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Abstract. We exhibit a class of symmetric neural networks which
synchronous iteration possesses an exponential transient length. In
fact if {1,...,n} is the set of nodes we prove the transient length
satisfies 7 > 2"/3, For sequential updating we get the bound 7 > 27/6,
This behavior shows that the dynamics of these class of networks is
complex while the steady states are simple: only fixed points or orbits
of period 2.

1. Introduction

Neural networks with symmetric connections (a;;) have been developed and
applied in several areas including associative memories and pattern recogni-
tion [1,2]. Extremely simple behavior appears for the steady-state when the
dynamics of this class of networks is studied: the limit orbits are cycles of
length 1 or 2 [3], and if the matrix of connections is positive-definite only
fixed points are obtained [4].

But this does not mean the dynamics of the network is in itself simple
because the transient can be very complicated. More precisely we shall prove
there exists a class of symmetric networks with exponential transient, i.e.,
possessing initial conditions which transient length is > 2°* being n the
number of cells of the network and a some positive constant.

This result is shown for synchronous and sequential update. We prove
for synchronous iteration there exist classes which transient length verifies
7 > 2*3 and for sequential iteration we obtain transient length of order
T > g,

A first approach to the exponential behavior was studied in [5] in the
context of synchronous update. The construction used in this reference was
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based in self-dual networks which, in opposition to the present work, makes
the dynamics of the construction difficult to follow and interpret.

Recently an analogous class of network evolution was exhibited in [6] but
the update was not synchronous neither sequential. In fact, in this last work
the choice of the node to update needed to evaluate a minima value of a
certain potential of the network which implied a global knowledge about the
state of the network and is not compatible with the distributed computing
paradigm. In any case we refer to the discussion made in reference [6] about
relation among complexity and exponential transient classes of symmetric
neural networks.

2. Exponential transient classes for synchronous iteration

Let I = {1,...,n} be the set of nodes of the networks, A = (a;; : ¢,7 € I) be
the matrix of connections and b = (b; : ¢ € I) be the set of thresholds. We
note by (A4, b, I) this neural network, it is called symmetric if A is symmetric,
ie., a;; = a;; for any 7,5 € I.

The synchronous update of the network (A, b, I) is given by the following
evolution equation:

.'l?,'(t + 1) = | (E a,-,-m,-(t) = b,) ,i € I,t >0 (21)
J€I
where 1(u) =1 if u > 0 (0 otherwise).

A stable configuration is a finite periodic sequence (z(to), ..., z(to+1) =
z(t))-

If I > 1 is the minimal number for which z(¢o + [) = z(to) it is called the
period of the sequence. When A is symmetric any stable configuration has
period 1 < 2 [2].

If z(0) = (2:(0) : 2 € I) is an initial condition its synchronous transient
length 7 is the time it takes evolving under equation (2.1) and departing
from z(0) to enter for the first time to a stable configuration.

Exponential transients for symmetric neural networks are built by a re-
cursive procedure. Before to formalize it we illustrate the construction for
n =2 and n =5 as follows. Let us take the couple (A,d) given by a;; = —1,
a3 = ag = 1, age = 15 by = —1/2, by = 1. It is direct that the synchronous
trajectory associated to (4,b) is (0,0) — (1,0) — (0,1) — (1,1), where the
vector (1,1) is a fixed point. It is important to point out that the trajectory
travel through all the vertex of the 2-hypercube. Now, by adding three cells
to previous network one may travel on the vertex of the 3-hypercube. It
suffices to take the couple (A,b):

1 -2 1 ;

) A 182,

A=]|1 10 60| b=|]
2 36 04 i
1 20 40
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The new cells {3,4,5} are used as control units to repeat twice the dynamics
of the 2-hypercube. The dynamics of (A, ) for the initial condition z(0) =
(0,0,0,0,0) is the following:

t :1,‘1(t) .’Z2(t) m;:,(t) .’E4(t) .’Es(t)
0 0 0 0 0 0

1 1 0 0 0 0
2 0 1 0 0 0
3 1 1 0 0 0
4 1 1 1 0 0
5 1 1 1 1 0
6 0 0 1 1 1
7 1 0 1 1 1
8 0 1 1 1 il
9 1 il 1 1 i fixed point

The cells {1,2,3} travel through the 3-hypercube. For that the fourth cell is
on if and only if the first travel of the 2-hypercube is finished. Also, it switches
off the cells {1,2}. By doing so, these cells repeat the initial trajectory of
the 2-hypercube.

