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Abstract. With the emergence of neural network architectures, com-
binatorial optimization problems and NP-complete problems may be
tackled with a new attention combining biology, physics and data
processing. This paper deals with one of these problems: the graph
K-partitioning. After a brief critical review of the conventional meth-
ods, we show how a particular vectorial encoding associated with this
problem produces original neural network methods. Through different
graph families, a comparative analysis of our approaches with one of
the best conventional algorithms is developed.

1. Introduction

The graph partitioning, when it is subject to some particular constraints,
is a NP-complete problem [5] having a lot of potential applications. One
of them concerns the optimal assignment of distributed modules to several
processors in order to minimize the cost of running a program. This cost
may be money, time or some other measures of resource usage. Another
application is the layout of micro-electronic systems: one wants to assign
small circuits to packages (chips) of specified sizes in order to minimize one
measure of interconnection between them.

1.1 Graph partitioning and computer vision as an example

This problem appears in the field of computer vision where we expect a lot
of applications. The first of them concerns the perceptive grouping. In fact,
salient features in an image may be described as image entities represented
by the vertices of a graph. Topological relationships exist between them, the
latter being represented by weighted edges.

The second application, here considered for information only and using
nonhomogeneous graphs, concerns the stereo-correspondence. One wants to
match two images of the same scene from different viewing positions in order
to extract 3D-informations of the scene. The best methods need graphs to
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Figure 1: Example of segment images extracted from two views of the
same scene. The left image has 323 segments and the right one has
314 segments.

reduce the combinatory and produce valuable results as well [1,9]. Here we
use the method developed by Horaud and Skordas [9]. Segments are first
extracted from both left and right images (see figure 1). Each segment is
characterized by its position, orientation and some topological relationships
with its nearby segments. So, monocular descriptions of each image are rep-
resented as graphs (see figure 2). Each vertex represents a segment and a
weighted edge between two vertices is associated to a topological relationship
between two segments in the image (left of, right of, colinear with, same junc-
tion as). Those two graphs are generally nonhomogeneous and have to be
matched. But they are so complex that it is necessary to partition them into
subgraphs in order to make a parallel treatment. The cost of the partition
is measured by the total sum of all edge weights between vertices of distinct
subsets in the partition. So far, the authors have used an arbitrary way of
partitioning: they cut images in slightly overlapping windows (see figure 3).
In their case, the subset number is a power of 4. One notices that the par-
titioning does not take into account the nonhomogeneity of the total graph.
Consequently, subsets may be largely unbalanced and the interconnection
cost may be very high. In fact, salient structures in the image corresponding
to high local topological relationships may be broken (see figure 4). Therefore
it is necessary to impose some constraints on the partition. Every subgraph
of an image is matched with the entire graph of the other image. So, a first
constraint must be imposed: the interconnection cost between the subgraphs
must be as small as possible. On the other hand, in order to optimize the
running of the parallel matching, we have to impose. the following second
constraint: the subsets must have specified sizes in order to have a good load
balancing between processors.
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Figure 2: Monocular descriptions associated with the figure 1 images.
They correspond to nonhomogeneous graphs in which every vertex
represents a segment and an edge between two vertices represents
a topological relationship. The left monocular description has 323
vertices and 910 edges. The right one has 314 vertices and 874 edges.

Figure 3: Example of an arbitrary partition by slightly overlapping
windows.

1.2 Theoretical formulation of the graph K-partitioning problem

Given an undirected graph G = (V, E) of N vertices and M positively
weighted edges, one wants to partition this graph into K distinct sets of
specified sizes Ny, ..., Nk in order to minimize the total weight of edges con-
necting vertices in distinct subsets. Let A = (a;;) be its weighted adjacency
matrix. One defines the density d of a graph as the ratio between M and
the number of edges in a complete graph of N vertices. So, the average
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Figure 4: Example of an arbitrary partition of the left monocular
description. The distribution of vertices is the following: 74 vertices
in subset 0, 75 vertices in subset 1, 78 vertices in subset 2 and 96
vertices in subset 3. One notices that the subsets are quite unbalanced
and that the interconnection cost is high.
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degree of a vertex, i.e. the average number of vertices connected to a vertex
is N.d. The standard deviation of the degrees appraises the graph homo-
geneity. Thus we consider two graph families: the family of small standard
deviation graphs, named homogeneous graphs, and the family of nonhomo-
geneous graphs. The more nonhomogeneous the graph, the more necessary
and nonobvious the partitioning. Henceforward, we will use these different
graphs to test the methods here proposed. In all cases, one can prove that
the interconnection cost of a perfectly balanced partition (N; = ... = Ng)
is a function of K and d which is bounded by Cp, and Chax given by (see
appendix A):

N

i = 1 B .

Coin(K) = 0if K < 3y (1.1)
N2d 1 [d-1 1 .
= B . |:1 = -I? (—N—d-.[{ + 2)] otherw1se
N2.d 1

= A1 == < N. :

Coup(K) = (1 K) VK < N (1.2)

The function Cpyy is obtained by supposing that every subgraph of the par-
tition is complete (density = 1). The function Cyyp is obtained by supposing
that the internal density of every subgraph is equal to the graph density. An
example is shown in figure 5. In reality, if the graph is homogeneous and
N much greater than K, we can estimate that the internal density of each
subgraph is about K.d (see appendix A).

Among the homogeneous graphs, we name regular with torus pattern
the most homogeneous ones. The most famous examples of such graphs
are the rectangular grid (see figure 6) and the hexagonal grid. Among the
nonhomogeneous graphs, one finds the figure 2 monocular descriptions.

