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Abstract . We exhibit a class of symmetric neural networks which
synchronous iteration possesses an exponential t ransient length. In
fact if {I , ... , n} is the set of nodes we prove the transient length
satisfies T 2: 2n / 3 . For sequential updating we get the bound f 2: 2n / 6 •

Thi s behavior shows that the dynami cs of these class of networks is
complex while the steady states are simple: only fixed points or orbits
of period 2.

1. Introd uction

Neural networks with symmet ric connections (aij) have been developed and
applied in several areas including associative memories and pattern recogni­
t ion [1,2]. Ext remely simple behavior appears for the steady-state when the
dy namics of this class of networks is studied: the limit orb its are cycles of
length 1 or 2 [3], and if the matrix of connect ions is po sit ive-definite on ly
fixed points are obtained [4].

Bu t this does not mean the dynamics of the network is in itself simple
because the transient can be very complicated. More precisely we sh all prove
there exists a class of symmetric networks with exponential transient , i.e.,
possessing initial conditions which transient length is :2: 2an being n the
number of cells of the network and a some positive constant.

This result is shown for synchronous and sequential upda te. We prove
for synchronous iteration there exist classes which transient length verifies
T :2: 2n / 3 and for sequential iteration we obtain transient length of ord er
f 22n / 6 •

A first approach to the exponential behavior was studied in [5] in the
context of synchronous update. The construction used in this reference was
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based in self-dual networks which, in opposit ion to th e present work , makes
the dyn amics of the construction difficult to follow an d interpret.

Recently an an alogous class of network evolution was exhibited in [6] but
the update was not synchro nous neither sequent ial. In fact , in this last work
the choice of the node to update needed to evalua te a minima value of a
certain potential of the network which implied a global knowledge about the
state of the network and is not compatible with the distributed computing
paradigm. In any case we refer to the discussion made in reference [6] about
relat ion among complexity and exponential transient classes of symmetric
neural networks.

2 . Exponential transient classes for synchronous iteration

Let I = {I , ... ,n } be the set of nodes of the networks, A = (aij : i, j E 1) be
the matrix of connections and b = (bi : i E I ) be the set of thresholds. We
note by (A , b, 1) thi s neural network, it is called symmetric if A is symmet ric,
i.e., aij = aji for any i,j E I .

The syn chronous update of the network (A, b, 1) is given by the following
evolution equation:

Xi (t + 1) = 1 ( :l:>ijXj(t) - bi) , i E I, t ~ 0
jEI

(2.1)

where l(u) = 1 if u ~ 0 (0 otherwise).
A stable configuration is a finite periodic sequence (x (to), . . . , x(to+ I) =

x(to)).
If 1~ 1 is the minimal number for which x(to+1) = x(to) it is called the

period of the sequence. When A is symmet ric any stable configuration ha s
period 1 :::; 2 [2].

If x(O) = (Xi(O) : i E 1) is an initial condit ion its synchronous transient
length T is the time it takes evolving under equation (2.1) and departing
from x(O) to enter for the first time to a stable configuration.

Exponential transients for symmetric neural networks are built by a re­
cur sive procedure. Before to form alize it we illustrate the construction for
n = 2 and n = 5 as follows. Let us take the couple (A,b) given by an = - 1,
a12 = a2I = 1, an = 1; bI = - 1/ 2, b2 = 1. It is dir ect that the synchronous
trajectory associated to (A,b) is (0,0) -+ (1,0) -+ (0 ,1) -+ (1,1) , where the
vector (1, 1) is a fixed point. It is important to point out that the traj ectory
travel through all the vertex of the 2-hypercube. Now, by adding three cells
to previous network one may travel on the vertex of the 3-hypercube. It
suffices to take the couple (A,b):

1 - 2 1
A 1 - 3 2

A= 1 1 0 6 0
-2 -3 6 0 4
1 2 0 4 0
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The new cells {3, 4, 5} are used as cont rol units to repeat twice the dynamics
of the 2-hypercube. The dynamics of (A, b) for the ini tial condi tion x(O) =

(0,0,0,0,0 ) is the following:

t Xl (t)

° °1 1

2 °3 1
4 1
5 1

6 °
7 1

8 °
9 1

X2( t)

°
°1
1
1
1

°°1
1

X3( t )

°
°°°1
1
1
1
1
1

X4(t)

°°°°°1
1
1
1
1

Xs(t)

°°°°°°1
1
1
1 fixed point

The cells {I, 2, 3} travel through the 3-hypercube. For that the four th cell is
on if and only if the first travel of th e 2-hypercube is finished. Also, it swit ches
off th e cells {1,2}. By doing so, th ese cells repeat th e initial t ra jectory of
the 2-hyp ercube.

