fun ction of the scan
number.
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interconnection edges
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Figure 28: Balanced 5-partitioning with a = 2 of the left nonhomoge­
neous graph of the figure 2 provided by the mean field approximation
algorithm. The ambi ent temperature is 3. The interconnection cost
is 85, the imbalance energy 196,8 and the total energy 85,86. The
distribution of verti ces is th e following : 63 vertices in subset 0,66 ver­
tices in subset 1,63 verti ces in subset 2,61 vertices in subset 3 and 70
vertices in sub set 4.
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Figure 29: At k fixed, curves giving ll;k as a function of the scan
number.



566 Laurent Herault and Jean-Jacques Niez

( - - - -
, ,

" I1IBI 1

,
~ . __ ._-_ ....

Figure 30: Balanced 5-partitioning with a = 1 of a regular hexagonal
network of 324 vertices and 901 edges provided by the mean field an­
nealing algorithm (edges are not visualized), The init ial temperatu re
is 5 and the decrease coefficient of the temperature is 0,995 , The
interconnection cost is 85, the imbalance energy 547,2 0 and the to tal
energy 86,18 . The distribution of vertices is the following: 63 vertices
in subset 0,63 vertices in subset 1,63 vertices in subset 2,75 vertices
in subset 3 and 60 vertices in subset 4.

5 . C onclusion

We have shown how a NP-complete combinatorial optimization problem such
as the gr aph K-partitioning can be treated as a minimization problem of a
global quadratic energy thanks to the use of vect orial entit ies. vVe have
proposed several neural methods to minimize thi s energy.

We have shown how to adapt the synaptic weights between the binary
or analog neurons of an Hopfield network so that the system converges to
energy minima which are goo d solutions of our problem.

We have extended the well known simulated annealing procedure (SA ) to
the use of our vectorial ent it ies.

We have developed a deterministic and massively parallel method using
the mean field theory (MFT) to handle our problem. This method, im­
plemented on a conventional computer, gives very good results in a CPU
time divided by an order of magnitude 10 to 20 compared to the simula te d
annealing.

Eventually, in the mean field annealing me thod (MFA) , one makes an
an nealing during the convergence process of the MFT algorithm. T his causes
the system to converge more rapidly. Add itionally, t he final parti tion is
determined with less ambiguity than with the mean field approximation.

Exp erimental results are given for the SA, MFT and MFA methods.
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Figure 31: At k fixed, curves giving V;k as a function of the scan
number.
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f
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subset 4 interconnection edges

Figure 32: Balanced 5-partit ioning with a = 2 of the left nonhomo­
geneous gra ph of the figure 2 provide d by the mean field annealing
algorithm. The ini ti al temperature is 5 and the decrease coefficient
of the temperature is 0,995. The interconnection cost is 107, the im­
bal ance energy 532, 8 and the tot al energy 109,33. The distribution
of verti ces is the following: 64 ver tices in subset 0, 67 vertices in sub­
set 1,67 vert ices in sub set 2,55 vertic es in subset 3 and 70 vertices in
subset 4.
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Appendix A.

Laurent Herault and Jean-Jacques Niez

In this appendix, upper and lower bounds of the interconnection cost are
given as a function of the desir ed subset number. Additionally, an approxi­
mation of the internal density of a subset is developed.

Upper and lower bounds of the interconnection cost

Let us consider a gr aph of N vert ices and M edges with the density d =
2.M/ (N.( N - 1)) . One wants to parti tion this graph in I< subset s. Let
us suppose that N(k) is the vertex numb er in the subset k and th at d(k)
is the internal density in this subset . The number of vertices having its
ext remit ies in the subset k is d(k) .N(k) .(N(k) - 1)/ 2. Therefore, the number
of interconnection edges is

M - Ed~) .N(k). [N(k ) -IJ (A.1)

Let us suppose that the partition is perfectly balanced (N1 = ... = N1d
and that the density is the same for every subset. In the best case, the
number of int erconnection edges is O. Therefore , it leads:

N - I
Vk E (I ,I<),d( k) = Kd'

N
-I< (A.2)

with the condit ion: for all k, d(k) is lower than 1. We notice that d(k)
increases when I< increases.