Two novelties are presented in this paper. The first is the formulation
of an extension of neural methods (simulated annealing, Hopfield neural
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Figure 5: Curves bounding the interconnection cost, divided by M,
of the left graph partition shown in figure 2.
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N = 100, M = 200

Figure 6: Example of an homogeneous graph: rectangular grid with
torus pattern.

network, mean field theory, mean field annealing) to the manipulation of
vectorial entities used as optimization variables. The second concerns the
application to the graph K-partitioning problem. This paper is organized
as follows. In section 2, we show that an exhaustive production of all the
solutions is impossible. In section 3, we briefly review previous conventional
approaches of the problem. In section 4, we develop neural methods using a
new vectorial encoding.

2. Exhaustive production of solutions

Let us suppose that one wants to explore exhaustively the space of the possi-
ble distributions of N.K objects into K subsets of size N. The total number
of feasible partitions is

1l (NK) (NK-NY (2N) (N)_ (N.K)! 2.1)

Kl N N N N ) K!'.(NH)KY™
Typically, with N.K = 250 and K = 10, the number of configurations to
study is greater than 102, Such an exploration would need thousands of
years of CPU time of the most powerful computers. So there is no question of

developing exhaustive methods to solve such a problem: we have to develop
some heuristics.

3. Previous conventional approaches

Three classical method families emerge from the sixties.

3.1 Linear programing

In the past, our problem has been considered as a linear programing problem.
The first who has described the problem in such terms is Lawler [13]. In this
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framework, a lot of methods have been developed. Among them, Donath [4]
proposed to use the eigenvectors of a modified adjacency matrix; IBM re-
searchers [16] used a Cholesky factorization of a modified adjacency matrix
to iteratively improve a partition which is the solution of a linear system
of N.K variables. Lukes [14,15] used a dynamic programing procedure to
generate a good partition. All these methods are not adapted to problems
involving large size graphs: they are inextricable. Moreover, their parallel
implementation seems to be very difficult.

3.2 Use of the Ford-Fulkerson maxflow—mincut theorem

Another approach to solve only the bipartitioning problem is to consider the
graph as a network of pipes conveying some commodity from a source vertex
to a sink vertex. The edge weights represent the capacities of the pipes.
Stone [20] and Bokhari [2] used the maxflow-mincut theorem to solve the
problem of the optimal assignment of modules on two processors. But this
approach does not allow one to impose the sizes of the two subsets. Therefore,
the problem is not NP-complete. Rao [18] studied this problem when the
memory size of each processor is limited. More generally, it seems very
difficult to extend successfully those methods to the K-partitioning problem.

3.3 Iterative improvements

Burnstein [3] has made a review of iterative improvement heuristics and con-
sidered two heuristic families to solve the bipartitioning problem: methods
of constructing a good initial partition and methods of improving an initial
partition. Very few of them produce good results because most tend to con-
verge on the first found local minimum. Nevertheless one of them, proposed
by Kernighan [10,11], rapidly produces a very good bipartition. The idea is
the following: given an initial graph bipartition which is perfectly balanced,
the optimal bipartition may be obtained by interchanging a vertex group of
one subset of the bipartition with a vertex group of the other subset. In
order to approximate those vertex groups, one executes a sequence of vertex
permutations from one subset to the other so that globally the intercon-
nection cost decreases. Thus the algorithm allows a temporary increase of
the interconnection cost. By reason of that, this method keeps from being
trapped at the first local minimum: one is able to leave shallow valleys of the
solution landscape. The more homogeneous the graph, the better the final
partition because the depth valley disparity is small. The major drawback
of this approach is its sensibility to the initial partition quality.

We have extended this approach to the K-partitioning problem with N; =
...= Ng = N/K by a dichotomic recursive procedure illustrated in figure 7
(case of the 7-partitioning).
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Figure 7: Dichotomic recursive procedure for the 7-partitioning using
the generalized Kernighan method.

Experimental results are presented for the 5-partitioning of the following
graphs:

homogeneous graph: regular hexagonal network of 324 vertices (see
figure 8),

nonhomogeneous graph: left monocular description of figure 2 (see fig-
ure 9).

Experimentally, this heuristic gives insufficient results when the desired
subset number is greater than 4. In fact there is a contradiction in the di-
chotomic way of partitioning: first, a bipartitioning procedure tries to max-
imize the internal connection cost in a subset (i.e. minimize an interconnec-
tion cost), and then a new bipartitioning procedure imposes to minimize a
connection cost in this subset. So, the greater K, the worse the result.

4. Neural approaches

The following approaches are the result of a conjunction between biology,
physics and data processing. Solving an optimization problem subject to
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Figure 8: Balanced 5-partitioning of a regular hexagonal network of
324 vertices and 901 edges provided by the generalized Kernighan
method. The interconnection cost is 107 (edges are not shown).

constraints such as the graph K-partitioning one is equivalent to minimiz-
ing a global quadratic energy which describes the partition state. Here we
present some original neural methods to minimize such an energy. Those
methods differ from previous approaches (see section 3) by the following
characteristics:

their ability to relax constraints (this is desirable for the partitioning
of nonhomogeneous graphs),

they can easily be implemented on massively parallel architectures such
as neural networks; the initial vertex state does not noticeably influence
the final partition quality,

they give good results whatever the number of desired subset,

they can be easily extended to solve a lot of other combinatorial opti-
mization problems.

A network of formal neurons is a set of highly interconnected processing
elements which imitate biological neurons. A formal neuron is defined by

an internal state (identical to the output),
connections with some other neurons or with the environment,

a nonlinear transition function which allows to calculate the internal
state as a function of the signals received on its synaptic connections.
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Figure 9: 5-partitioning of the left nonhomogeneous graph of the fig-
ure 2 provided by the generalized Kernighan method. The subsets are
perfectly balanced. The interconnection cost is high: 125.



Neural Networks and Graph K-Partitioning 541

A synapse between two neurons is represented by a weighted connec-
tion between the output of a neuron and one input of the other. Despite
the extreme simplicity of this model, collective computations with formals
neurons are particularly well suited to solve combinatorial optimization prob-
lems [21,22].

We distinguish two neural network families: networks with binary neu-
rons and networks with analog neurons. The following algorithms take into
account this characteristic feature of the neurons.