Extending previous construction to networks of any size allows us to get
the following result:

Theorem 1. For any n there exists a symmetric neural network (A , b) such
that it s synchronous transient length verifies T(A, b) ~ 2n / 3.

Proof. Recall it suffices to show for any n of the form n = 3m + 2 we can
const ruct a symmetric net work verifying T(A, b) ~ 3(2m +1

- 1). In fact if
n = 3m + 4 (or n = 3m + 3) we can bound its t ransient by the transient of
the case 3m +2. As m = n - 4/ 3 we deduce T(A,b) ~ 3(2n - 4

/
3+l -1) which

is ~ 2n / 3
, for n ~ 10. Now for n < 10 it follows directly from the network

we shall exhibit that T(A, b) ~ 2n
/
3 . Hence assume n = 3m +2 with m ~ 0.

The symmetric neural network we shall construct on the set of nodes
I(m) = {I , .. . , 3m + 2} will contain a traj ectory at least as large as the
following one:

(0,0, ... ,0) E {0 ,1}m+2 -t (0,1 , .. . , 0) -t (0,0 ,1 , . .. , 0) -t .. .

-t (1,1,1, ... , 1),

which contains 2m +2 different points. The other 2m sites being used to control
the network, i.e., their connections will make possible that such an evolut ion
can be realized.

The construction of the network will be made recursively then at each
step we add three nod es, one of th em allows to increase th e length of the
above orbit , the other two being used for control.

First take k = 0, 1(0) = {1, 2}, we shall const ruct A (O) (a 2 x 2 symmet­
ric matrix) and b(O) (a 2-vecto r) . After we suppose we have const ructed a
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symmetric matrix A(k) and a vector b(k) for I(k) = {I, . .. ,3k + 2} and we
give an algorithm to construct a symmetric matrix A(k+1) and a vector b(k+1)

on I(k+1) = {I, . . . ,3(k + 1) + 2}. The seque nce (A(k),b(k)) defined by the
algorithm will verify:

I. A (k+1) restricted to I( k) x I(k) is equal to A (k).

11. b(k+l) restricted to I(k) coincide with b(k) .

in. The init ial condition x(O) = (0, .. . , 0) E {O , 1p k+ 2 possesses
a transient length 7k = 3(2k+l - 1) when we make evolve it in
a synchronous way with matrix A(k) and vector b(k) .

Then when we put A = A(m), b = b(m) the initial configuration x(O) =
(0, ... ,0) E {O,1}m will possess a transient lengt h 7m = 3(2m+l - 1) =
3(2n - 2/3+1 - 1). Then it fulfills the properties we have asserted. So take
1(0) = {1,2}. We construct A (O) = (aij : i, j E 1 (0) ) , b(O) = ( bI,~) in order
than x(O) = (0,0) has the following dynamics:

t
o
1
2
70 =3(21 -1) =3
5

transient behavio r
t ransient behav ior
t ransient behavior
fixed point
fixed point

(2.2)

It is easy to see that when we improve cond itions:

we get the above dynamics of x(O). Then t he transient length of init ial
condition x(O) is 70 = 3.

Now call C (O) th e matrix which contains the transient evolut ion of x(O) =
(0, 0) and the first t ime it attained the fixed point :

e(O) - r ~ ~ ]- 0 1
1 1

(2.4)

Now suppose we have constructed A(k) = (ai j : i,j E I(k ) ) , b(k ) = (b i : i E
I(k)) in such a way that x(O) = (0, .. . ,0) E {O , 1pk+2 evolves as follows:

t Xl ( t) X3k+3 (t )

0
C( k) (2.5)

7k = 3(2k+l - 1)
7k + 1 1 1
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with transient length Tk = 3 (2 k+1 - 1).
Now we will ad d th ree elements: 3 k +3, 3k +4, 3k +5. We will explicit the

restrictions of th e symmetri c matrix of conne ctions A (k+l) an d the thresh­
old vector b(k+l) in order th at the initi al configuration x(O) = (0, . . . ,0) E
{O, 1P(k+1)+2 evolves in th e following way:

t Xl(t) X3k+2(t) X3k+3 ( t ) X3k+4( t) X3k+5(t)

0 0 0 0
e(k)

Tk = 3(2k+l - 1 ) 0 0 0
Tk + 1 1 1 1 0 0

(2.6)
Tk +2 1 1 1 1 1

1 1 1

e lk)