Therefore, we obtain a limit value of I<:

I<liroit = E [(N _ ~.d +1] . (A.3)

A lower bound of the interconnection cost is Groin defined by

(A.4)

(A.5)

In the worst case, for all k, d(k) equals to the graph density. Then an
upper bound Gsup of the interconnection cost is obtained by replacing d(k)
by d in the previous formula. It leads:

(A.6)
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Approximation of the density in a subset
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(A.2)

(A.l)

We suppose that N is much greater than K. Let M(k) be the edge number
in the subset k. If the partition is perfectly balanced, we have

Vk E (l ,K),d(k) = ti\~~) )~ 2.K~~(k)
K' K 1

In first approximation, one can take, for all k, M (k) = MIK. Therefore:

()
2.M

Vk E (l,K),d k ~ N2.l( ~ I<.d.

Appendix B.

In this appendix, we describe the simulated annealing algorithm. We use
vectorial entities defined in section 4.1. The algorithm is the following:

1. Get an initial system configuration.
Construct the associated (V;)iE(l,N).

2. Fix the initial ambient temperature T by using equation 4.31.
Fix the length of the elementary transformation sequences so as to
reach the equilibrium at any temperature T : L = 100.N.(K - 1).

3. Get initial number of accepted transformations at this temperature:
NT accept = O.
Repeat L times:

(a) Pick at random a vertex i of the graph (this vertex is in the subset
k:V;"=l).

(b) Pick at random a subset 1which is different from k.

(c) Calculate the energy variation associated to the move of the vertex
i from the subset k to the subset 1by using equation 4.29.

(d) If the energy decreases:

1. The elementary transformation is accepted: NTaccept --4

NTaccept + 1.
11. Operate the transformation: V;k = - 1 et V;/ = 1.

(e) If the energy increases, then the elementary t ransformation is ac­
cepted with a probability given by equation 4.30.

(f) If NTaccept = L/lO, then consider that the equilibrium is reached
at T: stop (go to step 4.).

4. If NTaccept = L/lO, update the ambient temperature (T.,ew = 0, 93To1d )

and go to step 3.
If NTaccept is between Nand L/lO, the system is freezing, update the
ambient temperature (Tnew= 0, 965To1d ) and go to step 3.
If NTaccept < N (the system is frozen), stop: the solution (final K­
partition) is obtained.
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Appendix C.

In this appendix, we describ e the mean field approximation algorithm. We
use vectorial entities defined in section 4.1. The algorithm is the following:

1. Fix the running mode:

synchronous --t fct = 0,

asynchronous --t fct = 1.

Fix the temperature T.

Fix the scan number of the graph vertices: Nbscan.

Get, for all i and k , an initial value lI'l randomly chosen between the
values (2/I< - 1 - 10-5, 2/ I< - 1 + 10-5 ) .

2. Repeat Nbscan times:

(a) Randomly scan the graph ver tices in such a way that every vertex
is updated once.

I. Update every ver tex seen in the scan:

A. Calculate, for all k, Viknew (equation 4.50).

B. If fct = 1 (asynchronous running mode), up date for all
k: Vik old = Vik new.

(b) If fct = 0 (synchronous running mode), update for all vertex i
and for all subset k: Vikold = Vik new .

3. (a) Test if the system has converged into a configuration different from
the initial one.

(b) If the system has not converged, either the temperature T is too
high or Nbscan is too small . Go to step 1.

(c) If the system has converged, for all graph vertex i:

I. Determine k such that Vi k is the greater.

II. Do Vik= 1 and , for all £ i= k, Vi' = - 1 --t the vertex i is in
the subset k.

A pp endix D.

In this appendix, we describe the mean field annealing algorithm. We use
vectorial entities defined in sect ion 4.1. The algorithm is the following:

1. Fix the running mode:

synchronous --t f ct = 0

asynchronous --t f ct = 1
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Fix the initial temperature T = To.

Fix the scan number of the graph vertices: Nbscan .

Fix th e decreasing coefficient of the tempe rature between two consec­
utive scans : decT. Get, for all i and k, an ini ti al value V/ randomly
chosen between the values (2/I< -1-10- 5 , J{ -1 + 10-5 ) .

2. Repeat Nbscan times:

(a) Randomly scan the graph ver ti ces in such a way that every vertex
is updated on ce.

I. Update every vertex seen in the scan: (1) Calculate, for all k,
V k

new (equ ation 4.50). (2) If fct = 1 (asynchronous running
mode), update for all k: Vikold = l~k new .

(b) If fct = 0 (synchronous running mode), upda te for all vertex i and
for all subset k: Vik old = Vik new .

(c) T --+ decT *T .

3. (a) Test if the system has converged into a configuration different from
the init ial one.