4.1 Transcription of the optimization problem in terms of energy

We associate to every vertex a vector which defines its localization in the
partition:

=[V'...VE} ' (4.1)

where V* = 1 if the vertex is the subset & and V* = —1 otherwise.
Let us calculate the partition interconnection cost. First, we notice

Vk _vk\?
eSS

Therefore, the interconnection cost between the subset k& and the other sub-
sets is

%fjfja” (u) . (4.3)

The total interconnection cost between all the subsets, which we name the
interconnection energy, can be written

A A VE—VF)?
Ejnterconnection = 5 Z{ ZEGU ( > . (44)

a;; if one and only one of the vertices ¢  (4.2)

and j is in the subset k,
= 0 otherwise.

=1j=1

After some algebra, we get

d B 5E
Einterconnection = E Z aij. VL Vk Z Z Qij, (45)
8 k=1i=1 j=1 i=1j=

ie.
1 N N o . K N N
Einterconnection = _g- Z Z ;. V.. V; +—= 3 Z Z Qij5. (46)

=1 j=1 i=15=1
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Now let us define an energy function which expresses the imbalance of
the partition. First we notice that if the partition is perfectly balanced, then
in a subset k, N;Vi*¥ equal +1 and N — N equal —1. Therefore:

N
Vk € (1,K),> V¥ =2.N, — N. (4.7)

=1

An imbalance measure in the subset k is defined by

Dy = (2.Nk -~ N-— f: V,-")2 ) (4.8)

=1

The total partition imbalance, which we name imbalance energy, is measured

by

K
Fimbalance = Z Dy. (4.9)
k=1
We notice
K
Vie (1,N),Y V¥= (4.10)
k=1

Thus, after some algebra, one finds that the linear term of Dy is a constant
for all k and it leads:

N N K N
SSVEVE-4 Y Y NVE - KN?

1:=1j=1 k=11i=1

M>:

Eimbabmce =
k:

4. fN (4.11)

k=1

To find a good solution to this optimization problem, we associate to it
an energy function E. The minimization of £ must ensure a respect of the
constraints and the minimization of the total interconnection cost. We define

FE as

E= Eintcrconncction f A/ 8'Eimbalance (412)

where ) is a parameter which allows to balance the constraints. After sim-
plifications, we get

1 K N N _— K N "
g{ZZZ — ;). VEVE — 4 ZZMV}
k=11i=1j=1 1i=1
1 N N
- §{K.}:lz:laﬁ—)«.K.N2+4./\.kZ:1NZ}. (4.13)
i=17= =
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It is clear that it is not necessary to keep the constants and the multiplicative
factors in this energy. Then, we minimize the following quadratic energy:

K N N
ExY 33 (A —a;).VFE V-4 ZZNkV" (4.14)
k=11i=1j5=1 =14=1

In order to statistically give the same importance to the balance con-
straint and to the interconnection cost minimization constraint, one can es-
timate the value of the parameter A (using a similar kind of approach as

Kirkpatrick [12]):

N ZEG'J (4.15)

=1 j=1

where « is an adjustable parameter always around 1.

We empirically notice that the partitioning of homogeneous graphs with
a parameter a close to 1 provides a partition with an excellent balance. This
can be explained by the fact that the energy landscape is quite smooth: the
valley depth disparity is small. Therefore, the optimization algorithm easily
moves from one energetic valley to another one until the obtention of a well-
balanced partition. One the contrary, the partitioning of nonhomogeneous
graphs needs a balance parameter greater than 1 because the valley depth
disparity grows with the nonhomogeneity of the graph. Typically, good re-
sults are obtained with « close to 2.

In the following, experimental results will be given by supposing that the
subsets have the same size (N; = ... = N).

4.2 Partition energy minimization by a network with binary neu-
rons

In this neural network family, the internal state (i.e. the output) of each
neuron is binary: the nonlinear transition function associated to a neuron is
a Heavyside type function.

4.2.1 Hopfield network with binary neurons

The interconnection network of the Hopfield model is complete (see figure 10).
The synaptic connection between the neuron 7z and the neuron j is weighted
by T;; which is positive (excitatory synapse) or negative (inhibitory synapse).
The neuron output is a function of its inputs:

Vi=f (i T;.V; + L-) : (4.16)

j=1
The transition function f is defined by the following:

if x <0then f(z)=-—

otherwise flz)=1. (4.17)
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Iy > IN-1

Figure 10: Hopfield neural network. The interconnection graph is
complete.

Vertices

Figure 11: Matrix structure of an Hopfield network adapted to the
graph K-partitioning problem.

Hopfield has shown [8] that in the case of an asynchronous dynamics, a
symmetrical matrix 7" with 0 diagonal elements drives the system to stable
states in which the outputs of all neurons are either +1 or —1. These stable
states of the network correspond to the local minima of the quantity, which
we call the energy of the system:

1 N N N
=5 L LT Y - L LY (4.18)
t=19=1 i=

where V; is the output of the ith neuron and I; is the externally supplied
input to the sth neuron.
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Figure 12: Details of a formal neuron of the figure 13.

Let us associate to our optimization problem an Hopfield network having
a matrix organization of N.K neurons in which the output of the (¢, k)th
neuron expresses the V¥ value and is either +1 or —1 (see figure 11).

This network is a neural transcription of the vectorial representation pre-
viously defined. To each neuron is associated a processing element with
several inputs and one output connected to the other neurons (see figure 12).
A coefficient of T represents the synaptic weight between two neurons. The
output (internal state) of the (¢, k)th neuron is

(Z Z Tzk,]l V - I,k) (4.19)

15=1

We must add to the energy function associated to our optimization prob-
lem (equation 4.14) an energy term which takes into account the structural
organization of the network (see figure 11). Therefore, we have to minimize
the energy:

K N N K N

ZZZ —aij).Vik.Vf —4/\ZZNk‘/;k

k=11i=1 5=1 k=11i=1
N K 2

+B.> (2 -K-3 V,.k) 2 (4.20)
=1 k=1

where B is a positive adjustable parameter.