Extending previous construction to networks of any size allows us to get
the following result:

Theorem 1. For any n there exists a symmetric neural network (A, b) such
that its synchronous transient length verifies 7(A,b) > 2"/3,

Proof. Recall it suffices to show for any n of the form n = 3m + 2 we can
construct a symmetric network verifying 7(A,b) > 3(2™*! —1). In fact if
n=3m+4 (or n = 3m + 3) we can bound its transient by the transient of
the case 3m + 2. As m = n —4/3 we deduce 7(4,b) > 3(2"~*/3+! —1) which
is > 273 for n > 10. Now for n < 10 it follows directly from the network
we shall exhibit that 7(A,b) > 9n/3 Hence assume n = 3m + 2 with m > 0.

The symmetric neural network we shall construct on the set of nodes
I™ = {1,...,3m + 2} will contain a trajectory at least as large as the
following one:

(0,0,...,0) € {0,1}*** - (o,1,...,0) — (0,0,1,...,0) —...
= (1515150005 1)y

which contains 2™+?2 different points. The other 2m sites being used to control
the network, i.e., their connections will make possible that such an evolution
can be realized.

The construction of the network will be made recursively then at each
step we add three nodes, one of them allows to increase the length of the
above orbit, the other two being used for control.

First take k£ = 0, I = {1,2}, we shall construct A© (a 2 x 2 symmet-
ric matrix) and 5@ (a 2-vector). After we suppose we have constructed a
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symmetric matrix A®) and a vector () for I® = {1,...,3k + 2} and we
give an algorithm to construct a symmetric matrix A®*1) and a vector b(*+1)
on I*+1) = {1 ... 3(k+ 1) +2}. The sequence (A®,b*)) defined by the
algorithm will verify:

i. A®+) restricted to I®) x I is equal to A%).
ii. b+ restricted to I*) coincide with ().
iii. The initial condition z(0) = (0,...,0) € {0,1}***? possesses
a transient length 7 = 3(2*+! —1) when we make evolve it in
a synchronous way with matrix A®*) and vector 5,

Then when we put A = A™), b = b(™ the initial configuration z(0) =
(0,...,0) € {0,1}™ will possess a transient length 7, = 3(2™*! — 1) =
3(27=%/3+1 _1). Then it fulfills the properties we have asserted. So take
I® = {1,2}. We construct A®) = (a;; : 3,5 € I®), b® = (b,b,) in order
than z(0) = (0,0) has the following dynamics:

t :le(t) .'.Cz(t)

0 0 0 transient behavior

1 1 0 transient behavior (2.2)
2 0 1 transient behavior ’
0=321-1)=3 1 1 fixed point

5 1 1 fixed point

It is easy to see that when we improve conditions:

an < by <0< by < inf(ara,a22),b1 < @11 + 12,891 = aq2 (2.3)

we get the above dynamics of z(0). Then the transient length of initial
condition z(0) is 70 = 3.

Now call C(©) the matrix which contains the transient evolution of z(0) =
(0,0) and the first time it attained the fixed point:

co — (24)

_—_0 = O
- -0 O

Now suppose we have constructed A®) = (a;; : 4,5 € I®), b®) = (b; : 1 €
I®)) in such a way that z(0) = (0,...,0) € {0,1}***2 evolves as follows:

t zy(t) -+ Tapa(t)
0
c®) (2.5)

T = 3(2k+1 —1)
e+ 1 1 e 1
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with transient length 7, = 3(2%+1 —1).

Now we will add three elements: 3k+3, 3k+4, 3k+5. We will explicit the
restrictions of the symmetric matrix of connections A**Y) and the thresh-
old vector b +1) in order that the initial configuration z(0) = (0,...,0) €
{0,1}3¢*+1)+2 eyolves in the following way:

¢ z1(t) o zakga(t) zakss(t) Tarsa(t) wares(t)
0 0 0 0
: C®) 34
e = 3(2F+1 — 1) 0 0 0
T+ 1 1 S 1 1 0 0
T +2 1 S 1 1 1 (2.6)
1 1 1
: c®) : : :
Thpr = (2842 — 1) 1 1 1
Tk+1 -+ 1 1 B g 1 1 1 1