(b) If the system has not converged, Nbscan is too small. Go to step 1.

(c) If the system has not converged, for all graph vertex i:

I. Determine k su ch that Vik is th e greater.

II. Do Vik= 1 and, for all f =f k, ViI = - 1 --+ the vertex i is in
the subset k.

Acknowledgments

The authors would like to thank Dr. R . Horaud and Dr. T. Skordas for
enlightening discussions.

R eferen ces

[1] Ayache and FaverjOil , "Efficient registration of ster eo images by matching
grap h descriptions of edge segments, " International Journal of Comp uter
Vision, 1( 2) (1987).

[2] S. Bokhari, Ass ignmen t Problems in Parallel and Dist rib uted Comp uting
(Kluwer Academic Publishers, 1987).

[3] M. Burstein, "Algorithms for partitioning of VLSI networks," IBM Technical
Disclosure Bulletin , 25(UA) (1983).

[4] W.E. Donath and A.J . Hoffman, "Algorithms for partitioning of graphs and
computer logic based on eigenvectors of connection matrices," IBM Technical
Disclosure Bulletin, 15(3) (1972).



574 Laurent Herault and Jean-Jac ques Niez

[5] M.R. Garey and D.S. Johnson, Computers an d Int ractability (W.H. Freeman
and Company, New York , 1979).

[6] S. Geman and D. Geman , "Stochastic relaxation, gibbs distributions, and
the Bayesian restoration of images," IEEE Transactions on Pattern An alysis
and Machine Intellig ence, 6(6) (1984) 721-741.

[7] J .J . Hopfield, "Neurons with graded response have collecti ve computational
properties like those of two-st at es neurons," Proc. Natl. A cad. Sci. USA , 8 1
(1984) .

[8] J.J. Hopfield, "Neural networks and physical systems with emergent collec­
tive computational abilit ies ," Ptoc. Natl . Acad. Sci. USA , 79 (1982).

[9] R. Horaud and T . Skord as, "Stereo-corresponden ce through feature grouping
and maximal cliques," IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11 (11) (1989).

[10] B. Kernighan, Some Graph Partitioning Problems Related to Program Seg­
mentation (P rin ceton University, Ph.D., 1969).

[11] B. Kernighan and S. Lin, "An efficient Heuristic procedure for part it ioning
graphs," The Bell System Technical Journal (Febr uary, 1970).

[12] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, "Optimization by Simulated
Annealing" IBM Thomas J . Watson Research Center, Yorktown Heights,
New York, 1982.

[13] E .L. Lawler, "Electrical assemblies with a minimum number of interconnec­
tions," IEEE Transactions Electronic Comp uters, EC-ll (1962) .

[14] J .A. Lukes, Combinatorial Solution to Partitioning Problems (St anford Elec­
tronics Laboratories Technical Report No. 32, 1972).

[15] J .A. Lukes, "Combinatorial solution to the partitioning of general graphs,"
IBM J. Res . & Dev. (USA), 19(2) (1975) 170-180.

[16] "Procedure for partitioning th e nodes of a graph," IBM Technical Disclosure
B ulletin, 28(9 ) (1986) 4030-4034.

[17] C. Peterson and J . And erson , "Neural networks and NP -complete optimiza­
tion problems: A performance study on the graph bisection problem," Com­
plex Sys tems, 2 (1988) .

[18] G. Rao, H. Stone, and T. Hu, Assignment of tasks in a processor system wit h
limited memory," IEEE Conf. on "Neural Information Processing Sys tems ­
Natural and Syn thetic" (Denver, Colorado, November 8-12, 1987).

[19] H.E. Stanley, "Introduction to phases transitions and critical phenomena,"
The Internat ional Series on Monographs on Physics (Oxford Univers ity
Press, 1971).



Ne ural Networks and Graph [(-Partitioning 575

[20] H. Stone, "Multiprocessor scheduling with the aid of network flow algo­
rithms," IEEE Computer, 16(1) (1983).

[21] G.A. Tagliarini and E.W. Page, "A neural-network solution to the concen­
trator assignment problem," IEEE Coni. on "Neural Information Processing
Systems - Natural and Synthetic" (Denver, Colorado, November 8-12, 1987).

[22] D.W. Tank and J.J . Hopfield, "Simple neural optimization networks: An
A jD converter, signal decision circuit, and a linear programming circuit,"
IEEE Tra nsactions on Circuits & Systems, CAS-33(5) (1986 ).