The term relative to B is an energy term which is minimum when only
one component V¥ of each neuron vector 1% characterizing a graph vertex is
equal to +1. We get

K K N N
= 3333 (A — )b VEVE — 4 zsz vk
k=11=1 1—1]-—1 k=11=1

+B. ZZ (2 K- Z V’“) ; (2 -K - fj Vj) b (421)

i=1j=1 =1
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After some algebra, we find

1 K K N N
E = —5. Z ZZ E[—Z(/\ — a,-j).ﬁkl — 2B6'J]V;k‘/j
k=1 1=11=1 3=1
K N
=3 3 [2.B.(2 - K)+4AN)J.VF + B.N.(2 - K)®..  (4.22)

k=14=1

Once again, it is not necessary to keep the constant term. Our energy can
be written as an Hopfield energy:

1] K K N N K N
B=—.3 PIDIN TR ARZED PP AN 74 (4.23)
k=1 =1 1=1 j=1 k=11=1

where
V(i) € (1, N),V(k,I) € (1,K)?,
Tikji = —2.(X — aij).60 — 2.B.6;;, (4.24)
I, =2.B.(2 — K) 4+ 4.\.N;. (4.25)

The excitatory part of the synaptic weight (positive term) tends to put
the highly interconnected vertices in the same subset but the inhibitory part
(negative terms) imposes the balance and the disjunction constraints on the
subsets. One notices that the matrix T of synaptic weights is symmetrical:

Y(B,)) € R, Ty ji = Tk (4.26)

Only the two parameters A and B are necessary to calculate the matrix T'.
A value of B near to A seems to be a good one because the parameters then
globally balance the constraints of the problem. Then ) is the only parameter
to be determined and is easily approximated (equation 4.15). Empirically,
such a network converges to the nearest local minimum of the configuration
hypercube.

The running on a conventional sequential architecture would be very ex-
pensive in terms of CPU time. So we have not experimentally validated this
method.

4.2.2 Simulated annealing

A good way to find low energy states of a complex physical system such as a
solid is to heat the system up to some high temperature, then cool it slowly.
This process, called annealing, forces the system evolution into regions of low
energy, while not getting trapped in higher-lying local minima. Geman [6] has
shown that with an infinite initial temperature and by using an exponential
law for the temperature decreasing, an absolute energy minimum is reached
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in an exponential number of iterations. For example, at the kth temperature
step, the temperature satisfies the bound:

T(k) > g (4.27)

c
(1+4+%)
where c is a constant independent of k. The idea of the simulated annealing
is to express those concepts in terms of an algorithm. So, we identify the
energy function of the system to be optimized with the energy of a physical
system.
Let us consider:

a list of feasible elementary transformations which determine the energy
landscape of our problem (the topology),

an initial configuration of the system,
a law of the temperature decreasing.

The smaller the temperature, the more rigid the system (there is a small num-
ber of elementary transformations which are operated) and the more deter-
ministic the system evolution. Kirkpatrick [12] has developed this approach
in the case of the graph bipartitioning problem. We extend this method to
the K-partitioning problem by using the previously defined vectors.

Given the global energy to be minimized (equation 4.14), let us calculate
the energy variation associated to an elementary transformation. We define
an elementary transformation as the move of a vertex 7 from a subset k
to a subset £. The total number of possible elementary transformations is

N.(K —1). It leads:
AB}t = BV} = —1,V} = 1) - B(V} = 1,V} = -1). (4.28)

After some algebra, we obtain

N
AEF =4, 3 (A —ay).(V] = VF) + 8.0(Nk — ). (4.29)
J=Li#i
New states of the system are generated by applying a set of elementary

transformations to the system. Each elementary transformation is accepted
or rejected using the following criterium:

if AEF~* <0, then accept the move,
otherwise accept the move with the probability
E'k—wl

P(AE!,T) = exp (—A = ) , (4.30)

where T is the temperature parameter.

Some curves representing P(z,T') are shown in figure 13. One verifies that
the acceptance probability decreases as the temperature.
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Figure 13: Simulated annealing: acceptance probabilities of an ele-
mentary transformation as a function of the associated energy varia-
tion and of the temperature T.

The principle of the simulated annealing algorithm is the following: the
system is put in a high temperature environment. At this temperature is
applied a sufficiently long sequence of random elementary transformations
(Markov chain) to reach the equilibrium at this temperature. Then, the
ambient temperature is slightly decreased and a new sequence of random
moves is applied. So, the system converges slowly to a minimal energy state.
This process is iterated until the system is frozen, in other words when there
are not enough global significant energy improvements. By analogy to spin
glass physics, one takes as a good initial temperature:

To = (N.d)? (4.31)

where d is the graph density. Here, we notice that the Markov chain length
of elementary transformations which is necessary to obtain the equilibrium
at a fixed temperature closely depends on the graph homogeneity. The more
homogeneous the graph, the smaller the necessary length of the Markov
chains because the slopes of the relevant energetic valleys are then more
abrupt. This will be visualized in section 4.3.2. The simulated annealing
algorithm can be found in appendix B. Experimental results are given for
the 5-partitioning of the following graphs:

homogeneous graph and o = 1: regular hexagonal network (see fig-
ure 14). Figure 15 shows the evolutions of the energies (interconnec-
tion energy, imbalance energy and total energy) as a function of the
number of temperature steps. In figure 16 one shows the corresponding
evolution of the temperature and of the number of accepted elementary
transformations. One can see that in average those energies decrease
with the temperature. Those curves are highly nonlinear: the system
suddenly freezes in a certain range of temperatures.
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nonhomogeneous graph and a = 1: left monocular description of fig-
ure 2 (see figures 17, 18, and 19). One notices that @ = 1 produces a
bad imbalance energy: « must be greater.

nonhomogeneous graph and a = 2: left monocular description of fig-
ure 2 (see figures 20, 21, and 22). The 5-partition and the energies
produced with such a value of « are excellent.