In the above process we deduce 7, = 3(2F+! — 1) because it is the solution
to equation 7py; = 27 + 2 + 1 with initial condition 75 = 3. Also from the
recurrence construction it follows that the row 74y = 3(2¥2? — 1) is equal
to the row 7441 + 1, and also that the first ¢ = 7,4, for which we enter to a
steady state is for 744, = 3(2¥*? —1) which is the transient length of 2(0). We
take C*+1) equal to the matrix formed from row ¢ = 1 till the row ¢ = 74,
and we continue the process:

r 00071 !
Cc®) 000 3
000 T
CE) (1 -« 1100} 541 (2.7)
1 -+ 1111 42
c® i :
L 1 ]. 1_ Tk+1

Hence we must explicit the constraints of A1), p+1) in order that the
above evolution of z(0) could be possible and we must also show this system
of constraints admits a solution.
First the coeflicients a;; of A1) for ,J € I®) are the same as those for
A®) | also the coeficients b; of b1 for i € I(*) is the same as those of b(*),
In order that z;(1 + 1) = 1 for any i € I*), we must have:

7‘.“‘) = Y a;>bforanyi€ 1% (2.8)
jeIk)

Recall (2.8) is verified for k¥ = 0 (see (2.3)), we suppose it is verified by
recurrence hypothesis for k.
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On the other hand the condition z3;43(t) =0 for ¢t =0,...,7; is implied
by the stronger condition:

b3k+3 > K3k43 where K3k43 = sup Z A3k43,5 (29)
L'CIR), LI I jepy

Equality zsr43(7x + 1) = 1 is implied by the condition:

Z G3ky3j > baprs (2.10)
jeItk)

Now (7% + 2) = 1 for any i € I® follows from the inequality:

> i+ aizeys > b Vie I® (2.11)

jeI(k)

In order to verify conditions (2.9), (2.10), (2.11) we take: a;gr+3 = agrya; >
0, 50 K3r43 < Xjerr) Aaky3,j, SO We choose bgrys verifying (2.9), (2.10) which
do always exist. Inequality (2.11) follows from positiveness of a;3n43 and
(2.8).

To get zapqa(m +t+1)=1fort =1,2,...,(Tks1 — 7), We improve

ask43,3k43 > SUp (—{ D aaks3jtaskissktataskissies }+bsees) (2.12)
L'cI(k) jeL!

for any choose we make of asry3 314, G3k+4,3k+5 Will not depend on asgi33k+3-

To get the above dynamics of node 3k + 4, i.e., zsr44(t) = 0 for ¢ =
0,...,7%+1; zapyra(e+2) = 1 and zappa(mi+t+2) = 1fort =1,2,..., (Thep1—
7, + 1) we require for the following inequalities to be verified:

bskyq > Karrq Where Kapypqy = sup Z A3kya,j (2.13)
L'cI(k) jEL’
G3k44,3k+3 = Q3k+3,3k+4 > b3pya — Z A3ky4,j (2.14)
FeIts

Q3k+4,3k+4 > SUP (—{Z 3k 44,03k 44,3543 O3k +4,3k+5 } F03k4a) (2.15)
L'cI(k) jeL

The conditions on coeflicients aski4,; = @:3k+4 come from the equality z;(7: +
3) = 0 for any i € I*). Then we also need the condition: kY ;e ai; +
G;3k43 + @i gra < b;. Hence we impose:

A3k44,i = G5 3k44 < _(71(k) + a,-_3k+3) for: € I(k) (216)
where the 'y,(k) was defined in (2.8). So agk44, is strictly negative, asriq,3k43

is strictly positive. There always exist solution for the above requirements

(2.8)-(2.11).
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In an analogous way to get z345(t) =0 for ¢t =0,..., 7 + 2, Tapes(Tp +
=1, zays(me+t+3)=1fort =1,2,...,(Tk41 — & — 2), we impose:

bsk+5 > K3k45 where K3k4s5 = Z Z aA3k+5,5 (217)
L'cI(F)u{3k+3} JEL

A3k453k+4 = A3k143k+5 > barys — > a3k+5,5 (2.18)
JEIU{3k+3}

a3k+5,3k+5 > Sup (—{E A3k45,5F O3k45,3543F A3kt 3544 1 +b3kt5) (2.19)
L'cI®) jeL’