Tk+l = 3 (2 k+2 - 1) 1 1 1
Tk+l + 1 1 1 1 1

In the above process we dedu ce Tk = 3 (2 k+ 1 - 1) because it is the solut ion
to equation Tk+l = 2Tk + 2 + 1 with initial conditio n TO = 3. Also from the
recurr ence construction it follows that th e row Tk+l = 3(2k+2 - 1) is equal
to the row Tk+l + 1, and also that the first t = Tk+l for which we enter to a
steady state is for Tk+l = 3(2k+2-1 ) which is the t ransient length of x(O) . We
take e(k+1

) equal to th e matrix formed from row t = 1 t ill the row t = Tk+l

and we continue th e pro cess:

0 0 0 1
e (k) 0 0 0

0 0 0 Tk
e(k+l) = 1 1 1 0 0 Tk + 1 (2.7)

1 1 1 1 1 Tk + 2
e(k)

1 1 1 Tk+ l

Hence we must explicit the constraints of A (k+l), b(k+ l ) in order that the
above evolution of x(O) could be possible and we must also show this system
of constraints admits a solution.

First the coefficient s aij of A(k+l ) for i ,j E Ilk) are th e same as those for
A (k), also the coefficients bi of b(k+l) for i E ](k) is the same as those of s».

In order that Xi( Tk + 1) = 1 for any i E ](k), we must have:

,}k) = L aij > b; for any i E ](k)

ser»
(2.8)

Recall (2.8) is verified for k = 0 (see (2.3)), we suppose it is verified by
recurrence hypothesis for k.
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On the other hand the condition X3k+3(t) = 0 for t = 0, . . . , Tk is implied
by the stronger condition:

b3k+3 > "3k+ 3 where "3k+3 = sup L a 3k+3,j
L 'cI( k),L' f.I(k ) jEL'

Equality X3k+3(Tk + 1) = 1 is imp lied by the condit ion:

L a3k+3,j > b3k+ 3

ser»

Now Xi ( Tk +2) = 1 for any i E I tk ) follows from the inequa lity :

L aij + ai,3k+3 > b, Vi E I tk )
j EI(k)

(2.9)

(2.10)

(2.11)

In order to verify conditions (2.9), (2.10), (2.11) we take: ai,3k+3 = a3k+3,i >
0, so 1\;3k+3 < LjEI(k) a3k+3,j, so we choose b3k+3 verifying (2.9), (2.10) which
do always exist . Inequality (2.11) follows from posit iveness of a i ,3n+ 3 and
(2.8).

To get X3k+3 ( Tk +t + 1) = 1 for t = 1, 2, . . . , (Tk+1 - Tk ) , we improve

for any choose we make of a3k+3,3kH, a3kH,3k+5 will not depend on a3k+3,3k+3 '

To get the above dynamics of node 3k + 4, i.e., X3 k H (t ) = 0 for t =
0, ... ,Tk+1 ; X3k H ( Tk +2) = 1 and X3 kH ( Tk +t+ 2 ) = 1 for t = 1, 2, . . . , ( Tk+1 ­

Tk + 1) we require for the following inequalities to be verified:

b3k+4 > "3k+4 where 1\;3kH = sup L a3k+4, j
L'cI(k) j EL'

a 3k+ 4,3k+ 3 = a3k+3,3k+4 > b3k+4 - L a3k+4, j
j EI( k)

(2.13)

(2.14)

The conditions on coefficients a3kH,i = ai,3kH come from the equality Xi ( Tk +

3) = 0 for any i E r», T hen we also need the condit ion: k L j EI(k ) a ij +

ai,3k+3 + ai ,3k+4 < b. . Hence we impose:

(2.16)

where the ,Y) was defined in (2.8). So a3kH,i is st rictly negative, a3k+4,3k+3

is st rictly pos itive. There always exist solut ion for the above requirements
(2.8)-(2. 11).
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In an analogous way to get X3k+S(t) = 0 for t = 0, . .. , Tk + 2, X3 k+5 (Tk +
3) = 1, X3k+5(Tk + t +3) = 1 for t = 1, 2, ... , (Tk+l - Tk - 2) , we impose:

b3k+5 > 1I:3k+ 5 where 1I:3k+5 = L:: L:: a 3k+ 5,j
L'cI(k)U{3k+ 3} JEL'

a 3k+5,3k+4 = a3k+4 ,3k+5 > b3k+5 - L:: a3k+5,j
j EI( k)U{3k +3}

(2.17)

(2.18)

The last evolut ion equat ions, which will only involve condit ions on a3k+5,j =
a j ,3ks for j E I(k) , are th e following:

Xih +3 + t) = Xi(t) for i E I( k) , t = 0, ... , Tk

In order to satisfy (2.20) let us make th e following choice of a3k+s ,j :

a3 k+S, j = aj,3k+5 = -(a3kH,j + a3k+3,j) for j E I(k)

Remark that (2.21) implies the equalities:

(2.20)

(2.21)

L:: a ij = L:: a ij
jEL'U{3k+3,3kH,3k+5} jEL'

Vi E I(k)

VL' C I(k)
(2.22)

We claim property (2.20) follows from expressions (2.16), (2.11). This is
shown by recurrence on t 2: O. In fact for t = 0 the equality (2.20) is impli ed
by condition (2.16) and we app ly recurrence on t 2: 1 by using condit ion
(2.22).

As there always exists a solution for (2.17), (2.18), (2.19) , (2.21) we have
proved that the evolut ion of initial condition x(O) = (0, . .. ,0 ) E {I, 1}3(k+l)+2

is the one asserted in (2.6). Finally we must remark th at condition (2.22)
together with (2.12), (2.15), (2.19) imply : ,Jk+l) = I: j EI(k+l ) a; j > b; for
any i E I( k+ 1), then (2.8) can be assumed by recurrence hypothesis. So the
result .•

Remark. The fact to add three cells in the inductive process is imposed
to maintain the symme try of matrix A. Otherwise it is easy to obtain very
large transients .

3. Exponential t ransient classes for sequential evolution

Now we shall prove that th e sequenti al iteration of symmetric neural net­
works also contain classes with exponent ial transient . T he proof of this fact
will use a construction made by Tchuente [7J which allows to simulate any
synchronous neural network update by a sequential one.

Recall that if J = {I , . . . ,p} is th e set of nod es, C = (c;j : i,j E J) the
connection matrix, d = (d; : i E J) the threshold vector, then the sequential
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evolution of the neural ne twor k (C, d, J) iterated with the usual order s; in
J is

Yi (t + 1) = 1 (2: CijYj(t + 1) + 2: CijYj (t) - di) for i E J, t ~ 0 (3.1)
J<' J ~ l

Now suppose the neur al network (A, b,1) defined on the set of nodes I =
{1, . .. , n } is iterated synchronously. On the set of nodes I = {1, . .. , 2n}
construct the following neural network (A,b,!):

{

0 if Ii - j I < n
(iij = ai,j-n ~f 1 < i < n, n + 1 < j .::; 2n

ai-n ,j If n + 1 ::; l < 2n , 1 ::; J ::; n
(3.2)

Consider the usual order j; in I and iterate (A,b,I) sequenti ally.
Now take x(O) E {O,1}n an ini ti al condition an d let (x(t) : t ~ 0) be

its synchronous evolution for (A, b, I ). Now pick the initial cond ition x(O) =
(x(O), x(O) ) E {O, 1Vn and no te (x(t) : t ~ 0) its orbit for the seque nt ial
evolution of (A,b,!) . Then it is easy to see th at x(t ) = (x(t), x(t)) . so
the transient T of x(t ) is equal to the tr ans ient T of x(t ). Hence by the
construction made in section 2 we get the following result :

Theorem 2. On the set of nodes I = {1, . . . , p} there exists a symmetric
neural network (iI,b, I ) and an init ial condition x(O ) whic11 sequential it era­
tion has a transient lengt h T satisfying T ~ 2P/ 6 .

P roof. Suppose p is even, take n = p/2. Con struc t A, b of section 2,
and define iI, b on {1, ... ,p = 2n} as we made in the above paragraph.
Then the transient length of t he initial conditi on x(O) = (x (O), x(O)) =
(0, ... ,0,0, .. . ,0 ) E {O, 1}2n is T ~ 2n / 3 = 2P/ 6 • On the ot her hand re­
call that the definition made in (3.2) is such that A symmetric implies A
symmetric. Then we conclude the t heorem. For p odd it is easy to show that
the result is also verified.•

4. Conclusion

Instead of the simplicity of the steady state behavior of symmet ric neural
ne tworks (fixed po int s and/or two cycles) we proved that the tran sient phase
may be complex, i.e., large t ime to reach the statio nary regime.

This fact is important to understand the performances of neural networks
in applica tions such as associative memories, op timization strategies, etc. In
fact in such cases the convergence is fast because the matrix entries are not
very different in size or the matrix verify same hypothesis that implies short
transient times (i.e., po sitive-definite, regular connec tions, etc.).

On the other hand, numerical experience s with symmet ric matrices show
that the exponential behavior appear rarely and from a st atistical point of
view convergence is very fas t; usually O(n).
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