Those results are to be compared with those provided previously by the
generalized Kernighan method (see section 3.3): the simulated annealing
algorithm experimentally improves by about 20% the interconnection cost
and thus the global energy of the system.

The main drawback of this method is that the running time necessary to
converge on a conventional sequential computer is very high (about 3 CPU
hours on a SUN 4-260 for the graphs of figures 14, 17, and 20). Nevertheless,
we notice that the time complexity linearly increases as the problem size; in
fact, it is imposed by the Markov chain length which is in o(N.K). In order
to speed up the partitioning, we will use another approach, the so called
mean field annealing algorithm (see section 4.3.3). Contrary to the stochastic
and sequential nature of the simulated annealing, the system evolution here

Figure 14: Balanced 5-partitioning with e = 1 of a regular hexago-
nal network of 324 vertices and 901 edges provided by the simulated
annealing algorithm. The interconnection cost is 85 (edges are not vi-
sualized). The imbalance energy is 99,20. The total energy is 85,21.
The initial temperature is 40 and the final temperature is 0,378. The
number of temperature steps is 109. The distribution of vertices is the
following: 69 vertices in subset 0,65 vertices in subset 1,62 vertices
in subset 2,64 vertices in subset 3 and subset 4.
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Figure 15: Evolution of the system energies as a function of the tem-
perature step number.
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Figure 16: Evolution of the temperature and of the number of ac-
cepted transformations as a function of the temperature step number.
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Figure 17: Balanced 5-partitioning with @ = 1 of the left nonhomoge-
neous graph of the figure 2 provided by the simulated annealing algo-
rithm. The interconnection cost is 85, the imbalance energy 3572, 8,
and the total energy 92,81. The initial temperature is 40 and the
final temperature is 0,714. The number of temperature steps is 88.
The distribution of vertices is the following: 53 vertices in subset 0,69
vertices in subset 1,67 vertices in subset 2,48 vertices in subset 3 and
86 vertices in subset 4.



552

800
600

400

E interconnection

Laurent Hérault and Jean-Jacques Niez

5000
4000
3000
2000
1000

E imbalance

0 20 40 60 80 100
iteration

[ T T T T T T T T T 1
0 20 40 60 80 100
iteration
800 A
600 4
400 |
200 ]
0 :
0 20

50
40
30

20
10

40 60 80 100
iteration

Figure 18: Evolution of the system energies as a function of the tem-

perature step number.
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Figure 19: Evolution of the temperature and of the number of ac-
cepted transformations as a function of the temperature step number.
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Figure 20: Balanced 5-partitioning with a@ = 2 of the left nonhomo-
geneous graph of the figure 2 provided by the simulated annealing al-
gorithm. The interconnection cost is 74, the imbalance energy 116, 8,
and the total energy 74,51. The initial temperature is 40 and the
final temperature is 0,172. The number of temperature steps is 127.
The distribution of vertices is the following: 63 vertices in subset 0
and 1,68 vertices in subset 2,67 vertices in subset 3 and 62 vertices
in subset 4.
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Figure 21: Evolution of the system energies as a function of the tem-
perature step number.

is deterministic and massively parallel. Results are nearly as good as those
provided by the simulated annealing algorithm and the CPU time is typically
divided by 10 or 20 for simulations on a classical conventional computer (SUN
4-260).

4.3 Partition energy minimization by a network with analog
neurons

In this neural network family, the internal state (i.e. the output) of each
neuron has an analog internal state.

4.3.1 Hopfield network with analog neurons

One associates a numerical noise to the Boolean transition function previ-
ously defined (see section 4.2.1). One would like to mimic the effect of this
noise and additionally control the convergence process. So, one considers an
Hopfield network with analog neurons as defined in [7]. The new associated
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Figure 22: Evolution of the temperature and of the number of ac-
cepted transformations as a function of the temperature step number.
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Figure 23: Examples of possible transition functions associated to an
analog neuron.

transition function is a sigmoid and depends on a parameter 7' which mimics
the noise. One can take as a transition function (see figure 23):

fr =th(z/T). (4.32)

One forces T' to tend to 0 during the convergence process. At this limit,
we obtain the previous model (see section 4.2.1). As previously, one can show
that the Hopfield energy defined in the part 4.2.1 converges to a minimum [7].
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A thresholding is made at the end of the process, when one estimates that
the network has converged, by using the formula

Vi € (1, N),Vk € (1, K),
VEE+1) = froo(VE(?)). (4.33)

In this case, one has to add to the energy associated to our optimization
problem the additional energy which tends to force the neuron outputs to be
+1 or —1:

K N
C.3 3 (1-VH.(1+VH) (4.34)

k=14=1

where C is a positive adjustable parameter. This energy term is minimum
when the neuron outputs are either +1 or —1. Then the global energy to
minimize becomes

1K
E=§Z

k=11

N N
ZZ[ 2 —a,] 6k1 236,J+2C’5,16,¢,]V,"V;'

i=1j5=1

uMN

- Z Z[Q.B.(Q — K) +4.AN ).V

k=11i=1

+ B.N.(2-K)*+C.N.K. (4.35)

This energy can be written as an Hopfield energy by using the synaptic
weights:

V(i,j) € (1, N)?,V(k,1) € (1,K)?,
Tik,jl = -—2(/\ — a,-j).5k; - 2.3.5,'1' + 2.0.5;j.6k1, (436)
I,k—-2B(2 IX)+4AN1¢ (437)

It is equivalent to add an excitatory synaptic term which tends to force
every neuron output to be +1 or —1. The matrix of the synaptic weights is
symmetrical. Additionally, with the condition

C=B+ ), (438)

all the diagonal coefficients of the matrix are 0. Therefore, the system con-
verges to a minimum [7]. With this condition, two parameters have to be
fixed: B and .