The last evolution equations, which will only involve conditions on asrys,; =
a; 3k, for j € I are the following:

(e +3+t) =zi(t) forie Mt =0,...,7, (2.20)
In order to satisfy (2.20) let us make the following choice of azjts;:

A3kys,; = Gjakts = —(Gakyaj T Aarts,;) for j € 1® (2.21)

Remark that (2.21) implies the equalities:

Vi € IF)
G =) aj " (2.22)
JEL'U{3k+3,3k+4,3k+5} JEL' VL' C I( )

We claim property (2.20) follows from expressions (2.16), (2.11). This is
shown by recurrence on ¢t > 0. In fact for ¢t = 0 the equality (2.20) is implied
by condition (2.16) and we apply recurrence on ¢ > 1 by using condition
(2.22).

As there always exists a solution for (2.17), (2.18), (2.19), (2.21) we have
proved that the evolution of initial condition z(0) = (0,...,0) € {1,1}3¢+1)+2
is the one asserted in (2.6). Finally we must remark that condition (2.22)
together with (2.12), (2.15), (2.19) imply: 'y,'(kﬂ) = Yjerte+n) aij > b; for
any ¢ € I*+1) then (2.8) can be assumed by recurrence hypothesis. So the
result. B

Remark. The fact to add three cells in the inductive process is imposed
to maintain the symmetry of matrix A. Otherwise it is easy to obtain very
large transients.

3. Exponential transient classes for sequential evolution

Now we shall prove that the sequential iteration of symmetric neural net-
works also contain classes with exponential transient. The proof of this fact
will use a construction made by Tchuente [7] which allows to simulate any
synchronous neural network update by a sequential one.

Recall that if J = {1,...,p} is the set of nodes, C = (ci; : 4,7 € J) the
connection matrix, d = (d; : 7 € J) the threshold vector, then the sequential
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evolution of the neural network (C,d, J) iterated with the usual order < in

J is

y,(t + 1) =1 (Z cijyj(t -+ 1) + Zc,-jyj(t) e dl) for¢ e J,t >0 (31)
i<i i>i

Now suppose the neural network (A,b,I) defined on the set of nodes I =

{1,...,n} is iterated synchronously. On the set of nodes I = {1,...,2n}

construct the following neural network (A,b, I):

0 ifli—j|<n
G =14 @Gj-n f1<i<nn+1<j7<2n (3.2)
Gienj Hn+1<i<2m,1<j<n

Consider the usual order < in I and iterate (A, b, I) sequentially.

Now take z(0) € {0,1}" an initial condition and let (z(t) : ¢ > 0) be
its synchronous evolution for (A, b, I). Now pick the initial condition Z(0) =
(z(0), z(0)) € {0,1}*" and note (Z(¢) : ¢ > 0) its orbit for the sequential
evolution of (A,b,I). Then it is easy to see that #(t) = (z(t),z(t)). so
the transient T' of z(t) is equal to the transient T' of z(¢). Hence by the
construction made in section 2 we get the following result:

Theorem 2. On the set of nodes I = {1,...,p} there exists a symmetric
neural network (A, b,I) and an initial condition z(0) which sequential itera-
tion has a transient length 7 satisfying 7 > 2P/,

Proof. Suppose p is even, take n = p/2. Construct A,b of section 2,
and define A,b on {1,...,p = 2n} as we made in the above paragraph.
Then the transient length of the initial condition z(0) = (z(0),z(0)) =
(0,...,0,0,...,0) € {0,1}* is 7 > 23 = 27/5. On the other hand re-
call that the definition made in (3.2) is such that A symmetric implies A
symmetric. Then we conclude the theorem. For p odd it is easy to show that
the result is also verified. B

4. Conclusion

Instead of the simplicity of the steady state behavior of symmetric neural
networks (fixed points and/or two cycles) we proved that the transient phase
may be complex, i.e., large time to reach the stationary regime.

This fact is important to understand the performances of neural networks
in applications such as associative memories, optimization strategies, etc. In
fact in such cases the convergence is fast because the matrix entries are not
very different in size or the matrix verify same hypothesis that implies short
transient times (i.e., positive-definite, regular connections, etc.).

On the other hand, numerical experiences with symmetric matrices show
that the exponential behavior appear rarely and from a statistical point of
view convergence is very fast; usually 0(n).
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