As in the case of an Hopfield network with binary neurons, we have not
validated this method on a conventional computer because of the large CPU
times which are expected.

In the two types of Hopfield networks (with analog or binary neurons),
every neuron is connected to N — 1 + K other neurons. Therefore the total
number of synaptic connections in the network is N.(N + K —1) and thus is
proportional to N2. Consequently a subset number which is small compared
to the vertex number does not noticeably influence the running time.
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4.3.2 Mean field theory

The main drawback of the simulated annealing is its large running time on
a conventional sequential computer (see section 4.2.2). A neural approach
coming from statistical mechanics and named mean field theory (MFT) has
been developed [17] to solve much more quickly some optimization prob-
lems. Here, the data used are scalar entities. We extend this approach to
solve optimization problems having a lot of degrees of freedom such as the
graph K-partitioning by using the previously defined vectorial entities (equa-
tion 4.1). Contrary to the simulated annealing, the convergence process is
perfectly deterministic and is controlled by a dynamic system. At every
temperature, a solution of this system is directly related to the vertex mem-
bership probabilities (between —1 and +1) of a subset in the K-partition.
We show that this method gives very good results in a smaller CPU time
than the one which is necessary in the simulated annealing. Additionally, it
is intrinsically massively parallel by nature.

By analogy to physics [19], let us define, for all vertex : and for all subset k,

(Rf) = -2 ;(A — ai;)-(VF), (4.39)

RE . = 4.0.N; (4.40)
and

(HE) = (Rf) + by, (4.41)

¥ may be considered as the kth component of the field vector created on the
vertex ¢ by the other kth spins associated to the graph vertices. k¥, may be
considered as the kth component of the external field in which the system
is plunged. Thus H is the kth component of the total field existing on the

vertex ¢. Then the mean energy of the system (equation 4.14) can be written
N — —
(E) = = S (H:).(V). (4.42)

=1

Let us consider a vertex which is isolated from the others which are sup-
posed to be fixed. Then the mean energy associated to the vertex ¢ is

(B(VD)) = —(H:).(Vi). (4.43)

In the spin vector of the vertex i, only one component is +1 and the others
are —1. We can write the partition function associated to the mean behavior
of a vertex as

Z=Yew {—%.(E(V))} =Tew {%.(ﬁ).(?)} . (4.44)
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In this expression, the configuration of minimum energy are predominant.
After some algebra, we obtain

= Zexp{ (H")— fj (H‘))}. (4.45)

I1=1,1#k

The mean vector of spins associated to a graph vertex has the following kth

component:
(H')
=1,l#k

- _fj oxp {% ((H’)— 3 (H”‘)) }] (4.46)

E::
3
|
N| —
¢]

o]

=)

F i
-
_~
S
&
|
)=

m=1m#l

After simplifications, it leads:

exp {%(Hk)} — Y1 €XP {%(HI)}

T exp {2.(H)}
2
- T eXP{%.((H’) — (H"))} -1 (4.48)

(v (4.47)

The mean field approximation consists in supposing that the field seen by
a vertex is the mean field created on this vertex by the other vertices. Then,
for all vertex 2, we get

(Vi) = (4.49)

2
SK, exp {£. [LX (N = Ny) — 2.5, (X — a).((V}) — )]}

The solutions of the equation (4.49) can be iteratively obtained thanks to
the following equations:

Vi € (1,N),Vk € (1, K),
Yk mew — (4.50)

2
TK exp (&[40 (N — Ny) — 2.2, (A — ai5).(V} 24 =V} 99)[ }
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The desired values are also solutions of the dynamic system:

Vi € (1, N),Vk € (1, K), (4.51)
d(VH()) K
S0 = (Vo) 2

— 1.
SK exp {5 [A0 (N = Ny) — 2. 51,0 — a)-((VV() — (V)] }

Two running modes are possible. A new step in a synchronous running,
every V¥ component of each vertex is simultaneously updated by using the
other V* values which have been calculated at the previous step. In the case
of an asynchronous running, one calculates the V¥ associated only to one
node. The V* values of the other vertices will be calculated in another step.
We can logically think that an asynchronous running mode produces best
results because the convergence process is less subject to the oscillations
which frequently exist in a synchronous running mode. The algorithm is
given in appendix C.

Let us make some remarks about this algorithm. One can see that the
choice of the final partition is obvious. When one estimates that the system
has converged, one chooses for every vertex i the greatest V¥ among all the
positive components V;*. The corresponding component has a probability
greater than 50% to be +1. All the other components are put to —1.

To determine the initial configuration of the system when Ny = Ny =
... = Nk, let us notice that if V¥(t = 0) = 2/ K —1 for all vertex components,
then the components V¥ are solutions of the dynamic system. Practically,
one determines the initial configuration of the system by adding noise on this
trivial solution: for instance, the V¥ are randomly chosen between the two
values (2/K —1—107%2/K —1+107%).

We have tested this algorithm in the asynchronous running mode. We
notice that the components V¥ oscillate with a damping during the conver-
gence process. Thus it is our interest to scan the graph vertices a lot of
times. The minimum scan number necessary to have a good solution de-
pends on the graph homogeneity: the more nonhomogeneous the graph, the
smaller the necessary scan number because the energetic slopes are then more
abrupt. Practically, N/2 scans are sufficient for nonhomogeneous graphs
such as monocular descriptions (see figure 2). As for homogeneous graphs,
the system converges in less than N scans. We verify this assertion with the
5-partitioning of the following graphs:

homogeneous graph and o = 1: regular hexagonal network. We show
the partition provided provided by the mean field algorithm at two
temperatures. In figure 24, the ambient temperature is 2. Figure 25
shows the evolutions in each subset (k fixed) of the components V;* as
a function of the scan number. The system needs less than N scans
to converge. In figure 26 and 27, the ambient temperature is 4. The
partition energies of the figure 24 and 26 partitions are comparable but
the solutions correspond to different valleys in the energy landscape.
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Figure 24: Balanced 5-partitioning with @ = 1 of a regular hexagonal
network of 324 vertices and 901 edges provided by the mean field
approximation (edges are not visualized). The ambient temperature
is 2. The interconnection cost is 88, the imbalance energy 107,2 and
the total energy 88,23. The distribution of vertices is the following:
66 vertices in subset 0,64 vertices in subset 1,65 vertices in subset
2,68 vertices in subset 3,61 vertices in subset 4.

nonhomogeneous graph and a = 2: left monocular description of fig-
ure 2 (see figures 28 and 29). The system needs less than N/2 scans to
converge.

Those results are comparable to those given by the simulated annealing
but are obtained in a CPU time 10 to 20 times smaller. The interconnection
cost given by the generalized Kernighan method are about 20% greater.

The difficulty of this method depends on the choice of the two parameters
A and TV is chosen without ambiguity (equation 4.15). The choice of the
temperature 7" has not a major influence on the quality of the result when
it is chosen in a certain range (between 1 and 4 for graphs having hundreds
of vertices). Additionally, one notices that the range of possible temperature
increases as the vertex numbers grows.

4.3.3 Mean field annealing

In the mean field approximation algorithm, the temperature is definitively
fixed. Another possibility consists in doing an annealing during the conver-
gence process. Consequently the convergence time is reduced: the smaller
the temperature, the more rapid the convergence of the previous dynamic
system (equation 4.51). Additionally, once the system has converged, the
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Figure 25: At k fixed, curves giving V,-’c as a function of the scan

number.
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Figure 26: Balanced 5-partitioning with o = 1 of a regular hexagonal
network of 324 vertices and 901 edges provided by the mean field
approximation (edges are not visualized). The ambient temperature
is 4. The interconnection cost is 86, the imbalance energy 259,2 and
the total energy 86,56. The distribution of vertices of vertices is the
following: 64 vertices in subset 0,69 vertices in subset 1,61 vertices
in subset 2,69 vertices in subset 3,61 vertices in subset 4.

membership probabilities of a subset are more discriminant than previously
(see section 4.3.2): all the V¥ are forced to tend to +1 ar —1 when the tem-
perature decreases during the convergence process. The determination of the
final partition is made without ambiguity concerning the vertex membership
of a subset. The previous algorithm (see section 4.3.2) is slightly modified
and is given in appendix D.

Practically, the decreasing factor of the temperature (decT) between two
scans must be slightly smaller than 1. We give experimental results in fig-
ures 30 and 32:

homogeneous graph, @ = 1, and decT = 0,995: regular hexagonal
network (see figure 30). Figure 31 shows the evolutions in each sub-
set (k fixed) of the V¥ components as a function of the scan number.
The system converges much more rapidly than previously (compared
to figure 25).

nonhomogeneous graph, a = 2, and decT = 0,995: left monocular
description of figure 2 (see figures 32 and 33).

Those results are comparable to those obtained by using the mean field
approximation but the convergence is more rapid and the discretisation which
produces the final partition is less ambiguous.
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Figure 27: At k fixed, curves giving V¥ as a function of the scan
number.
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Figure 28: Balanced 5-partitioning with a = 2 of the left nonhomoge-
neous graph of the figure 2 provided by the mean field approximation
algorithm. The ambient temperature is 3. The interconnection cost
is 85, the imbalance energy 196,8 and the total energy 85,86. The
distribution of vertices is the following: 63 vertices in subset 0,66 ver-
tices in subset 1,63 vertices in subset 2,61 vertices in subset 3 and 70
vertices in subset 4.
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Figure 29: At k fixed, curves giving V¥ as a function of the scan
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!subset 0%

Figure 30: Balanced 5-partitioning with o = 1 of a regular hexagonal
network of 324 vertices and 901 edges provided by the mean field an-
nealing algorithm (edges are not visualized). The initial temperature
is 5 and the decrease coefficient of the temperature is 0,995. The
interconnection cost is 85, the imbalance energy 547,20 and the total
energy 86,18. The distribution of vertices is the following: 63 vertices
in subset 0,63 vertices in subset 1,63 vertices in subset 2,75 vertices
in subset 3 and 60 vertices in subset 4.

5. Conclusion

We have shown how a NP-complete combinatorial optimization problem such
as the graph K-partitioning can be treated as a minimization problem of a
global quadratic energy thanks to the use of vectorial entities. We have
proposed several neural methods to minimize this energy.

We have shown how to adapt the synaptic weights between the binary
or analog neurons of an Hopfield network so that the system converges to
energy minima which are good solutions of our problem.

We have extended the well known simulated annealing procedure (SA) to
the use of our vectorial entities.

We have developed a deterministic and massively parallel method using
the mean field theory (MFT) to handle our problem. This method, im-
plemented on a conventional computer, gives very good results in a CPU
time divided by an order of magnitude 10 to 20 compared to the simulated
annealing.

Eventually, in the mean field annealing method (MFA), one makes an
annealing during the convergence process of the MFT algorithm. This causes
the system to converge more rapidly. Additionally, the final partition is
determined with less ambiguity than with the mean field approximation.

Experimental results are given for the SA, MFT and MFA methods.
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Figure 31: At k fixed, curves giving V¥ as a function of the scan
number.
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Figure 32: Balanced 5-partitioning with o = 2 of the left nonhomo-
geneous graph of the figure 2 provided by the mean field annealing
algorithm. The initial temperature is 5 and the decrease coefficient
of the temperature is 0,995. The interconnection cost is 107, the im-
balance energy 532,8 and the total energy 109,33. The distribution
of vertices is the following: 64 vertices in subset 0,67 vertices in sub-
set 1,67 vertices in subset 2,55 vertices in subset 3 and 70 vertices in
subset 4.
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Figure 33: At k fixed, curves giving V¥ as a function of the scan
number.
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Appendix A.

In this appendix, upper and lower bounds of the interconnection cost are
given as a function of the desired subset number. Additionally, an approxi-
mation of the internal density of a subset is developed.

Upper and lower bounds of the interconnection cost

Let us consider a graph of N vertices and M edges with the density d =
2.M/(N.(N —1)). One wants to partition this graph in K subsets. Let
us suppose that N(k) is the vertex number in the subset k and that d(k)
is the internal density in this subset. The number of vertices having its
extremities in the subset k is d(k).N(k).(N (k) —1)/2. Therefore, the number
of interconnection edges is

o d(k)
M- TN(k)[N(k) —1] (A.1)
k=1
Let us suppose that the partition is perfectly balanced (N1 = ... = Ng)

and that the density is the same for every subset. In the best case, the
number of interconnection edges is 0. Therefore, it leads:
N-1
N-K

Vi € (1,K),d(k) = K.d. (A.2)
with the condition: for all k, d(k) is lower than 1. We notice that d(k)
increases when K increases.

Therefore, we obtain a limit value of K:

Kiie = E [W%dﬁ] . (A.3)

A lower bound of the interconnection cost is Cyy, defined by

VE < Kimit, Conin(K) = 0, (A4)

N?2.d 1 (d-1 1

In the worst case, for all k, d(k) equals to the graph density. Then an
upper bound Cgyp of the interconnection cost is obtained by replacing d(k)
by d in the previous formula. It leads:

2
VK < N, Caup(K) = ¥ (1 _ 11_() . (A.6)
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Approximation of the density in a subset

We suppose that NNV is much greater than K. Let M (k) be the edge number
in the subset k. If the partition is perfectly balanced, we have

2.M(k)  2.K2.M(k)

Vk e (1,K),d(k) = Al
In first approximation, ene can take, for all k, M (k) = M/K. Therefore:
2.M
Vk e (1,K),d(k) = W;.K ~ K.d. (A.2)

Appendix B.

In this appendix, we describe the simulated annealing algorithm. We use
vectorial entities defined in section 4.1. The algorithm is the following:
1. Get an initial system configuration.
Construct the associated (V;)ig(1,n).

2. Fix the initial ambient temperature 7' by using equation 4.31.

Fix the length of the elementary transformation sequences so as to
reach the equilibrium at any temperature 7' : L = 100.N.(K —1).

3. Get initial number of accepted transformations at this temperature:
NT accept = 0.
Repeat L times:
(a) Pick at random a vertex 7 of the graph (this vertex is in the subset
k:VF=1).
(b) Pick at random a subset [ which is different from k.
(c) Calculate the energy variation associated to the move of the vertex
¢ from the subset k to the subset [ by using equation 4.29.
(d) If the energy decreases:
i. The elementary transformation is accepted: NTaccept —
NTaccept + 1.
ii. Operate the transformation: V¥ = —1 et V! = 1.
(e) If the energy increases, then the elementary transformation is ac-
cepted with a probability given by equation 4.30.
(f) If NTaccept = L/10, then consider that the equilibrium is reached
at T stop (go to step 4.).
4. If NTaccept = L/10, update the ambient temperature (Tyew = 0,937c1a)
and go to step 3.
If NTaccept is between N and L/10, the system is freezing, update the
ambient temperature (Thew = 0,965T1q) and go to step 3.

If NTaccept < N (the system is frozen), stop: the solution (final K-
partition) is obtained.
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Appendix C.

In this appendix, we describe the mean field approximation algorithm. We
use vectorial entities defined in section 4.1. The algorithm is the following:

1. Fix the running mode:

synchronous — fct =0,

asynchronous — fct = 1.

Fix the temperature T'.
Fix the scan number of the graph vertices: Nbscan.
Get, for all 7 and k, an initial value V* randomly chosen between the
values (2/K —1 —107%,2/K — 1+ 107%).
2. Repeat Nbscan times:

(a) Randomly scan the graph vertices in such a way that every vertex
is updated once.

i. Update every vertex seen in the scan:
A. Calculate, for all k, V¥ ™Y (equation 4.50).

B. If fct = 1 (asynchronous running mode), update for all
ke V;-k old _ V;»k new
(b) If fct = 0 (synchronous running mode), update for all vertex ¢

and for all subset k: V;* old = Yk new,

3. (a) Test if the system has converged into a configuration different from
the initial one.

(b) If the system has not converged, either the temperature 7' is too
high or Nbscan is too small. Go to step 1.

(c) If the system has converged, for all graph vertex i:

i. Determine k such that V;* is the greater.
ii. Do V¥ =1 and, for all £ # k, V! = —1 — the vertex i is in
the subset k.
Appendix D.

In this appendix, we describe the mean field annealing algorithm. We use
vectorial entities defined in section 4.1. The algorithm is the following:

1. Fix the running mode:

synchronous — fct =0

asynchronous — fect =1
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Fix the initial temperature T = Tj.
Fix the scan number of the graph vertices: Nbscan.

Fix the decreasing coefficient of the temperature between two consec-
utive scans: decT. Get, for all ¢ and k, an initial value V/* randomly
chosen between the values (2/K —1—107%, K —1 +107%).

2. Repeat Nbscan times:
(a) Randomly scan the graph vertices in such a way that every vertex
is updated once.

i. Update every vertex seen in the scan: (1) Calculate, for all k,
Vknew (equation 4.50). (2) If fct = 1 (asynchronous running
mode), update for all k: V¥ old = y/k new,

(b) If fct = 0 (synchronous running mode), update for all vertex ¢ and
for all subset k: V¥ old = yk new,

(¢) T — decT *T.
3. (a) Test if the system has converged into a configuration different from
the initial one.
(b) If the system has not converged, Nbscan is too small. Go to step 1.
(c) If the system has not converged, for all graph vertex i:

i. Determine k such that V* is the greater.
ii. Do V¥ =1 and, for all £ # k, V! = —1 — the vertex ¢ is in
the subset k.
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